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Disintegration is a relation on measures and a transformation on probabilistic programs that generalizes
density calculation and conditioning, two operations widely used for exact and approximate inference. Existing
program transformations that find a disintegration or density automatically are limited to a fixed base measure
that is an independent product of Lebesgue and counting measures, so they are of no help in practical cases that
require tricky reasoning about other base measures. We present the first disintegrator that handles variable
base measures, including discrete-continuous mixtures, dependent products, and disjoint sums. By analogy with
type inference, our disintegrator can check a given base measure as well as infer an unknown one that is
principal. We derive the disintegrator and prove it sound by equational reasoning from semantic specifications.
It succeeds in a variety of applications where disintegration and density calculation had not been previously
mechanized.
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1 INTRODUCTION
Probability distributions are used nowadays to formulate and solve all sorts of problems in artificial
intelligence and beyond. Typically, in order to turn a distribution that models a problem into a
program that implements a solution, domain experts subject the distribution to measure-theoretic
operations such as density calculation, conditioning, marginalization, and expectation. Probabilistic
programming represents distributions as programs and mechanizes these operations, whether
exactly or approximately, through symbolic and numerical computations.

Density calculation and conditioning are two important operations on distributions, used to
define both inference problems and approximate solutions. For example, densities are used to define
maximum likelihood estimates and Metropolis-Hastings samplers, whereas conditional distributions
are used to define posterior belief updates and Gibbs samplers. In fact, density calculation and
conditioning are special cases of disintegration. Recent years have seen the exact automation of both
density calculation [Bhat et al. 2012, 2013; Mohammed Ismail and Shan 2016; Cusumano-Towner
et al. 2019; Roberts et al. 2019] and disintegration [Shan and Ramsey 2017; Narayanan and Shan
2017]. Unlike other implementations of inference and sampling [Lunn et al. 2000; Goodman et al.
2008; Pfeffer 2009; Wingate et al. 2011; Wood et al. 2014; Carpenter et al. 2017; Wu et al. 2018],
these mechanizations enable the sampling user to specify a proposal distribution as a probabilistic
program. Further, symbolic computation enables the user to specify an observation or proposal
by applying deterministic operations such as square root and addition to the outcome of random
choices. Besides disintegration and its special cases, other operations on distributions have also
received exact, symbolic automation, in particular simplifying the representation of a distribution
while preserving its meaning [Carette and Shan 2016; Gehr et al. 2016; Walia et al. 2019].
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This paper presents automatic program transformations that perform disintegration. The trans-
formations are exact (under the pretense that computations on real numbers are exact) and symbolic
(even for programs that contain free variables whose values are unknown). Although exact, they can
be used to automate the tedious and error-prone process of not only formulating inference problems
but also implementing approximate solutions, just as automatic differentiation is useful not only for
formulating tangent-line problems but also for implementing gradient-based optimization methods.

Whereas monadic bind is a sort of measure ‘multiplication’, the operations of density calculation,
conditioning, and disintegration are a sort of measure ‘division’. When performing or reasoning
about these operations, it is common to assume that the base measure (‘denominator’) is equal
to—or at least absolutely continuous with respect to (‘divisible by’)—the stock measure [Bhat et al.
2012], an independent product of Lebesgue and counting measures. But as illustrated in Sections 1.2
and 2, this assumption fails in many inference problems and approximate solutions. Those cases
are trickier and so call for mechanization, yet existing mechanizations make the same assumption
and so produce no output.

1.1 Contributions and organization
This paper presents the first disintegration program transformation to allow the base measure to
vary from the stock measure. More precisely, our disintegrator is the first to let the base measure be
(B1) mixtures of the Lebesgue measure and point masses,
(B2) dependent products, and
(B3) disjoint sums.

Using this variety, we automate established applications of disintegration, namely
• calculations on models that mix continuous and discrete distributions, and
• Metropolis-Hastings sampling using single-site and reversible-jump proposals.

We prove our disintegrator sound by equational reasoning. Our proof constitutes the core of
verifying those applications where non-stock base measures are involved. In particular, our proof
encapsulates reasoning about densities among, and reparametrizations of, mixture distributions.

In Section 2, we specify disintegration as a measure-preserving program transformation and
motivate variable-base disintegration using instances of density calculation and conditioning. In Sec-
tion 3, we define a probabilistic language and illustrate the reasoning we automate. In Sections 4 to 7,
we then present our variable-base disintegrator by progressively defining four measure-preserving
program transformations.
• In Section 4, we refactor Shan and Ramsey’s original disintegrator [2017] to expose and isolate

its use of a base measure that is uniquely determined by its type: the Lebesgue base measure,
an independent product, or a disjoint sum (B3). To this end, we semantically specify and
equationally derive a set of meta-functions that constrain expressions, invert and differentiate
numeric operations, and reparametrize and divide base measures.
• In Section 5, we let the base measure vary in two ways: we generalize the Lebesgue base

measure to mixtures of the Lebesgue measure and point masses (B1), and we generalize
independent products to dependent products (B2).
• In Section 6, we automate inferring an unknown base measure, by analogy to constraint-based

type inference: just as a type checker can be made to infer unknown types by collecting and
solving constraints on type variables to find a principal type, it turns out that a base-measure
checker can be made to infer unknown base measures by collecting and solving constraints
on base-measure variables to find a principal base measure.
• In Section 7, we allow the user to give a base measure as a probabilistic program, in the same

language as the measure to disintegrate.
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In Section 8, we return to our motivating applications and confirm empirically that they are handled
by our new disintegrator. Sections 9 and 10 situate our contributions in related and future work.

1.2 An initial sketch of our problem and approach
To give a taste of our work, we informally discuss a Bayesian inference problem that Wu et al.
[2018] devised to motivate concern for mixture distributions, one of our many applications. Suppose
we observe the grade point average (GPA) of a student and want to guess the nationality of their
institution. Our probabilistic model of how the nationality affects the grade might go as follows.
A priori, the student may have studied in India or in the US. An Indian institution awards a GPA
by drawing a random real number uniformly between 0 and 10, except 5% of the time the student
achieves the perfect 10. Similarly, a US institution awards a GPA by drawing a random real number
uniformly between 0 and 4, except 5% of the time the student achieves the perfect 4.

Observing different GPAs helps us infer the unknown nationality. For example, observing the
GPA 7 tells us for sure that the nationality is India, because 7 is too high for the US. On the other
hand, observing the GPA 3 suggests that the nationality is US, because the US interval [0, 4] is
more concentrated (in other words, less spread out) than the India interval [0, 10]. At first glance,
these guesses might seem warranted by the ratio of the two “weight functions” graphed in Figure 1.

A weight is a non-negative quantity, as in a weighted average. Figure 1 graphs two functions
from GPAs to weights. Graphed at the top is a function one might naïvely define to model GPAs in
India; it is a 95% : 5% mixture of a uniform distribution over [0, 10] and a deterministic distribution
at 10. Graphed at the bottom is a similar function one might define to model GPAs in the US; it is a
95% : 5% mixture of a uniform distribution over [0, 4] and a deterministic distribution at 4. Evaluated
at 7, the India function returns a nonzero weight whereas the US function returns zero, which
matches the India conclusion. And evaluating the functions at 3 yields the greater weight 95%/4 in
the US than 95%/10 in India, which matches the US suggestion.

So far, so good. But what if we observe the GPA 4 exactly? We should conclude the US almost
surely, because the probability of US GPAs “bunches up” at 4: out of 1000 US GPAs, approximately
50 (that is, 5%) would be exactly 4, whereas out of 1000 India GPAs, none would be exactly 4, even
though some might be close to 4. Unfortunately, evaluating the functions in Figure 1 at 4 yields the
greater weight 95%/10 in India than 5% in the US, which suggests the wrong guess!

What went wrong in the naïve probability weight functions in Figure 1? Intuitively, the “unit”
of the weights 95%/10 and 95%/4 is different from the “unit” of the weight 5%; the former is
“continuous” whereas the latter is “discrete”. When evaluated at the GPA 4, the India function
returns a continuous weight whereas the US function returns a discrete weight. To avoid the error
of comparing weights of different units, we need to keep track of whether a weight is continuous or
discrete at each point along the real line. That is what a base measure over the reals does. To compare
two weight functions, they must be densities with respect to a common base measure.

To solve this GPA problem, then, we need a base measure such that both the India GPA distribution
and the US GPA distribution have densities with respect to it. The Lebesgue measure, which is
continuous everywhere and commonly assumed in prior work, is not suitable because neither
distribution has a density with respect to it. Instead, one suitable base measure is discrete at both
4 and 10 and continuous everywhere else (B1). With respect to this base measure, however, the
weight function at the top of Figure 1 is not quite a density of the India GPA distribution: we need
to revise the weight at 4 from 95%/10 to 0, as graphed in Figure 2. Comparing the revised weights
at 4 then gives the correct conclusion, that the nationality is US almost surely.

Given descriptions of the two GPA distributions as probabilistic programs, our disintegrator
infers the common base measure just described—as a principal base measure, in fact. It then finds
the densities and thus automates solving this Bayesian inference problem exactly.
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India GPA
0 1 2 3 4 5 6 7 8 9 10

0

95%/10
(10, 5%)

US GPA
0 1 2 3 4 5 6 7 8 9 10

0

95%/4

(4, 5%)

Fig. 1. Naïve probability weight functions that model GPAs in India (top) and in the US (bottom). A hollow
circle indicates a point that does not lie in the graph of the function, whereas a solid circle indicates a point
that does.

India GPA
0 1 2 3 4 5 6 7 8 9 10

0

95%/10
(10, 5%)(4, 0)

Fig. 2. Revised probability weight function that models GPAs in India and can be compared against the
function for the US at the bottom of Figure 1.

2 BACKGROUND
We introduce disintegration as a measure-theoretic relation and probabilistic-program transforma-
tion, by generalizing from density calculation and conditioning. Along the way, we tweak each
example to motivate varying the base measure from the stock measure such as the Lebesgue
measure. Our examples are expressed in core Hakaru, a small probabilistic language [Shan and
Ramsey 2017], whose formal review we postpone to Section 3.

2.1 Defining density
To explain why it is useful to find densities, we need to first define what a density is. And to define
what a density is, we need to first explain how a weight function differs from a measure. A weight
function over a type 𝛼 is a function that maps each 𝛼-value to its weight. We write the type of such
a function as

𝛼 → R+, (1)
where the type of weights R+ consists of the non-negative real numbers and∞. Weights cannot be
negative. For example, the bell curve graphed in Figure 3 is a weight function over R. In contrast, a
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dnorm 0 1

𝑥
0−1−2−3−4−5−6 1 2 3 4 5 6

Fig. 3. A density of the normal distribution normal 0 1 with respect to the Lebesgue measure

measure over 𝛼 can be defined as a function that maps an 𝛼-set to its size. We could write the type
of such a measure as

M𝛼 = (𝛼 → bool) → R+, (2)
where the type constructor M stands for “measure”, and a function from 𝛼 to bool is an indicator
that represents an 𝛼-set by its membership predicate. Instead of (2) however, in this paper we use
another definition of measures that is equivalent but more convenient [de Finetti 1970, Sections
2.11 and 3.8; de Finetti 1972, Section 6.3; Pollard 2001, Section 1.4]: we define a measure over 𝛼 as a
function that maps an 𝛼→R+ function to its integral. That is, we define a measure as an integrator :

M𝛼 = (𝛼 → R+) → R+. (3)

The integrated function must be non-negative.
(More precisely, 𝛼 and M𝛼 are measurable spaces, and a measure over 𝛼 is a certain kind of

function that maps measurable 𝛼-to-R+ functions to elements of R+. Every integrator (3) can be
used as a set-measurer (2) because a measurable 𝛼-set can be regarded as a measurable function
from 𝛼 to the binary weights {0, 1} ⊂ R+. Conversely, every set-measurer (2) can be used as an
integrator (3) by the standard construction of the Lebesgue integral [Royden 1988, Chapters 4
and 11], which intuitively approximates an area under a curve by slicing it into horizontal strips.)

Weight functions (1) and measures (3) are different, even though they are often conflated in the
popular imagination. In fact, measures are sometimes called generalized functions.

Example 2.1. The standard normal distribution is written normal 0 1 in core Hakaru, because its
mean is 0 and its standard deviation is 1. Whereas the bell curve in Figure 3 is the weight function

dnorm 0 1 = 𝜆𝑥. exp(−𝑥2/2)/
√

2𝜋 : R→ R+, (4)

the normal distribution is the measure

normal 0 1 = 𝜆𝑓 .
∫
R (dnorm 0 1) (𝑥) · 𝑓 (𝑥) 𝑑𝑥 : MR. (5)

This integrator maps any (measurable) function 𝑓 : R→R+ to the expected value of 𝑓 (𝑥) when 𝑥 is
drawn randomly from the normal distribution. Again, the integrated function must be non-negative.
For example, if 𝑓 maps positive reals to 1 and other reals to 0, then (normal 0 1) (𝑓 ) = 1/2, because
the probability is 1/2 that a real drawn randomly from the normal distribution is positive.

Another measure is the Lebesgue measure, written lebesgue in core Hakaru:

lebesgue = 𝜆𝑓 .
∫
R 𝑓 (𝑥) 𝑑𝑥 : MR. (6)

This integrator maps any (measurable) function 𝑓 : R→ R+, which must be non-negative, to the
area under it above the 𝑥-axis. For example, if 𝑓 maps positive reals 𝑥 to (dnorm 0 1) (𝑥) and other
reals to 0, then lebesgue(𝑓 ) = 1/2, because the area under the bell curve dnorm 0 1, above the
𝑥-axis and to the right of the 𝑦-axis, is 1/2.
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Definition 2.2. The total |𝜇 | of a measure 𝜇 is its integral of the constant-1 function. That is, |𝜇 | =
𝜇 (𝜆_. 1). We say 𝜇 is finite or infinite if |𝜇 | is. For example, |normal 0 1| =

∫
R (dnorm 0 1) (𝑥) 𝑑𝑥 = 1.

Such a finite measure, whose total is 1, is called a probability distribution and normalized. In contrast,
|lebesgue| =

∫
R 1𝑑𝑥 = ∞, so lebesgue is infinite and thus unnormalized.

A density is a weight function that characterizes one measure with respect to another measure.
For example, the bell curve dnorm 0 1 is a density of the measure normal 0 1 with respect to the
measure lebesgue, because

normal 0 1 = 𝜆𝑓 . lebesgue
(
𝜆𝑥. (dnorm 0 1) (𝑥) · 𝑓 (𝑥)) . (7)

Checking this equation is a matter of 𝛽-reduction. In core Hakaru, the right-hand side is expressed
as follows:

normal 0 1 = do {𝑥 ¢ lebesgue; (dnorm 0 1) (𝑥) ⊙ return 𝑥}. (8)
The core Hakaru forms do {𝑥 ¢ · · · ; · · ·} and return denote bind and unit in the measure monad
[Giry 1982; Ramsey and Pfeffer 2002].
• The unit operation return turns any value 𝑥 , of type 𝛼 (above R), into the probability

distribution concentrated at 𝑥 , of type M𝛼 . Another name for return𝑥 is the Dirac distribution
or deterministic distribution at 𝑥 . It denotes the integrator 𝜆𝑓 . 𝑓 (𝑥).
• The bind operation do {𝑥 ¢ 𝜇; 𝜈 (𝑥)} integrates 𝜈 : 𝛼 →M 𝛽 (a family of measures over 𝛽

parameterized by 𝑥 : 𝛼) with respect to 𝜇 : M𝛼 (a measure over 𝛼) to form a measure over 𝛽
(no longer parameterized by 𝑥 : 𝛼). This Kock integral [Kock 2012; Ścibior et al. 2018] applies
not to weights but to measures over 𝛽 . It denotes the integrator 𝜆𝑓 . 𝜇

(
𝜆𝑥. 𝜈 (𝑥) (𝑓 )) .

The monadic intuition behind these operations is that unit lets us treat a deterministic value as
a trivially nondeterministic computation, and bind lets us treat a sequence of two nondetermin-
istic computations as one. Finally, the ⊙ form in (8) scales the measure return 𝑥 by the weight
(dnorm 0 1) (𝑥). So, roughly (8) says that the normal distribution can be obtained by scaling the
lebesgue measure at each real 𝑥 by the weight (dnorm 0 1) (𝑥), while leaving the value 𝑥 intact.

The definition of a density simply generalizes equations (7) and (8).

Definition 2.3. Let 𝜉, 𝜇 : M𝛼 be two measures and 𝜅 : 𝛼 → R+ be a (measurable) function. We
say that 𝜅 is a density (or Radon-Nikodym derivative) of 𝜉 with respect to the base measure 𝜇 if

𝜉 = 𝜆𝑓 . 𝜇
(
𝜆𝑥 . 𝜅 (𝑥) · 𝑓 (𝑥)) , (9)

or in core Hakaru,
𝜉 = do {𝑥 ¢ 𝜇; 𝜅 (𝑥) ⊙ return 𝑥}. (10)

We write 𝜉 = 𝜅 =⊙ 𝜇 for short.

As this definition makes clear, the notion of a density is a ternary relation between a weight
function 𝜅 and two measures 𝜉 and 𝜇. Implemented as a program transformation, this relation can
take on a variety of directions (modes). In one direction, given any core Hakaru expressions for 𝜇
and 𝜅, it is trivial to express a measure 𝜉 in core Hakaru such that 𝜅 is a density of 𝜉 with respect
to 𝜇: just use equation (10). A harder direction is to turn core Hakaru expressions for 𝜉 and 𝜇 into 𝜅:
the answer is neither unique nor guaranteed to exist, as Examples 2.4 to 2.6 below show. This latter
direction is called density calculation and the concern of this paper.

It is popular to set 𝜇 = lebesgue: a measure over R is called continuous if it has a density with
respect to the Lebesgue measure. More generally, for many spaces 𝛼 , convention stipulates a default
stock measure [Bhat et al. 2012] over 𝛼—for example, the stock measure over R is the Lebesgue
measure—and a measure over 𝛼 is called continuous if it has a density with respect to the stock
measure over 𝛼 . (The existence of a density is related to the notion of absolute continuity by the
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Radon-Nikodym theorem.) Bhat et al.’s density calculation procedure [2012, 2013] turns probabilistic
programs that denote continuous measures (such as normal 0 1) into their exact densities (such as
dnorm 0 1) symbolically.

Some measures are continuous, and some are not.

Example 2.4. The standard normal distribution normal 0 1 is continuous; after all, it has the
density dnorm 0 1 with respect to the Lebesgue measure. In fact, this density is not unique: the
weight functions

𝜆𝑥.


12 if 𝑥 = 34
56 if 𝑥 = 78
dnorm 0 1 𝑥 otherwise

and 𝜆𝑥.


0 if 𝑥 ∈ Z
∞ if 𝑥 ∈ Q \ Z
dnorm 0 1 𝑥 otherwise

(11)

are just two other densities of the standard normal distribution with respect to the Lebesgue
measure. In general, given 𝜉 and 𝜇, the density 𝜅 is only unique up to 𝜇-almost-sure equivalence:
we can revise 𝜅 at any set of points that is negligible (that is, has size 0 according to 𝜇).

Example 2.5. The measure return 42 : MR is not continuous: If it were, then equation (9) would
yield 𝜆𝑓 . 𝑓 (42) = 𝜆𝑓 .

∫
R 𝜅 (𝑥) · 𝑓 (𝑥) 𝑑𝑥 . When we take the integrators on both sides and apply them

to the function 𝑓 that maps 42 to 37 and all other reals to 0, we get 37 = 0, a contradiction.

Example 2.6. Non-continuous measures often arise from clamping continuous measures. Clamp-
ing means replacing out-of-bounds outcomes by the bound. For example, a sensor that can measure
only reals between 0 and 1 (like a camera pixel) might sense reals less than 0 as 0 and reals greater
than 1 as 1. Clamping normal 0 1 in this way yields a measure whose outcome is exactly 0 half of
the time and exactly 1 roughly 16% of the time. More precisely, as an integrator it is

𝜉 = 𝜆𝑓 .
∫
R (dnorm 0 1) (𝑥) · 𝑓 (max{0,min{1, 𝑥}}) 𝑑𝑥

= 𝜆𝑓 .
∫ 0
−∞ (dnorm 0 1) (𝑥) 𝑑𝑥 · 𝑓 (0)

+
∫ 1

0 (dnorm 0 1) (𝑥) · 𝑓 (𝑥) 𝑑𝑥
+
∫ +∞

1 (dnorm 0 1) (𝑥) 𝑑𝑥 · 𝑓 (1),

(12)

and core Hakaru can express it as

𝜉 = do {𝑥 ¢ normal 0 1; return max{0,min{1, 𝑥}}}
= do {𝑥 ¢ normal 0 1; if 𝑥 < 0 then return 0 else fail}
⦶ do {𝑥 ¢ normal 0 1; if 0 ≤ 𝑥 ≤ 1 then return 𝑥 else fail}
⦶ do {𝑥 ¢ normal 0 1; if 1 < 𝑥 then return 1 else fail}.

(13)

In equation (13), the associative binary operator ⦶ denotes summing (mixing) measures of the same
type. Its identity fail denotes the zero measure. The totals of the three summands are 1/2, roughly
34%, and roughly 16%. The same measure is denoted whether ≤ or < is used.

Arguments similar to that in Example 2.5 show that this measure 𝜉 has no density with respect
to lebesgue, or to return 0 or return 1. However, with respect to the sum measure

𝜇 = return 0 ⦶ lebesgue ⦶ return 1 = 𝜆𝑓 . 𝑓 (0) +
∫
R 𝑓 (𝑥) 𝑑𝑥 + 𝑓 (1), (14)
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it does have the density 𝜅 : R→ R+ defined by

𝜅 (0) =
∫ 0
−∞ (dnorm 0 1) (𝑥) 𝑑𝑥 ,

𝜅 (𝑥) = (dnorm 0 1) (𝑥) if 0 < 𝑥 < 1,
𝜅 (1) =

∫ +∞
1 (dnorm 0 1) (𝑥) 𝑑𝑥 ,

𝜅 (𝑥) = 0 if 𝑥 < 0 or 1 < 𝑥 .

(15)

Checking that this 𝜅 is indeed a density is a matter of plugging equations (12), (14), and (15) into
equation (9) and using the fact that

∫
R 𝜅 (𝑥) · 𝑓 (𝑥) 𝑑𝑥 =

∫ 1
0 𝜅 (𝑥) · 𝑓 (𝑥) 𝑑𝑥 because 𝜅 (𝑥) = 0 whenever

𝑥 < 0 or 1 < 𝑥 .
The state of the art in mechanizing density calculation on probabilistic programs [Bhat et al.

2012, 2013; Mohammed Ismail and Shan 2016; Shan and Ramsey 2017; Narayanan and Shan 2017;
Cusumano-Towner et al. 2019; Roberts et al. 2019] is limited to the stock base measure. Thus, our
disintegrator is the first transformation that can turn 𝜉 in (13) into 𝜅 in (15) with respect to 𝜇 in (14),
a mixture of the Lebesgue measure and point masses (B1).

Remark 2.7. The measures over each space form a monoid whose binary operation is ⦶ and whose
identity is fail. This fact can be used to equate the two probabilistic programs in (13). First we
reason equationally about the subexpressions under the scope of 𝑥 :

return max{0,min{1, 𝑥}}
= {semantics of max and min}

if 𝑥 < 0 then return 0 else if 𝑥 ≤ 1 then return 𝑥 else return 1
= {fail is identity of ⦶}

if 𝑥 < 0 then (return 0 ⦶ fail ⦶ fail ) else
if 𝑥 ≤ 1 then ( fail ⦶ return 𝑥 ⦶ fail ) else

( fail ⦶ fail ⦶ return 1)
= {if distributivity; the logic of real inequalities}

if 𝑥 < 0 then return 0 else fail
⦶ if 0 ≤ 𝑥 ≤ 1 then return 𝑥 else fail
⦶ if 1 < 𝑥 then return 1 else fail. (16)

Then we use the fact that monadic bind distributes over ⦶ (and fail):
do {𝑥 ¢ 𝜇; 𝜇1 ⦶ 𝜇2} = do {𝑥 ¢ 𝜇; 𝜇1} ⦶ do {𝑥 ¢ 𝜇; 𝜇2}, do {𝑥 ¢ 𝜇; fail} = fail, (17)

do {𝑥 ¢ 𝜇1 ⦶ 𝜇2; 𝜇 𝑥} = do {𝑥 ¢ 𝜇1; 𝜇 𝑥} ⦶ do {𝑥 ¢ 𝜇2; 𝜇 𝑥}, do {𝑥 ¢ fail; 𝜇 𝑥} = fail. (18)
Left distributivity (17) follows from right distributivity (18) and commutativity (Section 3.2.1). Right
distributivity (18) characterizes this monoid as an algebraic effect [Plotkin and Power 2003].

2.2 Using densities for inference
A basic application of densities is to adjudicate between two hypotheses competing to explain an
observation.

Example 2.8. Suppose we observe a real 𝑥 drawn randomly from a black box, and we wonder
whether the black box is normal 0 1 or normal 3 2. We would like to compare the likelihood of
drawing the observed real from each of the two normal distributions. Unfortunately, the probability
of drawing any real from any normal distribution is zero, and comparing zero against zero does
not help us adjudicate between the two hypotheses.
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dnorm 0 1
dnorm 3 2

𝑥
0−1−2−3−4−5−6 1 2 3 4 5 6

Fig. 4. Densities of two normal distributions, normal01 and normal32, with respect to the Lebesgue measure

𝜆𝑥 .
dnorm 0 1 𝑥
dnorm 3 2 𝑥

𝑥
0−1−2−3−4−5−6 1 2 3 4 5 6

1

Fig. 5. A density of normal 0 1 with respect to normal 3 2, the ratio of the two densities in Figure 4

Instead, we can compare the densities of the two normal distributions with respect to the
Lebesgue measure, at the observed real. Figure 4 plots those densities. As the plot shows, if we
observe the real 1, then we should favor the hypothesis normal 0 1 because (dnorm 0 1) (1) >
(dnorm 3 2) (1), whereas if we observe the real 2, then we should favor the hypothesis normal 3 2,
because (dnorm 0 1) (2) < (dnorm 3 2) (2). These densities can be found symbolically using Bhat
et al.’s density calculation procedure [2012, 2013].

The choice of the Lebesgue measure as the base measure in this comparison is common because
continuous measures are common, but arbitrary. The comparison only depends on the ratio of the
two densities, which is the same regardless of the base measure, as long as both densities exist.
For example, if we double the Lebesgue measure (2 ⊙ lebesgue) as the base measure, then the two
densities would each be halved, but their ratio would remain the same. In fact, we can just pick
normal 3 2 as the base measure, and take advantage of the following fact:

Proposition 2.9. The constant-1 function is a density of every measure with respect to itself. (Thus,
the existence of a density is a reflexive relation among measures.)

Proof. Let 𝜇 be the measure. We use the fact that scaling a measure by 1 does not change it:
do {𝑥 ¢ 𝜇; 1 ⊙ return 𝑥}

= {scaling:𝑚 = 1 ⊙𝑚}
do {𝑥 ¢ 𝜇; return 𝑥}

= {monad right-identity law}
𝜇. □

Thus, on one hand, the constant-1 function is a density of normal32 with respect to itself. On the
other hand, the ratio between dnorm 0 1 and dnorm 3 2 is a density of normal 0 1 with respect
to the same base measure normal 3 2. This ratio is plotted in Figure 5 and compared against the
constant-1 function: it is greater than 1 at 𝑥 = 1 and less than 1 at 𝑥 = 2.
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10 Praveen Narayanan and Chung-chieh Shan

The ratio being itself a density follows from two general facts.

Proposition 2.10. (1) If 𝜅 is a density of 𝜉 with respect to 𝜇, and 𝜅 ′ is a density of 𝜇 with respect
to 𝜈 , then the pointwise product 𝜆𝑥 . (𝜅 (𝑥) · 𝜅 ′(𝑥)) is a density of 𝜉 with respect to 𝜈 . (This fact
and Proposition 2.9 together mean that the existence of a density is a preorder among measures.)

