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Abstract

Bayesian inference, of posterior knowledge from prior knowledge
and observed evidence, is typically defined by Bayes’s rule, which
says the posterior multiplied by the probability of an observation
equals a joint probability. But the observation of a continuous quan-
tity usually has probability zero, in which case Bayes’s rule says
only that the unknown times zero is zero. To infer a posterior dis-
tribution from a zero-probability observation, the statistical notion
of disintegration tells us to specify the observation as an expres-
sion rather than a predicate, but does not tell us how to compute the
posterior. We present the first method of computing a disintegra-
tion from a probabilistic program and an expression of a quantity
to be observed, even when the observation has probability zero. Be-
cause the method produces an exact posterior term and preserves a
semantics in which monadic terms denote measures, it composes
with other inference methods in a modular way—without sacrific-
ing accuracy or performance.

Categories and Subject Descriptors G.3 [Probability and Statis-
tics]: distribution functions, statistical computing; F.3.2 [Log-
ics and Meanings of Programs]: Semantics of Programming
Languages—denotational semantics, partial evaluation

Keywords probabilistic programs, conditional measures, continu-
ous distributions

1. Introduction

In the Bayesian approach to reasoning about uncertainty, one be-
gins with a probability distribution representing prior knowledge
or belief about the world. Then, given an observation of the world,
one uses probabilistic inference to compute or approximate a pos-
terior probability distribution that represents one’s new beliefs in
light of the evidence. In applications, inference algorithms are of-
ten specialized to particular distributions; to make such algorithms
easier to reuse, many researchers have embedded them in proba-
bilistic programming languages.

A probabilistic programming language provides an interface to one
or more Bayesian inference algorithms. A prior distribution, which
is different in every application, is specified by a generative model.
The model looks like a program, and it is called generative because
it is written as if running it generated the state of the world, by
making random choices. But in practice, the generative model is
not run; it is used only as input to an inference algorithm which,
like an interpreter or compiler, is reused across applications.
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This paper contributes a new inference algorithm, which computes
a posterior distribution by symbolic manipulation of the prior dis-
tribution and an observable expression. Derived from the statistical
notion of disintegration (Chang and Pollard||1997), our automatic
disintegrator solves a longstanding problem in probabilistic pro-
gramming: it can draw exact inferences from the observation of a
continuous quantity whose probability is zero. Such observations
are common in practice: they include any observation of a value
drawn from a uniform or normal distribution, as well as combina-
tions such as sums of such values. The latter use case is not sup-
ported by existing inference algorithms for probabilistic languages.

Our disintegrator represents the prior, the observation, and even the
posterior as terms in the probabilistic language core Hakaru (pro-
nounced Hah-KAH-roo). The disintegrator is a syntactic transfor-
mation which combines two terms—one that represents the prior
and one that describes the quantity to be observed—into one open
term that represents a function from observed value to posterior dis-
tribution. Because this transformation preserves semantics, it can
be applied repeatedly in a pipeline that turns a generative model
into an efficient inference procedure. The full pipeline, which in-
cludes such other inference methods as symbolic simplification,
Metropolis-Hastings sampling, and Gibbs sampling, is outside the
scope of this paper, but experiments with it on a variety of distribu-
tions show performance that is competitive with hand-written code.

To use our disintegrator, a programmer represents a prior as a se-
quence of bindings, each of which binds a variable to the result
of a computation in the monad of measures. The programmer then
writes an observation, which refers to the bound variables. But the
observation is not expressed as a traditional predicate or likelihood
function. Instead—a key idea—the programmer writes an expres-
sion describing the quantity to be observed. The disintegrator ex-
tends and transforms the prior so that the observable quantity is
bound first. The remaining bindings then denote a function from
observation to posterior.

Like a partial evaluator, the disintegrator produces a residual pro-
gram. It preserves semantics by rewriting the program using just
enough computer algebra to change variables in simple integrals.
Like a lazy evaluator, the disintegrator puts bindings on a heap
and orders their evaluation by demand rather than by source code.
Whenever it reorders evaluation, it can produce a verification con-
dition which identifies two integrals that have been exchanged.
As long as the exchanges are correct, the disintegrator’s output is
correct.

2. The Idea of Our Contribution

To explain our contribution, it’s best to postpone the semantics
of core Hakaru and the workings of our disintegration algorithm.
We begin with the problem: we introduce observation and infer-
ence, we show the difficulty created by observation of a zero-
probability event, we show how disintegration addresses the dif-
ficulty, and we introduce core Hakaru by example.
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2.1 Observation, Inference, and Query in Core Hakaru

Probabilistic programmers don’t only infer posterior distributions;
we also pose queries about distributions. A query can be posed ei-
ther to a prior or to a posterior distribution; popular queries include
asking for the expected value of some variable or function, asking
for the most likely outcome in the distribution, and asking for sam-
ples drawn from the distribution. In this section we study distribu-
tions over pairs (x,y) of real numbers; we study one prior distribu-
tion and two posterior distributions (Figure T). To each distribution
we pose the same query: the expected value of x, written informally
as £(x). This notation is widely used and intuitive, but too implicit
for our work—for example, it doesn’t say with respect to what dis-
tribution we are taking the expectation. We write commonly used
informal notations in gray.

Part (a) of shows a prior distribution of pairs (x,y)
distributed uniformly over the unit square. It can be specified by

the following generative model written in core Hakaru:

£ do {x « uniform 0 1;
y « uniform 0 1;
return (x,y)}

(¢Y)

The notation is meant to evoke Haskell’s do notation; the unit
(return) and bind (<) operations are the standard operations of
the monad of distributions (Giry|1982; Ramsey and Pfeffer|2002).
The term uniform O 1 denotes the uniform distribution of real
numbers between 0 and 1.

Even before doing observation or inference, we can ask for the
expected value of x under model n17,. To make it crystal clear that
we are asking for the expectation of the function A (x,y).x under
the distribution denoted by model nqq,, we write not the informal
E(x) but the more explicit Eyg, (A(x,y).x). The expectation of a
function f is the ratio of two integrals: the integral of f and the
integral of the constant 1 function

Joqondtey) 12

=1/2.
Jio,xj0,17 14 (%) /

Epg, (A(x,)-x) = (€3]

Part (b) of introduces observation and inference: if we
observe? y < 2-x, we must infer the posterior distribution g,

represented by the shaded trapezoid in b). Again, the
expected value of x is the ratio of two integrals: of A (x,y).x and the

constant 1 function. To calculate the integrals, we split the trapezoid
into a triangle and a rectangle:

_ Jienepa<pay<ay ¥4 xy)
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C1/1243/8  11/24
T 1/4+1/2 7 3/4

To represent the posterior distribution in core Hakaru, we add the
observation to our generative model:

Eng, (A (x,y).%)
3

=11/18.

£ do {x ~uniform 0 1;
y < uniform O 1;
observe y<2-x;
return (x,y)}

“

! Expectation is defined whenever the latter integral is finite and nonzero.
The usual definition from probability theory assumes this integral to be 1.

2 While we must use notation from integral calculus, we avoid its conven-
tion that juxtaposition means multiplication. As in programming languages,
we write multiplication using an infix operator, but not the infix operator x,
which we reserve to refer to product types and product domains. To multiply
numbers, we write an infix -, as in 2 - x.
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Figure 1. Examples of observation and inference

The new line observe y<2+x restricts the domain of (x,y) to where
the predicate y < 2-x holds.

So far, so good. But in [Figure Ifc) this happy story falls apart.
To help you understand what goes wrong, we draw an analogy

between the diagrams, our calculations of expectations, and this
classic equation for conditional probability:

Pr(ANB) = Pr(A) -Pr(B|A). 6)

Here’s the analogy:

* A and B are sets of points in the unit square. Set A represents an

observation. In[Figure 1{b), A is the set {(x,y) |y <2-x}.

Set B represents a query; for example, we might ask for
the probability that x > 2/3 or for the probability that the
point (x,y) falls within distance 1 of the origin. To keep the
analogy simple, we ask only probability queries; the probabil-
ity of a set B is the expectation of the set’s characteristic func-
tion Xp, which is 1 on points in B and 0 on points outside B.

Pr(---) with no vertical bar represents a query against the prior

distribution. For example in a), Pr(x>2/3)=1/3,
and Pr(A) = 3/4. In particular, Pr(A M B) is just another query
against the prior.

Pr(B|A) represents a query against the posterior; it’s the un-
known we’re trying to compute. To compute it, we solve
the solution gives Pr(B|A) in terms of queries against the prior.

In b), the solution is the ratio of integrals in[(3)]

Now in [Figure I{c), we observe y = 2-x. Let’s see what goes
wrong. Set A = {(x,y) | y =2-x}. A line has no area, so Pr(A) = 0,

and for any B, the probability Pr(A M B) = 0. [Equation (5)1 tells us
only that 0 = 0-Pr(B|A), so we can’t solve for Pr(B|A). A precise
calculation of the expectation of A(x,y).x is no better: in the ratio

of integrals, both numerator and denominator are zero.

