
1/5

Innate concepts as specialized programs?

Chung-chieh Shan
Rutgers University

Cornell workshop on grammar induction
Commentary on Noah Goodman’s talk

‘Concept learning as probabilistic program induction’
May 16, 2010



2/5

Marr
I represent knowledge in (probabilistic) programming languages
for human communication and machine execution.

I Separate what from how
I Reconcile generality with specialization

Question
How to base algorithmic accounts of human performance
on Noah’s computational models?

I Initial hypothesis: Church’s general inference
I Eventual hypotheses: hand-coded special inference

Complaint
Why not discard Church model eventually?
Especially if special inference is approximate. . .

Suggestion
Custom code generation—compile model into inference!



2/5

Marr
I represent knowledge in (probabilistic) programming languages
for human communication and machine execution.

I Separate what from how
I Reconcile generality with specialization

Question
How to base algorithmic accounts of human performance
on Noah’s computational models?

I Initial hypothesis: Church’s general inference
I Eventual hypotheses: hand-coded special inference

Complaint
Why not discard Church model eventually?
Especially if special inference is approximate. . .

Suggestion
Custom code generation—compile model into inference!



2/5

Marr
I represent knowledge in (probabilistic) programming languages
for human communication and machine execution.

I Separate what from how
I Reconcile generality with specialization

Question
How to base algorithmic accounts of human performance
on Noah’s computational models?

I Initial hypothesis: Church’s general inference
I Eventual hypotheses: hand-coded special inference

Complaint
Why not discard Church model eventually?
Especially if special inference is approximate. . .

Suggestion
Custom code generation—compile model into inference!



2/5

Marr
I represent knowledge in (probabilistic) programming languages
for human communication and machine execution.

I Separate what from how
I Reconcile generality with specialization

Question
How to base algorithmic accounts of human performance
on Noah’s computational models?

I Initial hypothesis: Church’s general inference
I Eventual hypotheses: hand-coded special inference

Complaint
Why not discard Church model eventually?
Especially if special inference is approximate. . .

Suggestion
Custom code generation—compile model into inference!



3/5

Parnas

‘Domain-general’, ‘language-specific’ are properties of modules.

A module is a part of a description of a system.
I Modularity should be invariant under physically entangled

emulation with dye pack.
I Modularity makes a theory more concise, comprehensible.

Organizing principle: reuse in the face of change

a:"

b:"

":"
a:a

b:b

":"
a:"

b:"

b

a

a
b

a

b

a

b

on abb =

general description specific machinery
specialize



3/5

Parnas

‘Domain-general’, ‘language-specific’ are properties of modules.

A module is a part of a description of a system.
I Modularity should be invariant under physically entangled

emulation with dye pack.
I Modularity makes a theory more concise, comprehensible.

Organizing principle: reuse in the face of change

a:"

b:"

":"
a:a

b:b

":"
a:"

b:"

b

a

a
b

a

b

a

b

on abb =

general description specific machinery
specialize



4/5

Futamura

Computation: �x: x8

Algorithm: �x: ((x2)2)2

Algorithm: �x: f(3) where f(0) = x

f(k + 1) = f(k)2

Algorithm generator: ‘�x:’ f(3) where f(0) = ‘x’

f(k + 1) = f(k)‘2’

Computation: �x: x10

Algorithm: �x: ((x2)2 � x)2

Algorithm generator: ‘�x:’ g(10) where g(1) = ‘x’

g(2n) = g(n)‘2’

g(2n+ 1) = g(2n) ‘� x’



4/5

Futamura

Computation: �x: x8

Algorithm: �x: ((x2)2)2

Algorithm: �x: f(3) where f(0) = x

f(k + 1) = f(k)2

Algorithm generator: ‘�x:’ f(3) where f(0) = ‘x’

f(k + 1) = f(k)‘2’

Computation: �x: x10

Algorithm: �x: ((x2)2 � x)2

Algorithm generator: ‘�x:’ g(10) where g(1) = ‘x’

g(2n) = g(n)‘2’

g(2n+ 1) = g(2n) ‘� x’



4/5

Futamura

Computation: �x: x8

Algorithm: �x: ((x2)2)2

Algorithm: �x: f(3) where f(0) = x

f(k + 1) = f(k)2

Algorithm generator: ‘�x:’ f(3) where f(0) = ‘x’

f(k + 1) = f(k)‘2’

Computation: �x: x10

Algorithm: �x: ((x2)2 � x)2

Algorithm generator: ‘�x:’ g(10) where g(1) = ‘x’

g(2n) = g(n)‘2’

g(2n+ 1) = g(2n) ‘� x’



4/5

Futamura

Computation: �x: x8

Algorithm: �x: ((x2)2)2

Algorithm: �x: f(3) where f(0) = x

f(k + 1) = f(k)2

Algorithm generator: ‘�x:’ f(3) where f(0) = ‘x’

f(k + 1) = f(k)‘2’

Computation: �x: x10

Algorithm: �x: ((x2)2 � x)2

Algorithm generator: ‘�x:’ g(10) where g(1) = ‘x’

g(2n) = g(n)‘2’

g(2n+ 1) = g(2n) ‘� x’



4/5

Futamura

Computation: �x: x8

Algorithm: �x: ((x2)2)2

Algorithm: �x: f(3) where f(0) = x

f(k + 1) = f(k)2

Algorithm generator: ‘�x:’ f(3) where f(0) = ‘x’

f(k + 1) = f(k)‘2’

Computation: �x: x10

Algorithm: �x: ((x2)2 � x)2

Algorithm generator: ‘�x:’ g(10) where g(1) = ‘x’

g(2n) = g(n)‘2’

g(2n+ 1) = g(2n) ‘� x’



5/5

Summary

A module is a part of a description of a system.

general description specific machinery
specialize

‘Compile time’ includes evolution.

http://www.cs.kuleuven.be/~daanf/pubs/files/tmp_iclp10.pdf

