
Self-applicable probabilistic inference
without interpretive overhead

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@rutgers.edu

Tufts University
12 February 2010

2/16

Probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

Pr(Reality)

Pr(Obs j Reality)
obs

cloudy

rain sprinkler

wet_roof wet_grass

9=
; Pr(Reality j Obs = obs)

Pr(Obs = obs j Reality) Pr(Reality)

Pr(Obs = obs)

Pr(rain j wet_grass = true)

Language
(BLOG, IBAL,
Church)

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.

2/16

Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

Pr(Reality)

Pr(Obs j Reality)
obs

cloudy

rain sprinkler

wet_roof wet_grass

9=
; Pr(Reality j Obs = obs)

Pr(Obs = obs j Reality) Pr(Reality)

Pr(Obs = obs)

Pr(rain j wet_grass = true)

Language
(BLOG, IBAL,
Church)

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.

2/16

Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

invoke distributions,
conditionalization, . . .

Language
(BLOG, IBAL,
Church)

random choice,
observation, . . .

interpret

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.

2/16

Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.

2/16

Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

invoke interpret

Express models and inference as interacting programs
in the same general-purpose language.

2/16

Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Payoff: expressive model
+ models of inference:

bounded-rational
theory of mind

Payoff: fast inference
+ deterministic parts of

models run at full speed
+ importance sampling

Express models and inference as interacting programs
in the same general-purpose language.

3/16

Outline

I Expressivity
Memoization
Nested inference

Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

Applications

4/16

Grass model cloudy

rain sprinkler

wet_roof wet_grass

let flip = fun p ->

dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->

let cloudy = flip 0.5 in

let rain = flip (if cloudy then 0.8 else 0.2) in

let sprinkler = flip (if cloudy then 0.1 else 0.5) in

let wet_roof = flip 0.7 && rain in

let wet_grass = flip 0.9 && rain ||

flip 0.9 && sprinkler in

if wet_grass then rain else fail ()

normalize (exact_reify grass_model)

Models are ordinary code (in OCaml) using a library function dist.

Random variables are ordinary variables.
Inference applies to thunks and returns a distribution.
Deterministic parts of models run at full speed.

4/16

Grass model cloudy

rain sprinkler

wet_roof wet_grass

let flip = fun p ->

dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->

let cloudy = flip 0.5 in

let rain = flip (if cloudy then 0.8 else 0.2) in

let sprinkler = flip (if cloudy then 0.1 else 0.5) in

let wet_roof = flip 0.7 && rain in

let wet_grass = flip 0.9 && rain ||

flip 0.9 && sprinkler in

if wet_grass then rain else fail ()

normalize (exact_reify grass_model)

Models are ordinary code (in OCaml) using a library function dist.

Random variables are ordinary variables.
Inference applies to thunks and returns a distribution.
Deterministic parts of models run at full speed.

4/16

Grass model cloudy

rain sprinkler

wet_roof wet_grass

let flip = fun p ->

dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->

let cloudy = flip 0.5 in

let rain = flip (if cloudy then 0.8 else 0.2) in

let sprinkler = flip (if cloudy then 0.1 else 0.5) in

let wet_roof = flip 0.7 && rain in

let wet_grass = flip 0.9 && rain ||

flip 0.9 && sprinkler in

if wet_grass then rain else fail ()

normalize (exact_reify grass_model)

Models are ordinary code (in OCaml) using a library function dist.
Random variables are ordinary variables.

Inference applies to thunks and returns a distribution.
Deterministic parts of models run at full speed.

4/16

Grass model cloudy

rain sprinkler

wet_roof wet_grass

let flip = fun p ->

dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->

let cloudy = flip 0.5 in

let rain = flip (if cloudy then 0.8 else 0.2) in

let sprinkler = flip (if cloudy then 0.1 else 0.5) in

let wet_roof = flip 0.7 && rain in

let wet_grass = flip 0.9 && rain ||

flip 0.9 && sprinkler in

if wet_grass then rain else fail ()

normalize (exact_reify grass_model)

Models are ordinary code (in OCaml) using a library function dist.
Random variables are ordinary variables.