But the line segment in[Figure Ifc) looks so reasonable! We started
with a uniform distribution over the square, so shouldn’t the
posterior be a uniform distribution over that line segment? Isn’t
E(x)=1/4? Not necessarily. We crafted this example from a
paradox discussed by Bertrand| (1889), Borel| (1909), Kolmogorov
(1933), and Gupta, Jagadeesan, and Panangaden (1999). There is
no single posterior distribution and no single expected value of x.

2.2 Observation of Measure-Zero Sets is Paradoxical

Why doesn’t the line segment in[Figure I c) determine the expected
value of x? Because it doesn’t tell us enough about the observation.
To observe a set of measure zero within the unit square, we fill
the unit square with an (uncountable) family of sets of measure
zero, then identify the observed set as a member of the family.
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Observing thaty —2 - x is 0. Observing that y/x is 2.
The center of mass of the dark  The center of mass of the dark
strip is (1/4,1/2). wedge is (1/3,2/3).
E(x)=1/4 E(x)=1/3

Figure 2. Borel’s paradox: Two ways to observe y =2 - x

The decomposition of the square into the family determines how
probability mass is distributed over each member of the family.
depicts two decompositions that yield different answers.

In [Figure 2[a), the square is decomposed into a family of parallel
line segments, each with slope 2, and each characterized by a real
y-intercept between —2 and 1. This family is indexed by the inter-
cept y — 2 - x; our observation is indexed by intercept 0. And in each
member of the family, probability mass is distributed uniformly,
as can be calculated by examining the line segments whose inter-
cepts lie within € of 0. These line segments form a subset of the
unit square with nonzero measure—a “strip” around the observa-
tion, whose midpoint tends to (1/4,1/2) as € tends to 0.

In [Figure 2(b), the square is decomposed into a family of line
segments that radiate from the origin, each with y-intercept 0, and

each characterized by a real slope between 0 and co. This family
is indexed by the slope y/x; our observation is indexed by slope 2.
And in each member of the family, probability mass is distributed
more heavily on points that are further from the origin, as can
be calculated by examining the line segments whose slopes lie
within € of 2. These line segments form a subset of the unit square
with nonzero measure—a “wedge” around the observation, whose
midpoint tends to (1/3,2/3) as € tends to 0.

Neither 1/4 nor 1/3 is the “right” £(x); a key idea of this paper is
that we can’t just say observe y = 2 - x and hope it is unambiguous.
We must say not only what zero-probability set we wish to observe,
but also how to observe it: by intercept, or by slope? To say how,
we use disintegration, an established notion from statistics (Chang

and Pollard|1997).

2.3 Resolving the Paradox via Disintegration

We first present disintegration in general, then apply it to the exam-
ple from

Disintegration decomposes measures on product spaces Disin-
tegration may apply to any distribution & over a product of spaces
o and f3; we write £ € M (o x ), where M stands for measures.
If we observe a € o, what is the posterior distribution over §?
To answer this question, we decompose & into a measure 1 € M o
and a measure kernel k¥ € (e — M ), where the arrow stands for
measurable functions. For example, when & is the uniform distri-
bution over the unit square, i can be the uniform distribution over
the unit interval and k can be the constant function that returns the
uniform distribution over the unit interval.

A decomposition of & into u and « is called a disintegration of £;
to reconstruct & from p and k, we write £ = 4 ® k. The decompo-
sition looks like the conditioning equation|(5)} u represents a distri-
bution Pr(A ), and k represents the conditional probability Pr(B | A).

132

Their product is the joint distribution Pr(A,B). Accordingly, the
kernel k is also called a regular conditional distribution given A.

We think of k as a family of measures {k(a) | a € a} indexed by
the observable outcome a. To infer a posterior distribution from the
observation a, it’s enough to apply x to a. To reconstruct &, we also
need u, which tells us how to weight the members of the family k.

Disintegrating our paradoxical example To use disintegration

to compute a posterior distribution corresponding to ©),
we change the coordinate system to express the observationy =2-x

as an observation of a single variable. (A change of variables
involves more work than a Hakaru programmer needs to do, but
the technique is familiar and helps illustrate the ideas.) Different
coordinate systems lead to different answers.

For example, we can rotate the coordinate system, changing (x,y)

coordinates to (¢,u) coordinates:
t=y—2-x 6)

If we disintegrate the measure over (¢,u) and apply the resulting
measure kernel to the value 0 for 7, we get back a measure that tells

us £(x) = 1/4, as in[Figure 2{a).

Or we can change (x,y) coordinates to polar (6,r) coordinates:

r=1/x2+y? )

If we disintegrate the measure over (6,r) and apply the resulting
measure kernel to the value arctan2 for 6, we get back a measure

that tells us £(x) = 1/3, as in[Figure 2{b).

2.4 Using Disintegration in Core Hakaru

u=2-y+x

0 = arctan 4
X

Changing the coordinates of a measure is tedious, but our new
program transformation eliminates the tedium. As programmers,
all we do is write the one expression we plan to observe, using
the variables we already have. This observable expression is what
we want to index the family of measures. We extend our model
with the observable expression on the left. For example, we don’t
change (x,y) to (¢,u); instead we keep (x,y) and extend it with f,
winding up with (7, (x,y)).

In general, the new, extended model denotes a distribution over a
pair space o X f3. Measurable space o has the type of the index
expression that we intend to observe; in this paper we consider
o = R. Space f has the type of our original model. Here’s an

extended model for a):

£ do {x«~ uniform 0 1;
y « uniform 0 1;
letr=y-2-x;
return (¢, (x,y))}

For a model in this form, we use the name i (pronounced “right-
to-left m”); the arrow points from right to left because the model
returns a pair in which 7, on the left, depends on (x,y), on the right.
Our automatic disintegrator converts this term to an equivalent term
in this form:

(€

g, = do {t « m; p « M; return (t,p)} ©)

The subterms m and M are found by the disintegrator, which is ex-
plained in[Section 5]using this example. Crucially, m is independent
of the variables of the model; it is closed and denotes a measure
on . By contrast, M typically depends on ¢, and it denotes a func-
tion from ¢ to a measure—that is, a kernel. Hence for a model in
the new form, we use the name 7 (pronounced “left-to-right m”);
the arrow points from left to right because the model returns a pair
in which p, on the right, depends on 7, on the left.



Disintegrating our example using the rotated coordinate t For
a), our automatic disintegrator finds this equivalent prior:

£ do {t «~lebesgue; (10

do {x <« uniform 0 1;
observe 0<t+2-x<1;
return (x,7+2+x)} |

pkv

return (¢,p)}

In this model, m = lebesgue is the Lebesgue measure on the real
line, and M is the boxed term. The disintegrator guarantees that
is equivalent to 717}, which is to say that the measure denoted
by m and the kernel denoted by M together disintegrate the measure
denoted by 71z To ensure this equivalence, the disintegrator has
rewritten y as f+2+x, in a sense changing (x,y) coordinates to (¢,x).

To infer a posterior from the observation that ¢ is 0, we substitute O
fort in M:

£ M[t — 0] = do {x «~ uniform 0 [;
observe 0<0+2'x<1;
return (x,0+2-x)}

an

Unlike the predicate y = 2+x, the predicate 0<0+2-x<1 describes
a set of nonzero measure. Therefore, when we use this posterior
to integrate A (x,y).x and the constant 1 function, we calculate the
expectation Epp, (A(x,y).x) = 1/4 as a ratio of nonzero numbers.

Disintegrating our example using the polar coordinate 6 For

b), we extend the prior using only the ratio y/x, not its
arc tangent. Using the ratio keeps the terms simple.

£ do {x«~ uniform 0 1; (12)
y « uniform 0 1;
let s =y/x;
return (s, (x,y))}
The automatic disintegrator finds this equivalent prior:
2 do {5« lebesgue; (13)

do {x <« uniform 0 1;
observe 0<s+*x<1;
factor x;
return (x,s*x)} |,

pkv

return (s,p)}

The factor x in the boxed term M weights the probability distribu-
tion by x; it makes the probability mass proportional to x. Think
of factor as multiplying by a probability density; in [Figure 2{b),
as we move away from the origin the wedges become thicker, and
the thickness is proportional to x. To infer a posterior from the ob-
servation that s is 2, we substitute 2 for s in M:

£ M[s — 2] = do {x «~ uniform 0 1;
observe 0<2-x<1;
factor x;
return (x,2-x)}

(14)

When we use this posterior to integrate A (x,y).x and the constant 1
function, we calculate the expectation Ej (A (x,y).x) = 1/3.

2.5 From Example to Algorithm

From this example we work up to our disintegration algorithm.
The algorithm preserves the semantics of terms, so before present-
ing the algorithm, we first describe the semantic foundations, then
the syntax and semantics of core Hakaru.
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3. Foundations

Our contributions rest on a foundation of measure theory, integra-
tion, and real analysis. We review just enough to make the seman-
tics of core Hakaru understandable.

We begin in|Section 3.1|with measure, and in particular, a measure
function. “Measure” generalizes “probability,” so it is closest to the

intuition of probabilistic programmers.

In [Section 3.2| we move to integrators. An integrator is a higher-
order function that returns the integral of a function. Integrators can

be used to compute expectation; the expectation of a function f is
the ratio of integrating f and integrating the constant 1 function.

