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‘
’

I’d also like to address this
concept of being “fake” or
“calculating.”

If being “fake” means not
thinking or feeling the same way
in one moment than you thought
or felt in a di�erent moment,
then lord help us all.

If being “calculating” is thinking
through your words and actions
and modeling the behavior you
would like to see in the world,
even when it is di�cult,
then I hope more of you
will become calculating.

—BenDeLaCreme

https://www.facebook.com/bendelacreme/posts/822482421272294
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p
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p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

= = =

recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate

sim
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p

~x

0

p

~x
y

p

~x
y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

= = =

recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p

~x

0

p

~x
y

p

~x
y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

= = =

recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p

~x

0

p

~x
y

p

~x
y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

= = =

recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p

~x

0

p

~x
y

p

~x
y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

= = =

recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate
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Approximations calculated exactly
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Abstract

The infinite hidden Markov model is a non-

parametric extension of the widely used hid-

den Markov model. Our paper introduces

a new inference algorithm for the infinite

Hidden Markov model called beam sam-

pling. Beam sampling combines slice sam-

pling, which limits the number of states con-

sidered at each time step to a finite number,

with dynamic programming, which samples

whole state trajectories efficiently. Our algo-

rithm typically outperforms the Gibbs sam-

pler and is more robust. We present appli-

cations of iHMM inference using the beam

sampler on changepoint detection and text

prediction problems.

1. Introduction

The hidden Markov model (HMM) (Rabiner, 1989) is

one of the most widely used models in machine learn-

ing and statistics for sequential or time series data.

The HMM consists of a hidden state sequence with

Markov dynamics, and independent observations at

each time given the corresponding state. There are

three learning related tasks associated with the HMM:

inference of the hidden state sequence, learning of the

parameters, and selection of the right model size.

Inference for the hidden state trajectory can be

performed exactly using the forward-backward algo-

rithm (Rabiner, 1989), a dynamic programming algo-

rithm with O(TK
2) computational costs where T is

the number of time steps and K number of states.

Appearing in Proceedi
ngs of th

e 25
th Internat

ional Co
nfer-

ence on Machine Learning
, Helsinki, Finland, 2008. Copy-

right 2008 by the author(s)/owner(s).

The standard approach to learning uses the Baum-

Welch algorithm, a special instance of the EM al-

gorithm (Dempster et al., 1977) which produces (lo-

cally) maximum likelihood (ML) parameters. Such

ML learning of parameters can potentially lead to over-

fitting if the model size is inappropriate for the amount

of data available. This can be partially mitigated us-

ing a more fully Bayesian learning procedure, e.g. using

variational approximations (MacKay, 1997) or Markov

chain Monte Carlo (MCMC) sampling (Scott, 2002).

Such Bayesian approaches also produce estimates of

the marginal probability of data, which can be used to

select for the appropriate model size (or to average over

model sizes if ones desires a more Bayesian analysis).

Such model selection procedures can be computation-

ally expensive since multiple HMMs of different sizes

need to be explored.

A new twist on the problem of model selection has

emerged in recent years with the increasing popu-

larity of nonparametric Bayesian models. These are

models of infinite capacity, a finite portion of which

will be used to model a finite amount of observed

data. The idea of searching/averaging over the space

of finite models is replaced with Bayesian inference

over the size of submodel used to explain data. Ex-

amples of successful applications of nonparametric

Bayesian methods include Gaussian Processes (Ras-

mussen & Williams, 2005) for regression and classifi-

cation, Dirichlet Process (DP) mixture models (Es-

cobar & West, 1995; Rasmussen, 2000) for cluster-

ing heterogeneous data and density estimation, Indian

Buffet Processes for latent factor analysis (Griffiths

& Ghahramani, 2006), and defining distributions over

non-trivial combinatorial objects such as trees (Teh

et al., 2008).

The Infinite Hidden Markov Model (iHMM), otherwise

known as the HDP-HMM, (Beal et al., 2002) is a non-

1088
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parametric Bayesian extension of the HMM with an

infinite number of hidden states. Exact Bayesian in-

ference for the iHMM is intractable. Specifically, given

a particular setting of the parameters the forward-

backward algorithm cannot be applied since the num-

ber of states K is infinite, while with the parameters

marginalized out all hidden state variables will be cou-

pled and the forward-backward algorithm cannot be

applied either. Currently the only approximate in-

ference algorithm available is Gibbs sampling, where

individual hidden state variables are resampled condi-

tioned on all other variables (Teh et al., 2006). Unfor-

tunately convergence of Gibbs sampling is notoriously

slow in the HMM setting due to the strong dependen-

cies between consecutive time steps often exhibited by

time series data (Scott, 2002).

In this paper we propose a new sampler for the iHMM

called beam sampling. Beam sampling combines two

ideas—slice sampling and dynamic programming—to

sample whole state trajectories efficiently. Our ap-

plication of slice sampling (Neal, 2003) is inspired

by (Walker, 2007), who used it to limit the number

of clusters considered when sampling assignment vari-

ables in DP mixtures to a finite number. We apply

slice sampling to limit to a finite number the states

considered in each time step of the iHMM, so that dy-

namic programming can be used to sample whole state

trajectories efficiently. We call our proposal beam

sampling due to its similarity to beam search, a heuris-

tic procedure for finding the maximum a posteriori

trajectory given observations in non-linear dynamical

systems. The underlying idea in both is to limit the

search to a small number of states so that a good tra-

jectory can be found using reasonable computational

resources. However, ours is a MCMC sampling method

with guaranteed convergence to the true posterior.

We first present a self-contained description of the

iHMM using the Hierarchical Dirichlet process (HDP)

formalism (Teh et al., 2006) in Section 2, followed

by a discussion of Gibbs sampling in Section 3. We

introduce beam sampling in Section 4 and compare

it against Gibbs sampling on both artificial and real

datasets in Section 5. We find that beam sampling

is (1) at least as fast if not faster than Gibbs sam-

pling; (2) more robust than Gibbs sampling as its

performance is not as dependent on initialization and

hyperparameter choice; (3) handles non-conjugacy in

the model more naturally; (4) straightforward to im-

plement. We conclude in Section 6 with a discus-

sion and suggestions for other cases in which beam

sampling might prove useful. All software is avail-

able from http://m
lg.eng.ca

m.ac.uk/ju
rgen to encour-

age more widespread adoption of the iHMM and the

beam sampler.

2. The Infinite Hidden Markov Model

We start this section by describing the finite HMM,

then taking the infinite limit to obtain an intuition

for the infinite HMM, followed by a more precise def-

inition. A finite HMM consists of a hidden state se-

quence s = (s1, s2, .
. . , sT ) and a corresponding ob-

servation sequence y = (y1, y2, .
. . , yT ). Each state

variable st can take on a finite number of states, say

1 . . .K. Transitions between states are governed by

Markov dynamics parameterized by the transition ma-

trix π, where πij = p(st = j|st−1 = i), while the ini-

tial state probabilities are π0i = p(s1 = i). For each

state st ∈ {1 . . .
K} there is a parameter φst which

parametrizes the observation likelihood for that state:

yt|st ∼ F (φst). Given the parameters {π0,π,φ,K
} of

the HMM, the joint distribution over hidden states s

and observations y can be written (with s0 = 0):

p(s,y|π0,π,φ
,K) =

T∏

t=1

p(st|st−1)p(yt
|st)

We complete the Bayesian description by specifying

the priors. Let the observation parameters φ be iid

drawn from a prior distribution H. With no fur-

ther prior knowledge on the state sequence, the typical

prior for the transition (and initial) probabilities are

symmetric Dirichlet distributions.