(2) If 𝜅 is a density of 𝜉 with respect to 𝜇, and 𝜅 is 𝜇-almost everywhere finite and nonzero, then the
pointwise reciprocal 𝜆𝑥. 1/𝜅 (𝑥) is a density of 𝜇 with respect to 𝜉 .

Proof. We prove both parts by equational reasoning. For both parts, we use the fact that scaling
a measure by two consecutive weights is same as scaling the measure by the product of the weights:
𝑙 ⊙ (𝑘 ⊙𝑚) = (𝑙 · 𝑘) ⊙𝑚. Also, to apply the monad associativity law, we note that the scaling
expression 𝑙 ⊙𝑀 is actually defined in Section 3.1 to be a mere abbreviation for do {factor 𝑙 ; 𝑀}.
(1) 𝜉

= {𝜅 is a density of 𝜉 with respect to 𝜇}
do {𝑥 ¢ 𝜇; 𝜅 (𝑥) ⊙ return 𝑥}

= {𝜅 ′ is a density of 𝜇 with respect to 𝜈}
do {𝑥 ¢ do {𝑥 ¢ 𝜈 ; 𝜅 ′(𝑥) ⊙ return 𝑥}; 𝜅 (𝑥) ⊙ return 𝑥}

= {monad laws}
do {𝑥 ¢ 𝜈 ; 𝜅 ′(𝑥) ⊙ (𝜅 (𝑥) ⊙ return 𝑥)}

= {scaling: 𝑙 ⊙ (𝑘 ⊙𝑚) = (𝑙 · 𝑘) ⊙𝑚}
do {𝑥 ¢ 𝜈 ; (𝜅 ′(𝑥) · 𝜅 (𝑥)) ⊙ return 𝑥}.

(2) do {𝑥 ¢ 𝜉 ; (1/𝜅 (𝑥)) ⊙ return 𝑥}
= {𝜅 is a density of 𝜉 with respect to 𝜇}

do {𝑥 ¢ do {𝑥 ¢ 𝜇; 𝜅 (𝑥) ⊙ return 𝑥}; (1/𝜅 (𝑥)) ⊙ return 𝑥}
= {monad laws}

do {𝑥 ¢ 𝜇; 𝜅 (𝑥) ⊙ ((1/𝜅 (𝑥)) ⊙ return 𝑥)}
= {scaling: 𝑙 ⊙ (𝑘 ⊙𝑚) = (𝑙 · 𝑘) ⊙𝑚}

do {𝑥 ¢ 𝜇; (𝜅 (𝑥) · (1/𝜅 (𝑥))) ⊙ return 𝑥}
= {𝜅 is 𝜇-almost everywhere finite and nonzero}

do {𝑥 ¢ 𝜇; 1 ⊙ return 𝑥}
= {Proposition 2.9}

𝜇. □

Example 2.11. The reasoning in Example 2.8 can just as well be used to compare non-continuous
distributions. For example, to adjudicate whether a certain black box is the clamping of normal 0 1
or of normal 3 2 to the interval [0, 1], we can find a density of one clamped distribution with respect
to the other, namely the ratio of the densities of the two clamped distributions with respect to
the common base measure 𝜇 in (14). Our disintegrator is the first transformation to automate this
reasoning, because these clamped distributions are not continuous (B1). Similarly, Wu et al.’s GPA
problem (Section 1.2) is to adjudicate whether a certain black box is the clamping of a continuous
distribution to the interval [0, 10] or the clamping of a continuous distribution to the interval [0, 4],
and our disintegrator is the first to automate this reasoning exactly.
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𝑥
0−1−2−3−4−5−6 1 2 3 4 5 6

Fig. 6. The target density in Examples 2.13 and 2.17 with respect to the Lebesgue measure

Example 2.12. Comparing hypotheses is not the only calculation on models that densities are
used to express. Another application is mutual information, a widely used quantity defined as the
expected logarithm of a certain density [Cover and Thomas 2006]. The need to estimate mutual
information for mixtures of continuous and discrete distributions motivated Gao et al. [2017] to
estimate mutual information by approximating the density. Our disintegrator can find an exact
expression for the same density and plug into Gao et al.’s estimator.

2.3 Using densities for sampling
Drawing samples from a distribution is a common way to examine it, such as to estimate its mean
and variance or to plot its histogram. However, even when the distribution we care about is easy
to define, it is often not obvious how to sample from it. To take a concrete example from MacKay
[1998], it is easy to precisely define a distribution 𝜉 : MR

𝜉 =
(
𝜆𝑥 . exp(0.4(𝑥 − 0.4)2 − 0.08𝑥4)) =⊙ lebesgue, (19)

but it is not obvious how to sample from it. (For one thing, it is not obvious how to compute
or invert the integral of exp(0.4(𝑥 − 0.4)2 − 0.08𝑥4) so as to apply the inverse transform method
[Devroye 1986, Theorem 2.1].)

In these situations, it can help to find a density 𝜅 of the target distribution 𝜉 with respect to some
similar proposal distribution 𝜇 whose sampling method is known. Instead of sampling from 𝜉 , we
can draw samples from 𝜇 and weight each sample 𝑥 by 𝜅 (𝑥). This technique is called importance
sampling [Kahn and Harris 1951]. It is also known as likelihood weighting in the special case where
the proposal and target distributions are the prior and posterior distributions in Bayesian inference.

In order for the samples𝑥 drawn from 𝜇 to approximate 𝜉 correctly, we must use their weights𝜅 (𝑥)
to compensate for the difference between 𝜇 and 𝜉 . For example, instead of estimating the mean
of 𝜉 by averaging samples from 𝜉 (which may be difficult to draw), we can average samples from 𝜇

weighted by 𝜅. And instead of plotting a histogram of samples from 𝜉 , we can plot a histogram of
samples from 𝜇, but instead of counting the samples in each bin, we should total their weights.

Example 2.13. Suppose we have a function 𝑓 : R→ R+ and we want to estimate its expectation
with respect to 𝜉 in (19). For this target 𝜉 , we can use normal 3 2 as the proposal, because it is well
known how to sample from a normal distribution. To find the density of 𝜉 with respect to normal32,
we can divide their densities with respect to lebesgue, using Proposition 2.10. The form of (19)
manifests a density of 𝜉 with respect to lebesgue, plotted in Figure 6. And a density of normal 3 2
is already plotted in Figure 4. So to estimate the expectation of 𝑓 with respect to 𝜉 , we can sample 𝑥
from normal 3 2 and average 𝑓 (𝑥) weighted by exp(0.4(𝑥 − 0.4)2 − 0.08𝑥4)/(dnorm 3 2) (𝑥).
Example 2.14. For densities with many factors revealed gradually (as when monitoring a time

series), importance sampling generalizes to particle filtering [Gordon et al. 1993]. These techniques
are just as useful for distributions that are non-continuous (for example, clamped), but the common
base measure used to find a density of the target with respect to the proposal can no longer be the
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= (19) ⊗ normal 0 1

Fig. 7. The product measure of Figures 6 and 3

Lebesgue measure. As above, our disintegrator is the first transformation to find such densities (B1).
Wu et al. [2018] developed two algorithms, lexicographic likelihood weighting and lexicographic
particle filtering, that handle these distributions, but they carry out particular inference techniques
rather than finding densities in general, and they do not allow customizing the proposal distribution.

More substantial applications of densities—indeed, of probabilistic reasoning in general—require
measures over products.

Definition 2.15. A measure over a product 𝛼 × 𝛽 is called a joint measure. Given two measures
𝜇 : M𝛼 and 𝜈 : M 𝛽 , we can construct their product measure 𝜇 ⊗ 𝜈 : M (𝛼 × 𝛽) as follows:

𝜇 ⊗ 𝜈 = 𝜆𝑓 . 𝜇
(
𝜆𝑥. 𝜈

(
𝜆𝑦. 𝑓 (𝑥,𝑦)) ) = do {𝑥 ¢ 𝜇; 𝑦 ¢ 𝜈 ; return (𝑥,𝑦)} (20)

= 𝜆𝑓 . 𝜈
(
𝜆𝑦. 𝜇

(
𝜆𝑥. 𝑓 (𝑥,𝑦)) ) = do {𝑦 ¢ 𝜈 ; 𝑥 ¢ 𝜇; return (𝑥,𝑦)}. (21)

Intuitively, to draw from 𝜇 ⊗ 𝜈 is to draw from 𝜇 and from 𝜈 independently then return the results
as a pair. For example, Figure 7 depicts the product measure of two distributions over R. In order to
ensure commutativity, which means that the measures in (20) and (21) are defined and equal, Staton
[2017] established the invariant that all measure expressions denote s-finite kernels (Section 3.2.1).

We also write 𝜇𝑛 for the 𝑛-ary product 𝜇 ⊗ · · · ⊗ 𝜇 : M𝛼𝑛 .
More generally, given a measure 𝜇 : M𝛼 and a function 𝜈 : 𝛼 →M 𝛽 , we can construct their

dependent product measure 𝜇 ⊗= 𝜈 : M (𝛼 × 𝛽) as follows:
𝜇 ⊗= 𝜈 = 𝜆𝑓 . 𝜇

(
𝜆𝑥. 𝜈 (𝑥) (𝜆𝑦. 𝑓 (𝑥,𝑦)) ) = do {𝑥 ¢ 𝜇; 𝑦 ¢ 𝜈 (𝑥); return (𝑥,𝑦)}. (22)

Intuitively, 𝜇 ⊗= 𝜈 is like 𝜇 ⊗ 𝜈 , except 𝜈 depends on the outcome of 𝜇. Symmetrically, we can
construct the dependent product 𝜈 =⊗ 𝜇 : M (𝛽 × 𝛼) where 𝜈 again depends on 𝜇:

𝜈 =⊗ 𝜇 = 𝜆𝑓 . 𝜇
(
𝜆𝑦. 𝜈 (𝑦) (𝜆𝑥 . 𝑓 (𝑥,𝑦)) ) = do {𝑦 ¢ 𝜇; 𝑥 ¢ 𝜈 (𝑦); return (𝑥,𝑦)}. (23)

These dependent products are useful for Metropolis-Hastings sampling, as we illustrate in
Example 2.17 below. To work out that example, it is useful to know how to determine the density
of a product measure from densities of its factors.

Proposition 2.16. Let 𝜅 : 𝛼 → R+ be a density of 𝜉 : M𝛼 with respect to 𝜇 : M𝛼 .
If𝜅 ′ : 𝛽→R+ is a density of 𝜁 : M 𝛽 with respect to𝜈 : M 𝛽 , then the productmeasure 𝜉⊗𝜁 : M (𝛼×𝛽)

has the density 𝜆(𝑥,𝑦). (𝜅 (𝑥) · 𝜅 ′(𝑦)) : (𝛼 × 𝛽) → R+ with respect to 𝜇 ⊗ 𝜈 : M (𝛼 × 𝛽).
More generally, if we have instead 𝜅 ′ : 𝛼→ 𝛽→R+ and 𝜁 , 𝜈 : 𝛼→M 𝛽 such that 𝜅 ′(𝑥) is a density

of 𝜁 (𝑥) with respect to 𝜈 (𝑥) for 𝜉-almost all 𝑥 , then the dependent product measure 𝜉 ⊗= 𝜁 : M (𝛼 × 𝛽)
has the density 𝜆(𝑥,𝑦). (𝜅 (𝑥) · 𝜅 ′(𝑥) (𝑦)) : (𝛼 × 𝛽) → R+ with respect to 𝜇 ⊗= 𝜈 : M (𝛼 × 𝛽). And
symmetrically for 𝜁 =⊗ 𝜉 with respect to 𝜈 =⊗ 𝜇.
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Proof. We prove this standard result using equational reasoning on programs again. As in
Proposition 2.10, we use the fact that scaling a measure by two weights is same as scaling by their
product. We show only the proof of the “more generally” part:

𝜉 ⊗= 𝜁

= {definition of ⊗= (22)}
do {𝑥 ¢ 𝜉 ; 𝑦 ¢ 𝜁 (𝑥); return (𝑥,𝑦)}

= {𝜅 ′(𝑥) is a density of 𝜁 (𝑥) with respect to 𝜈 (𝑥) for 𝜉-almost all 𝑥 }
do {𝑥 ¢ 𝜉 ; 𝑦 ¢ do {𝑦 ¢ 𝜈 (𝑥); 𝜅 ′(𝑥) (𝑦) ⊙ return 𝑦}; return (𝑥,𝑦)}

= {𝜅 is a density of 𝜉 with respect to 𝜇}
do {𝑥 ¢ do {𝑥 ¢ 𝜇; 𝜅 (𝑥) ⊙ return 𝑥}; 𝑦 ¢ do {𝑦 ¢ 𝜈 (𝑥); 𝜅 ′(𝑥) (𝑦) ⊙ return 𝑦}; return (𝑥,𝑦)}

= {monad laws, and again the abbreviation ⊙ defined in Section 3.1}
do {𝑥 ¢ 𝜇; 𝜅 (𝑥) ⊙ do {𝑦 ¢ 𝜈 (𝑥); 𝜅 ′(𝑥) (𝑦) ⊙ return (𝑥,𝑦)}}

= {linearity (trivial commutativity)}
do {𝑥 ¢ 𝜇; 𝑦 ¢ 𝜈 (𝑥); 𝜅 (𝑥) ⊙ (𝜅 ′(𝑥) (𝑦) ⊙ return (𝑥,𝑦))}

= {scaling: 𝑙 ⊙ (𝑘 ⊙𝑚) = (𝑙 · 𝑘) ⊙𝑚}
do {𝑥 ¢ 𝜇; 𝑦 ¢ 𝜈 (𝑥); (𝜅 (𝑥) · 𝜅 ′(𝑥) (𝑦)) ⊙ return (𝑥,𝑦)}

= {definition of ⊗= and monad laws}
do {(𝑥,𝑦) ¢ (𝜇 ⊗= 𝜈); (𝜅 (𝑥) · 𝜅 ′(𝑥) (𝑦)) ⊙ return (𝑥,𝑦)}. □

Metropolis-Hastings sampling [Metropolis et al. 1953; Hastings 1970] is a popular inference
technique that depends on a target distribution 𝜉 : M𝛼 and a proposal kernel 𝜁 : 𝛼 →M𝛼 . The
proposal kernel 𝜁 specifies a search strategy by which to explore the target distribution 𝜉 . The user
of the technique specifies 𝜉 and 𝜁 then calculates the acceptance ratio, a density of 𝜁 =⊗ 𝜉 : M𝛼2

with respect to 𝜉 ⊗= 𝜁 : M𝛼2 [Tierney 1998]. This density is then used in the probabilistic body of
a loop. The density is called a ratio because it is usually calculated by dividing densities of 𝜁 =⊗ 𝜉

and 𝜉 ⊗= 𝜁 with respect to some common base measure, using Proposition 2.10.

Example 2.17. The target distribution 𝜉 : MR in equation (19) above gives a small instance
of Metropolis-Hastings sampling whose acceptance ratio can be calculated using Bhat et al.’s
procedure [2012, 2013]. Let us choose the proposal kernel 𝜁 = 𝜆𝑥 . normal 𝑥 1 : R→ MR, so
𝜁 (𝑥) has a density with respect to lebesgue for all 𝑥 . By Proposition 2.16, with respect to the base
measure lebesgue2, the measure 𝜉 ⊗= 𝜁 has the density 𝜅 : R2→ R+ defined by

𝜅 = 𝜆(𝑥,𝑦). exp(0.4(𝑥 − 0.4)2 − 0.08𝑥4) · exp(−(𝑦 − 𝑥)2/2)/
√

2𝜋 , (24)

and the measure 𝜁 =⊗ 𝜉 has the density 𝜅 ◦ swap, where ◦ denotes function composition as usual
and swap(𝑦, 𝑥) = (𝑥,𝑦). Thus by Proposition 2.10, the acceptance ratio is

𝜆(𝑥,𝑦). exp(0.4(𝑦 − 0.4)2 − 0.08𝑦4) · exp(−(𝑥 − 𝑦)2/2)/√2𝜋
exp(0.4(𝑥 − 0.4)2 − 0.08𝑥4) · exp(−(𝑦 − 𝑥)2/2)/√2𝜋

. (25)

Often in Metropolis-Hastings sampling, the target distribution ranges over a type 𝛼 that is a
product or sum type, and the proposal kernel is built from sub-kernels on the constituent types.
• Often 𝛼 is a product type 𝛼1 × 𝛼2. A value of a product type is a pair. For example, a value

of type R × R is a pair of reals (𝑥1, 𝑥2). Perhaps they are the times of two events (change
points). For a product type 𝛼 , a single-site kernel 𝜁 : 𝛼→M𝛼 can be built out of sub-kernels
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𝜁1 : 𝛼 →M𝛼1 and 𝜁2 : 𝛼 →M𝛼2 as follows [Goodman et al. 2008; Wingate et al. 2011]:
given (𝑥1, 𝑥2) : 𝛼1 × 𝛼2, flip a coin and either use 𝜁1 to update 𝑥1 while keeping 𝑥2 or use 𝜁2
to update 𝑥2 while keeping 𝑥1. This composite kernel can be expressed as

𝜁 = 𝜆(𝑥1,𝑥2).
( 1

2 ⊙ do {𝑥 ′1 ¢ 𝜁1 (𝑥1, 𝑥2); return (𝑥 ′1, 𝑥2)}
)

⦶

( 1
2 ⊙ do {𝑥 ′2 ¢ 𝜁2 (𝑥1, 𝑥2); return (𝑥1, 𝑥

′
2)}

)
.

(26)

• Often 𝛼 is a sum type 𝛼1 + 𝛼2. A value of a sum type is a tagged value, and the summand
types 𝛼1 and 𝛼2 may differ, so the type of the value tagged depends on whether the tag is inl
or inr. For example, a value of type R + R2 is either inl 𝑥1 or inr 𝑥2, where 𝑥1 is a real and
𝑥2 is a pair of reals. Perhaps 𝑥1 is the time of one event and 𝑥2 is the times of two events, and
the choice of tag represents how many events there are. For a sum type 𝛼 , a reversible-jump
kernel 𝜁 : 𝛼 →M𝛼 can be built out of sub-kernels 𝜁1 : 𝛼1→M𝛼 and 𝜁2 : 𝛼2→M𝛼 by case
discrimination [Green 1995].

Despite the prevalence of single-site and reversible-jump proposal kernels, existing density
calculation procedures cannot find their acceptance ratios, because the necessary base measure
is not an independent product but rather a dependent product or disjoint sum respectively. For
example, suppose that𝛼 = R2, the target 𝜉 has a density with respect to lebesgue2, and the single-site
kernel 𝜁 in (26) is built out of sub-kernels 𝜁1, 𝜁2 : R2→MR that always return continuous measures.
Still, the measures 𝜉 ⊗= 𝜁 and 𝜁 =⊗ 𝜉 do not have densities with respect to (lebesgue2)2 : M (R2)2.
Rather, they have densities with respect to the dependent product

lebesgue2
⊗= 𝜆(𝑥1,𝑥2) . (lebesgue ⦶ return 𝑥1) ⊗ (lebesgue ⦶ return 𝑥2) : M (R2)2. (27)

As for measures over sum types, they call for base measures of the following form.

Definition 2.18. Let 𝜇1 be a measure over 𝛼1 and 𝜇2 be a measure over 𝛼2. The disjoint summeasure
𝜇1 ⊕ 𝜇2 over the sum type 𝛼1 + 𝛼2 is defined by

𝜇1 ⊕ 𝜇2 = (inl ⋄ 𝜇1) ⦶ (inr ⋄ 𝜇2)
= do {𝑥1 ¢ 𝜇1; return (inl 𝑥1)} ⦶ do {𝑥2 ¢ 𝜇2; return (inr 𝑥2)} (28)

using the shorthand ⋄ (also spelled fmap in Haskell) defined by 𝑓 ⋄ 𝜇 = do {𝑥 ¢ 𝜇; return (𝑓 𝑥)}.
The challenge of computing acceptance ratios using these trickier base measures has motivated

several publications [Green 1995; Tierney 1998; Wingate et al. 2011; Roberts et al. 2019]. Our
disintegrator is the first to allow (indeed, infer) dependent products (B2) and disjoint sums (B3) as
base measures, and thus to find these acceptance ratios automatically from programs such as (26).

2.4 Conditioning and its applications
A conditional distribution is a (measurable) function to distributions that is related by monadic bind
to a joint distribution and a marginal distribution. Conditional distributions are useful for specifying
models, making inferences, and drawing samples. These applications motivate non-continuous
marginal distributions.

Definition 2.19. Given a joint distribution 𝜉 : M (𝛼 × 𝛽), the marginal distribution (fst ⋄ 𝜉) : M𝛼

over 𝛼 is defined by
fst ⋄ 𝜉 = do {(𝑥,𝑦) ¢ 𝜉 ; return 𝑥} = 𝜆𝑓 . 𝜉

(
𝜆(𝑥,𝑦). 𝑓 (𝑥)) . (29)

We say that 𝜅 : 𝛼 →M 𝛽 is a conditional distribution over 𝛽 given 𝛼 if we can decompose 𝜉 as
𝜉 = do {𝑥 ¢ (fst ⋄ 𝜉); 𝑦 ¢ 𝜅 (𝑥); return (𝑥,𝑦)}, (30)

or in short, 𝜉 = (fst ⋄ 𝜉) ⊗= 𝜅. Typically, 𝜉 is normalized. In that case, so are fst ⋄ 𝜉 and 𝜅 (𝑥).
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ξ = normal 3 2 ⊗= λx . normal x 1

= λy. normal 3+4y
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√

5

Fig. 8. Conditioning the joint distribution (31) on 𝑥 (top) and on 𝑦 (bottom). The left column shows the joint
distribution; the middle column shows distributions over 𝑥 horizontally; the right column shows distributions
over 𝑦 vertically. Each curve depicts a distribution, so each family of curves depicts a family of distributions.

Example 2.20. Suppose we observe a real 𝑦 drawn randomly from a black box. We believe the
black box is normal 𝑥 1, where 𝑥 has been drawn from normal 3 2, and we wonder what 𝑥 is. In
other words, we want to infer 𝑥 from a measurement of 𝑥 that is noisy with standard deviation 1.
We write a core Hakaru program to define a joint distribution that models the situation:

𝜉 = do {𝑥 ¢ normal 3 2; 𝑦 ¢ normal 𝑥 1; return (𝑥,𝑦)}. (31)
Let us consider in turn one conditional distribution over 𝑦 given 𝑥 and one over 𝑥 given 𝑦.

The marginal distribution (fst ⋄ 𝜉) over 𝑥 is
do {𝑥 ¢ normal 3 2; 𝑦 ¢ normal 𝑥 1; return 𝑥}

= do {𝑥 ¢ normal 3 2; |normal 𝑥 1| ⊙ return 𝑥}
= do {𝑥 ¢ normal 3 2; 1 ⊙ return 𝑥} = normal 3 2.

(32)

Thus, we can read off from (31) that one conditional distribution over𝑦 given 𝑥 is just 𝜆𝑥. normal𝑥 1.
This decomposition is shown at the top of Figure 8. Hence, we have already used conditional
distributions when specifying the model.

To condition on 𝑦, we rewrite (31) using equation (8), then commute the binding of 𝑦 to the front:
𝜉 = do {𝑥 ¢ normal 3 2; 𝑦 ¢ lebesgue; (dnorm 𝑥 1) (𝑦) ⊙ return (𝑥,𝑦)}

= do {𝑦 ¢ lebesgue; 𝑥 ¢ normal 3 2; (dnorm 𝑥 1) (𝑦) ⊙ return (𝑥,𝑦)}
= 𝜅 ′ =⊗ lebesgue where 𝜅 ′ = 𝜆𝑦. do {𝑥 ¢ normal 3 2; (dnorm 𝑥 1) (𝑦) ⊙ return 𝑥}.

(33)

Thus, the marginal distribution (snd ⋄ 𝜉) over 𝑦 is (𝜆𝑦. |𝜅 ′(𝑦) |) =⊙ lebesgue, and one conditional
distribution over 𝑥 given 𝑦 is 𝜆𝑦. |𝜅 ′(𝑦) |−1

⊙ 𝜅 ′(𝑦), the normalization of 𝜅 ′. For this model, the
marginal turns out equal to normal 3

√
5 and the conditional turns out equal to 𝜆𝑦. normal 3+4𝑦

5
2√
5 .
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16 Praveen Narayanan and Chung-chieh Shan

This decomposition is shown at the bottom of Figure 8. Hence, we have used our observation 𝑦 to
update our prior belief about 𝑥 , namely normal 3 2, and form our posterior belief about 𝑥 , namely
normal 3+4𝑦

5
2√
5 . This update illustrates the use of conditional distributions for making inferences.

The choice of the base measure lebesgue in the calculation (33) is conventional (because marginal
distributions are commonly continuous) but arbitrary. The conditioning only depends on the
normalization of 𝜅 ′, which is the same regardless of the base measure, as long as the marginal has
a density with respect to the base. For example, if we double lebesgue as the base measure, then 𝜅 ′

would be halved, but its normalization would remain the same.
Just as densities are not unique (as illustrated in Example 2.4), conditional distributions are not

unique. Because 𝜆𝑥 . normal 𝑥 1 is a conditional distribution over 𝑦 given 𝑥 , so is

𝜆𝑥.


return 12 if 𝑥 = 34
5 ⊙ return 6 if 𝑥 = 78
normal 𝑥 1 otherwise.

(34)

And because 𝜆𝑦. normal 3+4𝑦
5

2√
5 is a conditional distribution over 𝑥 given 𝑦, so is

𝜆𝑦.


fail if 𝑦 ∈ Z
lebesgue if 𝑦 ∈ Q \ Z
normal 3+4𝑦

5
2√
5 otherwise.

(35)

In general, given 𝜉 , the conditional 𝜅 is only unique up to marginal-almost-sure equivalence.

Example 2.21. The reasoning in Example 2.20 can just as well be used to make inferences from
non-continuous observations. For example, to update our belief about 𝑥 using an observation of
the clamping of normal 𝑥 1 to the interval [0, 1], we can condition the model

𝜉 = do {𝑥 ¢ normal 3 2; 𝑦 ¢ normal 𝑥 1; return (𝑥,max{0,min{1, 𝑦}})} (36)
on its snd dimension like in (33), but using the base measure in (14) rather than lebesgue. This
clamped model is a simple instance of a Tobit model [Tobin 1958; the relation between the names
Tobin and Tobit is discussed in Shiller 1999]. Our disintegrator is the first transformation to automate
this reasoning, because the clamped marginal over 𝑦 is not continuous (B1).

Example 2.22. Like densities, conditional distributions are also useful for drawing samples from
a given target distribution. In particular, Gibbs sampling [Geman and Geman 1984; Gelfand et al.
1992] is a popular inference technique on joint distributions that requires drawing repeatedly from
their conditional distributions. Again, our disintegrator allows the base measure to vary from the
Lebesgue measure, in order to condition a distribution whose marginals are non-continuous, such
as a Tobit model.

2.5 Disintegration
We have defined densities and conditional distributions and illustrated their applications using
small examples and varying base measures. Disintegration [Chang and Pollard 1997] generalizes
densities and conditional distributions.

Definition 2.23. A disintegration of a joint measure 𝜉 : M (𝛼 × 𝛽) is a base measure 𝜇 : M𝛼 and a
kernel 𝜅 : 𝛼 →M 𝛽 such that 𝜉 = 𝜇 ⊗= 𝜅.