Inference applies to thunks and returns a distribution.
Deterministic parts of models run at full speed.

4/16

Grass model cloudy

rain sprinkler

wet_roof wet_grass

let flip = fun p ->

dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->

let cloudy = flip 0.5 in

let rain = flip (if cloudy then 0.8 else 0.2) in

let sprinkler = flip (if cloudy then 0.1 else 0.5) in

let wet_roof = flip 0.7 && rain in

let wet_grass = flip 0.9 && rain ||

flip 0.9 && sprinkler in

if wet_grass then rain else fail ()

normalize (exact_reify grass_model)

Models are ordinary code (in OCaml) using a library function dist.
Random variables are ordinary variables.
Inference applies to thunks and returns a distribution.

Deterministic parts of models run at full speed.

4/16

Grass model cloudy

rain sprinkler

wet_roof wet_grass

let flip = fun p ->

dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->

let cloudy = flip 0.5 in

let rain = flip (if cloudy then 0.8 else 0.2) in

let sprinkler = flip (if cloudy then 0.1 else 0.5) in

let wet_roof = flip 0.7 && rain in

let wet_grass = flip 0.9 && rain ||

flip 0.9 && sprinkler in

if wet_grass then rain else fail ()

normalize (exact_reify grass_model)

Models are ordinary code (in OCaml) using a library function dist.
Random variables are ordinary variables.
Inference applies to thunks and returns a distribution.
Deterministic parts of models run at full speed.

5/16

Models as programs in a general-purpose language

Reuse existing infrastructure!

I Rich libraries: lists, arrays, database access, I/O, . . .
I Type inference
I Functions as first-class values
I Compiler
I Debugger
I Memoization

Express Dirichlet processes, etc. (Goodman et al. 2008)

Speed up inference using lazy evaluation
bucket elimination
sampling w/memoization (Pfeffer 2007)

5/16

Models as programs in a general-purpose language

Reuse existing infrastructure!

I Rich libraries: lists, arrays, database access, I/O, . . .
I Type inference
I Functions as first-class values
I Compiler
I Debugger
I Memoization

Express Dirichlet processes, etc. (Goodman et al. 2008)

Speed up inference using lazy evaluation
bucket elimination
sampling w/memoization (Pfeffer 2007)

6/16

Self application: nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.

6/16

Self application: nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?

Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.

6/16

Self application: nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.

6/16

Self application: nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin))

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.

6/16

Self application: nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.
Estimate p by flipping the coin twice.
What is the probability that our estimate of p is at least 0:3?
Answer: 7/8.

at_least 0.3 true (sample 2 coin))

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.

6/16

Self application: nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.
Estimate p by flipping the coin twice.
What is the probability that our estimate of p is at least 0:3?
Answer: 7/8.

at_least 0.3 true (sample 2 coin))

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.

7/16

Grice and Marr

probabilistic model
(e.g., grammar)

7/16

Grice and Marr

approximate inference
(e.g., comprehension)

approximate inference
(e.g., comprehension)

probabilistic model
(e.g., grammar)

7/16

Grice and Marr

probabilistic model
(e.g., joint activity and goal)

probabilistic model
(e.g., joint activity and goal)

probabilistic model
(e.g., joint activity and goal)

approximate inference
(e.g., comprehension)

probabilistic model
(e.g., grammar)

7/16

Grice and Marr
approximate inference

(e.g., plan utterance)
approximate inference

(e.g., plan utterance)
approximate inference

(e.g., plan utterance)
approximate inference

(e.g., plan utterance)

probabilistic model
(e.g., joint activity and goal)

approximate inference
(e.g., comprehension)

probabilistic model
(e.g., grammar)

8/16

Outline

Expressivity
Memoization
Nested inference

I Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

Applications

9/16

Reifying a model into a search tree

closed

closed

true

.8

closed

.2

.3

false

.2

closed

...