A näıve way to obtain a nonparametric HMM with an

infinite number of states might be to use symmetric

Dirichlet priors over the transition probabilities with

parameter α/K and take K → ∞. Such an approach

has been successfully used to derive DP mixture mod-

els (Rasmussen, 2000) but unfortunately does not work

in the HMM context. The subtle reason is that there

is no coupling across transitions out of different states

since the transition probabilities are given indepen-

dent priors (Beal et al., 2002). To introduce coupling

across transitions, one may use a hierarchical Bayesian

formalism where the Dirichlet priors have shared pa-

rameters and given a higher level prior, e.g.

πk ∼ Dirichlet
(αβ) ,

β ∼ Dirichlet
(γ/K . . . γ/K)

(1)

where πk are transition probabilities out of state k and

β are the shared prior parameters. As K →∞, the hi-

erarchical prior (1) approaches (with some alterations)

a hierarchi
cal Diric

hlet proc
ess (Teh et al., 2006).

A hierarchical Dirichlet process (HDP) is a set of

Dirichlet processes (DPs) coupled through a shared

random base measure which is itself drawn from a

DP (Teh et al., 2006). Specifically, each Gk ∼

DP(α,G0) with shared base measure G0, which can

be understood as the mean of Gk, and concentration

parameter α > 0, which governs variability around G0,
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Figure 1. iHMM Graphical Model

with small α implying greater variability. The shared

base measure is itself given a DP prior: G0 ∼ DP(γ,H)

with H a global base measure. The stick-breaking con-

struction for HDPs shows that the random measures

can be expressed as follows: G0 =
∑∞

k′=1
βk′δφk′

and

Gk =
∑∞

k′=1
πkk′δφk′

, where β ∼ GEM(γ) is the stick-

breaking construction for DPs (Sethuraman, 1994),

πk ∼ DP(α,β), and each φk′ ∼ H independently.

Identifying each Gk as describing both the transition

probabilities πkk′ from state k to k′ and the emis-

sion distributions parametrized by φk′ , we can now

formally define the iHMM as follows:

β ∼ GEM(γ), πk|β ∼ DP(α,β), φk ∼ H, (2)

st|st−1 ∼ Multinomial(πst−1
), yt|st ∼ F (φst). (3)

The graphical model corresponding to this hierarchical

model is shown in figure 1. Thus βk′ is the prior mean

for transition probabilities leading into state k
′ , and α

governs the variability around the prior mean. If we fix

β = ( 1
K
. . .

1
K
, 0, 0 . . .)

where the first K entries are
1
K

and the remaining are 0, then transition probabilities

into state k
′ will be non-zero only if k

′ ∈ {1 . . .K}, and

we recover the Bayesian HMM of (MacKay, 1997).

Finally we place priors over the hyperparameters α

and γ. A common solution, when we do not have

strong beliefs about the hyperparameters, is to use

gamma hyperpriors: α ∼ Gamma(aα, bα) and γ ∼

Gamma(aγ, bγ). (Teh et al., 2006) describe how these

hyperparameters can be sampled efficiently, and we

will use this in the experiments to follow.

3. The Gibbs Sampler

The Gibbs sampler was the first sampling algorithm

for the iHMM that converges to the true posterior.

One proposal builds on the direct assignment sampling

scheme for the HDP in (Teh et al., 2006) by marginal-

izing out the hidden variables π,φ from (2), (3) and

ignoring the ordering of states implicit in β. Thus we

only need to sample the hidden trajectory s, the base

DP parameters β and the hyperparameters α, γ. Sam-

pling β, α, γ
is exactly the same as for the HDP so we

refer to (Teh et al., 2006) for details.

In order to resample st, we need to compute the prob-

ability p(st|s−t,β,y
, α,H) ∝ p(yt|st, s−t,y−t

, H) ·

p(st|s−t,β, α
). The first factor is the con-

ditional likelihood of yt given s, y and H:

∫
p(yt|st,φst)p

(φst|s−t,y−t
, H)dφst. This is easy to

compute when the base distribution H and likelihood

F from equations (2) and (3) are conjugate. For

the second factor we can use the fact that the hid-

den state sequence is Markov. Let nij be the number

of transitions from state i to state j excluding time

steps t − 1 and t. Let n·i, ni· be the number of tran-

sitions in and out of state i. Finally, let K be the

number of distinct states in s−t. Then we have that1

p(st = k|s−t,β, α) ∝

(nst−1,k
+ αβk)

nk,st+1
+αβst+1

nk·+α
if k ≤ K, k 6= st−1

(nst−1,k
+ αβk)

nk,st+1
+1+αβst+1

nk·+1+α
if k = st−1 = st+1

(nst−1,k
+ αβk)

nk,st+1
+αβst+1

nk·+1+α
if k = st−1 6= st+1

αβkβst+1

if k = K + 1.

For each 1 ≤ t ≤ T we need to compute O(K)

probabilities, hence the Gibbs sampler has an O(TK)

computational complexity. Non-conjugate models can

be handled using more sophisticated sampling tech-

niques. In our experiments below, we used algorithm

8 from (Neal, 2000).

The Gibbs sampler’s success is due to its straightfor-

ward implementation. However, it suffers from one

major drawback: sequential and time series data are

likely to be strongly correlated. For example, if we

know the value of a stock at time t then we can be

reasonably sure that it will be similar at time t+1. As

is well known, this is a situation which is far from ideal

for the Gibbs sampler: strong correlations in the hid-

den states will make it unlikely that individual updates

to st can cause large blocks within s to be changed.

We will now introduce the beam sampler which does

not suffer from this slow mixing behavior by sampling

the whole sequence s in one go.

4. The Beam Sampler

The forward-backward algorithm does not apply to

the iHMM because the number of states, and hence

the number of potential state trajectories, are infinite.

The idea of beam sampling is to introduce auxiliary

variables u such that conditioned on u the number

of trajectories with positive probability is finite. Now

dynamic programming can be used to compute the

conditional probabilities of each of these trajectories

and thus sample whole trajectories efficiently. These

1Recall that we ignored the ordering of states in β. In

this representation the K distinct states in s are labeled

1 . . .K and K + 1 denotes a new state.
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Figure 1. iHMM Graphical Model

with small α implying greater variability. The shared

base measure is itself given a DP prior: G0 ∼ DP(γ,H)

with H a global base measure. The stick-breaking con-

struction for HDPs shows that the random measures

can be expressed as follows: G0 =
∑∞

k′=1
βk′δφk′

and

Gk =
∑∞

k′=1
πkk′δφk′

, where β ∼ GEM(γ) is the stick-

breaking construction for DPs (Sethuraman, 1994),

πk ∼ DP(α,β), and each φk′ ∼ H independently.

Identifying each Gk as describing both the transition

probabilities πkk′ from state k to k′ and the emis-

sion distributions parametrized by φk′ , we can now

formally define the iHMM as follows:

β ∼ GEM(γ), πk|β ∼ DP(α,β), φk ∼ H, (2)

st|st−1 ∼ Multinomial(πst−1
), yt|st ∼ F (φst). (3)

The graphical model corresponding to this hierarchical

model is shown in figure 1. Thus βk′ is the prior mean

for transition probabilities leading into state k
′ , and α

governs the variability around the prior mean. If we fix

β = ( 1
K
. . .

1
K
, 0, 0 . . .)

where the first K entries are
1
K

and the remaining are 0, then transition probabilities

into state k
′ will be non-zero only if k

′ ∈ {1 . . .K}, and

we recover the Bayesian HMM of (MacKay, 1997).

Finally we place priors over the hyperparameters α

and γ. A common solution, when we do not have

strong beliefs about the hyperparameters, is to use

gamma hyperpriors: α ∼ Gamma(aα, bα) and γ ∼

Gamma(aγ, bγ). (Teh et al., 2006) describe how these

hyperparameters can be sampled efficiently, and we

will use this in the experiments to follow.