It is easy to see that disintegration generalizes conditional distributions (Definition 2.19): let
𝜇 = fst ⋄ 𝜉 . To see that disintegration also generalizes densities (Definition 2.3), let 𝛽 be the unit
type 1 and note that not only are the types 𝛼 and 𝛼 × 1 isomorphic, but M1 and R+ are also
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Symbolic disintegration with a variety of base measures 17

isomorphic: map the measure 𝜈 : M1 to the total |𝜈 | : R+, and map the total 𝑟 : R+ to the measure
𝑟 ⊙ return () : M1. Just as densities and conditional distributions are not unique (as illustrated
in Examples 2.4 and 2.20), disintegrations are not unique: even given both 𝜉 and 𝜇, the kernel 𝜅 is
only unique up to 𝜇-almost-sure equivalence.

Disintegration is well known as a useful measure-theoretic relation. Shan and Ramsey [2017]
showed that disintegration is also a useful probabilistic-program transformation, but only automated
it for base measures that are independent products of Lebesgue and counting measures. Narayanan
and Shan [2017] generalized those independent products to handle arrays without unrolling. Any
disintegration program transformation can also be used to find densities, because the totaling map
𝜆𝜈. |𝜈 | is easy to implement as a program transformation, though it can produce integrals and sums
that witness the fundamental intractability of probabilistic inference.

Definition 2.23 is Shan and Ramsey’s [2017] specialization of Chang and Pollard’s [1997] definition
of disintegration, to the concrete case where the map𝑇 is the projection fst : 𝛼 × 𝛽→𝛼 . Chang and
Pollard’s problem of disintegrating some 𝜆 with respect to𝑇 and 𝜇 reduces easily to our problem of
disintegrating some 𝜉 with respect to 𝜇: just let 𝜉 = do {𝑦 ¢ 𝜆; return (𝑇 (𝑦), 𝑦)}.

3 OVERVIEW OF OUR APPROACH
This paper presents a new disintegrator that allows the base measure 𝜇 : M𝛼 to vary rather than
being determined by the type 𝛼 . We handle base measures that are sums of lebesgue and return
as in (14), dependent products as in (27), and disjoint sums as in (28). In this section, we give an
overview of our approach and the equational reasoning that justifies its correctness. Along the way,
we review the syntax and semantics of our object language.

Strictly speaking, variable-base disintegration can be two program transformations:
• The base-checking disintegrator takes the input programs 𝜉 : M (𝛼 × 𝛽) and 𝜇 : M𝛼 and

returns a set of output programs 𝜅 : 𝛼 →M 𝛽 such that 𝜉 = 𝜇 ⊗= 𝜅.
• The base-inferring disintegrator takes the input program 𝜉 : M (𝛼 × 𝛽) and returns a set of

pairs of output programs 𝜇 : M𝛼 and 𝜅 : 𝛼 →M 𝛽 such that 𝜉 = 𝜇 ⊗= 𝜅.
These transformations return (possibly empty) sets because they perform nondeterministic search
and may find zero, one, or more solutions. Nevertheless, both disintegrators are useful. We build
them by progressively defining four transformations.

First, in Section 4, we refactor Shan and Ramsey’s original disintegrator [2017] as
• a language of base measures B𝛼 that is a restricted subset of M𝛼 , and
• a restricted checking disintegrator, which takes the input program 𝜉 : M (𝛼 × 𝛽) and (instead

of 𝜇 : M𝛼) the base measure 𝑏 : B𝛼 .
This initial base-measure language is so restricted that for any given type 𝛼 there exists a unique
base measure genBase(𝛼) : B𝛼 . This base measure is Bhat et al.’s stock measure [2012].

Second, in Section 5, we extend the base-measure language by
• replacing lebesgue by sums of lebesgue and return, and
• replacing independent products ⊗ by dependent products ⊗=.

After this extension, for any given type 𝛼 the base measures B𝛼 may not be unique but form a
preorder. We extend the restricted checking disintegrator to handle the extended base-measure
language while respecting this preorder.

Third, in Section 6 we build a base-inferring disintegrator by adding BR variables to the base
measures produced by the genBase function. The restricted checking disintegrator turns a base
measure containing these variables into constraints on them. Our base-inferring disintegrator
solves these constraints to get a principal base measure 𝑏 : B𝛼 and returns it as 𝜇 : M𝛼 .
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18 Praveen Narayanan and Chung-chieh Shan

Variables 𝑥,𝑦, 𝑧

Real numbers 𝑟 ∈ R
Terms 𝑒,𝑚,𝑀 ::= 𝑥

�� 𝑟 �� () �� (𝑒, 𝑒) �� fst 𝑒
�� snd 𝑒

�� inl 𝑒
�� inr 𝑒�� lebesgue

�� return 𝑒
�� fail

�� 𝑒 ⦶ 𝑒
�� do {𝑔; 𝑒}�� sqrt 𝑒

�� 𝑒2 �� 𝑒 � 𝑒 �� 𝑒 < 𝑒
�� · · ·

Bindings (guards) 𝑔 ::= 𝑥 ¢𝑚
�� factor 𝑒

�� let inl 𝑥 = 𝑒
�� let inr 𝑥 = 𝑒

Heaps ℎ ::= [𝑔; . . . ;𝑔]
Types 𝛼, 𝛽,𝛾 ::= R

�� 1
�� 𝛼 × 𝛽 �� 𝛼 + 𝛽 �� M𝛼

Fig. 9. The syntax of core Hakaru

lebesgue : MR
𝑒 : 𝛾

return 𝑒 : M𝛾 fail : M𝛾

𝑚1 : M𝛾 𝑚2 : M𝛾

𝑚1 ⦶𝑚2 : M𝛾

𝑚 : M𝛼

[𝑥 : 𝛼]···
𝑀 : M𝛾

do {𝑥 ¢𝑚; 𝑀} : M𝛾

𝑒 : R 𝑀 : M𝛾

𝑒 ⊙𝑀 : M𝛾

𝑒 : 𝛼 + 𝛽

[𝑥 : 𝛼]···
𝑀 : M𝛾

do {let inl 𝑥 = 𝑒; 𝑀} : M𝛾

𝑒 : 𝛼 + 𝛽

[𝑥 : 𝛽]···
𝑀 : M𝛾

do {let inr 𝑥 = 𝑒; 𝑀} : M𝛾

Fig. 10. Typing rules for measure terms. The measure term 𝑒 ⊙𝑀 abbreviates do {factor 𝑒 ; 𝑀}. In the bottom
row, [𝑥 : 𝛼] . . . means that the typing derivation of𝑀 : M𝛾 can use the discharged hypothesis 𝑥 : 𝛼 ; in other
words,𝑀 can use the bound variable 𝑥 .

Finally, in Section 7 we build an unrestricted base-checking disintegrator. It invokes the base-
inferring disintegrator to infer 𝑏 : B𝛼 from 𝜇 : M𝛼 . (The type M𝛼 is isomorphic to M (𝛼 × 1), as
described in Section 2.5.) It then disintegrates both 𝜉 and 𝜇 with respect to 𝑏, and divides the results
to cancel 𝑏 out and produce 𝜅.

3.1 Program syntax
Figure 9 shows the syntax of core Hakaru [Shan and Ramsey 2017], the language of probabilistic
programs that all our disintegrators take as input and produce as output. The language is first-order
and terminating, and features random choice and scoring as monadic side effects. Although this
language is small and specific, the use of random choice and scoring as side effects to express
distributions is established in probabilistic programming [Borgström et al. 2016; Narayanan et al.
2016; Culpepper and Cobb 2017; Staton 2017; Ścibior et al. 2018; Wand et al. 2018; Vákár et al. 2019],
so we expect all of our results to extend easily to the first-order and terminating parts of other
probabilistic languages. We write core Hakaru syntax constructors in bold.

The definition of terms in Figure 9 does not include many operations on reals, because we use
sqrt (square root) to illustrate how in general to handle invertible functions (such as negation,
reciprocal, exp, log). Similarly, we use squaring 2 and multiplication � to illustrate how in general to
handle piecewise-invertible and coordinatewise-invertible functions (such as absolute value, +, min,
max). The operations that the term grammar in Figure 9 lists explicitly (sqrt, 2, �) are treated by our
disintegrator using invertibility, as spelled out in Section 4.2 and Figure 17 below. That treatment
generalizes to other numeric operations, so the term grammar ends with ellipsis.
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By way of explaining the measure terms, Figure 10 shows their typing rules; the rest of the type
system is standard and elided. Our types are simple: as defined in Figure 9, they are the type of
reals R, the unit type 1, product types ×, sum types +, and measure types M. Each type denotes a
measurable space; in particular, the type M𝛼 denotes the measurable space of measures over 𝛼 .
We only consider well-typed terms as part of core Hakaru syntax.

The measure terms lebesgue, return 𝑒 , fail, and 𝑚1 ⦶ 𝑚2 denote respectively the Lebesgue
measure, the Dirac measure at 𝑒 (in other words, monadic unit), the zero measure, and the sum of
the measures𝑚1 and𝑚2. The remaining measure terms have the form do {𝑔; 𝑀}, where 𝑔 is one
of several kinds of bindings, also called guards. The typical such measure term is monadic bind,
do {𝑥 ¢𝑚; 𝑀}, where𝑚 and 𝑀 are measure terms and 𝑥 takes scope over 𝑀 . If 𝑥 is not used in 𝑀 ,
then instead of 𝑥 we can write _, or write () if 𝑥 has type 1. Also, we abbreviate 𝑥 ¢ return 𝑒 to
let 𝑥 = 𝑒 . Another kind of guard builds the measure term do {factor 𝑒; 𝑀}, which means to scale
the measure 𝑀 by the weight 𝑒 . We write this term as 𝑒 ⊙𝑀 for short. We also write normal 𝑒1 𝑒2 as
syntactic sugar for dnorm𝑒1 𝑒2=⊙ lebesgue. (In turn, =⊙ is syntactic sugar defined in Definition 2.3.)

Following Shan and Ramsey [2017], to make the disintegrator easier to explain, sum types in
core Hakaru are deconstructed by bindings like let inl 𝑥 = 𝑒 , which may fail. If 𝑒 is inl 𝑒1, then
the term do {let inl 𝑥 = 𝑒; 𝑀} just means 𝑀{𝑥 ↦→ 𝑒1}, but if 𝑒 is inr 𝑒2, then the same term
do {let inl 𝑥 = 𝑒 ; 𝑀} means the zero measure fail. Ordinary pattern matching on sum types can be
recovered by duplicating a measure context 𝑀 [ ]:

𝑀

[
case 𝑒 of inl 𝑥1 → 𝑒1

inr 𝑥2 → 𝑒2

]
= do {let inl 𝑥1 = 𝑒; 𝑀 [𝑒1]} ⦶ do {let inr 𝑥2 = 𝑒; 𝑀 [𝑒2]}. (37)

Booleans true, false can be encoded as inl (), inr () as usual, and Boolean operations can be encoded
in terms of case, so numeric comparisons such as equality can be encoded in terms of <. If 𝑒 is a
Boolean expression, we write observe 𝑒 to mean the guard let inl _ = 𝑒 .

A heap is a sequence of zero or more bindings, each taking scope to its right. The disintegrator
uses heaps to maintain information about random variables. We also use heaps to define the usual
syntactic sugar for nested bindings, which wraps a heap around a measure term:

do {[𝑔1; . . . ;𝑔𝑛]; 𝑀} = do {𝑔1; . . . do {𝑔𝑛 ; 𝑀} . . .}. (38)

We also use the semicolon ; to concatenate heaps, and we omit the square brackets inside do. So for
example, if ℎ = [𝑔1;𝑔2] then do {ℎ; 𝑔3; 𝑀} = do {𝑔1; do {𝑔2; do {𝑔3; 𝑀}}}.

3.2 Disintegration by equational reasoning
The problem of disintegrating a core Hakaru program appears intractable at first glance, because
any mathematics is fair game to use to equate the two sides 𝜉 and 𝜇 ⊗= 𝜅. Fortunately, it turns
out that a few equational reasoning principles suffice for all the applications claimed in Section 2.
Moreover, the reasoning can be generalized to variable base measures, as well as automated as
program transformations that do not perform unbounded search. In this subsection, we illustrate
the reasoning and its variable-base generalization using concrete example programs. The rest of
the paper then describes and justifies the automation for arbitrary input programs.

3.2.1 Semantics. Before we discuss equational reasoning, we first define the denotations being
equated. As is standard, a core Hakaru term denotes a function from environments to values, and
an environment is a tuple of values. For example, the term 2 � 𝑥 : R, in the scope of 𝑦 : R and 𝑥 : R,
denotes the function 𝜆(𝑦,𝑥). 2𝑥 from R2 to R. To take another example, the closed term return 32

denotes (the function that maps () to) the Dirac distribution at 9. These denotations are defined
compositionally, by induction on typing derivations as usual.
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do {𝑦 ¢ normal 0 1;
𝑥 ¢ normal 0 1;
let 𝑡 = 3 + 2 · 𝑥 + 𝑦;
return (𝑡, 3 + 2 · 𝑥)}

=
density

do {𝑦 ¢ normal 0 1;
𝑥 ¢ lebesgue;
let 𝑡 = 3 + 2 · 𝑥 + 𝑦;
factor (dnorm 0 1) (𝑥);
return (𝑡, 3 + 2 · 𝑥)}

=

reparametrize
do {𝑡 ¢ lebesgue;

𝑦 ¢ normal 0 1;
let 𝑥 = (𝑡 − 3 − 𝑦)/2;
factor 1/2;
factor (dnorm 0 1) (𝑥);
return (𝑡, 3 + 2 · 𝑥)}

Fig. 11. Disintegration with respect to the Lebesgue base measure. Two reasoning steps equate the input
program on the left to the output program on the right, which has the disintegrated form lebesgue ⊗= · · · .
Dotted lines show the bindings affected by each step.

In this probabilistic language, the functions denoted by terms are measurable. Moreover, following
Staton [2017], a term of measure type denotes an s-finite kernel.

Definition 3.1. A kernel 𝜅 from a measurable space 𝛼 to a measurable space 𝛽 is a measurable
function from 𝛼 to measures over 𝛽 . We notate this as 𝜅 : 𝛼 →M 𝛽 .

A finite kernel is a kernel with a uniform bound on the total of the measure returned. That is,
𝜅 is finite if there exists 𝑟 < ∞ such that for all 𝑥 ∈ 𝛼 we have |𝜅 (𝑥) | < 𝑟 .

An s-finite kernel is a countable sum of finite kernels.

So in particular, a closed term of measure type denotes an s-finite measure, which is a countable
sum of finite measures. For example, the closed term lebesgue : MR denotes the Lebesgue measure,
which is s-finite because it is the sum of the uniform distributions over the intervals [𝑛, 𝑛 + 1]
where 𝑛 ∈ Z. And the closed term do {_¢ lebesgue; return ()} : M1 denotes the infinite measure
over the unit type, which is s-finite because it is the sum of countably infinite copies of return ().

Staton’s s-finiteness invariant provides us with two crucial assurances. The first assurance is
that monadic bindings denote. Treating measures as integrators, we write the semantic definition

Jdo {𝑥 ¢𝑚; 𝑀}K(𝜌) = 𝜆𝑓 . J𝑚K(𝜌) (𝜆𝑎. J𝑀K(𝜌, 𝑎) (𝑓 )) , (39)

where the pair (𝜌, 𝑎) extends the environment tuple 𝜌 with the value 𝑎. The second assurance is
that monadic bindings commute. We have the equation

do {𝑥 ¢𝑚1; 𝑦 ¢𝑚2; 𝑀} = do {𝑦 ¢𝑚2; 𝑥 ¢𝑚1; 𝑀} (40)

as long as scope is respected: 𝑀 can use 𝑥 and 𝑦, but𝑚1 cannot use 𝑦 and𝑚2 cannot use 𝑥 . This
commutativity equation, reminiscent of Fubini’s and Tonelli’s theorems, lets us treat a sequence of
bindings as a directed acyclic graph of dependencies, which is equivalent to a Bayes net. We use
commutativity pervasively below.

3.2.2 Fixed-base disintegration. In addition to commutativity, disintegration requires just two equa-
tional reasoning principles: density and reparametrization. To see how, consider the disintegration
shown in Figure 11. (This example is equivalent to (33), but the variables have been renamed so
that 𝑦 and 𝑥 are both drawn from normal 0 1.) On the left is the input program 𝜉 , which draws
two random variables 𝑥,𝑦 and then observes a quantity 𝑡 determined by them. On the right, to
condition on 𝑡 , the program has been rewritten in the form 𝜇 ⊗= 𝜅, where the base measure 𝜇 is
lebesgue and the kernel 𝜅 is 𝜆𝑡 . do {. . . ; return (3 + 2 · 𝑥)}.

As shown in Figure 11, the disintegration is justified by a density step, a reparametrization step,
and elided applications of commutativity and monad laws. The density step (equating the left-hand
side to the middle) finds a density of normal 0 1 with respect to lebesgue, using equation (8). The
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do {𝑦 ¢ normal 0 1;
𝑥 ¢ normal 0 1;
let 𝑡 = 3 + 2 · 𝑥 + 𝑦;
observe 𝑡 ≥ 0;
return (𝑡, 3 + 2 · 𝑥)}

=
density

do {𝑦 ¢ normal 0 1;
𝑥 ¢ lebesgue ⦶

return (−3 − 𝑦)/2;
let 𝑡 = 3 + 2 · 𝑥 + 𝑦;
observe 𝑡 ≠ 0;
factor (dnorm 0 1) (𝑥);
observe 𝑡 ≥ 0;
return (𝑡, 3 + 2 · 𝑥)}

=

reparametrize
do {𝑡 ¢ lebesgue ⦶ return 0;

𝑦 ¢ normal 0 1;
let 𝑥 = (𝑡 − 3 − 𝑦)/2;
factor 1/2;
observe 𝑡 ≠ 0;
factor (dnorm 0 1) (𝑥);
observe 𝑡 ≥ 0;
return (𝑡, 3 + 2 · 𝑥)}

do {𝑦 ¢ normal 0 1;
𝑥 ¢ normal 0 1;
let 𝑡 = 3 + 2 · 𝑥 + 𝑦;
observe 𝑡 < 0;
let 𝑡 ′ = 0;
return (𝑡 ′, 3 + 2 · 𝑥)}

do {𝑡 ′ ¢ lebesgue ⦶ return 0;
observe 𝑡 ′ = 0;
𝑦 ¢ normal 0 1;
𝑥 ¢ normal 0 1;
let 𝑡 = 3 + 2 · 𝑥 + 𝑦;
observe 𝑡 < 0;
return (𝑡 ′, 3 + 2 · 𝑥)}

=
density

Fig. 12. Disintegration with respect to a base measure that is a discrete-continuous mixture

reparametrization step (equating the middle to the right-hand side) changes whether 𝑥 takes scope
over 𝑡 or vice versa, using the rule from integral calculus for changing the variable of integration:

∀𝑓 ,
∫
R 𝑓

(
𝑥, 3 + 2 · 𝑥 + 𝑦) 𝑑𝑥 =

∫
R

1
2 𝑓

((𝑡 − 3 − 𝑦)/2, 𝑡 ) 𝑑𝑡 . (41)

Note that this step introduces the Jacobian factor 1/2 in the final result.
Automatic disintegration actually begins with the desired form of the right-hand side of Figure 11

and asks, how can the input program equal a program that begins with 𝑡 ¢ lebesgue? Driven by
this desired form, and noticing that the input program determines 𝑡 in terms of 𝑥 , the disintegrator
attempts the reparametrization step, which leads it to attempt the density step. The success of
the density step then fleshes out the middle program, which finally allows the success of the
reparametrization step to flesh out the right-hand side. This intuitive description is detailed formally
in Section 4 below.

3.2.3 Base-checking disintegration. What if the base measure is not lebesgue? For example, suppose
we change the input program so that the observed quantity is clamped to be non-negative. That is,
suppose we observe not 𝑡 but max{0, 𝑡}. Because the probability of observing 0 is no longer zero,
disintegration with respect to the Lebesgue base measure is no longer possible. Instead, we need a
discrete-continuous mixture, at least lebesgue ⦶ return 0.

Figure 12 shows that the same equational reasoning principles suffice for this new base measure.
To start, we decompose the input as the sum of two measures: one component (top) where 𝑡 < 0
so the observation is 0, and one component (bottom) where 𝑡 ≥ 0 so the observation is 𝑡 . The
results of disintegrating each component separately with respect to the same base measure can
be summed to yield a disintegration of the original input. Each component is disintegrated using
similar reasoning as before. The top component only needs a density step. The bottom component
needs the same two steps as in Figure 11, with slightly larger terms. In particular, the density
step requires observe 𝑡 ≠ 0 in the middle, and it is only when 𝑡 ≠ 0 that the Jacobian factor 1/2
introduced by reparametrization is correct.
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do {𝑦 ¢ normal 0 1;
𝑥 ¢ normal 0 1;
let 𝑡 = 3 + 2 · 𝑥 + 𝑦;
observe 𝑡 ≥ 0;
return (𝑡, 3 + 2 · 𝑥)}

=
density

do {𝑦 ¢ normal 0 1;
𝑥 ¢ reparam 𝑓 B;
let 𝑡 = 3 + 2 · 𝑥 + 𝑦;
factor (jacobian 𝑓 B 𝑡)−1/2;
() ¢ divide lebesgue B 𝑡 ;
factor (dnorm 0 1) (𝑥);
observe 𝑡 ≥ 0;
return (𝑡, 3 + 2 · 𝑥)}

=

reparametrize
do {𝑡 ¢ B;

𝑦 ¢ normal 0 1;
let 𝑥 = (𝑡 − 3 − 𝑦)/2;
factor 1/2;
() ¢ divide lebesgue B 𝑡 ;
factor (dnorm 0 1) (𝑥);
observe 𝑡 ≥ 0;
return (𝑡, 3 + 2 · 𝑥)}

do {𝑦 ¢ normal 0 1;
𝑥 ¢ normal 0 1;
let 𝑡 = 3 + 2 · 𝑥 + 𝑦;
observe 𝑡 < 0;
let 𝑡 ′ = 0;
return (𝑡 ′, 3 + 2 · 𝑥)}

do {𝑡 ′ ¢ B;
() ¢ divide (return 0) B 𝑡 ′;
𝑦 ¢ normal 0 1;
𝑥 ¢ normal 0 1;
let 𝑡 = 3 + 2 · 𝑥 + 𝑦;
observe 𝑡 < 0;
return (𝑡 ′, 3 + 2 · 𝑥)}

=
density

Fig. 13. Disintegration with respect to an unknown base measure. The invertible 𝑓 denotes 𝑥 ↦→ 3 + 2 · 𝑥 + 𝑦.

3.2.4 Base-inferring disintegration. Manually specifying the base measure (such as in (27)) soon
gets unwieldy, so we want a disintegrator that produces a base measure as output rather than taking
it as input. To this end, we introduce base-measure variables B, analogous to the type variables
classically used to turn a type checker into a type inferrer.

Figure 13 shows the same reasoning as in Figure 12 on the same input, but with respect to an
unknown base measure B. The base-measure variable B appears in subterms that depend on the
unknown base measure: To generalize lebesgue ⦶ return 0 in Figure 12 to become B in Figure 13,
we must also generalize
• observe 𝑡 ′ = 0 to become () ¢ divide (return 0) B 𝑡 ′, to denote a density of return 0 with

respect to B at 𝑡 ′;
• observe𝑡 ≠ 0 to become ()¢divide lebesgueB𝑡 , to denote a density of lebesgue with respect

to B at 𝑡 ; and
• similarly other expressions to become reparam 𝑓 B and jacobian 𝑓 B.

The output, to the right in Figure 13, invokes the densities divide (return0) B and divide lebesgueB,
so they had better exist. Thus, these occurrences of divide constrain the unknown base measure B
such that return 0 and lebesgue both have densities with respect to it. In general, we can read off
from the output of disintegration a set of divide constraints on base-measure variables, analogous
to the set of constraints on type variables generated in the course of constraint-based type inference.
Solving our two constraints yields the principal base measure lebesgue⦶ return 0. That is, we have
inferred that a base measure B works if and only if we can find a density of lebesgue ⦶ return 0
with respect to it. In particular, setting B = lebesgue ⦶ return 0 in Figure 13 recovers Figure 12.