.6

...

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.

9/16

Reifying a model into a search tree

open

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.

9/16

Reifying a model into a search tree

closed

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.

9/16

Reifying a model into a search tree

closed

closed

true

.8

open

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.

9/16

Reifying a model into a search tree

closed

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.

9/16

Reifying a model into a search tree

open

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Inference procedures cannot access models’ source code.

Reify then reflect:
I Brute-force enumeration becomes bucket elimination
I Sampling becomes particle filtering

9/16

Reifying a model into a search tree

open

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Implementation: represent a probability and state monad
(Giry 1982, Moggi 1990, Filinski 1994)

using first-class delimited continuations
(Strachey & Wadsworth 1974,

Felleisen et al. 1987,
Danvy & Filinski 1989)

Implementation: using clonable user-level threads
I Model runs inside a thread.
I dist clones the thread.
I fail kills the thread.
I Memoization mutates thread-local storage.

Analogy: Virtualize (not emulate) a CPU. Nesting works.

10/16

Importance sampling with look-ahead

open

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

Probability mass pc = 1

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/16

Importance sampling with look-ahead

closed

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

Probability mass pc = 1

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/16

Importance sampling with look-ahead

closed

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

Probability mass pc = 1

(:2; false)

(:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/16

Importance sampling with look-ahead

closed

:3 closed

true

.8

open

.2

.3

false

.2

:45 closed

open

.6

open

.3

.5

Probability mass pc = :75

(:2; false)

(:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/16

Importance sampling with look-ahead

closed

closed

true

.8

open

.2

.3

false

.2

closed

open

.6

open

.3

.5

Probability mass pc = :75

(:2; false)

(:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/16

Importance sampling with look-ahead

closed

closed

true

.8

open

.2

.3

false

.2

closed

open

.6

open

.3

.5

Probability mass pc = :75

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/16

Importance sampling with look-ahead

closed

closed

true

.8

0 closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

Probability mass pc = 0

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/16

Importance sampling with look-ahead

closed

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

Probability mass pc = 0

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

11/16

Outline

Expressivity
Memoization
Nested inference

Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

I Applications

12/16

Conversational implicature in coordination discourse

Linguist:

Does ‘some’ mean ‘some but not all’?
—express nested probabilistic models intuitively

Alice: some of our kids are coming home for dinner tonight.

—trade off informativity against complexity

Bob: (cooks food for n� 1 kids)

—process complex utterances less accurately

12/16

Conversational implicature in coordination discourse

Linguist: Does ‘some’ mean ‘some but not all’?

—express nested probabilistic models intuitively

Alice: some of our kids are coming home for dinner tonight.

—trade off informativity against complexity

Bob: (cooks food for n� 1 kids)

—process complex utterances less accurately

12/16

Conversational implicature in coordination discourse

Linguist: Does ‘some’ mean ‘some but not all’?

—express nested probabilistic models intuitively

Alice: some of our kids are coming home for dinner tonight.

—trade off informativity against complexity

Bob: (cooks food for n� 1 kids)
—process complex utterances less accurately

12/16

Conversational implicature in coordination discourse

Linguist: Does ‘some’ mean ‘some but not all’?