3. The Gibbs Sampler

The Gibbs sampler was the first sampling algorithm

for the iHMM that converges to the true posterior.

One proposal builds on the direct assignment sampling

scheme for the HDP in (Teh et al., 2006) by marginal-

izing out the hidden variables π,φ from (2), (3) and

ignoring the ordering of states implicit in β. Thus we

only need to sample the hidden trajectory s, the base

DP parameters β and the hyperparameters α, γ. Sam-

pling β, α, γ
is exactly the same as for the HDP so we

refer to (Teh et al., 2006) for details.

In order to resample st, we need to compute the prob-

ability p(st|s−t,β,y
, α,H) ∝ p(yt|st, s−t,y−t

, H) ·

p(st|s−t,β, α
). The first factor is the con-

ditional likelihood of yt given s, y and H:

∫
p(yt|st,φst)p

(φst|s−t,y−t
, H)dφst. This is easy to

compute when the base distribution H and likelihood

F from equations (2) and (3) are conjugate. For

the second factor we can use the fact that the hid-

den state sequence is Markov. Let nij be the number

of transitions from state i to state j excluding time

steps t − 1 and t. Let n·i, ni· be the number of tran-

sitions in and out of state i. Finally, let K be the

number of distinct states in s−t. Then we have that1

p(st = k|s−t,β, α) ∝

(nst−1,k
+ αβk)

nk,st+1
+αβst+1

nk·+α
if k ≤ K, k 6= st−1

(nst−1,k
+ αβk)

nk,st+1
+1+αβst+1

nk·+1+α
if k = st−1 = st+1

(nst−1,k
+ αβk)

nk,st+1
+αβst+1

nk·+1+α
if k = st−1 6= st+1

αβkβst+1

if k = K + 1.

For each 1 ≤ t ≤ T we need to compute O(K)

probabilities, hence the Gibbs sampler has an O(TK)

computational complexity. Non-conjugate models can

be handled using more sophisticated sampling tech-

niques. In our experiments below, we used algorithm

8 from (Neal, 2000).

The Gibbs sampler’s success is due to its straightfor-

ward implementation. However, it suffers from one

major drawback: sequential and time series data are

likely to be strongly correlated. For example, if we

know the value of a stock at time t then we can be

reasonably sure that it will be similar at time t+1. As

is well known, this is a situation which is far from ideal

for the Gibbs sampler: strong correlations in the hid-

den states will make it unlikely that individual updates

to st can cause large blocks within s to be changed.

We will now introduce the beam sampler which does

not suffer from this slow mixing behavior by sampling

the whole sequence s in one go.

4. The Beam Sampler

The forward-backward algorithm does not apply to

the iHMM because the number of states, and hence

the number of potential state trajectories, are infinite.

The idea of beam sampling is to introduce auxiliary

variables u such that conditioned on u the number

of trajectories with positive probability is finite. Now

dynamic programming can be used to compute the

conditional probabilities of each of these trajectories

and thus sample whole trajectories efficiently. These

1Recall that we ignored the ordering of states in β. In

this representation the K distinct states in s are labeled

1 . . .K and K + 1 denotes a new state.
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Figure 3. iHMM performance on strong negatively corre-

lated data. The top plot shows the error of the Gibbs and

beam sampler for the first 1500 iterations averaged over

20 runs. The bottom plot shows the average number of

previous states considered in equation (4) for the first 100

iterations of the beam sampler.

∏
k
p(φk|s,y, H). When the base distribution H is

conjugate to the data distribution F each φk can

be sampled efficiently. Otherwise we may resort to

Metropolis-Hastings or other approaches. Note that in

the non-conjugate case this is simpler than for Gibbs

sampling. In the experimental section, we describe an

application where the base distribution and likelihood

are non-conjugate.

To conclude our discussion of the beam sampler, it

is useful to point out that there is nothing special

about sampling ut from the uniform distribution on

[0, πst−1,st
]: by choosing a distribution over [0, πst,st−1

]

with higher mass near smaller values of ut, we will al-

low more trajectories to have positive probability and

hence considered by the forward filtering-backward

sampling algorithm. Although this will typically im-

prove mixing time, it also comes at additional compu-

tational cost. This brings us to the issue of the com-

putational cost of the beam sampler: since for each

timestep and each state assignment we need to sum

over all represented previous states, the worst case

complexity isO(TK
2). However, the sum in (4) is only

over previous states for which the transition probabil-

ity is larger than ut; this means that in practice we

might only need to sum over a few previous states.

In our experiments below, we will give some empirical

evidence for this “average case” behavior. Further, we

have found that the drastically improved mixing of the

beam sampler more than made up for the additional

cost over Gibbs sampling. Finally, although we did not

find any advantage doing so, it is certainly possible to

interleave the beam sampler and the Gibbs sampler.
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Figure 4. iHMM error on increasing positively correlated

data. The blue curve shows the beam sampler while the red

curve shows the Gibbs sampler performance. The dotted

line show the one standard deviation error bars.

5. Experiments

We evaluate the beam sampler on two artificial and

two real datasets to illustrate the following properties:

(1) the beam sampler mixes in much fewer iterations

than the Gibbs sampler; (2) the actual complexity per

iteration of the beam sampler is only marginally more

than the Gibbs sampler; (3) the beam sampler mixes

well regardless of strong correlations in the data; (4)

the beam sampler is more robust with respect to vary-

ing initialization and prior distribution; (5) the beam

sampler handles non conjugate models naturally; (6)

the iHMM is a viable alternative to the finite HMM.

All datasets and a Matlab version of our software are

available at http://m
lg.eng.ca

m.ac.uk/ju
rgen.

5.1. Artificial Data

Our first experiment compares the performance of the

iHMM on a sequence of length 800 generated by a 4

state HMM. The hidden state sequence was almost

cyclic (1-2-3-4-1-2-3-. . . ) with a 1% probability of self

transition: i.o.w the true distribution of hidden states

is strong negatively correlated. We use a multinomial

output distribution with the following emission matrix




0.0
0.5

0.5

0.6666 0.1666 0.1666

0.5
0.0

0.5

0.3333 0.3333 0.3333


 .

Next we run the Gibbs and beam sampler 20 times

from a random initialization with every state randomly

chosen between 1 and 20. We test the performance

of both samplers using three different hyperparame-

ter settings: (1) vague gamma hyperpriors for α and
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runs respectively. The plot includes error bars corre-

sponding to 2 standard deviations.

Figure 7 illustrates the estimated predictive log-

likelihoods for the finite VB-HMM and the two iHMMs

trained using beam and Gibbs sampling. We find that

the iHMMs have superior predictive power when com-

pared to the VB-HMM, even when we select the best

number of hidden states (around K = 16). Both the

iHMMs converged to a posterior distribution over hid-

den state sequences with around 16 states, showing

that nonparametric Bayesian techniques are an effec-

tive way to handle model selection. The final perfor-

mance of the Gibbs and beam sampler were not found

to be significantly different as we set the number of

iterations high enough to ensure that both algorithms

converge. Indeed, the aim of this experiment is not to

compare the performance of individuals iHMM sam-

pling schemes, rather, it is to further illustrate the rel-

ative effectiveness of using models of infinite capacity.

6. Conclusion

In this paper we introduced the beam sampler, a new

inference algorithm for the iHMM that draws inspi-

ration from slice sampling and dynamic programming

to sample whole hidden state trajectories efficiently.

We showed that the beam sampler is a more robust

sampling algorithm than the Gibbs sampler. We be-

lieve that the beam sampler is the algorithm of choice

for iHMM inference because it converges faster than

the Gibbs sampler and is straightforward to imple-

ment. Moreover, it conveniently allows us to learn

non-conjugate models. To encourage adoption of the

iHMM as an alternative to HMM learning, we have

made the software and datasets used in this paper

available at http://m
lg.eng.ca

m.ac.uk/ju
rgen.