4 A FIXED-BASE DISINTEGRATOR
Armed with motivation, grammar, and intuition, we are ready for our formal development. In this
section, we refactor Shan and Ramsey’s original disintegrator [2017] to make explicit the base
measures it fixes and to isolate the few places where it operates on a base measure over R. The
refactoring hence eases the remainder of our development. We also extend the disintegrator to
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Check base 𝑚 ⊒ do {𝑡 ¢ 𝑏; 𝑝 ¢ check𝑚 𝑏 𝑡 ; return (𝑡, 𝑝)}
check : ⌈M (𝛼 × 𝛽)⌉ → B𝛼 → ⌊𝛼⌋ → {⌊M 𝛽⌋}
check𝑚 𝑏 𝑡 = ▷>𝑚

(
𝜆𝑣 .◁ (fst 𝑣) 𝑏 𝑡 (return (snd 𝑣))) []

Constrain value do {ℎ; let 𝑡 = 𝑒; 𝑀} ⊒ do {𝑡 ¢ 𝑏; ◁ 𝑒 𝑏 𝑡 𝑀 ℎ}
◁ : ⌈𝛼⌉ → B𝛼 → ⌊𝛼⌋ → (heap→ {⌊M𝛾⌋}) → heap→ {⌊M𝛾⌋}
◁ 𝑒 (return ()) 𝑣 𝑐 ℎ = 𝑐 ℎ

◁ 𝑒 (𝑏1 ⊗ 𝑏2) 𝑣 𝑐 ℎ = ◁ (fst 𝑒) 𝑏1 (fst 𝑣)
(
◁ (snd 𝑒) 𝑏2 (snd 𝑣) 𝑐

)
ℎ

◁ 𝑒 (𝑏1 ⊕ 𝑏2) 𝑣 𝑐 ℎ = ▷ 𝑒
(
𝜆𝑣0ℎ

′. outl 𝑣0 (𝜆𝑒1ℎ
′′. do {let inl 𝑡1 = 𝑣 ; ◁ 𝑒1 𝑏1 𝑡1 𝑐 ℎ

′′}) ℎ′
⦶ outr 𝑣0 (𝜆𝑒2ℎ

′′. do {let inr 𝑡2 = 𝑣 ; ◁ 𝑒2 𝑏2 𝑡2 𝑐 ℎ
′′}) ℎ′) ℎ

◁ 𝑢 𝑏 𝑣 𝑐 ℎ = ∅ where 𝑢 is atomic
◁ 𝑟 𝑏 𝑣 𝑐 ℎ = ∅ where 𝑟 is a literal real number
◁ (sqrt 𝑒) 𝑏 𝑣 𝑐 ℎ = ⋖ sqrt+ 𝑒 𝑏 𝑣 𝑐 ℎ
◁ 𝑒2 𝑏 𝑣 𝑐 ℎ = ⋖ sqr+ 𝑒 𝑏 𝑣 𝑐 ℎ ⦶ ⋖ sqr− 𝑒 𝑏 𝑣 𝑐 ℎ
◁ (𝑒1 � 𝑒2) 𝑏 𝑣 𝑐 ℎ = ▷ 𝑒1

(
𝜆𝑣1.⋖ (mul 𝑣1) 𝑒2 𝑏 𝑣 𝑐

)
ℎ ∪ ▷ 𝑒2

(
𝜆𝑣2 .⋖ (mul 𝑣2) 𝑒1 𝑏 𝑣 𝑐

)
ℎ

◁ (fst 𝑒) 𝑏 𝑣 𝑐 ℎ = ▷ 𝑒
(
𝜆𝑣0.◁ (fst 𝑣0) 𝑏 𝑣 𝑐

)
ℎ unless 𝑒 is atomic

◁ (snd 𝑒) 𝑏 𝑣 𝑐 ℎ = ▷ 𝑒
(
𝜆𝑣0.◁ (snd 𝑣0) 𝑏 𝑣 𝑐

)
ℎ unless 𝑒 is atomic

◁ 𝑥 𝑏 𝑣 𝑐 [ℎ1; 𝑥 ¢𝑚; ℎ2] = <◁𝑚 𝑏 𝑣 ( [let 𝑥 = 𝑣 ; ℎ2] # 𝑐) ℎ1

◁ 𝑥 𝑏 𝑣 𝑐 [ℎ1; let inl 𝑥 = 𝑒; ℎ2] = ▷ 𝑒
(
𝜆𝑣0 . outl 𝑣0 (𝜆𝑒1.◁ 𝑒1 𝑏 𝑣 ( [let 𝑥 = 𝑣 ; ℎ2] # 𝑐))

)
ℎ1

◁ 𝑥 𝑏 𝑣 𝑐 [ℎ1; let inr 𝑥 = 𝑒; ℎ2] = ▷ 𝑒
(
𝜆𝑣0. outr 𝑣0 (𝜆𝑒2.◁ 𝑒2 𝑏 𝑣 ( [let 𝑥 = 𝑣 ; ℎ2] # 𝑐))

)
ℎ1

Constrain op do {ℎ; observe (𝑒 ∈dom 𝑓 ); let 𝑡 = 𝑓 @ 𝑒; 𝑀} ⊒ do {𝑡 ¢ 𝑏; ⋖ 𝑓 𝑒 𝑏 𝑡 𝑀 ℎ}
⋖ : invertible→ ⌈R⌉ → BR→ ⌊R⌋ → (heap→ {⌊M𝛾⌋}) → heap→ {⌊M𝛾⌋}
⋖ 𝑓 𝑒 𝑏 𝑣 𝑐 ℎ = do {observe (𝑣 ∈rng 𝑓 ); factor (jacobian 𝑓 𝑏 𝑣); ◁ 𝑒 (reparam 𝑓 𝑏) (inv 𝑓 @ 𝑣) 𝑐 ℎ}
Constrain outcome do {ℎ; 𝑡 ¢𝑚; 𝑀} ⊒ do {𝑡 ¢ 𝑏; <◁𝑚 𝑏 𝑡 𝑀 ℎ}
<◁ : ⌈M𝛼⌉ → B𝛼 → ⌊𝛼⌋ → (heap→ {⌊M𝛾⌋}) → heap→ {⌊M𝛾⌋}
<◁ 𝑢 𝑏 𝑣 𝑐 ℎ = ∅ where 𝑢 is atomic
<◁ lebesgue 𝑏 𝑣 𝑐 ℎ = do {() ¢ (lebesgue ÷ 𝑏) 𝑣 ; 𝑐 ℎ}
<◁ (return 𝑒) 𝑏 𝑣 𝑐 ℎ = ◁ 𝑒 𝑏 𝑣 𝑐 ℎ

<◁ fail 𝑏 𝑣 𝑐 ℎ = fail
<◁ (𝑚1 ⦶𝑚2) 𝑏 𝑣 𝑐 ℎ = <◁𝑚1 𝑏 𝑣 𝑐 ℎ ⦶ <◁𝑚2 𝑏 𝑣 𝑐 ℎ

<◁ (do {𝑔; 𝑚}) 𝑏 𝑣 𝑐 ℎ = <◁𝑚 𝑏 𝑣 𝑐 [ℎ; 𝑔]
<◁ 𝑒 𝑏 𝑣 𝑐 ℎ = ▷ 𝑒 (𝜆𝑚. <◁𝑚 𝑏 𝑣 𝑐) ℎ where 𝑒 is not in head normal form

Fig. 14. The restricted base-checking disintegrator. Themeta type constructors ⌈·⌉, ⌊·⌋, and {·} are explained in
this section, as are the continuation builders · and #. The specification relation ⊒ is defined in Definition 4.1.
The supporting functions mul, div, sqr+, sqr−, sqrt+, ∈dom, ∈rng, @, inv, jacobian, reparam, and ÷ are
explained in Section 4.2. The supporting functions ▷, ▷>, fst, snd, outl, and outr are explained in Section 4.3.
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Head normal forms 𝑣 ::= 𝑢
�� 𝑟 �� () �� (𝑒, 𝑒) �� inl 𝑒

�� inr 𝑒�� lebesgue
�� return 𝑒

�� fail
��𝑚 ⦶𝑚 �� do {𝑔; 𝑀}

Atomic terms 𝑢 ::= 𝑧 (not bound in heap)
�� fst 𝑢

�� snd 𝑢�� sqrt 𝑢
�� 𝑢2

�� 𝑢 � 𝑢 �� 𝑢 � 𝑟 �� 𝑟 � 𝑢 �� 𝑢 < 𝑢
�� 𝑢 < 𝑟

�� 𝑟 < 𝑢
�� · · ·

Bases 𝑏 ::= lebesgue
�� return ()

�� 𝑏 ⊗ 𝑏 �� 𝑏 ⊕ 𝑏
Fig. 15. Additional syntactic categories used to describe the disintegrator

handle base measures that are disjoint sums. The differences between our disintegrator and Shan
and Ramsey’s are described in Section 4.2. Our new proof of soundness culminates in Theorem 4.2
and takes advantage of commutativity as described in Section 4.4.

Figure 14 shows the top four functions that make up our restricted base-checking disintegrator:
check, ◁, ⋖, <◁. These are meta-functions that operate on object syntax; after all, functions are not
values in core Hakaru itself. Each function comes with an informal type, a semantic specification
(boxed), and an implementation. The semantic specification is the main theorem we prove about
the function. Additional functions used are explained in the following subsections:
• Section 4.2 explains mul, div, sqr+, sqr−, sqrt+, ∈dom, ∈rng, @, inv, jacobian, reparam, and ÷.
• Section 4.3 explains ▷, ▷>, fst, snd, outl, and outr .

In general, we write object syntax constructors in bold, and meta-functions in italics.
At the top of Figure 14 is check, the external interface. Unpacking the new notation used in check

reveals structure that recurs throughout Shan and Ramsey’s and our disintegrators.

Meta types and syntactic categories. On the second line of Figure 14, the (meta) type ⌈M (𝛼 × 𝛽)⌉
consists of the core Hakaru terms of type M (𝛼 × 𝛽), and the (meta) type ⌊𝛼⌋ consists of head
normal forms of type 𝛼 . (Other meta types heap and invertible are explained further below.)

Head normal forms are a subset of core Hakaru terms that we define in order to describe the
disintegrator. Their grammar is shown in Figure 15. Intuitively, whereas a term is a part of a
program yet to be run, a head normal form is a symbolic representation of what the disintegrator
knows about the result of running a program. For example, the term 1 + 2 is not a head normal
form; partial evaluation (Section 4.3) turns it into the head normal form 3. To take another example,
the term fst (inl 𝑥, inr𝑦) is not a head normal form; partial evaluation turns it into inl 𝑥 , which is a
head normal form even though 𝑥 is a variable whose binding the disintegrator could try to look up.
Certain head normal forms are atomic, which means roughly that nothing is known about them.
For example, suppose that nothing is known about the variable 𝑧. Then, nothing is known about
1 + 𝑧 and fst 𝑧 either, so these terms are all atomic and hence head normal forms.

Technically, an atomic term 𝑢 is either a variable 𝑧 for which no information can be found in the
heap maintained by the disintegrator, or built up from such a variable by applying strict functions.
(Strict functions are functions that inspect their inputs, including sqrt, 2, �, and most numeric
operations one might add to core Hakaru such as addition, subtraction, division, exp, log, absolute
value, min, max.) A head normal form 𝑣 is either an atomic term 𝑢 or a constructor application.
Thus, although the heap does not affect what terms are, it does affect which terms are atomic or in
head normal form. Regardless, head normal forms always include real literals 𝑟 and measure terms.

Base-measure language. The bottom of Figure 15 defines a language of base measures. For each
type 𝛼 , the language B𝛼 of base measures 𝑏 over 𝛼 is a restricted subset of the language M𝛼 of
measures over 𝛼 . In fact, this base language is so restricted that there is only one base measure per
type. To wit, the function genBase defined below maps each non-measure type 𝛼 to its unique base
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measure genBase(𝛼) : B𝛼 :

genBase(R) = lebesgue, genBase(𝛼 × 𝛽) = genBase(𝛼) ⊗ genBase(𝛽),
genBase(1) = return (), genBase(𝛼 + 𝛽) = genBase(𝛼) ⊕ genBase(𝛽). (42)

This base language is new. The goal of this paper is to relax the restriction it represents: we extend
it in Figure 22 and again in Figure 25.

Nondeterminism. The return type of check is {⌊M 𝛽⌋}, which means a set (of head normal forms
of type M 𝛽 , in the empty heap [] initializing check). This set type reveals that the disintegrator is
nondeterministic: it tries multiple ways to disintegrate a program and may end up with zero, one,
or more results. Because this nondeterminism pervades the disintegrator, our notation shows sets
explicitly in types but builds sets implicitly in terms. For example, in the specification for check
boxed in the upper-right corner of Figure 14, the symbol ⊒ appears to relate two terms but actually
relates two sets of terms. The right-hand side is the set of all terms do {𝑡 ¢ 𝑏; 𝑝 ¢ 𝑒 ; return (𝑡, 𝑝)}
where the subterm 𝑒 belongs to the set check𝑚𝑏 𝑡 . The left-hand side is the singleton set containing
the term𝑚.

Definition 4.1. Let 𝑆 and 𝑇 be two sets of core Hakaru terms. We write 𝑆 ⊒ 𝑇 to mean that the
set of denotations of elements of 𝑆 is a superset of the set of denotations of elements of 𝑇 . In other
words, every term in 𝑇 denotes the same as some term in 𝑆 .

Thus, the specification for check can be paraphrased using the fact that the left-hand side 𝑚 is a
singleton set: for every term 𝑒 returned by check𝑚 𝑏 𝑡 (if any), the denotation of do {𝑡 ¢ 𝑏; 𝑝 ¢ 𝑒 ;
return (𝑡, 𝑝)} equals the denotation of𝑚.

In other definitions (such as the next function ◁ in Figure 14), we write ∅ for the empty set of
terms and∪ for the union of two sets of terms. These are the only two ways to incur nondeterminism.
Note that ∅ is different from fail, which is (a singleton set of) a term that denotes the zero measure,
and ∪ is different from ⦶, which constructs a term that sums two measures.

Continuations. For reasons explained in Section 4.1, the disintegrator is written in continuation-
passing style: many functions take and return continuations of type heap→{⌊M𝛾⌋} and maintain
the heap as a piece of mutable state. We use the metavariable 𝑐 for these continuations. They
typically have the form 𝑀 , defined as the function

𝑀 = 𝜆ℎ. do {ℎ; 𝑀}, (43)

which implicitly builds a singleton set by wrapping the given heap ℎ around some measure term 𝑀 .
Thus, the third line of Figure 14 defines check as the following steps in continuation-passing style:
given a joint distribution𝑚, a base measure 𝑏, and an index 𝑡 (usually a variable representing an
observation), the function check starts with the empty heap [], invokes ▷> on𝑚 to get 𝑣 , invokes ◁
on fst 𝑣 , and wraps the final heap around return (snd 𝑣) to form the result.

In other definitions (such as ◁ in Figure 14), we write ℎ0 for the heap-to-heap function

ℎ0 = 𝜆ℎ. [ℎ; ℎ0], (44)

which wraps the given heapℎ around some heapℎ0. We also define the reverse function-composition
operator # by (𝑔 # 𝑐) (ℎ) = 𝑐 (𝑔(ℎ)), so that ℎ0 # 𝑀 = do {ℎ0; 𝑀}. To draw an example from the
definition of ◁, if 𝑐 = 𝑀 then [let 𝑥 = 𝑣 ; ℎ2] # 𝑐 = do {let 𝑥 = 𝑣 ; ℎ2; 𝑀}.
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4.1 From specifications to implementations
All the specifications boxed in Figure 14 have the form

. . . ⊒ do {𝑡 ¢ 𝑏; . . .} , (45)

where the right-hand side invokes the function being specified and the left-hand side is made
of inputs to the function. Recall from Definition 4.1 that the symbol ⊒ relates two sets of terms;
here the left-hand side is a singleton set, so the specification says that every term produced
nondeterministically on the right denotes the same as the term on the left. This pattern reflects the
fact that the main job of the disintegrator is to rewrite a given measure term (the left-hand side) to
a semantically equivalent one (the right-hand side) that begins with the binding 𝑡 ¢ 𝑏. Whereas
the external interface check rewrites an arbitrary measure term𝑚 with respect to a base measure 𝑏,
the other functions ◁ (“constrain value”), ⋖ (“constrain op”), and <◁ (“constrain outcome”) rewrite
measure terms of specific forms, focusing on an expression 𝑒 , operation 𝑓 , or action𝑚 in the context
of a heap ℎ and final action 𝑀 . These specifications assure soundness, not completeness: they all
admit implementations that return no answer (∅).

The boxed specifications in Figure 14 formalize the division of labor among the constraining
functions ◁, ⋖, and <◁. This division of labor is illustrated by the example disintegration problem
solved manually in Section 3.2.2 above and automatically in Figure 16 below.

Constrain value ◁ 𝑒 𝑏 𝑡 constrains the value of 𝑒 (of type 𝛼) to be 𝑡 (of type 𝛼). In the example,
finding a disintegration requires constraining the value of 3 + 2 · 𝑥 + 𝑦 to be 𝑡 .

Constrain op ⋖ 𝑓 𝑒 𝑏 𝑡 constrains the result of the numeric operation 𝑓 on 𝑒 (of type R) to
be 𝑡 (of type R). In the example, constraining the value of 3 + 2 · 𝑥 + 𝑦 to be 𝑡 reduces to
constraining the result of the numeric operation 3+ 2 · –+𝑦 on 𝑥 to be 𝑡 . That in turn reduces
by reparametrization to constraining the value of 𝑥 to be (𝑡 − 3 − 𝑦)/2.

Constrain outcome <◁𝑚 𝑏 𝑡 constrains the outcome of 𝑚 (of type M𝛼) to be 𝑡 (of type 𝛼).
Continuing with the example, constraining the value of 𝑥 reduces to constraining the outcome
of its distribution normal 0 1. That in turn requires finding a density of the distribution
normal 0 1 with respect to the given base measure 𝑏 = lebesgue.

All the implementations in Figure 14 are derived from the semantic specifications by equational
proofs. By derive [Hughes 1995; Hutton and Meijer 1996], we mean that the right-hand side of
each implementation equation in Figure 14 can be figured out by the following process. First, we
prove an instance of the specification in which the function call is replaced by a term. Then, we
match the function call against the term to obtain the right-hand side. This way, we figure out the
implementation and prove that it satisfies the specification at the same time. (Some technicalities
of the proofs are discussed in Section 4.4.)

For example, the case <◁ fail is derived and proven from the specification

do {ℎ; 𝑡 ¢𝑚; 𝑀} ⊒ do {𝑡 ¢ 𝑏; <◁𝑚 𝑏 𝑡 𝑀 ℎ} (46)

by substituting fail for𝑚 and equating both sides to fail:

do {ℎ; 𝑡 ¢ fail; 𝑀}
= {fail distributivity (17) and (18)}

fail
= {fail distributivity (17)}

do {𝑡 ¢ 𝑏; fail}
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= {definition of <◁}

do {𝑡 ¢ 𝑏; <◁ fail 𝑏 𝑡 𝑀 ℎ}. (47)

The first two steps of (47) prove an instance of the specification (46) in which the function call
<◁ fail 𝑏 𝑡 𝑀 ℎ is replaced by the term fail. Matching that function call against that term gives the
implementation equation <◁ fail 𝑏 𝑣 𝑐 ℎ = fail in Figure 14. Filling in that implementation equation
allows us to proceed with the final step of (47) and finish this case of the proof that <◁ satisfies (46).
Intuitively, this implementation disintegrates the zero measure by producing the zero measure.

Similarly, the case <◁ (𝑚1 ⦶𝑚2) is derived and proven from (46) by substituting 𝑚1 ⦶𝑚2 for𝑚
and using the induction hypotheses derived also from (46) by substituting𝑚1 and𝑚2 for𝑚:

do {ℎ; 𝑡 ¢𝑚1 ⦶𝑚2; 𝑀}
= {⦶ distributivity (17) and (18)}

do {ℎ; 𝑡 ¢𝑚1; 𝑀} ⦶ do {ℎ; 𝑡 ¢𝑚2; 𝑀}
⊒ {induction hypotheses}

do {𝑡 ¢ 𝑏; <◁𝑚1 𝑏 𝑡 𝑀 ℎ} ⦶ do {𝑡 ¢ 𝑏; <◁𝑚2 𝑏 𝑡 𝑀 ℎ}
= {⦶ distributivity (17)}

do {𝑡 ¢ 𝑏; (<◁𝑚1 𝑏 𝑡 𝑀 ℎ ⦶ <◁𝑚2 𝑏 𝑡 𝑀 ℎ)}
= {definition of <◁}

do {𝑡 ¢ 𝑏; <◁ (𝑚1 ⦶𝑚2) 𝑏 𝑡 𝑀 ℎ}. (48)

All but the last step of (48) proves an instance of the specification (46) in which the function call
<◁ (𝑚1⦶𝑚2)𝑏 𝑡 𝑀ℎ is replaced by the term <◁𝑚1𝑏 𝑡 𝑀ℎ⦶<◁𝑚2𝑏 𝑡 𝑀ℎ. Matching that function call
against that term gives the implementation equation <◁ (𝑚1⦶𝑚2)𝑏𝑣𝑐ℎ = <◁𝑚1𝑏𝑣𝑐ℎ⦶<◁𝑚2𝑏𝑣𝑐ℎ in
Figure 14. Filling in that implementation equation allows us to proceed with the last step of (48) and
finish this case of the proof that <◁ satisfies (46). Intuitively, this implementation disintegrates the
sum of two measures by disintegrating each summand separately. (Duplicating the continuation 𝑐

to deal with the summands𝑚1 and𝑚2 separately is the first of two reasons to write the disintegrator
in continuation-passing style [Danvy and Filinski 1990].)

An example where one function calls another is the case <◁ (return 𝑒), which is derived and
proven from (46) by substituting return 𝑒 for 𝑚 and using the induction hypothesis that is the
specification of ◁:

do {ℎ; 𝑡 ¢ return 𝑒; 𝑀}
= {abbreviation}

do {ℎ; let 𝑡 = 𝑒; 𝑀}
⊒ {specification of ◁}

do {𝑡 ¢ 𝑏; ◁ 𝑒 𝑏 𝑡 𝑀 ℎ}
= {definition of <◁}

do {𝑡 ¢ 𝑏; <◁ (return 𝑒) 𝑏 𝑡 𝑀 ℎ}. (49)

(Intuitively, this case constrains the outcome of a deterministic distribution at 𝑒 to be 𝑡 by con-
straining the value of 𝑒 to be 𝑡 .) Similarly, the definition of top-level check is derived and proven
from the specifications of ▷> and ◁:
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Theorem 4.2. For all𝑚 : M (𝛼 × 𝛽) and 𝑏 : B𝛼 , we have

𝑚 ⊒ do {𝑡 ¢ 𝑏; 𝑝 ¢ check𝑚 𝑏 𝑡 ; return (𝑡, 𝑝)} . (50)

In other words, for every term𝑀 produced nondeterministically by check𝑚 𝑏 𝑡 , the denotations of𝑚
and do {𝑡 ¢ 𝑏; 𝑝 ¢𝑀 ; return (𝑡, 𝑝)} are equal. Here 𝑡 and 𝑝 are fresh variables.

Proof. We reason equationally from the right-hand side of (50) to the left-hand side, using many
separately proven lemmas stated in figures:

do
{
𝑡 ¢ 𝑏; 𝑝 ¢ check𝑚 𝑏 𝑡 ; return (𝑡, 𝑝)}

= {definition of check (Figure 14)}

do
{
𝑡 ¢ 𝑏; 𝑝 ¢ ▷>𝑚

(
𝜆𝑣 .◁ (fst 𝑣) 𝑏 𝑡 (return (snd 𝑣))) []; return (𝑡, 𝑝)}

= {associativity of ▷> (Figure 21)}

do
{
𝑡 ¢ 𝑏; ▷>𝑚

(
𝜆𝑣ℎ. do {𝑝 ¢ ◁ (fst 𝑣) 𝑏 𝑡 (return (snd 𝑣)) ℎ; return (𝑡, 𝑝)}) []}

= {associativity of ◁ (Figure 21)}
do

{
𝑡 ¢ 𝑏; ▷>𝑚

(
𝜆𝑣ℎ.◁ (fst 𝑣) 𝑏 𝑡 (𝜆ℎ′. do {𝑝 ¢ do {ℎ′; return (snd 𝑣)}; return (𝑡, 𝑝)}) ℎ) []}

= {monad laws}

do
{
𝑡 ¢ 𝑏; ▷>𝑚

(
𝜆𝑣ℎ.◁ (fst 𝑣) 𝑏 𝑡 (return (𝑡, snd 𝑣)) ℎ) []}

= {commutativity of ▷> (Figure 21)}

▷>𝑚
(
𝜆𝑣ℎ. do {𝑡 ¢ 𝑏; ◁ (fst 𝑣) 𝑏 𝑡 (return (𝑡, snd 𝑣)) ℎ}) []

⊑ {specification of ◁ (Figure 14)}
▷>𝑚

(
𝜆𝑣ℎ. do {ℎ; let 𝑡 = fst 𝑣 ; return (𝑡, snd 𝑣)}) []

= {monad laws}
▷>𝑚 (𝜆𝑣 . return 𝑣) []

= {specification of ▷> (Figure 19)}
do {𝑥 ¢𝑚; return 𝑥} =𝑚. □

Remark 4.3. Theorem 4.2 assures soundness, not completeness, as with all our specifications stated
using ⊒ (Definition 4.1). Our disintegrator is not complete, and we have not characterized when it
succeeds (Section 9). And when our disintegrator does succeed, we have not characterized which
of the infinite number of solutions (Examples 2.4 and 2.20) it chooses. After all, like most program
transformations, our disintegrator is sensitive to the syntax of the input program (Section 3.1) and
not just its semantics (Section 3.2.1).

A sample run. For concreteness, Figure 16 shows the automatic disintegrator performing essen-
tially the same reasoning as Figure 11 depicts equationally. Amid all the detail, the main pattern to
notice is that the result is emitted gradually by several meta-functions invoking each other:
• On line 7, the meta-function ▷> (“perform”) emits the binding of 𝑧 (an alias for 𝑦). The rest

of the run proceeds under the scope of this 𝑧. (Emitting such bindings is the second of two
reasons to write the disintegrator in continuation-passing style [Bondorf 1992; Lawall and
Danvy 1994].)
• On line 8, the meta-function ⋖ emits factor 1/2 to carry out the reparametrization step

in Figure 11.
• On line 10, the meta-function <◁ emits dnorm to carry out the density step in Figure 11.
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1 check (do {𝑦 ¢ normal 0 1; 𝑥 ¢ normal 0 1; return (3 + 2 · 𝑥 + 𝑦, 3 + 2 · 𝑥)}) lebesgue 𝑡
2 = ▷> (do {𝑦 ¢ normal 0 1; 𝑥 ¢ normal 0 1; return (3 + 2 · 𝑥 + 𝑦, 3 + 2 · 𝑥)})(

𝜆𝑣.◁ (fst 𝑣) lebesgue 𝑡 (return (snd 𝑣)))
[]

3 = ▷ (3+2 ·𝑥+𝑦, 3+2 ·𝑥) (𝜆𝑣.◁ (fst𝑣) lebesgue𝑡 (return (snd 𝑣))) [𝑦¢normal01; 𝑥¢normal01]
4 = ◁ (3 + 2 · 𝑥 + 𝑦) lebesgue 𝑡 (return (3 + 2 · 𝑥)) [𝑦 ¢ normal 0 1; 𝑥 ¢ normal 0 1]
5 = ▷ 𝑦

(
𝜆𝑣.⋖ (3 + 2 · – + 𝑣) 𝑥 lebesgue 𝑡 (return (3 + 2 · 𝑥))) [𝑦 ¢ normal 0 1; 𝑥 ¢ normal 0 1]

6 = ▷> (normal 0 1)(
𝜆𝑣ℎ.⋖ (3 + 2 · – + 𝑣) 𝑥 lebesgue 𝑡 (return (3 + 2 · 𝑥)) [ℎ; let 𝑦 = 𝑣 ; 𝑥 ¢ normal 0 1])
[]

7 = do {𝑧 ¢ normal 0 1;
⋖ (3 + 2 · – + 𝑧) 𝑥 lebesgue 𝑡 (return (3 + 2 · 𝑥)) [let 𝑦 = 𝑧; 𝑥 ¢ normal 0 1]}

8 = do {𝑧 ¢ normal 0 1; factor 1/2;
◁ 𝑥 lebesgue 𝑡−3−𝑧

2 (return (3 + 2 · 𝑥)) [let 𝑦 = 𝑧; 𝑥 ¢ normal 0 1]}
9 = do {𝑧 ¢ normal 0 1; factor 1/2;

<◁ (normal 0 1) lebesgue 𝑡−3−𝑧
2 do {let 𝑥 = 𝑡−3−𝑧

2 ; return (3 + 2 · 𝑥)} [let 𝑦 = 𝑧]}
10 = do {𝑧 ¢ normal 0 1; factor 1/2;

factor (dnorm 0 1) ( 𝑡−3−𝑧
2 ); let 𝑦 = 𝑧; let 𝑥 = 𝑡−3−𝑧

2 ; return (3 + 2 · 𝑥)}

Fig. 16. A transcript of the automatic disintegrator in action. The disintegration found here is same as in
Figure 11, except we make several semantics-preserving simplifications: On line 1, we inline 𝑡 . On line 4, we
treat 3 + 2 · – + – as a binary operator akin to multiplication, and so to call ⋖, we treat 3 + 2 · – + 𝑣 as an
invertible akin to mul 𝑣 . On lines 6 and 9, we treat normal 0 1 as a primitive, not defined in terms of lebesgue.

4.2 Constraining with respect to a base measure
Three crucial aspects of this disintegrator are new compared to Shan and Ramsey’s.

First, we add a base-measure argument 𝑏 : B𝛼 to every function in Figure 14. This new argument
is inspected in the first three cases of ◁ in Figure 14.
• The case ◁ 𝑒 (return ()) fleshes out Shan and Ramsey’s remark that “on countable spaces, life

is easy”. Intuitively, because the term 𝑒 has the unit type, this case constrains the value of 𝑒
by doing nothing. The equational derivation of this case uses the fact that 𝑒 is equal to ().
• The case ◁ 𝑒 (𝑏1 ⊗ 𝑏2) fleshes out Shan and Ramsey’s remark that “other types 𝛼 such as
𝛼 = R × R can be handled by successive disintegration”. Intuitively, because the term 𝑒 has
the type of a pair, this case constrains the value of 𝑒 by constraining each component of the
pair in turn. The equational derivation of this case uses the induction hypotheses for the two
recursive calls to ◁ and uses the specification of fst in Figure 19.
• Finally, the case ◁ 𝑒 (𝑏1 ⊕ 𝑏2) adds handling for disjoint sums (B3), exactly as defined and

motivated in equation (28). Intuitively, because the term 𝑒 has a sum type, this case constrains
the value of 𝑒 by first enforcing that the tag matches (inl vs inr) and then constraining the
value under the tag. The equational derivation of this case depends on the semantics of sum
types, whose values are tagged to ensure that the sum stays disjoint:

do {ℎ; let 𝑡 = 𝑒; 𝑀}
= {specification of ▷ (Figure 19)}
▷ 𝑒

(
𝜆𝑣0ℎ

′. do {ℎ′; 𝑀{𝑡 ↦→ 𝑣0}}
)
ℎ

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: February 2019.