An integrator may feel more powerful than a measure function, and
perhaps less familiar, but they are equivalent. We define disintegra-
tion using integrators, and in the following sections, we explain
core Hakaru and our disintegration algorithm in terms of integra-
tors, not measure functions.

In [Section 3.3| we discuss the properties of disintegrations that
justify our use of lebesgue to disintegrate every extended model

that has a continuously distributed real observable.

3.1 Measures and Measure Functions

A measure function maps sets to nonnegative real numbers. In stan-
dard terminology, a measure function is called just a measure, and
the result of applying a measure function to a set S is called the
measure of S. To explain how measures are constructed and how
they are used in probability and inference, we pretend that a mea-
sure and a measure function are not the same thing—please think
of “measure” as an abstract data type, whose possible implementa-
tions include “measure function.”

When a set S represents an observation, the measure of S is propor-
tional to the probability of that observation. Here are two examples:

* In core Hakaru, uniform O 1 denotes the uniform probabil-
ity measure on the interval [0, 1]. The corresponding measure
function, which we call [uniform 0 1]/, assigns a measure
to many sets, including every interval on the real line. Under
[uniform 0 1], the measure of any interval is the length of
the part of the interval that intersects with [0, 1]. For example,
[uniform 0 1]/[2/3,2] = 1/3, and indeed, if we choose a real
variable x uniformly between 0 and 1, the probability of it lying
between 2/3 and 2 is 1/3.

In uniform O 1 the measure, or the probability mass, is spread
out evenly over an interval. But it is also possible to concentrate
probability mass at a single point. In core Hakaru, return a
denotes the Dirac measure at a: the measure of a set S is 1
if S contains @ and O otherwise. Any discrete distribution can be
obtained as a countable linear combination of Dirac measures.

Measurable spaces and measurable sets We’ve been coy about
what sets [uniform 0 1]37 can be applied to. When we ask about
the measure of a set S, or the probability of a point landing in set S,
we are asking “how big is set $?” If we could ask the question about
any set of real numbers, life would be grand. But the real numbers
won’t cooperate. To explain the issue, and to lay the foundation for
the way we address it in core Hakaru, we recapitulate some of the
development of the Lebesgue measure.

The nineteenth-century mathematicians who wanted to know how
big a set was were hoping for a definition with four properties
(Royden|1988, Chapter 3):

1. The size of an interval should be its length.

2. The size of a set should be invariant under translation.



3. The size of a union of disjoint sets should be the sum of the
individual sizes.

4. Any subset of the real line should have a size.

Not all four properties can be satisfied simultaneously. But if we
limit our attention to measurable subsets of the real line, we can
establish the first three properties. The measurable subsets are the
smallest collection of sets of reals that contains all the intervals and
is closed under complement, countable intersection, and countable
union. The one and only function on the measurable sets that has
the first three properties is the Lebesgue measure. We write it as A.

The theory of measure functions, and the corresponding techniques
of integration developed by Lebesgue, are not limited to real num-
bers: measure theory and abstract integration deal with measurable
spaces. A measurable space « is a set Qg together with a collec-
tion of its subsets o(p4 that are deemed measurable. The collec-
tion apq must be closed under complement, countable intersec-
tion, and countable union. In particular, {} and o must be in 4.
Such a collection a4 is called a c-algebra on the set a,g. Any
collection M of subsets of os generates a 6-algebra 6(M) on ois;
(M) is the smallest o-algebra of which M is a subset.

Having defined measurable spaces, we can now explain measure
functions more precisely. A measure function (or simply mea-
sure) [l on a measurable space « is a function from apg to RT.
We write R to include the nonnegative real numbers as well as
(positive) infinity, so in other words, ¢ must map each set in o(pq
either to a nonnegative real number or to e. Moreover, it must be
countably additive, which means that for any countable collection
of pairwise-disjoint measurable sets {S1,52,...} C g,

W(STUS U-) = p(S1) +p(S2) ++ . (15)
For notational convenience, we typically write o not only to stand
for a measurable space but also to stand for its underlying set os.
This convention is less confusing than it might be, because although
probabilistic programs use many different measures, they use rela-
tively few measurable spaces. These measurable spaces correspond
to base types and type constructors that are used in many program-
ming languages. We defer the details to which explains
the syntax and semantics of core Hakaru.

3.2 Integrators

A measure is often identified with its measure function, but a
measure can do more than just measure sets; it can also integrate
functions. The connection between measure and integration is used
by anyone who represents a probability measure as a probability-
density function. To see how it works, we define the integral of a
function f with respect to a measure L.

What functions can be integrated? A function f from one measur-
able space o to another 3 is measurable iff the inverse image of
every measurable set is a measurable set. Crucially, when 8 is R
(whose measurable subsets Rj\/t are the o-algebra generated by the
intervals), the measurable functions form a complete partial order:
fCgiffforalla € a, f(a) < g(a). (And the cpo has a bottom el-
ement: the constant zero function. That is, f must be nonnegative.)
Any measurable function f from « to R™ can be integrated with
respect to any measure [ on ¢. You can find the details in Royden
(1988, Chapters 4 and 11); here we review only the essentials.

The integral of a function f with respect to a measure u is often
written [ fdu, or if it is convenient to introduce a bound vari-
able x, [ f(x)du(x). But these traditional notations are awkward
to work with. Reasoning about integrals is far easier if we treat the
measure [ as an integrator function and write the integral simply
as ((f), just as we often treat u as a measure function and write
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the measure of a set S as u(S) (de Finetti||1974; Pollard|2001).
To distinguish the measure function from the integrator, we write
the measure function as [1] s, so the measure of S is (] (S), and
we write the integrator as [i]);, so the integral of f is [u];(f).

We begin by defining the integral of the characteristic function Xg
of a measurable set S, where
ifaes,

Nt
0 ifa¢s.

Because S is measurable, Xg is also measurable, and its integral is
[udi(xs) = [uda(S)- (17)

As always, integration is linear, so for any real » and measurable
functions f and g,

[uli(Aa.r- f(a)) = r-[u]i(f).
[uli(Aa. f(a) +g(a)) = [uli(f) + 11 (s).

These three equations define the integral of every simple function,
where a simple function is a linear combination of characteristic
functions. To integrate the remaining measurable functions, we use
limits; given a monotone sequence of functions f; C f, C ---, the
integral of the limit is the limit of the integrals:

[uli(Aa. lim fu(a)) £ Jim [ui(fn)

Every measurable function can be approximated from below by
a sequence of simple functions, and as in Scott’s domain the-

ory, [equations (17)|to [(20)] determine [x]; uniquely; given [u]u,
there is one and only one function [u]; satisfying these equations.
Conversely, given [i];, determines ]y uniquely.
So integrators, defined by to are in one-to-

one correspondence with measure functions. In other words, in-

tegrators constitute an alternative—and for us more convenient—
implementation of the abstract data type of measures.

Xs(a) (16)

(18)
19)

(20)

The convenience begins with the fact that many useful measures are
most easily defined by specifying their integrators. For example, the
uniform measure is defined by integration over an interval, and the
Dirac measure is defined by function application:

[uniform 0 1];f = /[0 1]f(x)dx

[return a]); f = f(a) (22)

Integrator notation clarifies the relationship between the monad of
measures and the monad of continuations. The Dirac measure just
defined is the monadic unit, and here is the monadic bind:

[u>=x]if = [u]i(Aa.[x a];if)

It is also convenient to express disintegration using integrators.
IfueMaand k€ (oo — M), then u @ x € M (ot x ) is defined
by an iterated integral:

[n@x]if = [uli(Aa. [« al;(Ab. f(a,b))). 24

Here the integrand f is an arbitrary measurable function from & x 3
to RT. The same equation can be written using traditional integral
notation, which is more familiar but is cumbersome to manipulate:

[rawsn) = [[ fa.b)dx@)®) dua).