The beam sampler idea is flexible enough to do in-

ference for various extensions of the iHMM: our cur-

rent work involves an adaptation of the beam sampler

to an extension of the iHMM that handles inputs, ef-

fectively resulting in a nonparametric generalization

of the input-output HMM (Bengio & Frasconi, 1995).

We believe this is a promising model for nonparamet-

ric Bayesian learning of POMDPs. Another project

currently underway is to use the beam sampler for ef-

ficiently learning finite, but very large hidden Markov

models. Finally, we are exploring the possibilities of

using the embedded HMM construction (Neal et al.,

2004) as an alternative for the beam sampler for effi-

cient inference in the iHMM.
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3.6.2. The slice sampler. The slice sampler (Damien, Wakefield, & Walker, 1999; Higdon,
1998; Wakefield, Gelfand, & Smith, 1991) is a general version of the Gibbs sampler. The
basic idea of the slice sampler is to introduce an auxiliary variable u ∈ R and construct an
extended target distribution p	(x, u), such that

p	(x, u) =
{

1 if 0 ≤ u ≤ p(x)

0 otherwise.

It is then straightforward to check that∫
p	(x, u) du =

∫ p(x)

0
du = p(x).

Hence, to sample from p(x) one can sample from p	(x, u) and then ignore u. The full
conditionals are of this augmented model are

p(u | x) = U[0,p(x)](u)

p(x | u) = UA(x)

where A = {x ; p(x) ≥ u}. If A is easy to identify then the algorithm is straightforward to
implement, as shown in figure 15.

It can be difficult to identify A. It is then worth introducing several auxiliary variables
(Damien, Wakefield, & Walker, 1999; Higdon, 1998). For example assume that

p(x) ∝
L∏

l=1

fl(x),

where the fl(·)’s are positive functions, not necessarily densities. Let us introduce L auxiliary
variables (u1, . . . , uL ) and define

p	(x, u1, . . . , uL ) ∝
L∏

l=1

I[0, fl (x)](ul).

xx

xu
(i+1)

(i)

(i+1)

f(x  )(i)

Figure 15. Slice sampling: given a previous sample, we sample a uniform variable u(i+1) between 0 and f (x (i)).
One then samples x (i+1) in the interval where f (x) ≥ u(i+1).

2

L. TIERNEY
2. Reversibility. A Markov chain with initial distribution π and transi-

tion kernel P is reversible if and only if the detailed balance relationπ�dx�P�x;dy� = π�dy�P�y;dx�

(2)

is satisfied. The two sides of this identity are measures on E ⊗E , and detailed

balance means these measures are identical. If detailed balance holds, then

for any real-valued f,∫ ∫
f�y�π�dx�P�x;dy� =

∫ ∫
f�y�π�dy�P�y;dx� =

∫
f�y�π�dy�and thus π is invariant for P. The Metropolis–Hastings kernel (1) satisfies (2)

if and only if

π�dx�Q�x;dy�α�x;y� = π�dy�Q�y;dx�α�y;x�;

(3)

that is, the diagonal component does not matter.
The following proposition gives a few useful facts about measures on prod-

uct spaces.

Proposition 1. Let µ�dx;dy� be a sigma-finite measure on the product

space �E × E;E ⊗ E � and let µT�dx;dy� = µ�dy;dx�. Then there exists a

symmetric setR ∈ E⊗E such that µ and µT are mutually absolutely continuous

on R and mutually singular on the complement of R, Rc. The set R is unique

up to sets that are null for both µ and µT. Let µR and µTR be the restrictions

of µ and µT to R. Then there exists a version of the density

r�x;y� = µR�dx;dy�
µTR�dx;dy�such that 0 < r�x;y� <∞ and r�x;y� = 1/r�y;x� for all x;y ∈ E.Proof. Let ν�dx;dy� = µ�dx;dy� + µT�dx;dy� = µ�dx;dy� + µ�dy;dx�.

Then ν is symmetric and both µ and µT are absolutely continuous with re-

spect to ν. Let h�x;y� be a density of µ with respect to ν. Then µT�dx;dy� =
h�y;x�ν�dy;dx� = h�y;x�ν�dx;dy� and thus h�y;x� is a density of µT with

respect to ν. Let R = ��x;y�x h�x;y� > 0 and h�y;x� > 0�. Then R is sym-

metric, the restrictions of µ and µT to R are mutually absolutely continuous

with r�x;y� = h�x;y�/h�y;x� on R, and on Rc the measures µ and µT are

mutually singular. The function r�x;y� can be set to one on Rc. If R∗ is any

other set with the specified properties, then µ and µT must be mutually abso-

lutely continuous as well as mutually singular on R\R∗ and on R∗ \R, which

means these sets must be null sets for both µ and µT. 2For a given proposal generation kernel Q, let µ�dx;dy� = π�dx�Q�x;dy�.
The set R for this measure µ can be viewed as consisting of those state pairs

�x;y� for which transitions from x to y and from y to x are both possible

in the Markov chain with initial distribution π and transition kernel Q. The
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Abstract

The infinite hidden Markov model is a non-

parametric extension of the widely used hid-

den Markov model. Our paper introduces

a new inference algorithm for the infinite

Hidden Markov model called beam sam-

pling. Beam sampling combines slice sam-

pling, which limits the number of states con-

sidered at each time step to a finite number,

with dynamic programming, which samples

whole state trajectories efficiently. Our algo-

rithm typically outperforms the Gibbs sam-

pler and is more robust. We present appli-

cations of iHMM inference using the beam

sampler on changepoint detection and text

prediction problems.

1. Introduction

The hidden Markov model (HMM) (Rabiner, 1989) is

one of the most widely used models in machine learn-

ing and statistics for sequential or time series data.

The HMM consists of a hidden state sequence with

Markov dynamics, and independent observations at

each time given the corresponding state. There are

three learning related tasks associated with the HMM:

inference of the hidden state sequence, learning of the

parameters, and selection of the right model size.

Inference for the hidden state trajectory can be

performed exactly using the forward-backward algo-

rithm (Rabiner, 1989), a dynamic programming algo-

rithm with O(TK
2) computational costs where T is

the number of time steps and K number of states.

Appearing in Proceedi
ngs of th

e 25
th Internat

ional Co
nfer-

ence on Machine Learning
, Helsinki, Finland, 2008. Copy-

right 2008 by the author(s)/owner(s).

The standard approach to learning uses the Baum-

Welch algorithm, a special instance of the EM al-

gorithm (Dempster et al., 1977) which produces (lo-

cally) maximum likelihood (ML) parameters. Such

ML learning of parameters can potentially lead to over-

fitting if the model size is inappropriate for the amount

of data available. This can be partially mitigated us-

ing a more fully Bayesian learning procedure, e.g. using

variational approximations (MacKay, 1997) or Markov

chain Monte Carlo (MCMC) sampling (Scott, 2002).

Such Bayesian approaches also produce estimates of

the marginal probability of data, which can be used to

select for the appropriate model size (or to average over

model sizes if ones desires a more Bayesian analysis).

Such model selection procedures can be computation-

ally expensive since multiple HMMs of different sizes

need to be explored.

A new twist on the problem of model selection has

emerged in recent years with the increasing popu-

larity of nonparametric Bayesian models. These are

models of infinite capacity, a finite portion of which

will be used to model a finite amount of observed

data. The idea of searching/averaging over the space

of finite models is replaced with Bayesian inference

over the size of submodel used to explain data. Ex-

amples of successful applications of nonparametric

Bayesian methods include Gaussian Processes (Ras-

mussen & Williams, 2005) for regression and classifi-

cation, Dirichlet Process (DP) mixture models (Es-

cobar & West, 1995; Rasmussen, 2000) for cluster-

ing heterogeneous data and density estimation, Indian

Buffet Processes for latent factor analysis (Griffiths

& Ghahramani, 2006), and defining distributions over

non-trivial combinatorial objects such as trees (Teh

et al., 2008).