30 Praveen Narayanan and Chung-chieh Shan

= {semantics of let inl and let inr}
▷ 𝑒

(
𝜆𝑣0ℎ

′. do {let inl 𝑥1 = 𝑣0; ℎ′; let 𝑡1 = 𝑥1; 𝑀{𝑡 ↦→ inl 𝑡1}}
⦶ do {let inr 𝑥2 = 𝑣0; ℎ′; let 𝑡2 = 𝑥2; 𝑀{𝑡 ↦→ inr 𝑡2}}

)
ℎ

⊒ {induction hypotheses}

▷ 𝑒
(
𝜆𝑣0ℎ

′. do {let inl 𝑥1 = 𝑣0; 𝑡1 ¢ 𝑏1; ◁ 𝑥1 𝑏1 𝑡1 𝑀{𝑡 ↦→ inl 𝑡1} ℎ′}
⦶ do {let inr 𝑥2 = 𝑣0; 𝑡2 ¢ 𝑏2; ◁ 𝑥2 𝑏2 𝑡2 𝑀{𝑡 ↦→ inr 𝑡2} ℎ′}

)
ℎ

= {semantics of ⊕, let inl, and let inr}

▷ 𝑒
(
𝜆𝑣0ℎ

′. do {let inl 𝑥1 = 𝑣0; 𝑡 ¢ 𝑏1 ⊕ 𝑏2; let inl 𝑡1 = 𝑡 ; ◁ 𝑥1 𝑏1 𝑡1 𝑀 ℎ′}
⦶ do {let inr 𝑥2 = 𝑣0; 𝑡 ¢ 𝑏1 ⊕ 𝑏2; let inr 𝑡2 = 𝑡 ; ◁ 𝑥2 𝑏2 𝑡2 𝑀 ℎ′}) ℎ

= {commutativity of ▷ (Figure 21) and ⦶ distributivity (17)}

do
{
𝑡 ¢ 𝑏1 ⊕ 𝑏2; ▷ 𝑒

(
𝜆𝑣0ℎ

′. do {let inl 𝑥1 = 𝑣0; let inl 𝑡1 = 𝑡 ; ◁ 𝑥1 𝑏1 𝑡1 𝑀 ℎ′}
⦶ do {let inr 𝑥2 = 𝑣0; let inr 𝑡2 = 𝑡 ; ◁ 𝑥2 𝑏2 𝑡2 𝑀 ℎ′}) ℎ}

= {specification of outl and outr (Figure 19)}

do
{
𝑡 ¢ 𝑏1 ⊕ 𝑏2; ▷ 𝑒

(
𝜆𝑣0ℎ

′. outl 𝑣0 (𝜆𝑒1ℎ
′′. do {let inl 𝑡1 = 𝑡 ; ◁ 𝑒1 𝑏1 𝑡1 𝑀 ℎ′′}) ℎ′

⦶ outr 𝑣0 (𝜆𝑒2ℎ
′′. do {let inr 𝑡2 = 𝑡 ; ◁ 𝑒2 𝑏2 𝑡2 𝑀 ℎ′′}) ℎ′) ℎ}

= {definition of ◁ (Figure 14)}

do {𝑡 ¢ 𝑏1 ⊕ 𝑏2; ◁ 𝑒 (𝑏1 ⊕ 𝑏2) 𝑡 𝑀 ℎ}. (51)

The fact that the new base-measure argument 𝑏 : B𝛼 is only inspected by ◁, and only if 𝛼 is not R,
helps us handle unknown base measures over R in Section 6.

Second, we introduce the function ⋖ (“constrain op”) to encapsulate a repeated pattern in how
invertible operations are handled. Figure 17 defines invertibles, a simple data type used by the
disintegrator internally to represent possibly partial functions from R to R that are invertible and
differentiable. The functions ∈dom and @ define the meaning of each invertible: its domain, and its
value at each point in the domain. For example, the invertible sqrt+ means to take the square root
of a non-negative number, because Figure 17 defines 𝑒 ∈dom sqrt+ = 0 ≤ 𝑒 and sqrt+ @ 𝑒 = sqrt 𝑒 .
The other functions in Figure 17 are semantically specified and equationally derived as usual.

When ◁ in Figure 14 encounters an operation that is invertible, it hands it to ⋖; for example, the
case ◁ (sqrt 𝑒) is derived as follows:

do {ℎ; let 𝑡 = sqrt 𝑒; 𝑀}
= {assuming that the value of 𝑒 is in the domain ofsqrt}

do {ℎ; observe (0 ≤ 𝑒); let 𝑡 = sqrt 𝑒; 𝑀}
= {definitions of ∈dom and @ (Figure 17)}

do {ℎ; observe (𝑒 ∈dom 𝑓 ); let 𝑡 = 𝑓 @ 𝑒; 𝑀}
⊒ {specification of ⋖ (Figure 14)}

do {𝑡 ¢ 𝑏; ⋖ sqrt+ 𝑒 𝑏 𝑡 𝑀 ℎ}
= {definition of ◁ (Figure 14)}

do {𝑡 ¢ 𝑏; ◁ (sqrt 𝑒) 𝑏 𝑡 𝑀 ℎ}. (52)

And when ◁ in Figure 14 encounters an operation that is piecewise-invertible, it hands each
invertible piece to ⋖; for example, the case ◁ 𝑒2 decomposes 𝑒2 into two invertible pieces, namely
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Invertibles 𝑓 ::= mul 𝑣
�� div 𝑣

�� sqr+
�� sqr−

�� sqrt+
�� sqrt−

Domain Apply invertible Invert (inv 𝑓 @) = (𝑓 @)−1

(∈dom) : ⌈R⌉→ invertible→⌈bool ⌉ (@) : invertible→⌈R⌉→ ⌈R⌉ inv : invertible→ invertible

𝑒 ∈dom (mul 𝑣) = true mul 𝑣 @ 𝑒 = 𝑣 � 𝑒 inv (mul 𝑣) = div 𝑣

𝑒 ∈dom (div 𝑣) = true div 𝑣 @ 𝑒 = 𝑣−1 � 𝑒 inv (div 𝑣) = mul 𝑣
𝑒 ∈dom sqr+ = 0 ≤ 𝑒 sqr+ @ 𝑒 = 𝑒2 inv sqr+ = sqrt+

𝑒 ∈dom sqr− = 𝑒 < 0 sqr− @ 𝑒 = 𝑒2 inv sqr− = sqrt−

𝑒 ∈dom sqrt+ = 0 ≤ 𝑒 sqrt+ @ 𝑒 = sqrt 𝑒 inv sqrt+ = sqr+

𝑒 ∈dom sqrt− = 0 < 𝑒 sqrt− @ 𝑒 = −sqrt 𝑒 inv sqrt− = sqr−

Range Apply derivative
(∈rng) : ⌈R⌉→ invertible→⌈bool ⌉ diff : invertible→⌊R⌋→ ⌊R⌋ diff 𝑓 𝑣 =

𝑑 (𝑓 @ 𝑥)
𝑑𝑥

����
𝑥=𝑣

𝑒 ∈rng 𝑓 = 𝑒 ∈dom (inv 𝑓 ) diff (mul 𝑣) _ = 𝑣

diff (div 𝑣) _ = 𝑣−1

diff sqr+ 𝑣 = 2 � 𝑣 diff sqrt+ 𝑣 = (2 � sqrt 𝑣)−1
diff sqr− 𝑣 = 2 � 𝑣 diff sqrt− 𝑣 = (−2 � sqrt 𝑣)−1

Fig. 17. Invertible functions and operations on them

squaring a non-negative number and squaring a negative number:

do {ℎ; let 𝑡 = 𝑒2; 𝑀}
= {⦶ distributivity (17) and (18); exactly one of 0 ≤ 𝑒 and 𝑒 < 0 is true}

do {ℎ; observe (0 ≤ 𝑒); let 𝑡 = 𝑒2; 𝑀} ⦶ do {ℎ; observe (𝑒 < 0); let 𝑡 = 𝑒2; 𝑀}
⊒ {definitions of ∈dom and @ (Figure 17) and specification of ⋖ (Figure 14)}

do {𝑡 ¢ 𝑏; ⋖ sqr+ 𝑒 𝑏 𝑡 𝑀 ℎ} ⦶ do {𝑡 ¢ 𝑏; ⋖ sqr− 𝑒 𝑏 𝑡 𝑀 ℎ}
= {⦶ distributivity (17)}

do {𝑡 ¢ 𝑏; ⋖ sqr+ 𝑒 𝑏 𝑡 𝑀 ℎ ⦶ ⋖ sqr− 𝑒 𝑏 𝑡 𝑀 ℎ}
= {definition of ◁ (Figure 14)}

do {𝑡 ¢ 𝑏; ◁ 𝑒2 𝑏 𝑡 𝑀 ℎ}. (53)

Third, even though the Lebesgue measure is the only base measure over R handled so far, we
localize our reasoning about it to three new auxiliary functions, to help us add more base measures
over R in Section 5. The functions jacobian and reparam reparametrize a base measure over R by
an invertible and produce a Jacobian factor and a new base measure; these functions are used by ⋖.
The function ÷ (“divide”) finds a density of one base measure over R with respect to another; it is
used by <◁. We now turn to these three functions. Figure 18 shows their informal types, semantic
specifications (boxed), and implementations.

4.2.1 Reparametrizing base measures. Many realistic models invoke deterministic mathematical
operations over R, such as curving a random student grade by taking its square root, combining
random particle momenta by summing them [Afshar et al. 2016], or just converting a random
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Reparametrize a base measure with a Jacobian
jacobian : invertible→ BR→ ⌊R⌋ → ⌊R⌋
reparam : invertible→ BR→ BR
jacobian 𝑓 lebesgue = 𝜆𝑣 . |diff (inv 𝑓 ) 𝑣 |
reparam 𝑓 lebesgue = lebesgue

do {𝑥 ¢ reparam 𝑓 𝑏; observe (𝑥 ∈dom 𝑓 );
return 𝑥}

= do {𝑦 ¢ 𝑏; observe (𝑦 ∈rng 𝑓 );
factor (jacobian 𝑓 𝑏 𝑦);
return (inv 𝑓 @ 𝑦)}

Divide base measures
(÷) : BR→ BR→ {⌊R⌋ →M1}
lebesgue ÷ lebesgue = 𝜆𝑣 . return ()

𝑏1 ⊒ do {𝑡 ¢ 𝑏2; () ¢ (𝑏1 ÷ 𝑏2) 𝑡 ; return 𝑡}

Fig. 18. Operations on the Lebesgue base measure

measurement from Celsius to Fahrenheit. To constrain an expression that invokes such operations,
◁ calls ⋖, which in turn calls jacobian and reparam, defined in Figure 18.

To see how handling deterministic mathematical operations amounts to reparametrizing a base
measure and changing an integration variable, suppose we want the density of the distribution
that is like normal 0 1 but with its outcome multiplied by 3. According to equation (9), we seek
𝜅 : R→ R+ such that

(normal 0 1) (𝜆𝑥. 𝑓 (3 · 𝑥)) = lebesgue(𝜆𝑦. 𝜅 (𝑦) · 𝑓 (𝑦)) (54)
for all 𝑓 : R→ R+. In other words, we solve for 𝜅 in∫

R (dnorm 0 1) (𝑥) · 𝑓 (3 · 𝑥) 𝑑𝑥 =
∫
R 𝜅 (𝑦) · 𝑓 (𝑦) 𝑑𝑦. (55)

To match the two sides, we need to change the integration variable from 𝑥 to 𝑦 = 3 · 𝑥 . Equivalently,
we need to express—or reparametrize—the Lebesgue measure over 𝑦 in terms of 𝑥 = 𝑦/3. Using
integral calculus, we calculate∫

R (dnorm 0 1) (𝑥) · 𝑓 (3 · 𝑥) 𝑑𝑥 =
∫
R (dnorm 0 1) (𝑦/3) · 𝑓 (𝑦) · (𝑑𝑥/𝑑𝑦) 𝑑𝑦, (56)

in which 𝑑𝑥/𝑑𝑦 = 1/3. Hence, we find the density 𝜅 = 𝜆𝑦. (dnorm 0 1) (𝑦/3) · (1/3).
We can use the disintegrator to find the same density, starting with a top-level call to check:

check (do {𝑥 ¢ normal 0 1; return (3 � 𝑥, ())}) lebesgue 𝑦
= {definitions of check (Figure 14) and ▷> and ▷ (Figure 19)}

◁ (3 � 𝑥) lebesgue 𝑦 (return ()) [𝑥 ¢ normal 0 1]
= {definitions of ◁ (Figure 14) and ▷ (Figure 19)}

⋖ (mul 3) 𝑥 lebesgue 𝑦 (return ()) [𝑥 ¢ normal 0 1]. (57)
Following the specifications of check, ◁, and ⋖ in Figure 14, all three terms in (57) seek to rewrite
the heap [𝑥 ¢ normal 0 1; let 𝑦 = 3 � 𝑥] to an equivalent heap of the form [𝑦 ¢ lebesgue; . . . ].
To invert 𝑦 = 3 � 𝑥 is to let 𝑥 = 𝑦/3. However, to preserve semantics, the result cannot just be
[𝑦 ¢ lebesgue; let 𝑥 = 𝑦/3], because the distribution over 𝑥 would not be normal 0 1. Instead,
a correct result is

[𝑦 ¢ lebesgue; factor 1/3; let 𝑥 = 𝑦/3; factor (dnorm 0 1) (𝑥)]. (58)
To this end, ⋖ calls jacobian (mul 3). The jacobian function differentiates inv (mul 3) = div 3 and
returns 𝜆𝑦. 1/3, hence computing the Jacobian factor necessary to change the integration variable.
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This factor 1/3 is emitted by ⋖ before constraining the value of 𝑥 to be 𝑦/3:

⋖ (mul 3) 𝑥 lebesgue 𝑦 (return ()) [𝑥 ¢ normal 0 1]
= {definition of ⋖ (Figure 14)}

do {factor 1/3; ◁ 𝑥 lebesgue (𝑦/3) (return ()) [𝑥 ¢ normal 0 1]}. (59)

More generally, the implementation of ⋖ in Figure 14 is derived from the specifications of ⋖ and
jacobian and reparam:

do {ℎ; observe (𝑒 ∈dom 𝑓 ); let 𝑡 = 𝑓 @ 𝑒; 𝑀}
= {monad left-identity law}

do {ℎ; let 𝑥 = 𝑒; observe (𝑥 ∈dom 𝑓 ); let 𝑡 = 𝑓 @ 𝑥 ; 𝑀}
⊒ {specification of ◁ (Figure 14)}

do {𝑥 ¢ reparam 𝑓 𝑏; ◁ 𝑒 (reparam 𝑓 𝑏) 𝑥 (do {observe (𝑥 ∈dom 𝑓 ); let 𝑡 = 𝑓 @ 𝑥 ; 𝑀}) ℎ}
= {commutativity of ◁ (Figure 21)}

do {𝑥 ¢ reparam 𝑓 𝑏; observe (𝑥 ∈dom 𝑓 ); let 𝑡 = 𝑓 @ 𝑥 ; ◁ 𝑒 (reparam 𝑓 𝑏) 𝑥 𝑀 ℎ}
= {specification of jacobian and reparam (Figure 18); monad laws}

do {𝑥 ¢ do {𝑡 ¢ 𝑏; observe (𝑡 ∈rng 𝑓 ); factor (jacobian 𝑓 𝑏 𝑡); return (inv 𝑓 @ 𝑡)};
let 𝑡 = 𝑓 @ 𝑥 ; ◁ 𝑒 (reparam 𝑓 𝑏) 𝑥 𝑀 ℎ}

= {𝑓 @ (inv 𝑓 @ 𝑡) = 𝑡 because 𝑡 ∈rng 𝑓 ; monad laws}

do {𝑡 ¢ 𝑏; observe (𝑡 ∈rng 𝑓 ); factor (jacobian 𝑓 𝑏 𝑡); ◁ 𝑒 (reparam 𝑓 𝑏) (inv 𝑓 @ 𝑡) 𝑀 ℎ}
= {definition of ⋖ (Figure 14)}

do {𝑡 ¢ 𝑏; ⋖ 𝑓 𝑒 𝑏 𝑡 𝑀 ℎ}. (60)

Because ⋖ 𝑓 emits a jacobian factor outside the scope of the heap, the invertible 𝑓 must not use
any variable bound in the heap. The grammar of invertibles in Figure 17 enforces this requirement,
because the 𝑣 in mul 𝑣 and div 𝑣 must be a head normal form of type R, and an easy induction on
the grammar of head normal forms (Figure 15) shows that no head normal form of type R uses any
variable bound in the heap. This requirement is established by partial evaluation (Section 4.3).

4.2.2 Dividing base measures. Although the input to the disintegrator is a distribution over 𝛼 × 𝛽 ,
buried inside that input is a distribution over just 𝛼 . That is the distribution of fst 𝑣 in check in
Figure 14, akin to a marginal distribution. The disintegrator succeeds if it can find a density for this
distribution. The disintegrator gradually reduces its problem to that of finding a density of a given
primitive measure 𝜉 with respect to a given base measure 𝜈 . This reduction takes place in Figure 14,
as check uses ◁, and ◁ in turn uses <◁:
• In Figure 14, the case <◁ lebesgue 𝑏 faces the problem of finding a density of lebesgue with

respect to 𝑏.
• In the simplified transcript in Figure 16, the call to <◁ (normal 0 1) lebesgue on line 9 faces

the problem of finding a density of normal 0 1 with respect to lebesgue.
The density of a primitive measure with respect to a given base is found by the call <◁ 𝜉 𝜈 using

Proposition 2.10(1). In our core language, the only primitive measure is lebesgue, but a larger
language might feature primitive measures such as uniform, normal, Beta, or Gamma distributions.
For each primitive measure 𝜉 , the <◁ function should choose an intermediate measure 𝜇 that is
represented in the base-measure language, and emit a density of 𝜉 with respect to 𝜇 (unless 𝜉 = 𝜇,
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as in the case <◁ lebesgue). It then remains to find a density of the base measure 𝜇 with respect to
the base measure 𝜈 , and that is the job of the auxiliary function ÷, defined in Figure 18. Although
the job of ÷ is to find a density, its return type is not R+ but the isomorphic type M1.

Because the only base measure over R so far is lebesgue, the implementation of ÷ so far is
extremely simple. The constant-1 function is a density of lebesgue with respect to lebesgue;
accordingly, ÷ returns return () : M1, which is isomorphic to 1 : R+.

The case <◁ lebesgue 𝑏 in Figure 14 is derived from the specification of ÷ in Figure 18:

do {ℎ; 𝑡 ¢ lebesgue; 𝑀}
= {commutativity (40)}

do {𝑡 ¢ lebesgue; ℎ; 𝑀}
⊒ {specification of ÷ (Figure 18); monad laws}

do {𝑡 ¢ 𝑏; () ¢ (lebesgue ÷ 𝑏) 𝑡 ; ℎ; 𝑀}
= {definition of <◁ (Figure 14)}

do {𝑡 ¢ 𝑏; <◁ lebesgue 𝑏 𝑡 𝑀 ℎ}. (61)

Unlike the implementation of ÷, the implementation of <◁ does not inspect the base measure 𝑏 or
assume that it is lebesgue. This indifference helps us add more base measures over R in Section 5.

4.3 Partial evaluation
The functions ▷ (“evaluate”) and ▷> (“perform”), used in Figure 14, perform lazy partial evaluation
[Jørgensen 1992; Fischer et al. 2008]. Figure 19 shows their informal types, semantic specifications
(boxed), and implementations. These functions are standard and unchanged from Shan and Ram-
sey’s disintegrator—they do not even take a new base-measure argument. We describe them first
intuitively then technically.

Intuitively, the job of partial evaluation [Jones et al. 1993] is to run a program symbolically and
represent its result as a head normal form, without taking any concrete inputs or making any
random choices. Because running a program is part of the job, the partial evaluator is much like a
definitional interpreter [Reynolds 1972]. Concretely, to understand Figure 19, one can start with an
interpreter that evaluates arithmetic expressions, shown in Figure 20(a). The following steps turn
Figure 20(a) into Figure 19:

(1) Handle random choices in the input term by making random choices. Because random
choices are expressed monadically, this step is to add an interpreter that performs monadic
expressions, shown in Figure 20(b).

(2) Handle bound variables in the input term lazily, by maintaining a heap that binds them to
monadic expressions. For example, perform (do {𝑥¢normal 0 1; 𝑀}) does not pick a random
number 𝑥 right away. Instead, it adds the binding 𝑥 ¢ normal 0 1 to the heap, then proceeds
to perform𝑀 . Performing 𝑀 may evaluate the variable 𝑥—for example, if 𝑀 = return 𝑥2 (but
not if 𝑀 = return (fst (0, 𝑥))). Then and only then, the partial evaluator picks a random
number and replaces the heap binding 𝑥 ¢ normal 0 1 by let 𝑥 = the number picked.

(3) Handle unbound variables in the input term by producing symbolic results. For example,
if the variable 𝑧 is not bound, then evaluate 𝑧 and evaluate (sqrt𝑧) just return the terms 𝑧 and
sqrt 𝑧 as results. To this end, overload the sqrt function called in Figure 20(a), to construct a
term as a last resort. This overloading turns sqrt into a smart constructor.

(4) Turn the functions evaluate and perform into continuation-passing style, so as to generate code
without making random choices. In particular, the standard call-by-value continuation-passing-
style transformation [Plotkin 1975] turns Figure 20(a) into Figure 20(c), which is equivalent
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Evaluate do {ℎ; let 𝑥 = 𝑒; 𝑀} = ▷ 𝑒 (𝜆𝑣 . 𝑀{𝑥 ↦→ 𝑣}) ℎ
▷ : ⌈𝛼⌉ → (⌊𝛼⌋ → heap→ {⌊M𝛾⌋}) → heap→ {⌊M𝛾⌋}
▷ 𝑣 𝑘 ℎ = 𝑘 𝑣 ℎ where 𝑣 is in head normal form
▷ (sqrt 𝑒) 𝑘 ℎ = ▷ 𝑒

(
𝜆𝑣0 . 𝑘 (sqrt 𝑣0)

)
ℎ

▷ 𝑒2 𝑘 ℎ = ▷ 𝑒
(
𝜆𝑣0 . 𝑘 𝑣2

0
)
ℎ

▷ (𝑒1 � 𝑒2) 𝑘 ℎ = ▷ 𝑒1
(
𝜆𝑣1.▷ 𝑒2

(
𝜆𝑣2. 𝑘 (𝑣1 · 𝑣2)

) )
ℎ

▷ (𝑒1 < 𝑒2) 𝑘 ℎ = ▷ 𝑒1
(
𝜆𝑣1 .▷ 𝑒2

(
𝜆𝑣2. 𝑘 (𝑣1 < 𝑣2)

) )
ℎ

▷ (fst 𝑒) 𝑘 ℎ = ▷ 𝑒
(
𝜆𝑣0 .▷ (fst 𝑣0) 𝑘

)
ℎ unless 𝑒 is atomic

▷ (snd 𝑒) 𝑘 ℎ = ▷ 𝑒
(
𝜆𝑣0 .▷ (snd 𝑣0) 𝑘

)
ℎ unless 𝑒 is atomic

▷ 𝑥 𝑘 [ℎ1; 𝑥 ¢𝑚; ℎ2] = ▷>𝑚 (𝜆𝑣. [let 𝑥 = 𝑣 ; ℎ2] # 𝑘 𝑣) ℎ1

▷ 𝑥 𝑘 [ℎ1; let inl 𝑥 = 𝑒; ℎ2] = ▷ 𝑒
(
𝜆𝑣0 . outl 𝑣0 (𝜆𝑒0.▷ 𝑒0 (𝜆𝑣. [let 𝑥 = 𝑣 ; ℎ2] # 𝑘 𝑣))) ℎ1

▷ 𝑥 𝑘 [ℎ1; let inr 𝑥 = 𝑒; ℎ2] = ▷ 𝑒
(
𝜆𝑣0 . outr 𝑣0 (𝜆𝑒0 .▷ 𝑒0 (𝜆𝑣. [let 𝑥 = 𝑣 ; ℎ2] # 𝑘 𝑣))) ℎ1

Perform do {ℎ; 𝑥 ¢𝑚; 𝑀} = ▷>𝑚 (𝜆𝑣 . 𝑀{𝑥 ↦→ 𝑣}) ℎ
▷> : ⌈M𝛼⌉ → (⌊𝛼⌋ → heap→ {⌊M𝛾⌋}) → heap→ {⌊M𝛾⌋}
▷> 𝑢 𝑘 ℎ = do {𝑧 ¢ 𝑢; 𝑘 𝑧 ℎ} where 𝑢 is atomic, 𝑧 is fresh
▷> lebesgue 𝑘 ℎ = do {𝑧 ¢ lebesgue; 𝑘 𝑧 ℎ} where 𝑧 is fresh
▷> (return 𝑒) 𝑘 ℎ = ▷ 𝑒 𝑘 ℎ

▷> fail 𝑘 ℎ = fail
▷> (𝑚1 ⦶𝑚2) 𝑘 ℎ = ▷>𝑚1 𝑘 ℎ ⦶ ▷>𝑚2 𝑘 ℎ

▷> (do {𝑔; 𝑚}) 𝑘 ℎ = ▷>𝑚 𝑘 [ℎ; 𝑔]
▷> 𝑒 𝑘 ℎ = ▷ 𝑒 (𝜆𝑚.▷>𝑚 𝑘) ℎ where 𝑒 is not in head normal form

Smart constructors . . . fst 𝑒 = fst 𝑒 . . . outr 𝑣 𝑘 ℎ = do {let inr 𝑥 = 𝑣 ; 𝑘 𝑥 ℎ}
fst : ⌈𝛼 × 𝛽⌉ → ⌈𝛼⌉ . . . outr : ⌊𝛼 + 𝛽⌋ → (⌈𝛽⌉ → heap→ {⌊M𝛾⌋}) → heap→ {⌊M𝛾⌋}
fst (𝑒1, 𝑒2) = 𝑒1 outr (inl 𝑒) 𝑘 ℎ = fail
fst 𝑒 = fst 𝑒 outr (inr 𝑒) 𝑘 ℎ = 𝑘 𝑒 ℎ

outr 𝑢 𝑘 ℎ = do {let inr 𝑥 = 𝑢; 𝑘 𝑥 ℎ}

Fig. 19. Shan and Ramsey’s operations for partial evaluation

to the corresponding cases of ▷ in Figure 19. Continuation passing is necessary because,
despite steps 1 and 2 above, the partial evaluator should not actually make random choices.
Rather, the partial evaluator should emit code that makes random choices. For example, in the
case ▷> lebesgue in Figure 19, the right-hand side does not draw any actual number 𝑧 from
lebesgue. Rather, it generates a fresh variable 𝑧 and feeds it to the continuation 𝑘 under the
scope of an emitted binding 𝑧 ¢ lebesgue [Bondorf 1992; Lawall and Danvy 1994].

Technically, the job of partial evaluation is to bring a given term into head normal form (indicated
by the meta-type ⌊𝛼⌋ and the metavariable 𝑣) while preserving its meaning. This job serves two
purposes in automatic disintegration, each illustrated in the sample run in Figure 16.
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evaluate 𝑟 = 𝑟

evaluate (sqrt 𝑒) = sqrt (evaluate 𝑒)
evaluate 𝑒2 = (evaluate 𝑒)2
evaluate (𝑒1 � 𝑒2) = evaluate 𝑒1 · evaluate 𝑒2

(a) A metacircular interpreter that evaluates
arithmetic expressions

perform lebesgue = lebesgue
perform (return 𝑒) = return (evaluate 𝑒)
perform fail = fail
perform (𝑚1 ⦶𝑚2) = perform𝑚1 ⦶ perform𝑚2

(b) A metacircular interpreter that performs
monadic expressions

evaluate 𝑟 𝑘 = 𝑘 𝑟

evaluate (sqrt 𝑒) 𝑘 = evaluate 𝑒
(
𝜆𝑣0 . 𝑘 (sqrt 𝑣0)

)
evaluate 𝑒2 𝑘 = evaluate 𝑒

(
𝜆𝑣0 . 𝑘 𝑣2

0
)

evaluate (𝑒1 � 𝑒2) 𝑘 = evaluate 𝑒1
(
𝜆𝑣1. evaluate 𝑒2

(
𝜆𝑣2. 𝑘 (𝑣1 · 𝑣2)

) )
(c) A metacircular interpreter that evaluates arithmetic expressions in continuation-passing style

Fig. 20. Evaluating arithmetic expressions and performing random choices

First, given a measure over a product space 𝛼 × 𝛽 , disintegration needs to decompose the pair
into an 𝛼 to be constrained and a 𝛽 to be inferred, but the pair expression may be buried deep
inside the input program and even occur on multiple control paths. Partial evaluation digs out
this pair expression; hence check calls ▷> in Figure 14. For example, on lines 2 and 3 of Figure 16,
partial evaluation digs out the pair expression (3 + 2 · 𝑥 + 𝑦, 3 + 2 · 𝑥), so that the first component
3 + 2 · 𝑥 + 𝑦 can be constrained by ◁ and the second component 3 + 2 · 𝑥 can be inferred by return.
This use of partial evaluation is justified by the last step in the proof of Theorem 4.2, which invokes
the specification of ▷> in Figure 19.