One more example: if & is the uniform probability distribution over
the unit circle, then we can achieve & = u ® x by defining

1
o= [, S0 Texir= [ o

@n

(23)

(25)

V1-x2,V/1-x2]
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Real numbers
Variables
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Bindings (guards)

gu=Xx<m ‘ letinlx=e | letinr x=e¢ | factor e

u ::= z (not bound in heap) | -u | ul ’ u+u ’ u+r’r+u } usu ’ u-r}r-u!uﬁu } uSr‘ rSu‘fstu}sndu

Head normal forms v ::=u | do {g; M} | return ¢ | fail | mplus m; m; | r | () | (e1,¢2) | inl e | inr e | lebesgue | uniform r; r;

Terms

e,m,M::=v|x|—e’e_1 }e+e|e-e|e$e‘fste’snde

Figure 3. Syntactic forms of core Hakaru

I'tm:Ma Txob-M:MB Tke:a+ Txoab-M:My

I'-do {x«m;M}: M
'Fe:R THFM:Ma I'Fe: o
I'do {factore; M} : Mo  T'kreturne: Mo
Fl—mle(x F}—mziMOt
' mplus m; my : M «

I'do {letinlx=e; M} : My

I'fail : M o
ry <nr
'+ uniform r; r, : MR

'+ lebesgue : M R

[do {x«m; M}]ipf = [mlip(Aa. [M]i(plx — al)f)

[do {letinlx=e; M}];pf = [M]i(p[x+— a])f if [e]p =inla
[do {letinl x=e; M}];pf =0 if [e]p =inr b
[do {factor e; M}];pf = [e]p - [M]ipf if [e]p >0

[return e[;pf = f([elp)
[fail],pf =0
[mplus my mo]ip f = [mi]ip f + [m2]ip f
[tebesgue];pf = fi £(x)dx
[uniform r| r];pf = ﬁ Sir ) S () dx

Figure 4. Typing rules for terms of measure type

3.3 Existence and Uniqueness of Disintegrations

Disintegrations do not always exist (Dieudonné||1947-1948), and
when they do exist, they are never unique. Disintegrability of a
measure & over a product space o x 8 can be guaranteed by any
of a variety of side conditions offered by the mathematics literature
(Chang and Pollard|1997), such as being a probability measure on
a Polish space. Uniqueness can never be guaranteed; if £ = 4 ® K,
we can always obtain another disintegration by, for example, dou-
bling 1 and halving x. But the properties we are interested in, such
as expectation or most likely outcome, are invariant under scaling,
so this non-uniqueness doesn’t matter. In fact, when o = R, we ex-
ploit the non-uniqueness to choose a particularly advantageous .

Given & = u @, if u is absolutely continuous with respect to the
Lebesgue measure A, then the Radon-Nikodym theorem assures the
existence of k’ such that £ = A® k/, and any two such k’s are equal
almost everywhere. Absolute continuity means just that y assigns
zero measure to every set of Lebesgue measure zero; it is equivalent
to saying that u is described by a probability-density function. Be-
cause most observation distributions u over R that arise naturally in
probabilistic programs are absolutely continuous with respect to A,
our disintegrator simply assumes 4 = A whenever o = R. That is

why throughout|Section 2.4| the automatically found m is lebesgue.
More general observation distributions are discussed in[Section 8§

4. Syntax, Types, and Semantics of Core Hakaru

The syntax, typing rules, and semantics of core Hakaru are pre-
sented in[Figures 3] [4] and[5]

Types as measurable spaces Core Hakaru has standard unit (1),
pair (x), and sum (+) types; it also has a real-number type (R) and
measure types (M). We write types as a, 3,7, ..., where

az=1laxp|a+p|R|Ma. (27)

Each type corresponds to a measurable space. We recognize the
distinction between a type (a means of classifying terms) and a
measurable space (a semantic object), but notating the distinction
adds a lot of ink, which muddies the presentation. So in this paper
we conflate types with spaces.
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Figure 5. Denotations of terms of measure type

The unit space 1 is the usual singleton set 15 = {() }, equipped with
its only o-algebra 1 ¢ = {{},{()}}. The product space o x f is
the usual Cartesian product set (a x 8)s = s X s, equipped with
the o-algebra generated by its measurable rectangles:

(axP)pm=0({AxB|A€ an, BEPm}). (28)

The disjoint-union space o + f is the usual disjoint-union set,
equipped with the o-algebra generated by the embeddings of the
measurable subsets of @ and 8. The measurable subsets of the real
numbers R are the c-algebra generated by the intervals.

Finally, the space M « is the set of measures on the space «,
equipped with the smallest c-algebra that makes the function
A [u]sf from M o to RT measurable for each integrand f:

Mo)p=0({{u|[ulifeS}| fe(a—RT),SER}}) (29)

This construction M is a monad on the category of measurable
spaces (Giry|1982). Types of the form M o correspond to effectful
computations, where the effect is an extended version of proba-
bilistic choice. A morphism from « to  in the Kleisli category is
a measurable function from « to M 3, or a kernel from o to 3.

Because measurable functions do not themselves form a measur-
able space (Aumann||1961), function types aren’t first-class. Full
Hakaru does have A-abstraction and function types, but we don’t
put function types under an M constructor.

Syntax The syntactic forms associated with 1, pairs, sums, and
reals are standard—except the elimination form for sums. There is
no primitive case form; as shown below, case desugars to effectful
elimination forms that interpret pattern-matching failure as the zero
measure (fail). Core Hakaru needs fail anyway, and by encoding
conditionals using failure, we reduce the number of syntactic forms
the disintegrator must handle.

The syntax of core Hakaru, as described in is set up
to make it easy to explain our automatic disintegrator. An atomic
term u, also called a neutral term (Dybjer and Filinski|2002), is one
that the disintegrator cannot reason about or improve, because it
mentions at least one variable whose value is fixed and unknown.
(In partial-evaluation terms, the variable is dynamic.) One such



variable is the variable ¢, introduced in|Section 2.4{to stand for an
observed value. Atomic terms include such variables, plus applica-
tions of strict functions to other atomic terms and to real literals r.

The next line in describes the binding forms or guards
used in core Hakaru’s do notation. The binding form x « m is
the classic binding in the monad of measures (or the probability
monad); as shown in m must have type M « and x is
bound with type ¢. The let inl and let inr forms are the elimination
forms for sums; here e is a term of type o + 3, and depending on its
value, the binding acts either as a let binding or as monadic failure,
as detailed in[Figure 5| Finally, the factor form weights the measure
by a real scaling factor, which can be thought of as a probability
density. These four forms all have effects in the monad of measures:
probabilistic choice, failure, or weighting the measure.

Atomic terms are a subset of head normal forms, which are in turn a
subset of all terms. As is standard in lazy languages, a head normal
form v is an application of a known constructor. Besides atomic
terms, head normal forms include all the do forms; the standard
constructors for a monad with zero and plus; real literals; and stan-
dard introduction forms for 1, pairs, and sums. They also include
two forms specialized for probabilistic reasoning: lebesgue denotes
the Lebesgue measure on the real line, and uniform r| r, denotes
the uniform distribution over the interval [r{, r;]. Besides head nor-
mal forms and variables, terms e include applications of the same
strict functions used in the definition of atomic terms.

Typing The typing rules of core Hakaru are unsurprising;
ure 4| simply formalizes what we say informally about the terms.
Figure 4|shows rules only for measure type; rules for other types
and for let inr are omitted.

Semantics Core Hakaru is defined denotationally. The denotation
of an expression is defined in the context of an environment p,
which maps variables x onto values p(x) drawn from the measur-
able spaces described above. Formally, if x : ¢, then p(x) € 0.
The denotation of a term e is written [Je] p, except if e has measure
type then it denotes an integrator [e];p. The semantic equations
at non-measure types are standard and are omitted. The semantic
equations at measure types are given in[Figure 5| where we define
each integrator by showing how it applies to an integrand f.

* A term do {x « m; M} denotes (roughly) the integral of the
function Ax. M with respect to the measure denoted by m.

* Each of our unusual sum-elimination forms acts either as a let-
binding or as the zero measure, depending on the value of the
right-hand side. The equations for let inr are omitted.

* The next 4 forms are not so interesting: factor scales the in-
tegral by a factor; return e integrates f by applying f to the
value of e; fail denotes the zero measure; and mplus defines
integration by a sum as the sum of the integrals.

* Finally, lebesgue and uniform r; r, denote integrators over the
real line and over the interval [r|,r;] respectively.

For each e, the function from p to [e]p or to [e];p is measurable,
so function Aa.- - in the first line of[Figure 5is also measurable.
Syntactic sugar Hakaru is less impoverished than makes
it appear. Here is some syntactic sugar:

observe ¢ £ letinl _=e¢
(30)

Core Hakaru can provide syntactic sugar for case only when the
term being desugared has measure type:

true=inl ()  false 2 inr ()

e1—ey 2 e +(=e) let x=¢ £ x «return e

case ¢ of inl x| = my | inr x; = m; 31)

£ mplus (do {letinl x; =¢; m; }) (do {letinr x, =e; my})
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Full Hakaru desugars case in any context, by bubbling case up until
it has measure type. Similar tactics apply to other syntactic sugar,
such as the ternary comparison e <ep <e3 used in our examples.

We also extend core Hakaru’s do notation to contain any number
of binding forms. To help specify this extension, we define a heap
to be a sequence of binding forms:

Heaps  h:=[g1;82;---38n] (32)

We then define inductively
do {[; M} = M, (33)
do {[g1:82;---38n); M} = do {g1;do {[g2;...;8a); M}}.  (34)

As detailed below, heaps are central to our disintegrator.

We need no sugar to write discrete distributions; they are coded
using factor and mplus. For example, here is a biased coin that
comes up true with probability 7:

bernoulli r = mplus (do {factor r; return true })
(do {factor (1-r); return false}) (35)

5. Automating Disintegration

Our automatic disintegrator takes a term i : M (o x f8) of core
Hakaru and transforms it into an equivalent term of the form

(36)

where m : M oo and M : M B. In this paper we focus on the con-
tinuous case where o = R and m = lebesgue. Other types o such
as o = R x R can be handled by successive disintegration. And as
discussed in[Section 3.3] m = lebesgue is sufficient in the common
case where the distribution of the observation is absolutely contin-
uous with respect to the Lebesgue measure.

m=do {t ~m; p~ M;return (t,p)},

Before diving into automatic disintegration, let’s work out a disin-
tegration by hand. We continue our example from [Figure 2{a).