The Infinite Hidden Markov Model (iHMM), otherwise

known as the HDP-HMM, (Beal et al., 2002) is a non-
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parametric Bayesian extension of the HMM with an

infinite number of hidden states. Exact Bayesian in-

ference for the iHMM is intractable. Specifically, given

a particular setting of the parameters the forward-

backward algorithm cannot be applied since the num-

ber of states K is infinite, while with the parameters

marginalized out all hidden state variables will be cou-

pled and the forward-backward algorithm cannot be

applied either. Currently the only approximate in-

ference algorithm available is Gibbs sampling, where

individual hidden state variables are resampled condi-

tioned on all other variables (Teh et al., 2006). Unfor-

tunately convergence of Gibbs sampling is notoriously

slow in the HMM setting due to the strong dependen-

cies between consecutive time steps often exhibited by

time series data (Scott, 2002).

In this paper we propose a new sampler for the iHMM

called beam sampling. Beam sampling combines two

ideas—slice sampling and dynamic programming—to

sample whole state trajectories efficiently. Our ap-

plication of slice sampling (Neal, 2003) is inspired

by (Walker, 2007), who used it to limit the number

of clusters considered when sampling assignment vari-

ables in DP mixtures to a finite number. We apply

slice sampling to limit to a finite number the states

considered in each time step of the iHMM, so that dy-

namic programming can be used to sample whole state

trajectories efficiently. We call our proposal beam

sampling due to its similarity to beam search, a heuris-

tic procedure for finding the maximum a posteriori

trajectory given observations in non-linear dynamical

systems. The underlying idea in both is to limit the

search to a small number of states so that a good tra-

jectory can be found using reasonable computational

resources. However, ours is a MCMC sampling method

with guaranteed convergence to the true posterior.

We first present a self-contained description of the

iHMM using the Hierarchical Dirichlet process (HDP)

formalism (Teh et al., 2006) in Section 2, followed

by a discussion of Gibbs sampling in Section 3. We

introduce beam sampling in Section 4 and compare

it against Gibbs sampling on both artificial and real

datasets in Section 5. We find that beam sampling

is (1) at least as fast if not faster than Gibbs sam-

pling; (2) more robust than Gibbs sampling as its

performance is not as dependent on initialization and

hyperparameter choice; (3) handles non-conjugacy in

the model more naturally; (4) straightforward to im-

plement. We conclude in Section 6 with a discus-

sion and suggestions for other cases in which beam

sampling might prove useful. All software is avail-

able from http://m
lg.eng.ca

m.ac.uk/ju
rgen to encour-

age more widespread adoption of the iHMM and the

beam sampler.

2. The Infinite Hidden Markov Model

We start this section by describing the finite HMM,

then taking the infinite limit to obtain an intuition

for the infinite HMM, followed by a more precise def-

inition. A finite HMM consists of a hidden state se-

quence s = (s1, s2, .
. . , sT ) and a corresponding ob-

servation sequence y = (y1, y2, .
. . , yT ). Each state

variable st can take on a finite number of states, say

1 . . .K. Transitions between states are governed by

Markov dynamics parameterized by the transition ma-

trix π, where πij = p(st = j|st−1 = i), while the ini-

tial state probabilities are π0i = p(s1 = i). For each

state st ∈ {1 . . .
K} there is a parameter φst which

parametrizes the observation likelihood for that state:

yt|st ∼ F (φst). Given the parameters {π0,π,φ,K
} of

the HMM, the joint distribution over hidden states s

and observations y can be written (with s0 = 0):

p(s,y|π0,π,φ
,K) =

T∏

t=1

p(st|st−1)p(yt
|st)

We complete the Bayesian description by specifying

the priors. Let the observation parameters φ be iid

drawn from a prior distribution H. With no fur-

ther prior knowledge on the state sequence, the typical

prior for the transition (and initial) probabilities are

symmetric Dirichlet distributions.

A näıve way to obtain a nonparametric HMM with an

infinite number of states might be to use symmetric

Dirichlet priors over the transition probabilities with

parameter α/K and take K → ∞. Such an approach

has been successfully used to derive DP mixture mod-

els (Rasmussen, 2000) but unfortunately does not work

in the HMM context. The subtle reason is that there

is no coupling across transitions out of different states

since the transition probabilities are given indepen-

dent priors (Beal et al., 2002). To introduce coupling

across transitions, one may use a hierarchical Bayesian

formalism where the Dirichlet priors have shared pa-

rameters and given a higher level prior, e.g.

πk ∼ Dirichlet
(αβ) ,

β ∼ Dirichlet
(γ/K . . . γ/K)

(1)

where πk are transition probabilities out of state k and

β are the shared prior parameters. As K →∞, the hi-

erarchical prior (1) approaches (with some alterations)

a hierarchi
cal Diric

hlet proc
ess (Teh et al., 2006).

A hierarchical Dirichlet process (HDP) is a set of

Dirichlet processes (DPs) coupled through a shared

random base measure which is itself drawn from a

DP (Teh et al., 2006). Specifically, each Gk ∼

DP(α,G0) with shared base measure G0, which can

be understood as the mean of Gk, and concentration

parameter α > 0, which governs variability around G0,
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Figure 1. iHMM Graphical Model

with small α implying greater variability. The shared

base measure is itself given a DP prior: G0 ∼ DP(γ,H)

with H a global base measure. The stick-breaking con-

struction for HDPs shows that the random measures

can be expressed as follows: G0 =
∑∞

k′=1
βk′δφk′

and

Gk =
∑∞

k′=1
πkk′δφk′

, where β ∼ GEM(γ) is the stick-

breaking construction for DPs (Sethuraman, 1994),

πk ∼ DP(α,β), and each φk′ ∼ H independently.

Identifying each Gk as describing both the transition

probabilities πkk′ from state k to k′ and the emis-

sion distributions parametrized by φk′ , we can now

formally define the iHMM as follows:

β ∼ GEM(γ), πk|β ∼ DP(α,β), φk ∼ H, (2)

st|st−1 ∼ Multinomial(πst−1
), yt|st ∼ F (φst). (3)

The graphical model corresponding to this hierarchical

model is shown in figure 1. Thus βk′ is the prior mean

for transition probabilities leading into state k
′ , and α

governs the variability around the prior mean. If we fix

β = ( 1
K
. . .

1
K
, 0, 0 . . .)

where the first K entries are
1
K

and the remaining are 0, then transition probabilities

into state k
′ will be non-zero only if k

′ ∈ {1 . . .K}, and

we recover the Bayesian HMM of (MacKay, 1997).

Finally we place priors over the hyperparameters α

and γ. A common solution, when we do not have

strong beliefs about the hyperparameters, is to use

gamma hyperpriors: α ∼ Gamma(aα, bα) and γ ∼

Gamma(aγ, bγ). (Teh et al., 2006) describe how these

hyperparameters can be sampled efficiently, and we

will use this in the experiments to follow.

3. The Gibbs Sampler

The Gibbs sampler was the first sampling algorithm

for the iHMM that converges to the true posterior.

One proposal builds on the direct assignment sampling

scheme for the HDP in (Teh et al., 2006) by marginal-

izing out the hidden variables π,φ from (2), (3) and

ignoring the ordering of states implicit in β. Thus we

only need to sample the hidden trajectory s, the base

DP parameters β and the hyperparameters α, γ. Sam-

pling β, α, γ
is exactly the same as for the HDP so we

refer to (Teh et al., 2006) for details.