Second, given a binary operation such as 𝑒1 � 𝑒2 to constrain, ◁ needs to build an invertible
operation like mul 𝑒1 or mul 𝑒2, but to support reparametrization, a term used to build an invertible
must be a head normal form (Section 4.2.1). Partial evaluation establishes this requirement; for
example, on lines 5 and 6 of Figure 16, partial evaluation turns the heap-bound variable 𝑦 into the
non-heap-bound variable 𝑧, so that an invertible can be built using the head normal form 𝑧 and
passed to ⋖. In Figure 14, to satisfy this requirement, the case ◁ (𝑒1 � 𝑒2) does not build an invertible
by mul 𝑒1 or mul 𝑒2. Rather, it calls ▷ 𝑒1; this case is derived as follows.

do {ℎ; let 𝑡 = 𝑒1 � 𝑒2; 𝑀}
= {monad left-identity law; observe true does nothing}

do {ℎ; let 𝑥 = 𝑒1; observe true; let 𝑡 = 𝑥 � 𝑒2; 𝑀}
= {specification of ▷ (Figure 19)}
▷ 𝑒1 (𝜆𝑣1ℎ

′. do {ℎ′; observe true; let 𝑡 = 𝑣1 � 𝑒2; 𝑀}) ℎ
⊒ {definitions of ∈dom and @ (Figure 17) and specification of ⋖ (Figure 14)}

▷ 𝑒1 (𝜆𝑣1ℎ
′. do {𝑡 ¢ 𝑏; ⋖ (mul 𝑣1) 𝑒2 𝑏 𝑡 𝑀 ℎ′}) ℎ

= {commutativity of ▷ (Figure 21)}

do {𝑡 ¢ 𝑏; ▷ 𝑒1 (𝜆𝑣1 .⋖ (mul 𝑣1) 𝑒2 𝑏 𝑡 𝑀) ℎ}
= {definition of ◁ (Figure 14)}

do {𝑡 ¢ 𝑏; ◁ (𝑒1 � 𝑒2) 𝑏 𝑡 𝑀 ℎ}. (62)
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(The other nondeterministic choice, calling ▷ 𝑒2, is derived similarly.)
To preserve semantics, partial evaluation may emit bindings into the output as well as accumulate

bindings onto the heap. Both possibilities are illustrated in the sample run in Figure 16. Between
lines 6 and 7 of Figure 16, the binding 𝑧 ¢ normal 0 1 is emitted into the output; this emission is
the work of the case ▷> lebesgue in Figure 19, derived as follows.

do {ℎ; 𝑥 ¢ lebesgue; 𝑀}
= {commutativity (40) and variable renaming}

do {𝑧 ¢ lebesgue; ℎ; 𝑀{𝑥 ↦→ 𝑧}}
= {definition of ▷> (Figure 19)}

▷> lebesgue (𝜆𝑣 . 𝑀{𝑥 ↦→ 𝑣}) ℎ. (63)

Between lines 2 and 3, the bindings 𝑦¢ normal 0 1; 𝑥 ¢ normal 0 1 are accumulated onto the heap;
this accumulation is the work of the case ▷> (do {𝑔; 𝑚}) in Figure 19, derived as follows.

do {ℎ; 𝑥 ¢ do {𝑔; 𝑚}; 𝑀}
= {monad associativity law}

do {ℎ; 𝑔; 𝑥 ¢𝑚; 𝑀}
= {induction hypothesis}

▷>𝑚 (𝜆𝑣 . 𝑀{𝑥 ↦→ 𝑣}) [ℎ; 𝑔]
= {definition of ▷> (Figure 19)}

▷> (do {𝑔; 𝑚}) (𝜆𝑣. 𝑀{𝑥 ↦→ 𝑣}) ℎ. (64)

(The case <◁ (do {𝑔; 𝑚}) in Figure 14 is derived similarly.) Accumulated heap bindings are used
lazily to evaluate variables in the three cases ▷ 𝑥 in Figure 19; the first case is derived as follows.

do {ℎ1; 𝑥 ¢𝑚; ℎ2; let 𝑦 = 𝑥 ; 𝑀}
= {specification of ▷> (Figure 19)}

▷>𝑚 (𝜆𝑣. (do {ℎ2; let 𝑦 = 𝑥 ; 𝑀}){𝑥 ↦→ 𝑣}) ℎ1

= {semantics of let and substitution}

▷>𝑚 (𝜆𝑣. do {let 𝑥 = 𝑣 ; ℎ2; 𝑀{𝑦 ↦→ 𝑣}}) ℎ1

= {definition of ▷ (Figure 19)}

▷ 𝑥 (𝜆𝑣 . 𝑀{𝑦 ↦→ 𝑣}) [ℎ1; 𝑥 ¢𝑚; ℎ2]. (65)

(The two other cases of ▷ 𝑥 , and the three cases ◁ 𝑥 in Figure 14, are derived similarly.)
Partial evaluation is assisted by smart constructors such as sqrt, 2, ·, <, fst, and outr . As the boxed

specifications near the bottom of Figure 19 show, these meta-functions are semantically equivalent
to sqrt, 2, �, <, fst, and let inr in core Hakaru syntax. The soundness of the disintegrator depends
on this equivalence; for example, the derivation (51) for disjoint sums relies on the specification
of outl and outr . However, unlike ordinary core Hakaru syntax, smart constructors reduce away
constructor applications if possible. For example, sqrt9 = 3, fst (𝑒1, 𝑒2) = 𝑒1, and outr (inr𝑒)𝑘ℎ = 𝑘𝑒ℎ.
In case of pattern mismatch, the call outr (inl 𝑒) 𝑘 ℎ is smart to return the zero measure fail without
invoking 𝑘 at all; because invoking 𝑘 might produce ∅, this smart helps the disintegrator succeed
more often.
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Commutativity do {𝑔; ◁ 𝑒 𝑏 𝑣 𝑐 ℎ} = ◁ 𝑒 𝑏 𝑣 (𝜆ℎ′. do {𝑔; 𝑐 ℎ′}) ℎ
do {𝑔; <◁𝑚 𝑏 𝑣 𝑐 ℎ} = <◁𝑚 𝑏 𝑣 (𝜆ℎ′. do {𝑔; 𝑐 ℎ′}) ℎ
do {𝑔; ▷ 𝑒 𝑘 ℎ} = ▷ 𝑒 (𝜆𝑣ℎ′. do {𝑔; 𝑘 𝑣 ℎ′}) ℎ
do {𝑔; ▷>𝑚 𝑘 ℎ} = ▷>𝑚 (𝜆𝑣ℎ′. do {𝑔; 𝑘 𝑣 ℎ′}) ℎ

Associativity do {𝑝 ¢ ◁ 𝑒 𝑏 𝑣 𝑐 ℎ; 𝑀} = ◁ 𝑒 𝑏 𝑣 (𝜆ℎ′. do {𝑝 ¢ 𝑐 ℎ′; 𝑀}) ℎ
do {𝑝 ¢ <◁𝑚 𝑏 𝑣 𝑐 ℎ; 𝑀} = <◁𝑚 𝑏 𝑣 (𝜆ℎ′. do {𝑝 ¢ 𝑐 ℎ′; 𝑀}) ℎ
do {𝑝 ¢ ▷ 𝑒 𝑘 ℎ; 𝑀} = ▷ 𝑒 (𝜆𝑣ℎ′. do {𝑝 ¢ 𝑘 𝑣 ℎ′; 𝑀}) ℎ
do {𝑝 ¢ ▷>𝑚 𝑘 ℎ; 𝑀} = ▷>𝑚 (𝜆𝑣ℎ′. do {𝑝 ¢ 𝑘 𝑣 ℎ′; 𝑀}) ℎ

Parametricity (◁ 𝑒 𝑏 𝑣 𝑀 ℎ){𝑠 ↦→ 𝑒 ′} = ◁ 𝑒 𝑏 (𝑣{𝑠 ↦→ 𝑒 ′}) 𝑀{𝑠 ↦→ 𝑒 ′} ℎ
(<◁𝑚 𝑏 𝑣 𝑀 ℎ){𝑠 ↦→ 𝑒 ′} = <◁𝑚 𝑏 (𝑣{𝑠 ↦→ 𝑒 ′}) 𝑀{𝑠 ↦→ 𝑒 ′} ℎ

provided 𝑠 is not free in𝑚, 𝑒, 𝑏, ℎ, and provided no free variable of 𝑒 ′ is bound in ℎ

Fig. 21. Inductively proven properties of the four workhorse functions ◁, <◁,▷,▷>

4.4 Proof technicalities
The semantic specifications (boxed) above, including Theorem 4.2 (the soundness of the external
interface check), follow from three inductively proven properties of the four workhorse functions
◁, <◁,▷,▷>. These properties are specified in Figure 21.

(1) Commutativity says that emitting a binding 𝑔 and then constraining or evaluating an expres-
sion 𝑒 or 𝑚 is the same as constraining or evaluating 𝑒 or 𝑚 and then emitting 𝑔. In other
words, we can commute 𝑔 with whatever a workhorse functions emits.

(2) Associativity says that it does not matter which way we disambiguate the following phrase
using square brackets: [[constraining or evaluating 𝑒 or 𝑚 with the continuation 𝑐 or 𝑘]
followed by the final action 𝑀] is the same as [constraining or evaluating 𝑒 or 𝑚 with the
continuation [𝑐 or 𝑘 followed by the final action 𝑀]]. This property is reminiscent of what
Thielecke [2003] calls naturality and Ahmed and Blume [2011] call continuation shuffling.

(3) Parametricity says that the constraining functions ◁ and <◁ treat their arguments 𝑣 and 𝑐

parametrically. That is, these functions never inspect those arguments, so they commute
with substitution on those arguments.

The definition of the four workhorse functions ◁, <◁,▷,▷> uses recursion and nondeterminism,
so assembling all the equational derivations into an overall soundness proof is not entirely trivial.
Technically, Figures 14 and 19 define a function 𝐹 from 4-tuples of functions (◁𝑛, <◁𝑛,▷𝑛,▷>𝑛) to
4-tuples of functions (◁𝑛+1, <◁𝑛+1,▷𝑛+1,▷>𝑛+1), but the step-indexing subscripts 𝑛 in the right-hand
sides and 𝑛 + 1 in the left-hand sides are elided. Moreover, as the types show, each of these step-
indexed functions returns a set of terms and takes a continuation that also returns a set of terms.
These sets of terms are partially ordered by the subset relation, and these functions (including
continuations) returning a set of terms are then partially ordered pointwise.

To kick off the recursion, we set ◁0, <◁0,▷0,▷>0 to constant functions returning the empty
set. An easy induction on 𝑛 then shows that each function ◁𝑛, <◁𝑛,▷𝑛,▷>𝑛 is monotonic in its
continuation argument. Restricted to such monotonic functions, 𝐹 is itself monotonic, so another
easy induction on 𝑛 shows that the 4-tuple (◁𝑛, <◁𝑛,▷𝑛,▷>𝑛) is monotonic in the step-index 𝑛.
We can thus define the 4-tuple of functions (◁, <◁,▷,▷>) as the least fixed point of 𝐹—in other
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words, as the pointwise union of all the step-indexed 4-tuples. Each property of the four functions
(commutativity, associativity, parametricity, and then the semantic specifications) is then proven
by induction on the step-index 𝑛.

5 A RESTRICTED BASE-CHECKING DISINTEGRATOR
Now that we have a disintegrator that takes a base measure as a second input and uses it in just a
few semantically specified operations, we are ready to enrich the variety of base measures. Recall
from Section 2 that we want to allow base measures such as

lebesgue ⦶ return 0 ⦶ return 1 : MR in (14),
lebesgue ⊗= 𝜆𝑥 . return 𝑥 : MR2 (a diagonal), or

lebesgue2
⊗= 𝜆𝑥 .

((lebesgue ⦶ return (fst 𝑥)) ⊗
(lebesgue ⦶ return (snd 𝑥))) : M (R2)2 in (27).

In contrast, the base-measure language in Figure 15 only allows independent products and disjoint
sums of Lebesgue and unit measures. Accordingly, we generalize the base-measure language in
two ways.
(B1) Base measures over R have the form mix 𝑙 *𝑒1, . . .+, distinct from any measure term in the

term language. Here *𝑒1, . . .+ is a bag of real terms whose Dirac measures are mixed together,
and 𝑙 is a meta-level Boolean indicating whether the Lebesgue measure is mixed in as well. In
other words, the base measure mix ff *𝑒1, . . .+ means return 𝑒1 ⦶ · · · , and the base measure
mixtt*𝑒1, . . .+ means lebesgue⦶return𝑒1⦶ · · · . Hence lebesgue can be expressed as mixtt*+,
and return 𝑥 can be expressed as mix ff *𝑥+.

(B2) Independent products 𝑏1⊗𝑏2 become dependent products 𝑏1⊗=𝜆𝑥. 𝑏2, in which 𝑥 can appear
in 𝑏2, namely in a bag of real terms.

These changes are summarized at the top of Figure 22. The rest of the figure updates the functions
◁, <◁, jacobian, reparam, and ÷ to handle the new base measures. Thanks to the groundwork
laid in Section 4, the semantic specifications for these functions remain the same, and only cases
corresponding to the new base measures need to be added. As in Section 4, these cases are derived
and proven from those semantic specifications by equational reasoning.

The new cases of ◁ take advantage of the extended base-measure language. Constraining the
second element of a pair (snd 𝑒) now uses a base measure 𝑏2{𝑥 ↦→ fst 𝑣} that can depend on fst 𝑣 ,
which is what the first element (fst 𝑒) was constrained to be. And constraining a Dirac measure
(at 𝑢 or 𝑟 ) now passes the job to ÷ instead of returning ∅ right away. In fact, now the only function
that can return ∅ is ÷.

It is instructive to derive the second and fourth cases of ÷, which compute the density of the
Lebesgue measure and of a Dirac measure with respect to their mixture. In particular, exactly the
same sequence of justifications derive both mix tt *+ ÷mix tt *4+ and mix ff *4+ ÷mix tt *4+. We
show the former case, which means dividing lebesgue by lebesgue ⦶ return 4:

lebesgue
= {fail is identity of ⦶}

lebesgue ⦶ fail
= {the set {4} is lebesgue-negligible; and the observation 4 ≠ 4 is false}

do {𝑡 ¢ lebesgue; observe (𝑡 ≠ 4); return 𝑡} ⦶ do {𝑡 ¢ return 4; observe (𝑡 ≠ 4); return 𝑡}
= {⦶ distributivity (18)}

do {𝑡 ¢ lebesgue ⦶ return 4; observe (𝑡 ≠ 4); return 𝑡}. (66)
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Bases 𝑏 ::= mix 𝑙 *𝑒, . . .+
�� return ()

�� 𝑏 ⊗= 𝜆𝑥. 𝑏
�� 𝑏 ⊕ 𝑏

Continuity 𝑙 ::= ff
�� tt

Base typing rules

𝑒 : R · · ·
mix 𝑙 *𝑒, . . .+ : BR return () : B 1

𝑏1 : B𝛼

[𝑥 : 𝛼]···
𝑏2 : B 𝛽

𝑏1 ⊗= 𝜆𝑥. 𝑏2 : B (𝛼 × 𝛽)
𝑏1 : B𝛼 𝑏2 : B 𝛽

𝑏1 ⊕ 𝑏2 : B (𝛼 + 𝛽)
◁ : ⌈𝛼⌉ → B𝛼 → ⌊𝛼⌋ → (heap→ {⌊M𝛾⌋}) → heap→ {⌊M𝛾⌋}
◁ 𝑒 (𝑏1 ⊗= 𝜆𝑥. 𝑏2) 𝑣 𝑐 ℎ = ◁ (fst 𝑒) 𝑏1 (fst 𝑣)

(
◁ (snd 𝑒) (𝑏2{𝑥 ↦→ fst 𝑣}) (snd 𝑣) 𝑐 ) ℎ

◁ 𝑢 𝑏 𝑣 𝑐 ℎ = do {() ¢ (mix ff *𝑢+ ÷ 𝑏) 𝑣 ; 𝑐 ℎ} where 𝑢 : R is atomic
◁ 𝑟 𝑏 𝑣 𝑐 ℎ = do {() ¢ (mix ff *𝑟+ ÷ 𝑏) 𝑣 ; 𝑐 ℎ} where 𝑟 : R is a literal
<◁ : ⌈M𝛼⌉ → B𝛼 → ⌊𝛼⌋ → (heap→ {⌊M𝛾⌋}) → heap→ {⌊M𝛾⌋}
<◁ lebesgue 𝑏 𝑣 𝑐 ℎ = do {() ¢ (mix tt *+ ÷ 𝑏) 𝑣 ; 𝑐 ℎ}
jacobian : invertible→ BR→ ⌊R⌋ → ⌊R⌋ reparam : invertible→ BR→ BR
jacobian 𝑓 (mix ff _) = 𝜆𝑣. 1 reparam 𝑓 (mix 𝑙 *𝑒1, . . .+) = mix 𝑙 *inv 𝑓 @ 𝑒1, . . .+
jacobian 𝑓 (mix tt *𝑒1, . . .+) = 𝜆𝑣. if 𝑣 = 𝑒1 ∨ · · · then 1 else |diff (inv 𝑓 ) 𝑣 |
(÷) : BR→ BR→ {⌊R⌋ →M1}
mix tt _ ÷mix ff _ = ∅
mix tt *+ ÷mix tt *𝑒1, . . .+ = 𝜆𝑣. do {observe (𝑣 ≠ 𝑒1 ∧ · · · ); return ()}
mix ff *+ ÷ _ = fail
mix ff *𝑒+ ÷mix _ *𝑒1, . . .+ = 𝜆𝑣. do {observe (𝑣 = 𝑒); factor 1/#*𝑖 | 𝑣 = 𝑒𝑖+; return ()}

if 𝑒 is known to be equal to at least one of *𝑒1, . . .+
mix ff *𝑒+ ÷mix _ *𝑒1, . . .+ = ∅ otherwise
mix 𝑙 *𝑒, 𝑒1, . . .+ ÷ 𝑏 = 𝜆𝑣. (mix ff *𝑒+ ÷ 𝑏) 𝑣 ⦶ (mix 𝑙 *𝑒1, . . .+ ÷ 𝑏) 𝑣

Fig. 22. Changes to handle base measures that are either mixtures of the Lebesgue measure and point masses
or dependent products. The typing rules introduce a new judgment form 𝑏 : B𝛼 , which says that 𝑏 is a base
measure over 𝛼 . In the new definition of ÷, the syntactic sugar observe · · · for let inl _ = · · · is defined in
Section 3.1, and whether two terms are “known to be equal” is checked as described at the end of Section 5.

The observe (𝑡 ≠ 4) emitted in this case is how, in the GPA problem in Figure 2, our disintegrator
knows to revise the weight at 4 to 0.

The fourth case of ÷ invokes a term-equality checker, a meta-function that takes two real terms as
input and either declares them equal or declines to declare them equal. We require a term-equality
checker that is sound—if it declares two terms equal, then their denotations must actually be
equal—but it need not be complete. We also require in Section 6 below that this checker computes
a congruence, meaning an equivalence relation that is preserved by substitution and @:

(1) It must declare every term equal to itself.
(2) Whenever it declares 𝑒1 equal to 𝑒2, it must also declare 𝑒2 equal to 𝑒1.
(3) Whenever it declares 𝑒1 equal to 𝑒2 and 𝑒2 equal to 𝑒3, it must also declare 𝑒1 equal to 𝑒3.
(4) Whenever it declares 𝑒1 equal to 𝑒2, it must also declare 𝑒1{𝑥 ↦→ 𝑒} equal to 𝑒2{𝑥 ↦→ 𝑒} and

𝑓 @ 𝑒1 equal to 𝑓 @ 𝑒2, for all variables 𝑥 , terms 𝑒 , and invertibles 𝑓 .
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Syntactic equality is one basic checker that satisfies these requirements, and that is what our
implementation uses, but a more complete checker would allow ÷ and the overall disintegration to
succeed more often.

6 A BASE-INFERRING DISINTEGRATOR
Recall that disintegration is a ternary relation between a joint measure, a base measure, and a kernel
(Definition 2.23). Sections 4 and 5 have implemented this relation as a program transformation that
takes the joint and base measures and produces the kernel. Building on that work, in this section
we implement the same ternary relation as a different program transformation that takes the joint
measure and produces the base measure. In other words, we turn from checking the base measure
as an input to inferring it as an output.

On one hand, the ideal base-checking disintegrator would answer the question,
Given a joint measure and a base measure, what is a kernel?

To this end, our check disintegrator above is sound but incomplete. On the other hand, the ideal
base-inferring disintegrator would answer the question,

Given a joint measure, with respect to which base measures does a kernel exist?
To this end, our base-inferring disintegrator precisely answers a different question,

Given a joint measure, with respect to which base measures can check find a kernel?

Example 6.1. A simple example of base inference is the clamped measure whose disintegration
is discussed in Sections 3.2.3 and 3.2.4. That measure has a disintegration not with respect to the
Lebesgue base mix tt *+ but with respect to the mixture base mix tt *0+. The check disintegrator
can find that density, as well as another density with respect to mix tt *0, 1+. However, it may fail
with respect to mix tt *02+, depending on whether the term-equality checker used in ÷ is complete
enough to affirm that 02 = 0. In general, check finds a kernel with respect to precisely those bases
mix tt *𝑒0, . . .+ where 𝑒0 is known to equal 0. This fact about check is what our base-inferring
disintegrator computes.

This example highlights the fact that the binary function ÷ is the only place where base checking
can fail—by returning ∅, the empty set of solutions, in Figure 22. It also illustrates that the base
measures for which a kernel can be found are not unique. Quite to the contrary, given a joint
measure, whenever a kernel can be found with respect to a base 𝑏, one can be found with respect
to every base above 𝑏 in the preorder defined below.

Definition 6.2. Let 𝑏, 𝑏 ′ : B𝛼 be two bases over the same space 𝛼 , following the grammar at the
top of Figure 22. We define when 𝑏 is divisible by 𝑏 ′ (notated 𝑏 <: 𝑏 ′) inductively:

(1) If 𝑏 = mix 𝑙 *𝑒1, . . .+ and 𝑏 ′ = mix 𝑙 ′ *𝑒 ′1, . . .+ over R, then 𝑏 <: 𝑏 ′ if and only if 𝑏 ÷ 𝑏 ′ ≠ ∅. In
other words, 𝑏 <:𝑏 ′ if and only if 𝑙 implies 𝑙 ′ and every element of *𝑒1, . . .+ is known to equal
some element of *𝑒 ′1, . . .+.

(2) If 𝑏 = 𝑏 ′ = return () over 1, then 𝑏 <: 𝑏 ′ always.
(3) If 𝑏 = 𝑏1 ⊗= 𝜆𝑥 . 𝑏2 and 𝑏 ′ = 𝑏 ′1 ⊗= 𝜆𝑥. 𝑏 ′2 over 𝛼1 × 𝛼2, then 𝑏 <: 𝑏 ′ if and only if 𝑏1 <: 𝑏 ′1 and

𝑏2 <: 𝑏 ′2. The fresh variable 𝑥 may appear free in 𝑏2 and 𝑏 ′2.
(4) If 𝑏 = 𝑏1 ⊕ 𝑏2 and 𝑏 ′ = 𝑏 ′1 ⊕ 𝑏

′
2 over 𝛼1 + 𝛼2, then 𝑏 <: 𝑏 ′ if and only if 𝑏1 <: 𝑏 ′1 and 𝑏2 <: 𝑏 ′2.

Proposition 6.3. The relation <: is a preorder. Moreover, it is preserved by substitution and @.

Proof. By induction. In case 1 of Definition 6.2, we use the assumption that the term-equality
checker used in ÷ in Figure 22 computes a preorder that is preserved by substitution and @. □
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mix ff *+ mix tt *+

mix tt *0+

mix tt *1+

mix tt *0, 1+

mix ff *0+

mix ff *1+

mix ff *0, 1+

Fig. 23. The preorder <: (“is divisible by”), where an edge from 𝑏 to 𝑏 ′ means 𝑏 <: 𝑏 ′

We illustrate a small slice of this preorder as a graph in Figure 23, where nodes represent base
measures, and an edge from 𝑏 to 𝑏 ′ means that 𝑏 <:𝑏 ′. With regard to Example 6.1, the figure shows
that mix tt *+ <: mix tt *0+ <: mix tt *0, 1+.

Given a joint measure𝑚, the base measures 𝑏 for which check𝑚 𝑏 succeeds (if any) are typically
not unique. One reason is the nondeterminism ∪ in Figure 14. But even when we restrict that
nondeterminism to a certain execution path (as if ∪ makes a deterministic choice dictated by an
external oracle), there are still infinitely many bases to choose from:

Proposition 6.4. If (a certain execution path of) one of the functions check, ◁, ⋖, <◁ succeeds on a
base 𝑏, then it also succeeds on every base 𝑏 ′ such that 𝑏 <: 𝑏 ′.

Proof. By induction on the step-index (Section 4.4), using Proposition 6.3. □

Fortunately, it turns out in Section 6.5 below that the bases to choose from can be summarized
by a principal base.

Definition 6.5. Given a joint measure𝑚, we say that a base measure 𝑏 is principal (for a certain
execution path of the check disintegrator) if for every base measure 𝑏 ′, (that execution path of)
check can find a kernel with respect to 𝑏 ′ (that is, check𝑚 𝑏 ′ 𝑡 ≠ ∅, where 𝑡 is a fresh variable) if
and only if 𝑏 <: 𝑏 ′. (In particular, check succeeds on 𝑏 itself: check𝑚 𝑏 𝑡 ≠ ∅ because 𝑏 <: 𝑏.)

In the rest of this section, we explain why base inference is useful, then describe how to infer a
principal base.

6.1 Motivating base inference
A base-inferring disintegrator saves the probabilistic programmer from having to construct complex
base measures for every application. For example, in Section 2.3 above we saw that single-site
Metropolis-Hastings sampling requires the complex non-stock base measure in (27). Constructing
base measures requires careful analysis of the marginal of the input program, and knowledge of the
robustness of the disintegrator. As our applications increase in complexity, so do the base measures.

A base-inferring disintegrator also reduces the interface complexity of tools that depend on
disintegration and density calculation. For instance, a Metropolis-Hastings transformation [Zinkov
and Shan 2017; Ścibior et al. 2018] is better served by a density calculator that infers appropriate
base measures rather than one that leaks the base requirement onto the type of any tool that uses it.
In the end, this rationale is another way of avoiding constructing base measures by hand.