Disintegration by manipulating integrals We disintegrate this

term, which is equivalent to injequation (8)
- &

£ 37)

do {x <« uniform 0 1;
y « uniform 0 1;
return (y—2-x, (x,y))}

Our semantics 1l assigns this program the measure [[]] I

which, because the term has two monadic bind operations, is an
integrator with two integrals:

- .~ .
[ty ]if = /M [ S0 v 39

We calculate a disintegration by rewriting these integrals, but first
we cast them into integrator notation. The Lebesgue integral over a
set S C R is defined by

/S fa(a)da:'/R 1s(a) - fu(a)da,

and in integrator notation it is [A];(Aa.Xs(a) - fa(a)), where A is
the Lebesgue measure. We calculate a disintegration by using this

definition to rewrite the integrals in[equation (38)}
AL (Ax.%p0,1 () - [A] 1 (Ay.- Xjo,1y (9) - f (v = 2%, (x,%))))
= {change integration variable fromy tor =y —2-x} (40)
[ADr(Ax. %1y (x) - [ADr (A2 X0 17 (1 +2-x) - f(2, (x,0 42 x))))
= {reorder integrals} 41)
[ADr (At [ADr (Ax. %o, 1 (x) - Xjo,17 (t +2-x) - f (2, (x,1 +2-x))))

(39)



This final right-hand-side matches that of |(24)| The index a there is
t here and the integrand Ab. f(a,b) there is f), here:

u=A, 42)
[[K't]]] fp = [[A}];(lx.x[oﬁl](x)-X[Oﬁl](t—i—Z-x)~f,,(x,t+2~x)). (43)

‘When we convert it and x back to terms of core Hakaru, they match

the desired form|(36)| The result is exactly|(10)

m = lebesgue (44)

M = do {x « uniform 0 1; (45)
observe 0<r+2+x<1;

return (x,7+2+x)}.
Derivations of this kind use two transformations again and again:

* Change the integration variable to the observable expression,
as in Many of us haven’t studied calculus for a long
time, but if you want to revisit it, changing variables from y
to t = g(y) requires that g be both invertible and differentiable.
An integral over y is transformed into an integral over ¢ using

the inverse g~ ! and its derivative (g~ 1)’

AL (Ay. £(3)) = [ALi (At (g7 (0)] - f(g™" (1))

* Reorder integrals to move the observable variable to the outer-
most position, as in|(41)| justified by Tonelli’s theorem.

(46)

5.1 Disintegration by Lazy Partial Evaluation

To reorder integrals, we use lazy partial evaluation (Fischer et al.
2008). In the terminology of partial evaluation, the observable vari-
able ¢ and expressions that depend on it are dynamic; the disinte-
grator treats them as opaque values and does not inspect them. But
variables that are «-bound or let-bound, and expressions that de-
pend only on them, are static; the disintegrator may rewrite them
and emit code for them in any way that preserves semantics. Bind-
ings are rewritten and emitted using a list of bindings called a heap,
as found in natural semantics of lazy languages (Launchbury|1993).

The heap can be thought of as embodying “random choices” R
made by a probabilistic abstract machine that evaluates core Hakaru
terms. In generative mode, the machine is given random choices R
and a term m of measure type, and it produces a value v:

m kS return v. a7

But this evaluation relation can used in two other modes. In back-
ward mode, a machine is given m and v, and it rewrites the heap,
constraining random choices, to ensure the outcome is v. In forward
mode, a machine is given m, and it extends the heap to produce an
outcome V.

The abstract-machine metaphor can be generalized to explain dis-
integration. The disintegrator does not evaluate terms to produce
values—it partially evaluates terms, in backward and forward
modes, to produce code. Moreover, randomized computation is
lazy but not pure, and evaluating terms not of measure type can
also extend the heap or constrain its random choices. So the disin-
tegrator processes general terms using the same two modes. In sum,
the disintegrator partially evaluates terms m of measure type and
e of any type, in two modes each, by means of four functions:

<Imv Put m’s bindings on the heap and constrain its final
action to produce v.

<lev  Constrain e to evaluate to the head normal form v by
fixing the outcome of a choice on the heap.

>m Put m’s bindings on the heap and emit code to perform
its final action. Put its outcome in head normal form.

> e Emit code to evaluate e. Put it in head normal form.
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The functions are pronounced “constrain outcome” (<), “constrain
value” (<), “perform” (>), and “evaluate” (t>). Each function may
emit code and may update the heap by adding or changing a bind-
ing. When disintegration is complete, the final heap is rematerial-
ized into the residual program.

5.2 Specification and Definition of the Disintegrator

To interleave heap updates with code emission, we use continuation-
passing style (Bondorf]|1992; [Lawall and Danvy||1994; Danvy,
Malmkjer, and Palsberg/ 1996). A continuation takes a heap and
returns a residual program, or informally

C = heap — |M v, (36)

in which |[M y] means head normal forms of type M y. Using this
continuation type, we can now state the types of the four functions
that make up our disintegrator. Writing [ o] for terms of type o and
| ] for head normal forms of type a,[Figure 6]defines the functions

<1 (“constrain outcome™) : [MR] — |[R|] = C—C (87)
<1 (“constrain value™) [R] = |R|=C—C (88)
> (“perform™) Mal—= (o] =C)—=C  (89)
> (“evaluate™) [a] = (la] = C)—=C  (90)

The backward functions Functions < and < embody our tech-
nical contribution. A disintegration problem begins with a monadic
term that binds the variable # somewhere inside, and seeks to “pull
out” the binding of ¢ to the top of the term, so the result has the
form do {r « lebesgue; -} Depending on whether ¢ starts
out bound probabilistically or deterministically, we pull ¢ out using
either <1 or <1, which obeys these laws:

do {h; t«m;M}=do {t«lebesgue; <smtMh}  (91)
do {h;lett=e; M} = do {t «~lebesgue; <le tMh}  (92)

Equivalence = on terms means they denote the same integrator.
The final action M, which expresses the posterior distribution to
infer, becomes the continuation M passed to <1 or <I. The nota-
tion M expresses a frequently used form of continuation: a measure
term M lifts to the continuation M = Ah.do {h; M}, which mate-
rializes a given heap h by wrapping it around M. (Recall that core
Hakaru has no first-class functions, so the A here, like all the As in
are in the metalanguage of our disintegrator.)

Functions < and <1, which obey a few additional laws mentioned
below, deconstruct m and e and rewrite the heap /. Each function
ends by passing to M a final heap /' that binds at least all the vari-
ables bound by the initial heap 4, in the same order, and possibly
new variables as well. Most likely some variable that is bound prob-
abilistically in the initial heap & is bound deterministically in the
final heap /', to a quantity expressed in terms of the observable ¢.

Implementations of <1 and <1 (Figure 6) are derived from specifica-
tions|(91)|and|(92)| For example, when m = lebesgue, |(91)|requires

do {h; t «~lebesgue; M} = do {t ~lebesgue; <1mt M h}. (93)
Because <1 m may be applied only to a real ¢ that is in head normal
form |(87), and a heap-bound variable is not in head normal form,

we know £ does not bind 7. By Tonelli’s theorem, we can change
the order of integration, lifting the binding of ¢:

do {h; 1 ~lebesgue; M} = do {r «~ lebesgue; h; M }. (94)
Matching|(93)|yields <1 lebesgue s M h=do {h; M} = M h, which
is|case 49|in|Figure 6| |Case 50|is derived similarly.

is notated using quasiquotation brackets [-- -] (Stoy|1977,
Chapter 3). Inside the brackets, juxtaposition constructs syntax;

outside, juxtaposition applies a function in the metalanguage.




< (“constrain outcome”) : [MIR] —

<1 [u] vch

< [lebesgue] vch

< [uniform ry ] ve h

< [return €] vch
< [do {g; m}] veh
< [fail] veh
< [mplus m; my] veh
< [e] vch

< (“constrain value”) : [R] —

— (heap — M y|) — heap — |M y|

=1
=ch

where u is atomic

= [do {observe $(r; <v < ry); factor $((r, —r1)~1); $(c h)}]

=<fe]vch
=<t [m]velh [ell
= [[fail]

= [mplus $(< [m] vech) $(< [mp] veh)]

=D [e] (Am.<mvc)h

|R| — (heap — | M ¥|) — heap — |[M y]|

unless g binds a variable in &

where e is not in head normal form

< 4] veh =1 where u is atomic

<[] veh =1 where r is a literal real number

< [fsteg] veh = [eo] (Avo.< (fstvg) ve) h unless ¢ is atomic

< [snd eo] veh = [leo] (Avo.< (snd vo) ve) h unless e is atomic

< [-eo] veh =< [eo] (—v)ch

< ezt veh = [do {factor $((v-v)~"); $(<1 [eo] v c )}]

< [er +e2] veh =D [e1] (Avi.<fex] (v—vi)c)h
U [ea] (Ava. < [er] (v—v2)c)h

< [er+er] veh =1 [e1] (Avi.abs vy (AV}. AR . [do {factor $(v} D; $(<[ea] (v el)}])) h
U > [ea] (Ava.abs vy (Avh. AR . [do {factor $(v5 1); $(<1 [er] (v-vy ') e ')}])) &