In order to resample st, we need to compute the prob-

ability p(st|s−t,β,y
, α,H) ∝ p(yt|st, s−t,y−t

, H) ·

p(st|s−t,β, α
). The first factor is the con-

ditional likelihood of yt given s, y and H:

∫
p(yt|st,φst)p

(φst|s−t,y−t
, H)dφst. This is easy to

compute when the base distribution H and likelihood

F from equations (2) and (3) are conjugate. For

the second factor we can use the fact that the hid-

den state sequence is Markov. Let nij be the number

of transitions from state i to state j excluding time

steps t − 1 and t. Let n·i, ni· be the number of tran-

sitions in and out of state i. Finally, let K be the

number of distinct states in s−t. Then we have that1

p(st = k|s−t,β, α) ∝

(nst−1,k
+ αβk)

nk,st+1
+αβst+1

nk·+α
if k ≤ K, k 6= st−1

(nst−1,k
+ αβk)

nk,st+1
+1+αβst+1

nk·+1+α
if k = st−1 = st+1

(nst−1,k
+ αβk)

nk,st+1
+αβst+1

nk·+1+α
if k = st−1 6= st+1

αβkβst+1

if k = K + 1.

For each 1 ≤ t ≤ T we need to compute O(K)

probabilities, hence the Gibbs sampler has an O(TK)

computational complexity. Non-conjugate models can

be handled using more sophisticated sampling tech-

niques. In our experiments below, we used algorithm

8 from (Neal, 2000).

The Gibbs sampler’s success is due to its straightfor-

ward implementation. However, it suffers from one

major drawback: sequential and time series data are

likely to be strongly correlated. For example, if we

know the value of a stock at time t then we can be

reasonably sure that it will be similar at time t+1. As

is well known, this is a situation which is far from ideal

for the Gibbs sampler: strong correlations in the hid-

den states will make it unlikely that individual updates

to st can cause large blocks within s to be changed.

We will now introduce the beam sampler which does

not suffer from this slow mixing behavior by sampling

the whole sequence s in one go.

4. The Beam Sampler

The forward-backward algorithm does not apply to

the iHMM because the number of states, and hence

the number of potential state trajectories, are infinite.

The idea of beam sampling is to introduce auxiliary

variables u such that conditioned on u the number

of trajectories with positive probability is finite. Now

dynamic programming can be used to compute the

conditional probabilities of each of these trajectories

and thus sample whole trajectories efficiently. These

1Recall that we ignored the ordering of states in β. In

this representation the K distinct states in s are labeled

1 . . .K and K + 1 denotes a new state.
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Figure 1. iHMM Graphical Model

with small α implying greater variability. The shared

base measure is itself given a DP prior: G0 ∼ DP(γ,H)

with H a global base measure. The stick-breaking con-

struction for HDPs shows that the random measures

can be expressed as follows: G0 =
∑∞

k′=1
βk′δφk′

and

Gk =
∑∞

k′=1
πkk′δφk′

, where β ∼ GEM(γ) is the stick-

breaking construction for DPs (Sethuraman, 1994),

πk ∼ DP(α,β), and each φk′ ∼ H independently.

Identifying each Gk as describing both the transition

probabilities πkk′ from state k to k′ and the emis-

sion distributions parametrized by φk′ , we can now

formally define the iHMM as follows:

β ∼ GEM(γ), πk|β ∼ DP(α,β), φk ∼ H, (2)

st|st−1 ∼ Multinomial(πst−1
), yt|st ∼ F (φst). (3)

The graphical model corresponding to this hierarchical

model is shown in figure 1. Thus βk′ is the prior mean

for transition probabilities leading into state k
′ , and α

governs the variability around the prior mean. If we fix

β = ( 1
K
. . .

1
K
, 0, 0 . . .)

where the first K entries are
1
K

and the remaining are 0, then transition probabilities

into state k
′ will be non-zero only if k

′ ∈ {1 . . .K}, and

we recover the Bayesian HMM of (MacKay, 1997).

Finally we place priors over the hyperparameters α

and γ. A common solution, when we do not have

strong beliefs about the hyperparameters, is to use

gamma hyperpriors: α ∼ Gamma(aα, bα) and γ ∼

Gamma(aγ, bγ). (Teh et al., 2006) describe how these

hyperparameters can be sampled efficiently, and we

will use this in the experiments to follow.

3. The Gibbs Sampler

The Gibbs sampler was the first sampling algorithm

for the iHMM that converges to the true posterior.

One proposal builds on the direct assignment sampling

scheme for the HDP in (Teh et al., 2006) by marginal-

izing out the hidden variables π,φ from (2), (3) and

ignoring the ordering of states implicit in β. Thus we

only need to sample the hidden trajectory s, the base

DP parameters β and the hyperparameters α, γ. Sam-

pling β, α, γ
is exactly the same as for the HDP so we

refer to (Teh et al., 2006) for details.

In order to resample st, we need to compute the prob-

ability p(st|s−t,β,y
, α,H) ∝ p(yt|st, s−t,y−t

, H) ·

p(st|s−t,β, α
). The first factor is the con-

ditional likelihood of yt given s, y and H:

∫
p(yt|st,φst)p

(φst|s−t,y−t
, H)dφst. This is easy to

compute when the base distribution H and likelihood

F from equations (2) and (3) are conjugate. For

the second factor we can use the fact that the hid-

den state sequence is Markov. Let nij be the number

of transitions from state i to state j excluding time

steps t − 1 and t. Let n·i, ni· be the number of tran-

sitions in and out of state i. Finally, let K be the

number of distinct states in s−t. Then we have that1

p(st = k|s−t,β, α) ∝

(nst−1,k
+ αβk)

nk,st+1
+αβst+1

nk·+α
if k ≤ K, k 6= st−1

(nst−1,k
+ αβk)

nk,st+1
+1+αβst+1

nk·+1+α
if k = st−1 = st+1

(nst−1,k
+ αβk)

nk,st+1
+αβst+1

nk·+1+α
if k = st−1 6= st+1

αβkβst+1

if k = K + 1.

For each 1 ≤ t ≤ T we need to compute O(K)

probabilities, hence the Gibbs sampler has an O(TK)

computational complexity. Non-conjugate models can

be handled using more sophisticated sampling tech-

niques. In our experiments below, we used algorithm

8 from (Neal, 2000).

The Gibbs sampler’s success is due to its straightfor-

ward implementation. However, it suffers from one

major drawback: sequential and time series data are

likely to be strongly correlated. For example, if we

know the value of a stock at time t then we can be

reasonably sure that it will be similar at time t+1. As

is well known, this is a situation which is far from ideal

for the Gibbs sampler: strong correlations in the hid-

den states will make it unlikely that individual updates

to st can cause large blocks within s to be changed.

We will now introduce the beam sampler which does

not suffer from this slow mixing behavior by sampling

the whole sequence s in one go.

4. The Beam Sampler

The forward-backward algorithm does not apply to

the iHMM because the number of states, and hence

the number of potential state trajectories, are infinite.

The idea of beam sampling is to introduce auxiliary

variables u such that conditioned on u the number

of trajectories with positive probability is finite. Now

dynamic programming can be used to compute the

conditional probabilities of each of these trajectories

and thus sample whole trajectories efficiently. These

1Recall that we ignored the ordering of states in β. In

this representation the K distinct states in s are labeled

1 . . .K and K + 1 denotes a new state.