—express nested probabilistic models intuitively

Alice: some of our kids are coming home for dinner tonight.
—trade off informativity against complexity

Bob: (cooks food for n� 1 kids)
—process complex utterances less accurately

12/16

Conversational implicature in coordination discourse

Linguist: Does ‘some’ mean ‘some but not all’?
—express nested probabilistic models intuitively

Alice: some of our kids are coming home for dinner tonight.
—trade off informativity against complexity

Bob: (cooks food for n� 1 kids)
—process complex utterances less accurately

13/16

The bounded-rational hearer’s program

let count = (if flip 0.5 then 2 else 0) +

(if flip 0.5 then 1 else 0) in

let conjunction = flip 0.5 in

if (not (some && not_all) || conjunction) &&

(not some || count > 0) &&

(not not_all || count < 3)

then let action = ... in (action, utility action)

else fail ()

‘’

0

0

$
0

1

�
$
1

2

�
$
2

3
�
$
3

50
%

1

0�
$
1
0

1

$
0

2

�
$
1

3

�
$
2

50%

50%

2

0�
$
2
0

1�
$
1
0

2

$
0

3

�
$
1

50
%

3

0�
$
3
0

1�
$
2
0

2�
$
1
0

3

$
0

50%

50%

13/16

The bounded-rational hearer’s program

let count = (if flip 0.5 then 2 else 0) +

(if flip 0.5 then 1 else 0) in

let conjunction = flip 0.5 in

if (not (some && not_all) || conjunction) &&

(not some || count > 0) &&

(not not_all || count < 3)

then let action = ... in (action, utility action)

else fail ()

‘’

0

0

$
0

1

�
$
1

2

�
$
2

3
�
$
3

50
%

1

0�
$
1
0

1

$
0

2

�
$
1

3

�
$
2

50%

50%

2

0�
$
2
0

1�
$
1
0

2

$
0

3

�
$
1

50
%

3

0�
$
3
0

1�
$
2
0

2�
$
1
0

3

$
0

50%

50%

13/16

The bounded-rational hearer’s program

let count = (if flip 0.5 then 2 else 0) +

(if flip 0.5 then 1 else 0) in

let conjunction = flip 0.5 in

if (not (some && not_all) || conjunction) &&

(not some || count > 0) &&

(not not_all || count < 3)

then let action = ... in (action, utility action)

else fail ()

‘’

0

0

$
0

1

�
$
1

2

�
$
2

3
�
$
3

50
%

1

0�
$
1
0

1

$
0

2

�
$
1

3

�
$
2

50%

50%

2

0�
$
2
0

1�
$
1
0

2

$
0

3

�
$
1

50
%

3

0�
$
3
0

1�
$
2
0

2�
$
1
0

3

$
0

50%

50%

13/16

The bounded-rational hearer’s program

let count = (if flip 0.5 then 2 else 0) +

(if flip 0.5 then 1 else 0) in

let conjunction = flip 0.5 in

if (not (some && not_all) || conjunction) &&

(not some || count > 0) &&

(not not_all || count < 3)

then let action = ... in (action, utility action)

else fail ()

‘some’

0

0

$
0

1

�
$
1

2

�
$
2

3
�
$
3

50
%

1

0�
$
1
0

1

$
0

2

�
$
1

3

�
$
2

50%

50%

2

0�
$
2
0

1�
$
1
0

2

$
0

3

�
$
1

50
%

3

0�
$
3
0

1�
$
2
0

2�
$
1
0

3

$
0

50%

50%

13/16

The bounded-rational hearer’s program

let count = (if flip 0.5 then 2 else 0) +

(if flip 0.5 then 1 else 0) in

let conjunction = flip 0.5 in

if (not (some && not_all) || conjunction) &&

(not some || count > 0) &&

(not not_all || count < 3)

then let action = ... in (action, utility action)

else fail ()

‘not all’

0

0

$
0

1

�
$
1

2

�
$
2

3
�
$
3

50
%

1

0�
$
1
0

1

$
0

2

�
$
1

3

�
$
2

50%

50%

2

0�
$
2
0

1�
$
1
0

2

$
0

3

�
$
1

50
%

3

0�
$
3
0

1�
$
2
0

2�
$
1
0

3

$
0

50%

50%

13/16

The bounded-rational hearer’s program

let count = (if flip 0.5 then 2 else 0) +

(if flip 0.5 then 1 else 0) in

let conjunction = flip 0.5 in

if (not (some && not_all) || conjunction) &&

(not some || count > 0) &&

(not not_all || count < 3)

then let action = ... in (action, utility action)

else fail ()