< [x] ve [hy; [xem]; hy) = < [m]v ([letx=v]; ha]sc) hy

< [ ve [hy; [letinl x=eg; ha] = > [eo] (Avo.outl vy (Ae.<tev ([[letx=v]; hy]5c))) Iy

< [x] v [hy; [letinr x=eg]); hy] = > [eo] (Avg.outrvg (Ae.<ev ([[letx=v]; hy]5c))) Iy

> (“perform”) : [M a] — (| ¢t] — heap — |[M y|) — heap — [M y]

> [u] kh = [do {z« u; $(kzh)}] where u is atomic, z is fresh

> [lebesgue] kh = [do {z < lebesgue; $(kzh)}] where z is fresh

> [uniform r; ] kh = [do {z < uniform r; rp; $(kz h)}] where z is fresh

> [return e] kh =0 [e] kh

> [do {g; m}] kh =r> [m] k [h; [g]] unless g binds a variable in

> [fail] kh = [fai]

> [mplus m; my] kh = [mplus $(t> [m;] k h) $(> [ma] k h)]

> [e] kh =0 [e] (Am.t>mk) h where e is not in head normal form

> (“evaluate”) : [o] — (|a| — heap — M y|) — heap — [M ¥|

> [v] kh =k[v]h where v is in head normal form

> [fsteg] kh = [eo]] (Avo.> (fstvo) k) h unless ¢ is atomic

> [snd e] kh = [eo]] (Avo.r> (snd vo) k) h unless ¢ is atomic

&> [-eo] kh =1 [eo] (Avo.k (=vo)) h

> [e5! kh = [eo] (Avo-k (vg')) h

> [[e1 +62]] kh =D [[el]] (/'1.1/1 > [[62]] ()LVz k (Vl +V2) )

> [[61 '62]] kh =D [[el]] (/'Lvl > [[62]] (/11/2 k (V1 Vz)))

> [e; <er] kh =0 [e1] (Avi.> [ez] (Ava.k (v <wp))) h

> [x] k [hy; [x ~m]; hy) = > [m] (Av. [[letx=v]; ho]5kv) hy

> [x] k [h1; [letinl x=e]; hy] = t> [eo] (Avo.outl v (Ae.t> e (Av.[[let x=V]; ha] 3k v))) Iy

> [x] k [hy; [let inr x=eq]; ha] = > [eo] (Avo.outr vo (Ae.t> e (Av.[[let x=V]; ko] 5k v))) hy

(43)
(49)
(50)
(G
(52)
(53)
(54)
(55)

(56)
(57)
(58)
(59)
(60)
(61)
(62)

(63)

(64)
(65)
(66)

(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)

(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)
(83)
(84)
(85)

Figure 6. The implementation of our disintegrator over R and lazy partial evaluator
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But quasiquotation is most useful when augmented with antiquo-
tation (Mainland|2007). Lacking a standard notation, we borrow
the antiquotation notation $(---) from the POSIX shell language.
Within $(---), juxtaposition once again means application in the
metalanguage. And, again following Stoy, we quasiquote metalan-
guage variables in pattern matching and on right-hand sides.

After lebesgue, easily derived cases of < include do {g; m}, fail,
and mplus m; m; to [54). To justify which
moves a binding g onto the heap, requires the associativity law
on the monad of core Hakaru terms, plus the induction hypothesis
for <1 m. To justify requires measure additivity and the
induction hypotheses for <1 m; and <1 mj. As a final example,
when m is return e, binding 7 « return e is the definition of letr =e,
and[(92)]indicates that we should call <, to which we now turn.

The most fundamental application of <, [case 64]in[Figure 6] is to

a variable x that is probabilistically bound to a measure term m in
heap h = [hy; [x « m]; hy]. To constrain x to evaluate to v, we con-
strain m to produce v: we pass m and v to <, along with a care-
fully constructed continuation and heap. Only heap /;, which pre-
cedes [x « m], is available to be rewritten by <. The new continu-
ation wraps its argument around [[let x=v]; i;] and then continues
with c. That continuation is written using more new notation: when
hg is a heap, hy is the function Ah. [; ho]. This function is com-
posed with continuation ¢ using the reverse function-composition
operator 3, which is defined by (g35.f)(x) £ f(g(x)). Composition
commutes with lifting: 7o 3 M = do {hg; M}.

rewrites a random choice x «-m into a binding let x =v,
where v is a deterministic function of the observable ¢. In our
running example it rewrites the binding y « uniform 0 1 to
let y=1+2-z The case is shown correct by appealing to the
induction hypothesis for <1 m; the rest of the proof requires
only alpha- and beta-conversions.

Many cases of < invert functions and change variables of integra-
tion. One of the simplest is < (—eg). The derivation begins with the
left side of where e = —e(. We expand the binding let r = —¢
into two bindings let s =¢; let = —s, where s is a fresh variable.
‘We apply the induction hypothesis for < eg s, eventually arriving at

do {s «~lebesgue; letr =—s; <t eq s M h}, (95)
then change the integration variable from s to 7 to get
do {t ~lebesgue; let s=—t; <l eq s M h}. (96)

At this point we exploit a parametricity property of <, given
in|(104)|below, to substitute —¢ for s. We end up with the definition
in|case 60| namely <1 (—ep) v £ < eg (—v).

On the left of the — sign is object-language syntax. But on
the right, the — sign is a smart constructor, which in special cases
can simplify its argument. We use one smart constructor for each
strict function in core Hakaru. (These are the functions that define
atomic terms in[Figure 3]) As examples, applying — to a real literal
produces a real literal, and applying fst to (ej,ez) produces ej.
Applying — or fst to any other e produces —e or fst e.

But one pair of smart constructors requires more explanation. Func-
tions outl and outr are the inverses of inl and inr, but unlike the
strict functions, they can fail, and failure is an effect. This effect is
handled by adding a binding for a fresh object variable x:

outl: |a+B]| — ([o] = heap — | M y]) — heap — |[M ¥
outl [inle] kh=ceh
outl [inr e] k h = [fail]
outl[u]  kh=[do {letinlx=u; $(kxh)}]
In the same way, we define outr and, for use in[case 63| abs.
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The most interesting cases of < are those that constrain the result of
a binary operator like +. If e = e + ¢, we apply the same technique
as for negation, with a twist: <I can either treat (e; +) as a unary
operator and recursively constrain ey, or it can treat (+e;) as a
unary operator and recursively constrain e;. Either way may fail—
for example, a literal real number cannot be constrained (case 57)—
so the disintegrator nondeterministically searches for a way that
works. The search is notated by writing LI between possibilities.

Treating (e1 +) as an invertible unary operator gets us only so far:
when e includes free variables that are bound in 4, the parametric-
ity property of < in does not permit ¢ — e to be substituted
for s. Problematic free variables are eliminated by replacing them
with fresh variables bound outside heap h. That is the job of the
forward functions > and [>.

The forward functions Whereas the backward functions <1 and <
represent the innovative part of our disintegrator, the forward func-
tions t> and > define an online partial evaluator that is more or less
standard (Fischer et al.|2008; Fischer, Kiselyov, and Shan |2011).
Just as the laws and for the backward functions “pull
out” a binding of ¢, the laws for the forward functions replace a
heap-bound variable x with a head normal form v:

do{h; x«mM}=rt>m(Av.Mx—v])h

do {h;letx=e;M} = >e (Av.Mx—v])h

o7
(98)

Replacing x with v in M enables us to complete the derivation of
< (e1 +e2), which calls > e; to evaluate e; to vy, then
substitutes r —v; for s. The substitution is safe because v, being a
head normal form of type R, cannot include any free variable bound
in the heap.

The easy cases of I> recur structurally through applications of strict
functions like — and + to [82). Bottoming out at a real
literal or a variable not bound in % is also easy, because these
arguments are already in head normal form v (case 75). All these

cases are justified by |(98)
The interesting case is > x k [hy; [x « m]; hy] (case 83), which

reaches a variable x that is bound in 4. We pass m to [>, along with
the partial heap 4 and a continuation that composes [let x=v;h;|
with k v, where v is the head normal form produced by t> m. Like
this case replaces the binding x « m by let x=v. It is
justified by the induction hypothesis for > m and by alpha-
and beta-conversions.

The interesting cases of > m to emit code for a random
choice outside the heap, binding its outcome to a fresh variable z.
The cost of getting this atomic representation of the outcome is that
the disintegrator cannot further rewrite m. These cases are justified
by using Tonelli’s theorem to lift m over h.

Disintegrating a term Disintegration uses both backward and
forward functions. It starts with a term i : [M (o x 8)] which
stands for the extended prior model, plus a variable name 7 : ||
which stands for the observable. The disintegration of m is the
residual program M produced by this combination of <1 and [>:

99)

This code starts with an empty heap [] and proceeds in three steps:

M =r1>in (Av.< (fstv) t (return (snd v)) [].