A final motivation for base inference is that we use it to perform disintegration even when the
base is known—if the base is expressed as a core Hakaru measure term rather than in the base
language of Figure 22. That unrestricted disintegrator is described in Section 7 below.
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(mix tt *+ , B1 []),
(mix tt *+ , B2 [fst 𝑡]),
(mix ff *fst 𝑡+, B2 [fst 𝑡])



(mix tt *+ , B1 []),
(mix tt *+ , B2 [𝑥2]),
(mix ff *𝑥3+, B2 [𝑥3])


[
B1 [] ↦→ mix tt *+
B2 [𝑥4] ↦→ mix tt *𝑥4+

]
mix tt *+ ⊗= 𝜆𝑥5 .mix tt *𝑥5+

do {() ¢ divide (mix tt *+) (B1 []) (fst 𝑡);
() ¢ divide (mix tt *+) (B2 [fst 𝑡]) (snd 𝑡);
factor (dnorm 0 1 (snd 𝑡));
factor 1/2;
factor (dnorm (snd 𝑡) 0.1 (fst 𝑡));
return ()}

⦶ do {() ¢ divide (mix tt *+) (B1 []) (fst 𝑡);
() ¢ divide (mix ff *fst 𝑡+) (B2 [fst 𝑡]) (snd 𝑡);
factor (dnorm 0 1 (snd 𝑡));
factor 1/2;
return ()}

do {𝑥 ¢ normal 0 1;
1/2 ⊙ do {𝑦 ¢ normal 𝑥 0.1; return ((𝑦, 𝑥), ())}
⦶ 1/2 ⊙ return ((𝑥, 𝑥), ())}

: M ( R × R × 1)

B1 [] ⊗= 𝜆𝑥1. B2 [𝑥1]

genBase

check collect

solve

groupsubstitute

Fig. 24. Inferring a principal base measure (lower left) for an input program (upper left)

6.2 Implementing base inference
We implement base inference like constraint-based type inference [Wand 1987a,b; Pierce 2002,
Chapter 22]: by introducing base variables, extending base-checking disintegration to gather con-
straints on base variables, and finally solving these constraints to produce a base measure. We first
sketch these steps using an example, then detail each step in the subsections below.

Figure 24 shows our example input program and how it undergoes each step of base inference.
This example is motivated by Metropolis-Hastings sampling (Section 2.3): the input program, in
the upper-left corner of Figure 24, can alternatively be written as (𝜅 =⊗ 𝜉) ⊗ return (), composed
of the target distribution

𝜉 = normal 0 1 : MR (67)

and the proposal kernel

𝜅 = 𝜆𝑥.
((1/2) ⊙ normal 𝑥 0.1

)
⦶

((1/2) ⊙ return 𝑥
)

: R→MR (68)

(similar to the composite kernel in (26) but along one R dimension only).
Our first step of base inference is to represent the unknown base measure by introducing base

variables. Because the input measure is over (R × R) × 1, the base measure must be over R × R.
The grammar of bases in Figure 22 mandates that all base measures over R × R must have the
form mix . . . ⊗= 𝜆𝑥.mix . . . , in which the term variable 𝑥 : R can appear in the second mix . . . .
We represent this form by B1 [] ⊗= 𝜆𝑥1. B2 [𝑥1], returned by genBase in Figure 22. Here the base
variables B1 and B2 each range over a base measure mix . . . over R. The notation B2 [𝑥1] means that
B2 can contain zero or more occurrences of a hole, plugged by a fresh term variable 𝑥1 : R.

Our second step of base inference is to invoke the check disintegrator with respect to the unknown
base. Whenever check matches a base variable against a pattern mix . . . : BR, it suspends that part
of the program transformation and produces a residual term [Jones et al. 1993]. This suspension
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only happens in the functions jacobian, reparam, and ÷. For example, the call mix tt *+ ÷ B1 []
produces the term divide (mix tt *+) (B1 []) in Figure 24, which represents an unknown density of
the Lebesgue measure with respect to the unknown base B1 []. Each occurrence of divide in the
output of check expresses a constraint on a base variable, such as mix tt *+ <: B1 []. Collecting these
constraints yields a set of pairs such as (mix tt *+, B1 []). The check disintegrator succeeds if and
only if every constraint holds.

Our third step of base inference is to reduce all the collected constraints on plugged base variables
to one constraint per unplugged base variable. In Figure 24, the solve step turns each constraint
on a plugged base variable (such as the constraint (mix ff *fst 𝑡+, B2 [fst 𝑡]) on B2 [fst 𝑡]) into a
constraint on the base variable unplugged (such as the constraint (mix ff *𝑥3+, B2 [𝑥3]) on B2, in
which the fresh term variable 𝑥3 : R is local). Then, the group step conjoins all the constraints
on each base variable (such as the constraints (mix tt *+, B2 [𝑥2]) and (mix ff *𝑥3+, B2 [𝑥3]) on B2)
into one constraint (such as the constraint (mix tt *𝑥4+, B2 [𝑥4]) on B2, expressed as a substitution
using ↦→).

Substituting these conjoined constraints for the base variables in the unknown base B1 [] ⊗=
𝜆𝑥1. B2 [𝑥1] yields the principal base mix tt *+⊗= 𝜆𝑥5.mix tt *𝑥5+. Principality means that the check
disintegrator finds a kernel with respect to precisely those bases that divide the principal base.

We detail each step of base inference below.

6.3 Introducing base variables
We start by adding variables B[] to our language of bases in Figure 22. The B part of the notation
expresses that a base variable names a stand-in that must be solved to produce a base measure,
while the [] part expresses that the solution is a base measure with holes. A base with holes is like
a function from terms to bases but cannot, say, distinguish the form of a term that plugs a hole.

Base variables represent bases with holes because they might occur under a binder 𝜆𝑥 to the
right of ⊗=. A hole in a base is where the bound variable 𝑥 is used. To track what variables 𝑥 are in
scope, we need to augment base variables B[] with a sequence of core Hakaru variables ®𝑥 . Moreover,
the pair case ◁ 𝑒 (𝑏1 ⊗= 𝜆𝑥. 𝑏2) 𝑣 in Figure 22 requires a sequence of terms ®𝑒 , not just variables ®𝑥 . In
this case, ◁ deconstructs the ⊗= base measure and substitutes fst 𝑣 for the bound variable 𝑥 in 𝑏2.
Hence, a plugged base variable must store terms that may be in scope after such a substitution.

We thus add a new construct, B[®𝑒], which represents a base measure with holes that are plugged
by terms ®𝑒 in scope. This construct stores a name B along with a sequence of core Hakaru terms ®𝑒 .
We refer to such expressions as plugged base variables. This construct becomes a part of a new
syntactic category of unknown bases, notated 𝐵. The top of Figure 25 shows the new base language,
which combines unknown bases with ground bases.

Definition 6.6. A ground base 𝑏 is a base measure with no base variables. The (meta) type of a
ground base is notated B𝛼 . A ground substitution 𝜎 is a mapping from base variables (with holes)
to ground bases (with holes). Applying a ground substitution 𝜎 to a base 𝑏 yields a ground base 𝜎 𝑏,
by replacing all (plugged) base variables in 𝑏 with (plugged) ground bases. For example in Figure 24,
the ground base in the lower-left corner is the result of applying the ground substitution in the
lower-right corner to the base B1 [] ⊗= 𝜆𝑥1. B2 [𝑥1] produced by genBase.

The relation <: (Definition 6.2) is only defined on ground bases.
We only need base variables of type BR, because ground base measures of the same type differ

only in their subterms of type BR. According to the grammar of bases in Figure 22, base measures
have a unique structure for each of the other non-measure type constructors: return () is the only
base over 1, bases over pairs are always of the form 𝑏1 ⊗= 𝜆𝑥 . 𝑏2, and bases over disjoint sums are
always of the form 𝑏1 ⊕ 𝑏2.
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Bases 𝑏 ::= mix 𝑙 *𝑒, . . .+
�� return ()

�� 𝑏 ⊗= 𝜆𝑥. 𝑏
�� 𝑏 ⊕ 𝑏 �� 𝐵

Unknown bases 𝐵 ::= B[®𝑒]
�� reparam 𝑓 𝐵

Base variables B[]
Terms 𝑒 ::= · · ·

�� jacobian 𝑓 𝐵 𝑒
�� divide 𝑏 B[®𝑒] 𝑒

New base typing rule 𝐵 : BR

genBase(𝛼) : variables→ B𝛼

genBase(R) ®𝑥 = B[®𝑥] where B is fresh
genBase(1) ®𝑥 = return ()
genBase(𝛼 × 𝛽) ®𝑥 = genBase(𝛼) ®𝑥 ⊗= 𝜆𝑦. genBase(𝛽) ( ®𝑥,𝑦) where 𝑦 : 𝛼 is fresh
genBase(𝛼 + 𝛽) ®𝑥 = genBase(𝛼) ®𝑥 ⊕ genBase(𝛽) ®𝑥
jacobian : invertible→ BR→ ⌊R⌋ → ⌊R⌋
jacobian 𝑓 𝐵 𝑒 = jacobian 𝑓 𝐵 𝑒

reparam : invertible→ BR→ BR
reparam 𝑓 𝐵 = reparam 𝑓 𝐵

(÷) : BR→ BR→ {⌊R⌋ →M1}
𝑏 ÷ reparam 𝑓 𝐵 = 𝜆𝑣 .

(
jacobian 𝑓 𝐵 (𝑓 @ 𝑣) � jacobian (inv 𝑓 ) 𝑏 𝑣 )−1
⊙

(
reparam (inv 𝑓 ) 𝑏 ÷ 𝐵) (𝑓 @ 𝑣)

𝑏 ÷ B[®𝑒] = 𝜆𝑣 . divide 𝑏 B[®𝑒] 𝑣

Fig. 25. Introducing base-measure variables and updating the base-checking disintegrator. The first line adds
unknown bases 𝐵 to the grammar of bases 𝑏. The fifth line adds a typing rule to say that every unknown
base 𝐵 is over R.

6.4 Producing constraints by base checking
Having added base variables in our language, we focus on producing a set of constraints on them.
A constraint is represented as a pair of base measures over R. Its meaning is that the first base
must be divisible by the second. By design, the first base is ground while the second is a plugged
base variable; i.e., constraints are of the form (𝑏, B[®𝑒]). Given an input program, we obtain a set of
constraints by

(1) automatically constructing a base measure 𝑏∗ that may contain base variables, and
(2) running base-checking disintegration with respect to 𝑏∗.
First, we need to construct a base 𝑏∗ that may contain base variables. As done above in (42), we

construct the base using genBase(𝛼). We modify the definition of genBase(𝛼)—as shown in the
middle of Figure 25—to construct a base measure 𝑏∗ of type B𝛼 whose leaf positions of type BR are
all populated by plugged base variables. For the example in Figure 24, we have 𝛼 = R × R and we
construct𝑏∗ = B1 []⊗=𝜆𝑥1. B2 [𝑥1]. The constructed𝑏∗ represents an unknown base measure because
any ground base 𝑏 of type B𝛼 can be obtained by applying to 𝑏∗ a suitable ground substitution 𝜎

over the base variables. The function genBase(𝛼) now takes a set of core Hakaru variables ®𝑥 as
input. This set is initially empty, extended with a fresh core Hakaru variable whenever 𝛼 is a pair
type, and stored alongside a fresh base variable whenever 𝛼 is R. Thus, we set 𝑏∗ = genBase(𝛼) ().

Second, we need to run base-checking disintegration with respect to 𝑏∗. In order for this to work
we need to update jacobian, reparam, and ÷ to handle unknown bases. The necessary updates are
shown at the bottom of Figure 25.
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Two new syntax extensions help jacobian and reparam handle unknown bases. We add a jacobian
core Hakaru construct of typeR that is produced by jacobian, and a reparam base-measure construct
of type BR that is produced by reparam, whenever each function encounters an unknown base
and needs to suspend (or residualize) itself. Bases composed using reparam belong themselves to
the category of unknown bases.

A third syntax extension helps ÷ handle unknown bases. We introduce a new core Hakaru
construct called divide, representing a suspended (or residualized) call to ÷. Now, the way the
disintegrator calls ÷ ensures that the dividend (the first argument) of ÷ is always a ground base.
Only the divisor (the second argument) may be unknown, and there are two possibilities.
• The divisor is an unknown base of the form reparam 𝑓 𝐵. In this case we use jacobian to

undo the reparametrization of the unknown base 𝐵, and use reparam to reparametrize the
(ground) dividend by the inverse of 𝑓 . The latter call reparam (inv 𝑓 ) 𝑏 always produces a
ground base.
• The divisor is a plugged base variable, i.e., an unknown base of the form B[®𝑒]. In this case we

suspend (or residualize) the call using divide.
Thus, the new constructs jacobian, reparam, and divide represent suspended calls to the existing

functions jacobian, reparam, and ÷. These suspended calls are resumed when a ground substitution
(Definition 6.6) is applied.

Definition 6.7. We define applying a ground substitution 𝜎 to an unknown base:

𝜎 (B[®𝑒]) = 𝑏{®𝑥 ↦→ ®𝑒} where 𝜎 maps B[®𝑥] to 𝑏, (69)
𝜎 (reparam 𝑓 𝐵) = reparam (𝜎 𝑓 ) (𝜎 𝐵). (70)

We define applying a ground substitution 𝜎 to a term 𝑒:

𝜎 (jacobian 𝑓 𝐵 𝑒) = jacobian (𝜎 𝑓 ) (𝜎 𝐵) (𝜎 𝑒), (71)
𝜎 (divide 𝑏 B[®𝑒] 𝑒) = (

𝑏 ÷ 𝜎 (B[®𝑒])) (𝜎 𝑒). (72)

(We omit many cases of 𝜎 𝑒 that just recursively apply 𝜎 to the immediate subterms of 𝑒 .) We define
applying a ground substitution 𝜎 to an invertible 𝑓 ; all the cases just recursively apply 𝜎 to the
immediate subterms of 𝑓 : for example, 𝜎 (mul 𝑣) = mul (𝜎 𝑣).

With the updates in Figure 25, running base-checking disintegration with respect to a non-ground
base produces a program with embedded residual ÷ calls of the form divide 𝑏 B[®𝑒] 𝑒 , where 𝑏 is
a ground base, B[®𝑒] is a plugged base variable, and 𝑒 is a core Hakaru term of type R. We walk
through this program and collect the first two arguments of each divide expression into a set of
constraints (𝑏, B[®𝑒]). This simple collect function is defined in Figure 26. The composition of check
followed by collect is illustrated in Figure 24.

The conjunction of the constraints collected in this step characterizes precisely those ground
bases with respect to which check succeeds, because applying a ground substitution commutes
with running check:

check (𝜎 𝑚) (𝜎 𝑏∗) 𝑡 = 𝜎 (check𝑚 𝑏∗ 𝑡) . (73)

That is, applying a ground substitution 𝜎 to produce a ground base 𝜎 𝑏∗ then running check is
equivalent to running check then applying 𝜎 to resume the disintegration. For a simple example, let

𝑚 = normal 0 1 ⊗ return () : M (R × 1), 𝑏∗ = B1 [] : BR, 𝜎 =
{
B1 [] ↦→ mix tt *4+

}
. (74)
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collect 𝑥 =

collect 𝑟 =
collect () =
collect lebesgue =

collect fail = {}

collect (fst 𝑒) =
collect (snd 𝑒) =
collect (inl 𝑒) =
collect (inr 𝑒) =
collect (return 𝑒) =
collect (sqrt 𝑒) =
collect 𝑒2 = collect 𝑒

collect (𝑒1, 𝑒2) =
collect (𝑒1 ⦶ 𝑒2) =
collect (do {𝑥 ¢ 𝑒1; 𝑒2}) =
collect (do {factor 𝑒1; 𝑒2}) =
collect (do {let inl 𝑥 = 𝑒1; 𝑒2}) =
collect (do {let inr 𝑥 = 𝑒1; 𝑒2}) =
collect (𝑒1 � 𝑒2) =
collect (𝑒1 < 𝑒2) = collect 𝑒1 ∪ collect 𝑒2

collect (divide 𝑏 B[®𝑒] 𝑒) = {(𝑏, B[®𝑒])}

Fig. 26. Collecting divide expressions into a set of constraints

On the right-hand side of (73), running check with the non-ground base 𝑏∗ produces the program
check𝑚 𝑏∗ 𝑡 = do {() ¢ divide (mix tt *+) (B1 []) 𝑡 ;

factor (dnorm 0 1) (𝑡);
return ()},

(75)

which contains a residual divide. On the left-hand side of (73), we have 𝜎 𝑚 = 𝑚, and running
check with the ground base 𝜎 𝑏∗ = mix tt *4+ produces the program

check𝑚 (𝜎 𝑏∗) 𝑡 = do {() ¢ do {observe (𝑡 ≠ 4); return ()};
factor (dnorm 0 1) (𝑡);
return ()},

(76)

which does not contain any residual divide. Equation (73) relates these two programs because
applying the ground substitution 𝜎 to (a program containing) divide resumes a suspended call to ÷:

𝜎
(
divide (mix tt *+) (B1 []) 𝑡

)
= {applying 𝜎 to a term (72)}(

mix tt *+ ÷mix tt *4+
) (𝑡)

= {definition of ÷ (Figure 22)}
do {observe (𝑡 ≠ 4); return ()}. (77)

6.5 Solving constraints to produce the principal base measure
The final step of base inference produces a ground base 𝑏∗ that is principal. Like all ground bases of
the correct type, 𝑏∗ shares the structure of the base measure 𝑏∗ constructed initially by genBase, but
with a ground substitution applied to replace all (plugged) base variables with (plugged) ground
bases. We compute this ground substitution by solving the constraints collected from base checking
while respecting the scope of core Hakaru terms.

From the previous step we obtain a set of constraints of the form (𝑏, B[®𝑒]). This set may con-
tain multiple constraints for the same base variable B[] (plugged with possibly different term
sequences ®𝑒). From such a set we obtain a principal base in three steps.

(1) Solve each individual constraint in the set. This is the only step that can fail. Failure means
concluding that base checking cannot succeed with respect to any base measure.

(2) Group (or unify) constraints by their base variable.
(3) Substitute into 𝑏∗ the (unified) solutions for each base variable.
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6.5.1 Solving a base-variable constraint. A solution of a constraint (𝑏1, B[®𝑒]) is a ground base
replacement 𝑏2 [] for the base variable B[] such that 𝑏1 <:𝑏2 [®𝑒]. Because the relation <: is transitive,
there may be infinitely many solutions. We need a principal solution 𝑏∗1 [] such that

∀𝑏2 [], 𝑏1 <: 𝑏2 [®𝑒] ⇔ 𝑏∗1 [®𝑥] <: 𝑏2 [®𝑥], (78)
so in particular 𝑏1 <:𝑏∗1 [®𝑒]. Here ®𝑥 are as many fresh variables as there are terms in ®𝑒 . If 𝑏1 contained
no open core Hakaru terms, then we could just let 𝑏∗1 [] = 𝑏1 and not use any hole. For example in
Figure 24, the first two collected constraints (mix tt *+, B1 []) and (mix tt *+, B2 [fst 𝑡]) both have
the hole-less principal solution mix tt *+. Using such a hole-less solution is almost what we do.

What we actually do is solve the problem 𝑏∗1 [®𝑒] = 𝑏1, a special case of second-order matching
[Huet and Lang 1978; Huet 1976], by checking that every core Hakaru variable in 𝑏1 occurs inside
some subterm of 𝑏1 that equals some term in ®𝑒 . To check this, we replace with a hole every subterm
of 𝑏1 that the term-equality checker declares equal to some term 𝑒 in ®𝑒 . We notate the result of
this replacement by 𝑏1{[] ←[ 𝑒}. If the result contains any free variable, we conclude that there is
no solution and overall there is no base that permits disintegration of the original input program.
Otherwise, the result is the principal solution; we set 𝑏∗1 [] = 𝑏1{[] ←[ 𝑒}.

For example in Figure 24, to solve the third collected constraint (mix ff *fst 𝑡+, B2 [fst 𝑡]), we
solve the matching problem ?[fst 𝑡] = mix ff *fst 𝑡+, by replacing fst 𝑡 in mix ff *fst 𝑡+ with a hole.
The result of this replacement is mix ff *[]+ = (mix ff *fst 𝑡+){[] ←[ fst 𝑡}, which does not contain
any free variable, so it is the principal solution for B2 []. This principal solution is represented in
Figure 24 as (mix ff *𝑥3+, B2 [𝑥3]), using a fresh local variable 𝑥3 : R.

Although some second-order matching problems have multiple solutions, ours don’t and we
produce a unique principal solution. This is because the base variables in our constraints are
plugged with independent atomic terms—such as fst 𝑡 and fst (snd 𝑡), produced by the first case
of ◁ in Figure 22—that a sound term-equality checker will always judge to be distinct from each
other and from any term not involving the observation variable 𝑡 passed initially to check.

6.5.2 Grouping constraints by base variables. We no longer need to worry about failure once
we have successfully solved each constraint. The next step is to group the solved constraints
(𝑏∗1 [®𝑥], B[®𝑥]) by their base variables B[]. For this we define a binary operation bplus that acts as a
join in the preorder <: by summing together ground base measures of type BR. Since mix is the
only way to construct such bases, bplus has a one-line definition:

bplus : BR→ BR→ BR
bplus (mix 𝑙 *𝑒1, . . .+) (mix 𝑙 ′ *𝑒 ′1, . . .+) = mix (𝑙 ∨ 𝑙 ′) *𝑒1, . . . , 𝑒

′
1, . . .+. (79)

Any two solved constraints (𝑏∗1 [®𝑥], B[®𝑥]) and (𝑏∗2 [®𝑦], B[®𝑦]) that share the same base variable B[]
now get grouped into a solved constraint B[®𝑧] ↦→ bplus 𝑏∗1 [®𝑧] 𝑏∗2 [®𝑧], where the variables ®𝑧 are
fresh. After grouping, we have one solved constraint per base variable. (The odd unconstrained base
variable B[] gets the least solution B[®𝑧] ↦→ mix ff *+.)

For example in Figure 24, the two solved constraints (mix tt *+, B2 [𝑥2]) and (mix ff *𝑥3+, B2 [𝑥3])
get grouped into B2 [𝑥4] ↦→ mix tt *𝑥4+, because bplus joins mix tt *+ and mix ff *𝑥4+ into mix tt *𝑥4+.
Again 𝑥2, 𝑥3, 𝑥4 are just local variables used to represent and identify holes in unplugged bases.

6.5.3 Substituting solutions to form a principal base. At this point, for each base variable B we
have a solution B[®𝑥] ↦→ 𝑏. These solutions together constitute a ground substitution 𝜎∗, such as
the lower-right corner in Figure 24. We obtain our principal base measure 𝑏∗ by substituting these
ground bases into 𝑏∗:

𝑏∗ = 𝜎∗ 𝑏∗. (80)
In Figure 24 we produce the base 𝑏∗ = mix tt *+ ⊗= 𝜆𝑥5.mix tt *𝑥5+.
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7 AN UNRESTRICTED BASE-CHECKING DISINTEGRATOR
When the user of disintegration has a base measure in mind, it is easier to specify it as a core
Hakaru measure term rather than in the relatively spartan base language of Figure 22. Indeed, most
applications of disintegration described in Section 2 specify such a base measure. Just to recall one
example from Section 2.3, Metropolis-Hastings sampling requires the density of 𝜁 =⊗ 𝜉 with respect
to 𝜉 ⊗= 𝜁 [Tierney 1998], where 𝜉 and 𝜁 are specified as probabilistic programs.

To disintegrate one core Hakaru term with respect to another, we use Proposition 2.10 and define

disint : ⌈M (𝛼 × 𝛽)⌉ → ⌈M𝛼⌉ → ⌊𝛼⌋ → {⌊M 𝛽⌋} 𝑚1 ⊒ 𝑚2 ⊗= disint𝑚1 𝑚2 (81)

disint𝑚1 𝑚2 𝑡 = |check𝑚′2 𝑏 𝑡 |−1 ⊙ check𝑚1 𝑏 𝑡 where 𝑏 = infer𝑚′2, 𝑚′2 =𝑚2 ⊗ return ().
That is, we use base inference to find the intermediate base measure 𝜇 in Proposition 2.10(1). One
caveat of this approach is that disint takes the reciprocal of the density |check𝑚′2 𝑏 𝑡 | and thus
assumes that the density is almost never 0 or∞. We discuss this caveat at the end of Section 8.

8 EVALUATION
Because we handle distributions whose disintegration had never been automated before, there
is not yet a corpus of programs found in the wild on which to evaluate the completeness of our
disintegrator in practice. Nevertheless, we can report that our new disintegrator successfully returns
(proven-correct) results in all the applications claimed in Section 2:
(E1) a clamped normal distribution with respect to a mix tt base (Example 2.6),
(E2) clamped normal distributions with respect to each other (Example 2.11),
(E3) mutual information (Example 2.12) in a joint distribution that is a discrete-continuous mixture,
(E4) importance sampling using a custom, non-continuous proposal distribution (Example 2.14),
(E5) Metropolis-Hastings sampling (Example 2.17) using single-site and reversible-jump proposals,
(E6) belief update using a clamped observation (Example 2.21),
(E7) Gibbs sampling (Example 2.22) of a joint distribution whose marginals are non-continuous.

Each of these calls to our disintegrator implementation takes a fraction of a second to complete
using an ordinary personal computer.

8.1 Clamped distributions
Evaluations (E1) and (E2), clamped densities, demonstrate how our disintegrator handles discrete-
continuous mixtures (B1) and supports exact and approximate inference. The two distributions
concerned are normal 0 1 and normal 3 2 (or any other continuous distributions whose densities
can be found by previous disintegrators), both clamped to between 0 and 1:

𝜉 = do {𝑥 ¢ normal 0 1; return max{0,min{1, 𝑥}}}, (82)
𝜇 = do {𝑥 ¢ normal 3 2; return max{0,min{1, 𝑥}}}. (83)

In these terms, max and min simply abbreviate if :
max{0,min{1, 𝑥}} = if 0 < min{1, 𝑥} then min{1, 𝑥} else 0, (84)

min{1, 𝑥} = if 1 < 𝑥 then 1 else 𝑥 . (85)
In turn, our disintegrator implementation handles if by expanding it on the fly to surrounding
guards and ⦶, as explained by equation (37).

For evaluation (E1), to find a density of 𝜉 (at 𝑡 : R), we can invoke the restricted base-checking
disintegrator (Section 5) by check (𝜉 ⊗ return ()) 𝑏 𝑡 . If we specify the base measure 𝑏 = mix tt *+
(meaning the Lebesgue measure) or 𝑏 = mix ff *0, 1+ (meaning the discrete mixture return 0 ⦶
return 1), then the disintegrator correctly returns no solution. If we let 𝑏 = mix tt *0, 1+ (meaning
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the discrete-continuous mixture lebesgue ⦶ return 0 ⦶ return 1), then the disintegrator correctly
returns the following solution (simplified by removing factor 1 and inlining let-bindings):

do {observe 𝑡 = 1; 𝑥 ¢ normal 0 1; observe 0 < min{1, 𝑥}; observe 1 < 𝑥 ; return ()}
⦶ do {observe 𝑡 ≠0 ∧ 𝑡 ≠1; factor (dnorm 0 1) (𝑡); observe 0<min{1, 𝑡}; observe 𝑡 ≤ 1; return ()}
⦶ do {observe 𝑡 = 0; 𝑥 ¢ normal 0 1; observe min{1, 𝑥} ≤ 0; return ()}. (86)
Applying the totaling transformation then yields the density 𝜅 (𝑡) in Example 2.6. In particular, the
two bindings 𝑥 ¢ normal 0 1 in (86) become the two definite integrals in (15). Thus, to compute
further with 𝜅 (1) and 𝜅 (0) (whether symbolically or numerically, exactly or approximately) is to
compute with those definite integrals, which amounts to computing with the error function. For
instance, following (86), we can approximate 𝜅 (1) and 𝜅 (0) by rejection-sampling 𝑥 from normal01.
Alternatively, automatic simplification [Carette and Shan 2016; Gehr et al. 2016] can turn (86) into
an exact closed-form expression for the density 𝜅 (𝑡).