‘some but not all’

50%

0

0

$
0

1

�
$
1

2

�
$
2

3
�
$
3

50
%

1

0�
$
1
0

1

$
0

2

�
$
1

3

�
$
2

50%

50%

2

0�
$
2
0

1�
$
1
0

2

$
0

3

�
$
1

50
%

3

0�
$
3
0

1�
$
2
0

2�
$
1
0

3

$
0

50%

50%

50%

14/16

Motivic development in Beethoven sonatas (Pfeffer 2007)

��� � ��Source motif � � � � � �

14/16

Motivic development in Beethoven sonatas (Pfeffer 2007)

ô���Source motif � ���� ���

14/16

Motivic development in Beethoven sonatas (Pfeffer 2007)

ô

ô

�

�

�

�Source motif

�

�

�

����

�

�

�

�

�

��

14/16

Motivic development in Beethoven sonatas (Pfeffer 2007)

�

�Source motif �� �

�

�

�

�

� �

� ��

�

�

�

��

14/16

Motivic development in Beethoven sonatas (Pfeffer 2007)

infer

�

�

�

Destination motif

Source motif

�

����

�

�

�

�

�

�

�

�

�

��

Implemented using lazy stochastic lists.

Motif pair 1 2 3 4 5 6 7

% correct using importance sampling
� Pfeffer 2007 (30 sec) 93 100 28 80 98 100 63
� Us (90 sec) 98 100 29 87 94 100 77
� Us (30 sec) 92 99 25 46 72 95 61

14/16

Motivic development in Beethoven sonatas (Pfeffer 2007)

infer

�

�

�

Destination motif

Source motif

�

����

�

�

�

�

�

�

�

�

�

��

Implemented using lazy stochastic lists.

Motif pair 1 2 3 4 5 6 7

% correct using importance sampling
� Pfeffer 2007 (30 sec) 93 100 28 80 98 100 63
� Us (90 sec) 98 100 29 87 94 100 77
� Us (30 sec) 92 99 25 46 72 95 61

14/16

Motivic development in Beethoven sonatas (Pfeffer 2007)

0

5

10

15

20

25

30

35

40

-19 -18 -17 -16 -15 -14 -13

F
re

qu
en

cy
 in

 1
00

 tr
ia

ls

ln Pr(D = 1 | S = 1)

IBAL
90 seconds
30 seconds

15/16

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent

infer

0 1 2 3 4 5 6 7

1 2 3 4 5 61 2 3 43 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter. Implemented using lazy stochastic coordinates.

15/16

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent
t = 1

infer

0 1 2 3 4 5 6 7

1 2 3 4 5 6

1 2 3 43 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter. Implemented using lazy stochastic coordinates.

15/16

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent
t = 1, t = 2

infer

0 1 2 3 4 5 6 71 2 3 4 5 6

1 2 3 4

3 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter. Implemented using lazy stochastic coordinates.

15/16

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent
t = 1, t = 2, t = 3

infer

0 1 2 3 4 5 6 71 2 3 4 5 61 2 3 4

3 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter. Implemented using lazy stochastic coordinates.

16/16

Summary
Model (what) Inference (how)

Toolkit + use existing libraries,
types, debugger

+ easy to add custom
inference

Language + random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Payoff: expressive model
+ models of inference:

bounded-rational
theory of mind

Payoff: fast inference
+ deterministic parts of

models run at full speed
+ importance sampling

Express models and inference as interacting programs
in the same general-purpose language.

HANSEI http://okmij.org/ftp/kakuritu/

http://okmij.org/ftp/kakuritu/

	Expressivity
	Memoization
	Nested inference

	Implementation
	Reifying a model into a search tree
	Importance sampling with look-ahead

	Applications