1. Perform 77 and name the resulting pair v.
2. Constrain fst v to equal ¢.

3. Continue with a lifted term that forms a residual program by
wrapping the final heap around the final action return (snd v).

The residual program M represents the posterior distribution, which
depends on free variable 7.



> [do {x < uniform 0 1;
y « uniform 0 1;

return (y—2-x, (x,y))}]
E}lv. < (fstv) [7] [return $(snd v)])

= { put bindings on heap; perform return: . 71), (70) }
> [(y=2+x, (x,))] (Av. <t (fst v) [¢] [return $(snd v)])

x « uniform 0 1; y « uniform 0 1]

= { pass head normal form to continuation }
< [y=2+x] [¢] [return (x,y)]

x « uniform 0 1; y « uniform 0 1]

{ evaluate right summand and constrain left ;

negate right summand }

[2+x] (Av.< [y] ([e] +v) [return (x,y)])
x « uniform 0 1; y « uniform 0 1]

{ evaluate left multiplicand ;

continue with right multiplicand }

[x] (Av. < [¥] ([1] +2-v) [return (x,y)])

x « uniform 0 1; y « uniform 0 1]

= { perform the action bound to x in the heap }

t> [uniform 0 1]
(Av.Ah. < [y] ([t]+2-v) [return (x,y)]
[; let x=v; y « uniform 0 1])
I

= { emit code for the uniform action and continue }

[do {z« uniform 0 1;
$(< [y] [t +2-7] [return (x,y)]
[let x=2z; y < uniform 0 1])}]
= { constrain y: update its heap binding
after constraining outcome of its action }
[do {z < uniform 0 1;
$(<d [uniform 0 1] [r+2+z]
[do {let y=1+2-z; return (x,y)}]
llet x=21)}]
= { constrain uniform by emitting observation ;
beta-reduce continuation, leaving residual program }

[do {z < uniform 0 1;
observe 0<t+2+z<1; factor 1;
let x=z;let y=r+2-z; return (x,y)}]

Figure 7. Automatic disintegration in action

An example computation is shown in[Figure 7| which disintegrates
example [(37)|starting with the form (99)] When < is applied to a
sum in[case 62] the search chooses the right operand of L. To reach

the desired term M in [equation (45)| the result of is

simplified by applying monad laws and by removing factor 1.

5.3 Correctness
In[(99)} M represents a disintegration of i iff
m = do {t «~lebesgue; p « M; return (¢, p)}. (100)

This correctness follows from the specifications of <1 and [> in|(92)
and|(97)|and from the following associativity laws:

do{p~<evch;M}=<ev(Ah.do{p~ch;M})h (101)
do{p~t>mkhM}=1>m(Av.AK .do{p«~kvh';M})h (102)

To show that the definitions in meet their specifications,
we also need associativity laws for < and I>. And we need some
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parametricity properties, which say what happens when the second
argument to <1 and < is an expression, not just a variable. Para-
metricity states that

(cimvMh)[s— ]=<am (Vs ) M[s—e]h  (103)

(de vMh)[s—e]= <e (Vs ) Ms—e]h,  (104)

provided variable s is not free in m or e or A, and provided no free
variable of ¢’ is bound in 4.

Using the parametricity laws, the associativity laws, and the funda-
mental law of each function and[98), we prove the dis-
integrator correct by induction on its number of computation steps.
The proof also uses monad laws, changes of integration variables
according to[(46)| and exchanges of integrals using the equation

do {x~m;y«~n;M} =do {y«n; x«m;M}. (105)

Induction hypotheses, monad laws, and changes of variables are
correct regardless of inputs. But holds only for some mea-
sures m and n (Royden|1988| Chapter 12, problem 25; Pollard 2001}
Chapter 4, problem 12). In particular[(105)|holds (by Tonelli’s the-
orem) whenever m and n denote finite or o-finite measures. Mea-
sures that occur naturally in probabilistic programs are c-finite, but
because core Hakaru can express measures that are not, in any dis-
integration the correctness of each exchange of integrals|(105)|must
be verified by some means beyond our disintegrator.

To verify correctness, we first extend the output language with a
new syntactic form, which records an exchange of integrals:

Terms e::= ~~|exmhe (106)

The new form ex m h e means the same as e except it asserts that

do {x«m;h; M} =do {h; x~m; M} (107)

for all M. We interpret these assertions denotationally by extending
the domain of measure M & with an error value. If holds, then
ex m h e denotes whatever e denotes; otherwise, ex m h e denotes
the error value. In this instrumented semantics, the denotations of
all other terms are also extended to account for the error value.
The only subtle case is the denotation of a monadic-bind term
do {x« m; M}: it denotes error iff either m denotes error or the set
of x for which M denotes error has nonzero measure with respect
to m.

We instrument our disintegrator by adding assertions to those cases
of <7 and t> in[Figure 6|that handle primitive measures:

< [lebesgue] vc h=[exlebesgue h$(ch)]

> [u] kh=[exu h(
> [lebesgue] = [ex lebesgue h(do{...}
t> [uniform r ro] & h = [ex (uniform ry r,) i (do {...})] (69))

Theorem (Correctness). If; starting with invocation the in-
strumented disintegrator produces an output M such that the right-
hand-side of the specification|(100)|denotes a measure, not the er-
ror value, then the two sides of|(100)]denote the same measure.

The instrumented semantics is defined in such a way that we can
verify the correctness of an output simply by proving, for each
assertion in the output, that holds, except possibly on a set
of measure zero. In our experience, can often be proved by
a simple heuristic; for example, if m is lebesgue and % contains
no lebesgue and no unbounded factor, then by Tonelli’s theorem,

(107)|follows.



6. Evaluation

Our disintegrator is used with full Hakaru, a suite of program trans-
formations for a language that extends core Hakaru with additional
primitive types (such as integers and arrays), operations (such as
exp, log, and sin), and distributions (such as normal, gamma, and
Poisson). The full disintegrator handles observations not only on
real numbers but also on integers, pairs, sums, and arrays.

The full disintegrator works on dozens of generative models and
observations, including these (whose code is available at https://
github.com/hakaru-dev/hakaru/blob/master/examples/
README-popl2017.md):

* Uniform distributions over polytopes, such as the unit square,
subject to the observations in(Section 2|and to the observation
max(x,y), which is used by Chang and Pollard| (1997) to
motivate disintegration

Normal distributions over correlated real variables, such as
Bayesian linear regression

Discrete mixtures of continuous distributions, such as Gaussian
mixture models for clustering

Continuous mixtures of discrete distributions, such as Naive
Bayes models for document classification

A simplified model of seismic event detection, involving
spherical geometry (Arora, Russell, and Sudderth|2013)

The collision model used by Afshar, Sanner, and Webers|(2016)
to motivate observing combinations (such as sums) of random
variables

A linear dynamic model in one dimension, with time steps
11 and 1, to be observed, expressed as follows:

do {n, «~uniform38;  n; « uniform 1 4; (108)
p1 <~ mnormal 21 ny,; t; <« normal py ny;
p2 < normal p| ny; 1ty «~normal p; n;;

return ((11,12), (np,n))}

The disintegrator succeeds on these inputs because they share a
form typical of probabilistic programs: the observable expression
denotes f(x,y), where x and y are random choices, the distribution
of x has a density, and the function f is invertible in the argument x.

Our disintegrator has always produced a result within a few sec-
onds. And thanks to the smart constructors, it produces code that
we find tolerably readable and compact. These results are encour-
aging for practice because there exist inputs that make our disinte-

grator consume exponential time and space (cases 54/and[73]double
the work for every mplus).

The disintegrator produces exact, symbolic posteriors. Like all
terms of full Hakaru, these posteriors can be simplified using com-
puter algebra, interpreted as importance samplers, or transformed
into terms that implement other sampling methods (Narayanan
et al.|2016). The disintegrator thus enables Hakaru to achieve un-
precedented modularity. For example, our disintegrator can com-
pute the conditional distributions and densities (also called Radon-
Nikodym derivatives) required by Monte Carlo sampling meth-
ods like importance sampling, Metropolis-Hastings sampling, and
Gibbs sampling (MacKay|1998). By invoking the disintegrator, our
implementations of those methods stay independent of any model,
and they work with every model listed above.

The disintegrator enables Hakaru to achieve this modularity with-
out imposing significant run-time costs. Although those Hakaru
samplers just mentioned are not yet competitive with state-of-
the-art, application-specific samplers, which are hand-written in
general-purpose programming languages and then compiled, they
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are competitive with samplers written in other probabilistic pro-
gramming languages such as WebPPL (Goodman and Stuhlmiiller
2014). Quantitative details are beyond the scope of this paper.

Limitations Like many proof-of-concept partial evaluators, the
disintegrator can duplicate code (such as t+2=z in and
produce large programs. The limitation obstructs large-scale use,
but it should yield to standard common-subexpression elimination.

The disintegrator is limited by its local, syntactic reasoning. For ex-
ample, it can disintegrate an observation like 2+ x, but it can’t disin-
tegrate the semantically equivalent observation x + x. Perhaps sur-
prisingly, this limitation has not caused trouble in practice. It may
be that the expressions observed in today’s probabilistic programs
are relatively simple. If the limitation proves problematic in the fu-
ture, it could be addressed by more advanced computer algebra.