1090

Beam Sampling for the Infinite Hidden Markov Model

0
500

1000
1500

0

0.2

0.4

0.6

0.8

1

Iterations

p(
E

rr
or

)

 

 

Gibbs Vague

Gibbs Strong

Gibbs Fixed

Beam Vague

Beam Strong

Beam Fixed

0
20

40
60

80
100

0

5

10

Iterations# 
tr

an
si

tio
ns

 

 

Beam Vague

Beam Strong

Beam Fixed

Figure 3. iHMM performance on strong negatively corre-

lated data. The top plot shows the error of the Gibbs and

beam sampler for the first 1500 iterations averaged over

20 runs. The bottom plot shows the average number of

previous states considered in equation (4) for the first 100

iterations of the beam sampler.

∏
k
p(φk|s,y, H). When the base distribution H is

conjugate to the data distribution F each φk can

be sampled efficiently. Otherwise we may resort to

Metropolis-Hastings or other approaches. Note that in

the non-conjugate case this is simpler than for Gibbs

sampling. In the experimental section, we describe an

application where the base distribution and likelihood

are non-conjugate.

To conclude our discussion of the beam sampler, it

is useful to point out that there is nothing special

about sampling ut from the uniform distribution on

[0, πst−1,st
]: by choosing a distribution over [0, πst,st−1

]

with higher mass near smaller values of ut, we will al-

low more trajectories to have positive probability and

hence considered by the forward filtering-backward

sampling algorithm. Although this will typically im-

prove mixing time, it also comes at additional compu-

tational cost. This brings us to the issue of the com-

putational cost of the beam sampler: since for each

timestep and each state assignment we need to sum

over all represented previous states, the worst case

complexity isO(TK
2). However, the sum in (4) is only

over previous states for which the transition probabil-

ity is larger than ut; this means that in practice we

might only need to sum over a few previous states.

In our experiments below, we will give some empirical

evidence for this “average case” behavior. Further, we

have found that the drastically improved mixing of the

beam sampler more than made up for the additional

cost over Gibbs sampling. Finally, although we did not

find any advantage doing so, it is certainly possible to

interleave the beam sampler and the Gibbs sampler.
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Figure 4. iHMM error on increasing positively correlated

data. The blue curve shows the beam sampler while the red

curve shows the Gibbs sampler performance. The dotted

line show the one standard deviation error bars.

5. Experiments

We evaluate the beam sampler on two artificial and

two real datasets to illustrate the following properties:

(1) the beam sampler mixes in much fewer iterations

than the Gibbs sampler; (2) the actual complexity per

iteration of the beam sampler is only marginally more

than the Gibbs sampler; (3) the beam sampler mixes

well regardless of strong correlations in the data; (4)

the beam sampler is more robust with respect to vary-

ing initialization and prior distribution; (5) the beam

sampler handles non conjugate models naturally; (6)

the iHMM is a viable alternative to the finite HMM.

All datasets and a Matlab version of our software are

available at http://m
lg.eng.ca

m.ac.uk/ju
rgen.

5.1. Artificial Data

Our first experiment compares the performance of the

iHMM on a sequence of length 800 generated by a 4

state HMM. The hidden state sequence was almost

cyclic (1-2-3-4-1-2-3-. . . ) with a 1% probability of self

transition: i.o.w the true distribution of hidden states

is strong negatively correlated. We use a multinomial

output distribution with the following emission matrix




0.0
0.5

0.5

0.6666 0.1666 0.1666

0.5
0.0

0.5

0.3333 0.3333 0.3333


 .

Next we run the Gibbs and beam sampler 20 times

from a random initialization with every state randomly

chosen between 1 and 20. We test the performance

of both samplers using three different hyperparame-

ter settings: (1) vague gamma hyperpriors for α and
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runs respectively. The plot includes error bars corre-

sponding to 2 standard deviations.

Figure 7 illustrates the estimated predictive log-

likelihoods for the finite VB-HMM and the two iHMMs

trained using beam and Gibbs sampling. We find that

the iHMMs have superior predictive power when com-

pared to the VB-HMM, even when we select the best

number of hidden states (around K = 16). Both the

iHMMs converged to a posterior distribution over hid-

den state sequences with around 16 states, showing

that nonparametric Bayesian techniques are an effec-

tive way to handle model selection. The final perfor-

mance of the Gibbs and beam sampler were not found

to be significantly different as we set the number of

iterations high enough to ensure that both algorithms

converge. Indeed, the aim of this experiment is not to

compare the performance of individuals iHMM sam-

pling schemes, rather, it is to further illustrate the rel-

ative effectiveness of using models of infinite capacity.

6. Conclusion

In this paper we introduced the beam sampler, a new

inference algorithm for the iHMM that draws inspi-

ration from slice sampling and dynamic programming

to sample whole hidden state trajectories efficiently.

We showed that the beam sampler is a more robust

sampling algorithm than the Gibbs sampler. We be-

lieve that the beam sampler is the algorithm of choice

for iHMM inference because it converges faster than

the Gibbs sampler and is straightforward to imple-

ment. Moreover, it conveniently allows us to learn

non-conjugate models. To encourage adoption of the

iHMM as an alternative to HMM learning, we have

made the software and datasets used in this paper

available at http://m
lg.eng.ca

m.ac.uk/ju
rgen.

The beam sampler idea is flexible enough to do in-

ference for various extensions of the iHMM: our cur-

rent work involves an adaptation of the beam sampler

to an extension of the iHMM that handles inputs, ef-

fectively resulting in a nonparametric generalization

of the input-output HMM (Bengio & Frasconi, 1995).

We believe this is a promising model for nonparamet-

ric Bayesian learning of POMDPs. Another project

currently underway is to use the beam sampler for ef-

ficiently learning finite, but very large hidden Markov

models. Finally, we are exploring the possibilities of

using the embedded HMM construction (Neal et al.,

2004) as an alternative for the beam sampler for effi-

cient inference in the iHMM.
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3.6.2. The slice sampler. The slice sampler (Damien, Wakefield, & Walker, 1999; Higdon,
1998; Wakefield, Gelfand, & Smith, 1991) is a general version of the Gibbs sampler. The
basic idea of the slice sampler is to introduce an auxiliary variable u ∈ R and construct an
extended target distribution p	(x, u), such that

p	(x, u) =
{

1 if 0 ≤ u ≤ p(x)

0 otherwise.

It is then straightforward to check that∫
p	(x, u) du =

∫ p(x)

0
du = p(x).

Hence, to sample from p(x) one can sample from p	(x, u) and then ignore u. The full
conditionals are of this augmented model are

p(u | x) = U[0,p(x)](u)

p(x | u) = UA(x)

where A = {x ; p(x) ≥ u}. If A is easy to identify then the algorithm is straightforward to
implement, as shown in figure 15.

It can be difficult to identify A. It is then worth introducing several auxiliary variables
(Damien, Wakefield, & Walker, 1999; Higdon, 1998). For example assume that

p(x) ∝
L∏

l=1

fl(x),

where the fl(·)’s are positive functions, not necessarily densities. Let us introduce L auxiliary
variables (u1, . . . , uL ) and define

p	(x, u1, . . . , uL ) ∝
L∏

l=1

I[0, fl (x)](ul).

xx

xu
(i+1)

(i)

(i+1)

f(x  )(i)

Figure 15. Slice sampling: given a previous sample, we sample a uniform variable u(i+1) between 0 and f (x (i)).
One then samples x (i+1) in the interval where f (x) ≥ u(i+1).

2

L. TIERNEY
2. Reversibility. A Markov chain with initial distribution π and transi-

tion kernel P is reversible if and only if the detailed balance relationπ�dx�P�x;dy� = π�dy�P�y;dx�

(2)

is satisfied. The two sides of this identity are measures on E ⊗E , and detailed

balance means these measures are identical. If detailed balance holds, then

for any real-valued f,∫ ∫
f�y�π�dx�P�x;dy� =

∫ ∫
f�y�π�dy�P�y;dx� =

∫
f�y�π�dy�and thus π is invariant for P. The Metropolis–Hastings kernel (1) satisfies (2)

if and only if

π�dx�Q�x;dy�α�x;y� = π�dy�Q�y;dx�α�y;x�;

(3)

that is, the diagonal component does not matter.
The following proposition gives a few useful facts about measures on prod-

uct spaces.