For evaluation (E2), to find a density of 𝜉 with respect to 𝜇, we can invoke the unrestricted
disintegrator (Section 7) by disint (𝜉 ⊗ return ()) 𝜇 𝑡 . This call succeeds because the base-inferring
disintegrator (Section 6) infers the principal base 𝑏 = mix tt *0, 1+ for 𝜇 ⊗ return () (as well as for
𝜉 ⊗ return ()). Applying the totaling transformation to the result of disint then produces the ratio
expression for a density of 𝜉 with respect to 𝜇, as desired in Example 2.11. This ratio contains four
definite integrals (two in the numerator and two in the denominator).

8.2 Mutual information
Given a joint probability distribution 𝜉 : M (𝛼 × 𝛽), let 𝜅 : (𝛼 × 𝛽) → R+ be a density of 𝜉 with
respect to the product of marginals 𝜇 = (fst ⋄ 𝜉) ⊗ (snd ⋄ 𝜉) : M (𝛼 × 𝛽). Then, mutual information
is the expectation (that is, integral) of 𝜆𝑡 . log

(
𝜅 (𝑡)) with respect to 𝜉 [Cover and Thomas 2006]. One

way to estimate mutual information is to draw many samples 𝑡 from 𝜉 and average their values of
log

(
𝜅 (𝑡)) [Gao et al. 2017]. Evaluation (E3) shows how our disintegrator handles (independent)

products of discrete-continuous mixtures (B1) so as to find and evaluate 𝜅. We let 𝜉 : MR2 be a
discrete-continuous mixture as in Gao et al.’s Experiment I:

𝜉 =
((1/2) ⊙ (normal 0 1 ⊗ normal 0 1))

⦶

((1/40) ⊙ return (−1, +1)) ⦶ ((9/40) ⊙ return (+1, +1))
⦶

((9/40) ⊙ return (−1,−1)) ⦶ ((1/40) ⊙ return (+1,−1)) . (87)
To find a density of 𝜉 with respect to 𝜇 = (fst ⋄ 𝜉) ⊗ (snd ⋄ 𝜉), we can invoke the unrestricted
disintegrator (Section 7) by disint (𝜉 ⊗ return ()) 𝜇 𝑡 . This call succeeds because the base-inferring
disintegrator (Section 6) infers the principal base 𝑏 = (mix tt *−1, +1+) ⊗ (mix tt *−1, +1+) for
𝜇 ⊗ return () (as well as for 𝜉 ⊗ return ()). As with evaluation (E2) above, applying the totaling
transformation to the result of disint then produces a ratio expression

𝜆(𝑥,𝑦).

(
if 𝑥 = −1 ∨ 𝑥 = +1 ∨ 𝑦 = −1 ∨ 𝑦 = +1 then 0 else (dnorm 0 1) (𝑥) · (dnorm 0 1) (𝑦))
+ (if 𝑥 = −1 ∧ 𝑦 = +1 then 1/40 else 0

) + (if 𝑥 = +1 ∧ 𝑦 = +1 then 9/40 else 0
)

+ (if 𝑥 = −1 ∧ 𝑦 = −1 then 9/40 else 0
) + (if 𝑥 = +1 ∧ 𝑦 = −1 then 1/40 else 0

)
©«
(
if 𝑥 = −1 ∨ 𝑥 = +1 then 0 else

∫
R (dnorm 0 1) (𝑥) · (dnorm 0 1) (𝑦) 𝑑𝑦)

+ (if 𝑥 = −1 then 1/40 else 0
) + (if 𝑥 = +1 then 9/40 else 0

)
+ (if 𝑥 = −1 then 9/40 else 0

) + (if 𝑥 = +1 then 1/40 else 0
) ª®¬

� ©«
(
if 𝑦 = −1 ∨ 𝑦 = +1 then 0 else

∫
R (dnorm 0 1) (𝑥) · (dnorm 0 1) (𝑦) 𝑑𝑥 )

+ (if 𝑦 = +1 then 1/40 else 0
) + (if 𝑦 = +1 then 9/40 else 0

)
+ (if 𝑦 = −1 then 9/40 else 0

) + (if 𝑦 = −1 then 1/40 else 0
) ª®¬

(88)
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for 𝜅, a density of 𝜉 with respect to 𝜇. Performing the definite integrals in the denominator is
equivalent to simplifying the marginals fst ⋄ 𝜉 and snd ⋄ 𝜉 to eliminate the variable 𝑦 and 𝑥 , and
has been automated [Carette and Shan 2016; Gehr et al. 2016]. Thus, disintegration followed by
simplification produces an exact closed-form expression for the density 𝜅.

8.3 Importance sampling
Evaluation (E4) demonstrates how our disintegrator calculates the density needed for importance
sampling, even when the proposal distribution is not continuous. Consider the discrete-continuous
mixture 𝜇 from (83) as a proposal distribution. This proposal distribution ranges between 0 and 1,
so as an example of a target, let us truncate MacKay’s (19) to between 0 and 1, and mix in point
masses at 0 and 1 for good measure:

𝜉 = do {𝑥 ¢ lebesgue; observe 0 < 𝑥 < 1; exp(0.4(𝑥 − 0.4)2 − 0.08𝑥4) ⊙ return 𝑥}
⦶ (0.37 ⊙ return 0) ⦶ (0.42 ⊙ return 1). (89)

Importance sampling draws samples from 𝜇 and weights them by a density 𝜅 of 𝜉 with respect to 𝜇.
To find 𝜅, as in evaluations (E2) and (E3), we can invoke the unrestricted disintegrator (Section 7)
by disint (𝜉 ⊗ return ()) 𝜇 𝑡 . This call succeeds because the base-inferring disintegrator (Section 6)
infers the principal base 𝑏 = mix tt *0, 1+ for 𝜇 ⊗ return () (as well as for 𝜉 ⊗ return ()). Once again,
applying the totaling transformation to the result of disint then produces the weight function

𝜅 (0) = 0.37
/∫ 0
−∞ (dnorm 3 2) (𝑥) 𝑑𝑥 ,

𝜅 (𝑥) = exp(0.4(𝑥 − 0.4)2 − 0.08𝑥4)/ (dnorm 3 2) (𝑥) if 0 < 𝑥 < 1,
𝜅 (1) = 0.42

/∫ +∞
1 (dnorm 3 2) (𝑥) 𝑑𝑥

(90)

for use in the importance sampler.
The definite integrals in (90), like those in (15), can be computed with the error function. But

in general, when intractable integrals appear in inference, it may be time to turn the integration
variables into auxiliary variables in the distribution and handle them by sampling. After all, Monte
Carlo integration is a major application of sampling. Introducing auxiliary variables moves the
target distribution to a higher-dimensional product space, where other sampling techniques such
as Metropolis-Hastings sampling and Gibbs sampling may be more effective.

8.4 Metropolis-Hastings sampling
Evaluation (E5), Metropolis-Hastings sampling, comprises the use of single-site proposals (B2) and
reversible-jump proposals (B3). These applications offer a good look at the boundary of what our
disintegrator can and cannot handle.

Let 𝜉R : MR and 𝜉R2 : MR2 be some continuous distributions over R and R2. (The precise
distributions do not matter so long as their densities are expressible; for instance, the densities can
be 𝜆𝑥 . exp(0.4(𝑥 − 0.4)2 − 0.08𝑥4) in (19) and 𝜅 in (24).) To conduct Metropolis-Hastings sampling
of the target 𝜉R2 , we follow equation (26) and construct the single-site proposal kernel

𝜁R2 = 𝜆𝑥.
( 1

2 ⊙ do {𝑥 ′1 ¢ normal (fst 𝑥) 0.1; return (𝑥 ′1, snd 𝑥)})
⦶

( 1
2 ⊙ do {𝑥 ′2 ¢ normal (snd 𝑥) 0.1; return (fst 𝑥, 𝑥 ′2)}

)
.

(91)

This proposal kernel flips a fair coin to decide whether to perturb fst 𝑥 and keep snd 𝑥 or to
perturb snd 𝑥 and keep fst 𝑥 . And to conduct Metropolis-Hastings sampling of the target 𝜉R ⊕ 𝜉R2 :
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M (R + R2), we construct the reversible-jump proposal kernel

𝜁R+R2 = 𝜆𝑧. case 𝑧 of inl 𝑥0 →
( 1

2 ⊙ inl ⋄ normal 𝑥0 0.1
)

⦶

( 1
2 ⊙ inr ⋄ (normal 𝑥0 0.1 ⊗ normal 𝑥0 0.1))

inr 𝑥 → ( 1
2 ⊙ inl ⋄ normal ((fst 𝑥 + snd 𝑥)/2) 0.1

)
⦶

( 1
2 ⊙ inr ⋄ (normal (fst 𝑥) 0.1 ⊗ normal (snd 𝑥) 0.1)) .

(92)

This proposal kernel flips a fair coin to decide whether to stay in the same component of the sum
type R + R2 or to jump to the other component.

For the single-site proposal (91), the Metropolis-Hastings acceptance ratio is the density of
𝜁R2 =⊗ 𝜉R2 with respect to 𝜉R2 ⊗= 𝜁R2 . To compute the ratio, we invoke the unrestricted base-
checking disintegrator (Section 7) by disint

((𝜁R2 =⊗ 𝜉R2 ) ⊗ return ()) (𝜉R2 ⊗= 𝜁R2 ) 𝑡 . This call
succeeds because the base-inferring disintegrator (Section 6) infers the principal base

(mix tt *+ ⊗= 𝜆𝑥1.mix tt *+) ⊗= 𝜆𝑥 . (mix tt *fst 𝑥+ ⊗= 𝜆𝑥 ′1 .mix tt *snd 𝑥+) : B (R2)2 (93)

for (𝜉R2 ⊗=𝜁R2 )⊗ return () (as well as for (𝜁R2 =⊗ 𝜉R2 )⊗ return ()). The meaning of this dependent-
product principal base is as expected in (27). Applying the totaling transformation to the result of
disint then produces the desired acceptance ratio.

Similarly, for the reversible-jump proposal (92), the Metropolis-Hastings acceptance ratio is
the density of 𝜁R+R2 =⊗ 𝜉R+R2 with respect to 𝜉R+R2 ⊗= 𝜁R+R2 . This time, the call disint

((𝜁R+R2 =⊗

𝜉R+R2 ) ⊗ return ()) (𝜉R+R2 ⊗= 𝜁R+R2 ) 𝑡 succeeds by inferring the principal base(
mix tt *+ ⊕ (mix tt *+ ⊗= 𝜆𝑥1.mix tt *+))

⊗= 𝜆𝑧.
(
mix tt *+ ⊕ (mix tt *+ ⊗= 𝜆𝑥 ′1 .mix tt *+)) : B (R + R2)2, (94)

which just means (lebesgue ⊕ lebesgue2)2 as expected in (28). Again, applying the totaling trans-
formation then produces the desired acceptance ratio.

Unfortunately, our disintegrator returns no result if we change the reversible-jump proposal (92)
so that it sometimes jumps without adding noise, for instance

𝜁 ′R+R2 = 𝜆𝑧. case 𝑧 of inl 𝑥0 →
( 1

2 ⊙ inl ⋄ normal 𝑥0 0.1
)

⦶

( 1
2 ⊙ inr ⋄ do {𝑑 ¢ normal 0 0.1; return (𝑥0 + 𝑑, 𝑥0 − 𝑑)}

)
inr 𝑥 → ( 1

2 ⊙ inl ⋄ return ((fst 𝑥 + snd 𝑥)/2))
⦶

( 1
2 ⊙ inr ⋄ (normal (fst 𝑥) 0.1 ⊗ normal (snd 𝑥) 0.1)) .

(95)

The failure occurs in base inference: we want a base like(
mix tt *+ ⊕ (mix tt *+ ⊗= 𝜆𝑥1 .mix tt *+))
⊗= 𝜆𝑧. case 𝑧 of inl 𝑥0 →

(
mix tt *+ ⊕ (mix tt *+ ⊗= 𝜆𝑥 ′1 .mix ff *𝑥0 − (𝑥 ′1 − 𝑥0)+)

)
inr 𝑥 → (

mix ff *(fst 𝑥 + snd 𝑥)/2+ ⊕ (mix tt *+ ⊗= 𝜆𝑥 ′1.mix tt *+)) (96)

or perhaps(
mix tt *+ ⊕ (mix tt *+ ⊗= 𝜆𝑥1 .mix tt *+))
⊗= 𝜆𝑧.

(
mix tt *case 𝑧 of inr 𝑥 → (fst 𝑥 + snd 𝑥)/2+
⊕ (mix tt *+ ⊗= 𝜆𝑥 ′1.mix tt *case 𝑧 of inl 𝑥0 → 𝑥0 − (𝑥 ′1 − 𝑥0)+)

)
: B (R + R2)2. (97)

The suggestion (96) is beyond the reach of our disintegrator because case discrimination is not in our
base language (Figures 22 and 25). And the suggestion (97) is beyond the reach of our disintegrator

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: February 2019.



Symbolic disintegration with a variety of base measures 53

because the constraints(
mix ff *(fst 𝑥 + snd 𝑥)/2+, B1 [𝑧]

)
and

(
mix ff *𝑥0 − (𝑥 ′1 − 𝑥0)+, B2 [𝑧, 𝑥 ′1]

)
(98)

cannot be solved (Section 6.5.1). The failure to solve these constraints can in turn be blamed on the
fact that the notion of term equality and matching we implemented in Figure 22 and Section 6.5.1
(“known to be equal”) is mere 𝛼-equivalence: it is not modulo 𝛽-equivalence for sum types, and it
does not take into account having emitted the guards let inr 𝑥 = 𝑧 and let inl 𝑥0 = 𝑧.

8.5 Belief update
Evaluation (E6) shows that our disintegrator can use a discrete-continuous mixture base (B1) to
find not only densities (E1) but also conditional distributions. We start with the joint distribution
𝜉 : M (R × R) in equation (36): we want to infer an unknown random number from its clamped
observation. To condition on the observation (the snd dimension of 𝜉), we can invoke the restricted
base-checking disintegrator (Section 5) by check (swap⋄𝜉)𝑏 𝑡 . As in Section 8.1, there is no solution
for the base 𝑏 = mixtt*+ or 𝑏 = mixff *0, 1+, but if we let 𝑏 = mixtt*0, 1+, then we get the following
solution (similar to (86), and again simplified by removing factor 1 and inlining let-bindings):

𝜆𝑡 . do {observe 𝑡 = 1; 𝑥 ¢ normal 3 2; 𝑦 ¢ normal 𝑥 1;
observe 0 < min{1, 𝑦}; observe 1 < 𝑦; return 𝑥}

⦶ do {observe 𝑡 ≠ 0 ∧ 𝑡 ≠ 1; 𝑥 ¢ normal 3 2; factor (dnorm 𝑥 1) (𝑡);
observe 0 < min{1, 𝑡}; observe 𝑡 ≤ 1; return 𝑥}

⦶ do {observe 𝑡 = 0; 𝑥 ¢ normal 3 2; 𝑦 ¢ normal 𝑥 1;
observe min{1, 𝑦} ≤ 0; return 𝑥} : R→MR.

(99)

For each possible observation 𝑡 : R, only one of the three summands above is nonzero: the first
summand if 𝑡 = 1; the second if 0 < 𝑡 < 1; the third if 𝑡 = 0. To estimate the distribution of 𝑥
given 𝑡 , the code of that summand can be executed in a standard way as an importance sampler:
¢ makes a random choice; factor incurs an importance weight, and observe decides whether to
reject a sample. As in Example 2.20, symbolic equational reasoning about normal distributions can
rewrite 𝑥 ¢ normal 3 2; factor (dnorm 𝑥 1) (𝑡) in the second summand to factor (dnorm 3

√
5) (𝑡);

𝑥 ¢ normal 3+4𝑡
5

2√
5 . And as in Section 8.1, symbolic equational reasoning about error functions

can rewrite the guards about 𝑦 in the first and third summands into exact closed-form importance
weights. These automatic simplifications [Carette and Shan 2016; Gehr et al. 2016] increase the
accuracy and reduce the variance of the importance sampler.

Instead of specifying the base 𝑏 = mix tt *0, 1+, it works just as well to invoke the unrestricted
base-checking disintegrator by disint (swap⋄ 𝜉) (snd⋄ 𝜉) 𝑡 , because the base-inferring disintegrator
infers that principal base for snd ⋄ 𝜉 .

8.6 Gibbs sampling
Evaluation (E7) applies our disintegrator to a discrete-continuous mixture base (B1) to generate
conditional distributions that constitute a Gibbs sampler. The target distribution

𝜉 = do {𝑥 ¢ normal 3 2;
𝑦1 ¢ normal 𝑥 1;
𝑦2 ¢ normal 𝑥 1;
return (max{0,min{1, 𝑦1}},max{0,min{1, 𝑦2}})} : MR2

(100)

is generated by making two noisy measurements 𝑦1, 𝑦2 of the same random variable 𝑥 . Before the
measurements are returned, they are clamped to between 0 and 1. This is a very simple instance of
a Tobit model.
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A Gibbs sampler for 𝜉 : MR2 alternates repeatedly between sampling the clamped 𝑦2 given the
clamped 𝑦1 and sampling the clamped 𝑦1 given the clamped 𝑦2. By symmetry, we only discuss the
former conditional distribution. To find it, we can invoke the restricted base-checking disintegrator
(Section 5) by check 𝜉 (mix tt *0, 1+) 𝑡 , where the variable 𝑡 : R represents the clamped 𝑦1. (Just as
well, we can invoke the unrestricted base-checking disintegrator by disint 𝜉 (fst ⋄ 𝜉) 𝑡 .) We get the
following solution (again simplified by removing factor 1 and inlining let-bindings):

𝜆𝑡 . do {observe 𝑡 = 1; 𝑥 ¢ normal 3 2; 𝑦1 ¢ normal 𝑥 1; 𝑦2 ¢ normal 𝑥 1;
observe 0 < min{1, 𝑦1}; observe 1 < 𝑦1; return max{0,min{1, 𝑦2}}}

⦶ do {observe 𝑡 ≠ 0 ∧ 𝑡 ≠ 1; 𝑥 ¢ normal 3 2; factor (dnorm 𝑥 1) (𝑡); 𝑦2 ¢ normal 𝑥 1;
observe 0 < min{1, 𝑡}; observe 𝑡 ≤ 1; return max{0,min{1, 𝑦2}}}

⦶ do {observe 𝑡 = 0; 𝑥 ¢ normal 3 2; 𝑦1 ¢ normal 𝑥 1; 𝑦2 ¢ normal 𝑥 1;
observe min{1, 𝑦1} ≤ 0; return max{0,min{1, 𝑦2}}} : R→MR.

(101)

As in Section 8.5, for each 𝑡 : R, only one of the three summands above is nonzero. Moreover,
automatic simplification [Carette and Shan 2016; Gehr et al. 2016] can rewrite the solution to

𝜆𝑡 . do {observe 𝑡 = 1; 𝑦1 ¢ normal 3
√

5; 𝑦2 ¢ normal 3+4𝑦1
5

3√
5 ;

observe 0 < min{1, 𝑦1}; observe 1 < 𝑦1; return max{0,min{1, 𝑦2}}}
⦶ do {observe 𝑡 ≠ 0 ∧ 𝑡 ≠ 1; factor (dnorm 3

√
5) (𝑡); 𝑦2 ¢ normal 3+4𝑡

5
3√
5 ;

observe 0 < min{1, 𝑡}; observe 𝑡 ≤ 1; return max{0,min{1, 𝑦2}}}
⦶ do {observe 𝑡 = 0; 𝑦1 ¢ normal 3

√
5; 𝑦2 ¢ normal 3+4𝑦1

5
3√
5 ;

observe min{1, 𝑦1} ≤ 0; return max{0,min{1, 𝑦2}}} : R→MR.
(102)

By drawing 𝑦1 from a truncated normal distribution and drawing 𝑦2 from a normal distribution,
we can run this simplified code (102) to sample the clamped 𝑦2 given 𝑡 , the clamped 𝑦1. Thus,
disintegration followed by simplification produces the exact code for a Gibbs update step.

If we make the target distribution (100) a more substantial Tobit (Bayesian censored linear regres-
sion) model by including more than one coefficient 𝑥 and more than two measurements 𝑦1, 𝑦2, then
the disintegrator still succeeds. However, it is difficult to sample Gibbs updates from a distribution
conditioned on multiple censored measurements. Instead, it is common to include the coefficients 𝑥
in the target distribution and update them as part of Gibbs sampling. Our disintegrator can generate
the code for those updates as well.

9 RELATEDWORK
Our work shows how to compute densities and disintegrations, exactly and symbolically, for a
broader variety of base measures than before. It thus contrasts with previous works that perform
simplification instead, that compute approximations instead, and that fix the base measure instead.

Performing simplification Whereas disintegration seeks any program whose denoted mea-
sure differs from the given program in accordance with a semantic specification, simplification
seeks a program whose denoted measure is same as the given program but whose efficiency
or readability is improved. Our work is thus complementary to the work on simplification by
Carette and Shan [2016], Gehr et al. [2016], and Walia et al. [2019]: the result of disintegration
can be improved by simplification while preserving correctness, and it may also be possible
to ease disintegration by first simplifying its input.

Computing approximations Many probabilistic programming systems can be said to com-
pute densities or disintegrations in the form of an approximation such as a stream of density
estimates [Pfeffer 2009] or of posterior samples [Lunn et al. 2000; Carpenter et al. 2017;
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Goodman et al. 2008; Wingate et al. 2011; Wood et al. 2014; Wu et al. 2018]. But because
those computations only take programs as input and do not produce programs as output,
they cannot be composed with other program transformations (such as simplification as just
discussed) or used as part of a larger application or compiler pipeline (such as to generate
desired samplers or plots) in a modular way. In particular, although Wu et al.’s work on
mixtures [2018] shares motivation with us such as the GPA problem (Section 1.2 and Exam-
ple 2.11), their lexicographic inference algorithms produce weighted samples and so do not
compose and do not allow specifying a custom proposal distribution.

Fixing the base measure Previous program transformations that compute densities and dis-
integrations can be classified by the base measures they allow.
• Mohammed Ismail and Shan’s density calculator [2016] and Shan and Ramsey’s disintegra-

tor [2017] only deal explicitly with lebesgue, the Lebesgue measure over R.
• Bhat et al.’s density calculator [2012, 2013] handles tuples. That is, it allows base measures

lebesgue𝑛 where 𝑛 is a concrete natural number. Bhat et al.’s stock measure is our initial
genBase function (42).
• Narayanan and Shan’s disintegrator [2017] handles variable-length arrays without unrolling

them. That is, it allows base measures lebesgue𝑛 for symbolic 𝑛.
• Roberts et al.’s density calculator [2019] handles tuples and variable-length arrays as well

as their disjoint sums, for the purpose of automating reversible-jump Metropolis-Hastings
sampling. Because it is specialized to disjoint sums of tuples, it is not clear how it might
handle tuples that contain disjoint sums. And because it does not reason about discrete-
continuous mixtures and dependent products (as in (27)), it is not clear how it might handle
proposal kernels that mix single-site and multi-site updating.

Our base-measure language (Figure 22) includes discrete-continuous mixtures over R, de-
pendent products, and disjoint sums; we also allow specifying the base measure as another
probabilistic program (Section 7). Thus, our work subsumes all but Narayanan and Shan’s
[2017] and Roberts et al.’s [2019] handling of arrays, and is the first to allow different base
measures over the same type.

Soundness. We prove our disintegrator sound using equational reasoning on probabilistic pro-
grams (Section 4.1), which is familiar from functional programming [Bird and de Moor 1996; Hughes
1995; Hutton and Meijer 1996], and using induction on step indices (Section 4.4), which is familiar
from domain theory. Like us, Shan and Ramsey [2017] also use equational reasoning to argue for
the soundness of their disintegrator, but we give more detail (Section 4.4) for a refactored proof
(Section 4.2) about a more general disintegrator (Section 5).

Besides disintegration, equational reasoning has been used to prove other properties of probabilis-
tic programs [Sato et al. 2019], including inference correctness [Ścibior et al. 2018]. Our soundness
result plugs into those proofs; for example, it discharges the density preconditions in Ścibior et al.’s
theorems about the correctness of Metropolis-Hastings sampling.

Semantics. The foundation of our equational reasoning is the semantics of core Hakaru. It is based
on the probability monad [Giry 1982; Ramsey and Pfeffer 2002]. However, because disintegration
requires scoring by an unbounded factor, we must consider measures that are not probability
distributions, and we cannot restrict ourselves to sub-probability distributions as Borgström et al.
do [2016]. Rather, in Section 3.2.1 we adopt Staton’s s-finite semantics [2017]. This semantics has
been extended to richer languages with higher-order recursive terms and types [Heunen et al. 2017;
Ścibior et al. 2018; Vákár et al. 2019]. The logical relations of Culpepper and Cobb [2017] and Wand
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et al. [2018] also support reasoning about contextual equivalence of probabilistic programs with
unbounded scoring.

Completeness. A density calculator and disintegrator, like ours, can be regarded as a programming
analogue of Radon-Nikodym theorems, which assert the existence of a density [Nikodym 1930],
and of disintegration theorems, which assert the existence of a disintegration [Dieudonné 1948;
Chang and Pollard 1997]. In particular, Vákár and Ong [2018] recently proved Radon-Nikodym and
disintegration theorems with respect to s-finite kernels. Our disintegrator falls under a simple special
case of those theorems, because it handles s-finite measures with respect to 𝜎-finite base measures.
However, it is not structured like the proof of any existence theorem, and it is unfortunately not
complete: there are easy ways to force it to fail (such as ◁ (𝑥 + 𝑥)), and we demonstrate its utility
only empirically (Section 8). This incompleteness is not explained by Ackerman et al.’s result [2011,
2017] that a computable measure can have disintegrations that are all uncomputable, because our
input language does not express all computable measures. All the statements about our disintegrator
in this paragraph apply to previous density calculators and disintegrators as well.

Continuations. Our disintegrator uses continuations in three ways: to maintain the heap for lazy
partial evaluation [Jørgensen 1992; Fischer et al. 2008], to deal separately with mixture components
[Danvy and Filinski 1990], and to emit bindings in the output code [Bondorf 1992; Lawall and
Danvy 1994]. Continuations can also be used to backtrack among nondeterminism possibilities
[Tennent 1973], but we manage nondeterminism using sets instead for clarity.

Inference. Our notion of a principal base measure is new (Definition 6.5), but our algorithm to find
it is clearly inspired by constraint-based type inference [Wand 1987a,b; Pierce 2002, Chapter 22].

10 FUTUREWORK
Section 8.4 describes a common kind of reversible-jump proposal kernel for which our disintegrator
fails to compute the Metropolis-Hastings acceptance ratio due to its incomplete handling of sum
types. We leave it to future work to handle this case.

Section 9 mentions that Narayanan and Shan’s disintegrator [2017] and Roberts et al.’s density
calculator [2019] handle variable-length arrays whereas our new disintegrator does not. Thus,
another direction for future work is to handle array programs without unrolling them. In other
words, we would like to add plates (𝑛-ary products, where 𝑛 is a symbolic array size) [Buntine 1994]
to our base-measure language. Such plates of mixture bases may enable a disintegrator to scale up
and to produce full conditional distributions for Gibbs sampling from an array distribution.

Finally, our unrestricted base-checking disintegrator in Section 7 assumes that, not only does
the given base measure 𝑚2 have a density with respect to the inferred base measure 𝑏 (which is
guaranteed by inference), but also vice versa. For example, to compute the density of normal 0 1
with respect to𝑚2 = normal 3 2 in Figure 5, the definition (81) first infers that𝑚2 has the density
dnorm 3 2 with respect to the Lebesgue measure 𝑏 = mix tt *+, then uses Proposition 2.10(2) to
conclude that the reciprocal of dnorm 3 2 is a density of 𝑏 with respect to𝑚2, without checking the
assumption that dnorm 3 2 is almost everywhere finite and nonzero. It would be nice to check this
assumption algorithmically. In fact, we only need to check in (81) that |check𝑚′2 𝑏 𝑡 | is 𝑏-almost
everywhere finite and nonzero at those places 𝑡 where |check𝑚1 𝑏 𝑡 | is nonzero. We leave this
checking for future work.
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