Innate concepts as specialized programs?

Chung-chieh Shan Rutgers University

Cornell workshop on grammar induction
Commentary on Noah Goodman's talk
'Concept learning as probabilistic program induction'
May 16, 2010

I represent knowledge in (probabilistic) programming languages for human communication and machine execution.

- Separate what from how
- Reconcile generality with specialization

Question

How to base algorithmic accounts of human performance on Noah's computational models?

- Initial hypothesis: Church's general inference
- Eventual hypotheses: hand-coded special inference

Complaint

Why not discard Church model eventually?
Especially if special inference is approximate...

Suggestion

I represent knowledge in (probabilistic) programming languages for human communication and machine execution.

- Separate what from how
- Reconcile generality with specialization

Question

How to base algorithmic accounts of human performance on Noah's computational models?

- ▶ Initial hypothesis: Church's general inference
- Eventual hypotheses: hand-coded special inference

Complaint

Why not discard Church model eventually?
Especially if special inference is approximate...

Suggestion

I represent knowledge in (probabilistic) programming languages for human communication and machine execution.

- Separate what from how
- Reconcile generality with specialization

Question

How to base algorithmic accounts of human performance on Noah's computational models?

- Initial hypothesis: Church's general inference
- Eventual hypotheses: hand-coded special inference

Complaint

Why not discard Church model eventually? Especially if special inference is approximate...

Suggestion

I represent knowledge in (probabilistic) programming languages for human communication and machine execution.

- Separate what from how
- Reconcile generality with specialization

Question

How to base algorithmic accounts of human performance on Noah's computational models?

- Initial hypothesis: Church's general inference
- Eventual hypotheses: hand-coded special inference

Complaint

Why not discard Church model eventually? Especially if special inference is approximate...

Suggestion

Parnas

'Domain-general', 'language-specific' are properties of modules.

A module is a part of a description of a system.

- Modularity should be invariant under physically entangled emulation with dye pack.
- Modularity makes a theory more concise, comprehensible.

Organizing principle: reuse in the face of change

Parnas

'Domain-general', 'language-specific' are properties of modules.

A module is a part of a description of a system.

- Modularity should be invariant under physically entangled emulation with dye pack.
- Modularity makes a theory more concise, comprehensible.

Organizing principle: reuse in the face of change

Computation: λx . x^8

Computation: λx . x^8

Algorithm: λx . $((x^2)^2)^2$

Computation: λx . x^8

Algorithm: λx . $((x^2)^2)^2$

Algorithm: λx . f(3) where f(0) = x

$$f(k+1) = f(k)^2$$

```
Computation: \lambda x. x^8
```

Algorithm: λx . $((x^2)^2)^2$

Algorithm:
$$\lambda x$$
. $f(3)$ where $f(0) = x$

$$f(k+1) = f(k)^2$$

Algorithm generator: '
$$\lambda x$$
.' $f(3)$ where $f(0) = 'x'$

$$f(k+1)=f(k)^{'2'}$$

```
Computation: \lambda x. x^8
Algorithm: \lambda x. ((x^2)^2)^2
Algorithm: \lambda x. f(3) where f(0) = x
                              f(k+1) = f(k)^2
Algorithm generator: '\lambda x.' f(3) where f(0) = 'x'
                                           f(k+1) = f(k)^{2}
Computation: \lambda x. x^{10}
Algorithm: \lambda x. ((x^2)^2 \times x)^2
Algorithm generator: '\lambda x.' g(10) where g(1) = 'x'
                                            q(2n) = q(n)^{2}
                                            q(2n+1)=q(2n)'\times x'
```

Summary

A module is a part of a description of a system.

'Compile time' includes evolution.