Proposition 1. Let µ�dx;dy� be a sigma-finite measure on the product

space �E × E;E ⊗ E � and let µT�dx;dy� = µ�dy;dx�. Then there exists a

symmetric setR ∈ E⊗E such that µ and µT are mutually absolutely continuous

on R and mutually singular on the complement of R, Rc. The set R is unique

up to sets that are null for both µ and µT. Let µR and µTR be the restrictions

of µ and µT to R. Then there exists a version of the density

r�x;y� = µR�dx;dy�
µTR�dx;dy�such that 0 < r�x;y� <∞ and r�x;y� = 1/r�y;x� for all x;y ∈ E.Proof. Let ν�dx;dy� = µ�dx;dy� + µT�dx;dy� = µ�dx;dy� + µ�dy;dx�.

Then ν is symmetric and both µ and µT are absolutely continuous with re-

spect to ν. Let h�x;y� be a density of µ with respect to ν. Then µT�dx;dy� =
h�y;x�ν�dy;dx� = h�y;x�ν�dx;dy� and thus h�y;x� is a density of µT with

respect to ν. Let R = ��x;y�x h�x;y� > 0 and h�y;x� > 0�. Then R is sym-

metric, the restrictions of µ and µT to R are mutually absolutely continuous

with r�x;y� = h�x;y�/h�y;x� on R, and on Rc the measures µ and µT are

mutually singular. The function r�x;y� can be set to one on Rc. If R∗ is any

other set with the specified properties, then µ and µT must be mutually abso-

lutely continuous as well as mutually singular on R\R∗ and on R∗ \R, which

means these sets must be null sets for both µ and µT. 2For a given proposal generation kernel Q, let µ�dx;dy� = π�dx�Q�x;dy�.
The set R for this measure µ can be viewed as consisting of those state pairs

�x;y� for which transitions from x to y and from y to x are both possible

in the Markov chain with initial distribution π and transition kernel Q. The
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p

~x

0

p

~x
y

p

~x
y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

= = =

recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p

~x

0

p

~x
y

p

~x
y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y
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recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p

~x

0

p

~x
y

p

~x
y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

= = =

recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p
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0

p
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y
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y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

= = =

recognize

integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate
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Put approximations
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Recognizing a density function

Program denote measures:

u

w
v

p

~x

}

�
~ =

u

w
v

p

~x

}

�
~

∈ M [0, 1] ⊆ ([0, 1]→ R+)→ R+

Measures compute expectations:

f 7→
1∫

0

∑

~x∈{H,T}3

p
∑

i〈xi=H〉(1− p)
∑

i〈x1=T〉〈~x = THH〉 · f(p) dp

=

1∫

0

p2(1− p) · f(p) dp

Need to recognize simpli�ed denotation as Beta distribution …
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Recognizing a density function

Goal: recognize h(p) = p2(1− p) as the density of beta 3 2

Robustness challenge: many equivalent ways to write p2(1− p) arise

Modularity challenge: many distribution families (beta, normal, …) known

Solution: characterize density functions by their holonomic representation,
a homogeneous linear di�erential equation such as

p(1− p) · h′(p) +
(

p− 2(1− p)
)
· h(p) = 0

computed compositionally!
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p

~x

0

p

~x
y

p

~x
y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

= = =

recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate

sim
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Put approximations
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(FLOPS 2016, UAI 2017)
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Eliminating a random variable

Program denote measures:
u

v
p

y

}

~ =

u

v

p

y

}

~

∈ M {H,T} ⊆ ({H,T}→ R+)→ R+

Measures compute expectations:

f 7→
1∫

0

p2(1− p)
∑

y∈{H,T}

p〈y=H〉(1− p)〈y=T〉 · f(y) dp

=
∑

y∈{H,T}

( 1∫

0

p2(1− p)p〈y=H〉(1− p)〈y=T〉 dp

)
· f(y)

=
∑

y∈{H,T}

(
1

20

)〈y=H〉( 1
30

)〈y=T〉
· f(y)
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p

~x

0

p

~x
y

p

~x
y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

= = =

recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p

~x

0

p

~x
y

p

~x
y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

= = =

recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p

~x

0

p

~x
y

p

~x
y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

= = =

recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p

~x

0

p

~x
y

p

~x
y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y
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recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p

~x

p

~x

0

p

~x
y

p

~x
y

p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

=

= =

recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate
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An unknown random process yields a
stateless coin that can be �ipped repeatedly
to produce heads (H) or tails (T).

We assume that the probability p that the
coin produces H each time is distributed
uniformly between 0 and 1 by the process.

We �ip the coin 3 times and observe THH.

What is the probability that the next �ip
produces H versus T?

(adapted from Eddy)

An unknown random process yields a
stateless particle whose one-dimensional
position can be measured repeatedly to
produce a real number.

We assume that the position p of the particle
is distributed normally with mean 3 and
standard deviation 2.

We measure the particle 3 times, each
time drawing independently from the
normal distribution with mean p and
standard deviation 1, and observe
−1.4,+1.0,−0.2.

What is the distribution of the next
measurement?

p¢ normal 3 2;
return p

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
factor 〈~x = (−1.4,+1.0,−0.2)〉;
return p

fail (undesired)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
return p

factor .0013;
p¢ normal .05 .55;
return p

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return (p, y)

p¢ normal 3 2;
factor (. . . p . . . );
factor (. . . p . . . );
factor (. . . p . . . );
y¢ normal p 1;
return y

factor .0013;
p¢ normal .05 .55;
y¢ normal p 1;
return (p, y)

factor .0013;
y¢ normal .05 1.14;
return y

p p
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p¢ uniform 0 1;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
return (p,~x)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
return p

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return (p, y)

p¢ uniform 0 1;
x1 ¢ �ip p;
x2 ¢ �ip p;
x3 ¢ �ip p;
factor 〈~x = THH〉;
y¢ �ip p;
return y

p

p

p

y

p

y

p

y y

factor (1/12);
p¢ beta 3 2;
return p

factor (1/12);
p¢ beta 3 2;
y¢ �ip p;
return (p, y)

factor (1/12);
y¢ �ip (3/5);
return y

= = =

recognize integrate

Pr(p) Pr(p,~x) Pr(p | ~x) Pr(p, y | ~x) Pr(y | ~x)
bind disintegrate bind integrate
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· · ·
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simplify

Inference method Run time (msecs)
Mean SD

WebPPL 1078 16
Hakaru without simplifications 1321 93
Hakaru with simplifications 269 10
Handwritten 207 4

Put approximations
in the language!

(FLOPS 2016, UAI 2017) simplify

simplify

disintegrate

Computer algebra Programming languages (PADL 2016)
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Disintegrating a joint measure

p¢ normal 3 2;
x1 ¢ normal p 1;
x2 ¢ normal p 1;
x3 ¢ normal p 1;
return (p,~x)

p¢ normal 3 2;
factor (dnorm p 1 (−1.4));
factor (dnorm p 1 (+1.0));
factor (dnorm p 1 (−0.2));
return p

p

~x

p

~x

Pr(p,~x) Pr(p | ~x)
disintegrate

x1 ¢ lebesgue;
x2 ¢ lebesgue;
x3 ¢ lebesgue;

=

Program transformation
derived from semantics.

Tricky when~x is not just drawn
from a primitive distribution:

I total momentum
I loop over array
I clamped measurement
I coordinate-wise MCMC

Addressed in recent work.
(ICFP 2016, POPL 2017,
ICFP 2017)
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