When the disintegrator fails, it provides no diagnostics. Failure is
typically caused by a distribution on observations that is not abso-
lutely continuous with respect to the Lebesgue measure. For exam-
ple, the observation distribution might assign nonzero probability
to a single point on the real line. It would help if the disintegrator
could produce some kind of trace of its work, if the user could hint
what they expect to be constrainable, and if we knew how to do
“separate disintegration.” That is all future work.

When the output of the disintegrator is used as a sampler, it is not
necessarily efficient. For example, the sampler derived from [equa-|
[tion (IT)|rejects half the samples taken from uniform 0 1; it would
be more efficient if we changed uniform 0 1 to uniform 0 (1/2)
by symbolic simplification (Carette and Shan|2016; Gehr, Mis-
ailovic, and Vechev|2016). We mitigate the limitation by tweaking
the search to prefer choices that produce more efficient output pro-
grams. For example, uniform e; e, (which in full Hakaru does not
require e and e; to be real literals) can always be implemented by
emitting lebesgue, but because uniform is more efficient, we try it
first. Such tricks will carry us only so far; efficient sampling is a
longstanding problem that measure theory merely helps to address.

7. Related Work

Algorithms for Bayesian inference have become widespread. But
the algorithms found in a typical probabilistic language (Goodman
et al. 2008; Wingate, Stuhlmiiller, and Goodman|2011) require the
observation to be specified as a random choice in the model, and
they produce approximate, numerical answers. Our disintegrator is
the first algorithm to let the observation be specified as an expres-
sion separate from the generative model, so we can infer a poste-
rior distribution from a zero-probability observation without trip-
ping over Borel’s paradox. And our disintegrator produces an exact
answer expressed as a term in the modeling language, so it can be
combined with other inference algorithms, both exact and approxi-
mate, without losing performance.

Inference from zero-probability observations is a longstanding con-
cern. In Kolmogorov's classic general approach (1933, Chapter 5),
there is no such thing as a conditional distribution, only condi-
tional expectations. Chang and Pollard|(1997) advocate disintegra-
tion as an approach that is equally rigorous, more intuitive, and
only slightly less general. As they describe, many authors have used
topological notions such as continuity to construct conditional dis-
tributions mathematically (Tjur| 1975; |Ackerman, Freer, and Roy
2011, 2016; Borgstrom et al.|2013). By contrast, we address the
problem linguistically: we find a term that represents a conditional
distribution. If you like, we recast disintegration as a program-
synthesis problem (Srivastava et al.[2011).

A disintegrator can succeed only when a disintegration exists and
can be expressed. Ackerman, Freer, and Roy|(2011) show that when


https://github.com/hakaru-dev/hakaru/blob/master/examples/README-popl2017.md
https://github.com/hakaru-dev/hakaru/blob/master/examples/README-popl2017.md
https://github.com/hakaru-dev/hakaru/blob/master/examples/README-popl2017.md

the modeling language expresses all and only computable distri-
butions, not all disintegrations can be expressed. When the lan-
guage is less expressive (like core Hakaru) or differently expres-
sive, we don’t know what disintegrations can be expressed.

To specify the semantics of a probabilistic language, it is popular to
let terms denote samplers, or computations that produce a random
outcome given a source of entropy (Park, Pfenning, and Thrun
2008). In contrast, we equate terms (not just whole programs) that
denote the same measure, even if they denote different samplers
(Kozen||1981; |Staton et al.| 2016). This semantics lets us reason
equationally from inefficient samplers to efficient ones.

The two modes in our disintegrator may remind you of bidirectional
programming (Foster, Matsuda, and Voigtlinder 2012), as well as
modes in bidirectional type checking (Dunfield and Krishnaswami
2013) and logic programming. The backward mode (<1 and <)
resembles weakest-precondition reasoning (Dijkstra 1975} |Nori
et al.|2014), pre-image computation (Toronto, McCarthy, and Horn
2015), and constraint propagation (Saraswat, Rinard, and Panan-
gaden|1991; Gupta, Jagadeesan, and Panangaden|/1999). The for-
ward mode (> and >) resembles lazy evaluation (Launchbury
1993), in particular lazy partial evaluation (Jgrgensen| 1992 |Fis-
cher et al.|2008; Mitchell/|2010; Bolingbroke and Peyton Jones
2010). Our laziness postpones nondeterminism (Fischer, Kiselyov,
and Shan|2011) in the measure monad, an extension of the proba-
bility monad (Giry|1982; Ramsey and Pfeffer|2002).

It is well known that continuations can be used to manage state
(Gunter, Rémy, and Riecke|1998; Kiselyov, Shan, and Sabry|2006),
to express nondeterminism (Danvy and Filinski|1990) such as prob-
abilistic choice (Kiselyov and Shan|2009), and to generate bindings
and guards and improve binding times in partial evaluation (Bon-
dorf]|1992; Lawall and Danvy|1994; Danvy, Malmkjer, and Pals-
berg||1996; Dybjer and Filinski|2002). Our disintegrator uses con-
tinuations in all these ways. Also, thanks to the view of measures
as integrators, our semantics uses continuation passing to compose
measures easily (Audebaud and Paulin-Mohring|2009).

8. Discussion

Our new disintegration algorithm infers a posterior distribution
from a zero-probability observation of a continuous quantity. This
long-standing problem is where the rigor and reason of disintegra-
tion shine brightest. But disintegration is good for more than just
real spaces and their products and sums; it works equally well on
countable spaces, such as the Booleans and the integers. On count-
able spaces, life is easy: every measure is absolutely continuous
with respect to the counting measure, so disintegration gives ex-
actly the same answers as the classic conditioning equation|(5)]

When disintegrating with respect to the counting measure, the
functions < and < in[Figure 6|needn’t fail in cases[48}[56] and[57}
because the Dirac measure is absolutely continuous with respect
to the counting measure, these cases can succeed by emitting a
pattern-matching guard. Extended thus, our disintegrator works on
[Figure 1[b): if we disintegrate on the Boolean observation y < 2-x,
we get a kernel that maps true to the trapezoid and false to the
triangle that is its complement. In[Figure Ifc), if we disintegrate on
the Boolean observation y = 2 - x, we get a kernel that maps true
to the zero measure and false to the uniform distribution over the
unit square. Thus, to the paradoxical question posed in[Section 2}—
what is £(x) when observing that the Boolean y = 2 - x is true—
Hakaru responds that the posterior measure is zero and thus has no
expectation.

Disintegrating with respect to the Lebesgue measure or the count-
ing measure has the advantage that density calculation (Bhat et al.
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2012, 2013; Mohammed Ismail and Shan|2016) falls out as a spe-
cial case. But practical applications demand more expressive mea-
sures, such as the sum of the Lebesgue measure with a counting
measure—that is, where probability is defined by combining a den-
sity function with a set of point masses. Examples include

* A continuous distribution, like a normal distribution, that is
“clamped” by treating negative values as 0

* A measure on the union of two particular hyperplanes in R*,
namely { (x1,x2,x3,%4) | x| = x3 Vxp = x4 }, which is used to
define single-site Metropolis-Hastings sampling (Tierney|1998)

These examples work in a hacked version of our disintegrator, but
the hack compromises soundness. Future work must generalize
the disintegrator beyond the Lebesgue and counting measures in
a sound and principled way.

In general, the posterior measure produced by our disintegrator is
not a probability distribution—the constant 1 function may inte-
grate to any number. If a probability distribution is desired, the
posterior measure can easily be normalized after the fact. (Disinte-
gration and normalization cannot be accomplished in a single pass
because normalized disintegration is not compositional. For exam-
ple, the normalized disintegrations of m; and of m, are not enough
to determine the normalized disintegration of mplus m| mj.)

The definition of disintegration allows latitude that our disintegra-
tor does not take: When we disintegrate & = A ® K, the output K is
unique only almost everywhere—K x may return an arbitrary mea-
sure at, for example, any finite set of x’s. But our disintegrator never
invents an arbitrary measure at any point. The mathematical defi-
nition of disintegration is therefore a bit too loose to describe what
our disintegrator actually does. How to describe our disintegrator
by a tighter class of “well-behaved disintegrations” is a question
for future research. In particular, the notion of continuous disinte-
grations (Ackerman, Freer, and Roy|2016) is too tight, because de-
pending on the input term, our disintegrator does not always return
a continuous disintegration, even if one exists.

This paper begins with an old paradox: you can’t just claim to ob-
serve a zero-probability event and hope for a single correct poste-
rior distribution. If instead you pose the inference problem in terms
of an observable expression, then whether the probability of any
given value is zero or not, disintegration decomposes your model
into a meaningful family of posterior distributions. Every proba-
bilistic programming language should let its users specify obser-
vations this way. And an automatic disintegrator delivers the pos-
terior family in a wonderfully useful form: as a term in the model-
ing language. Such terms are amenable to equational reasoning and
compositional reuse, which makes it easy to automate the imple-
mentation of inference algorithms that are usually coded by hand.
We can’t wait to see how we and others will use automatic disinte-
gration to further advance the state of probabilistic programming.
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