Calculating distributions

Chung-chieh Shan
Computer Science
Indiana University

Bloomington, Indiana, USA
ccshan@indiana.edu

Abstract

The ways we reason about probability distributions and ex-
plore their applications have been naturally shifting: away
from thoughtful proving with definitions using first princi-
ples, and towards mechanical calculation with expressions
using derived principles. This talk reviews three useful oper-
ations on distributions that we have started to express using
equational derivations and even to automate as program
transformations. These operations are (1) to recognize a den-
sity function as belonging to a known distribution family,
(2) to eliminate an unused random variable by summation
or integration, and (3) to disintegrate a joint measure into
a marginal and a conditional measure. It is thus promising
to support probabilistic reasoning by drawing techniques
from both programming languages and computer algebra.
Ongoing challenges include how to handle a wide variety
of container data types and generating programs, and how
human guidance should interact with machine assistance.

CCS Concepts + Mathematics of computing — Proba-
bilistic representations; Variable elimination; Density esti-
mation; Distribution functions; Statistical software; « Theory
of computation — Automated reasoning; Denotational se-
mantics; « Computing methodologies — Symbolic and
algebraic manipulation;

Keywords Probabilistic programs, conditional measures,
disintegration

ACM Reference Format:

Chung-chieh Shan. 2018. Calculating distributions. In The 20th
International Symposium on Principles and Practice of Declarative
Programming (PPDP ’18), September 3—5, 2018, Frankfurt am Main,
Germany. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3236950.3236973

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PPDP ’18, September 3-5, 2018, Frankfurt am Main, Germany

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6441-6/18/09.
https://doi.org/10.1145/3236950.3236973

1 Introduction

Improving our understanding of a domain and automating
reasoning in the domain are two activities that ideally form
a virtuous cycle [2]. For example, by exploring the notion
of natural numbers from first principles, we might come up
with a collection of arithmetic operations and equational
laws that are useful over and over again, and eventually
develop representations such as decimal place-value and al-
gorithms such as grade-school addition. Once we get the
hang of invoking an automated reasoning procedure that
is faster and more predictable if less flexible, we can redi-
rect our thoughts to notions expressed using arithmetic and
eventually automate reasoning with those notions. Similarly,
we can use Gaussian elimination instead of thinking about
which variables to cancel with which, and we can use a
context-free parsing algorithm instead of searching for a
syntactic derivation in a grammar.

Another domain where our improved understanding is
leading to automated reasoning is probability distributions.
Distributions are popular for formulating and solving prob-
lems in a wide variety of fields including machine learning,
system control, and cognitive science. Many of these com-
putations are automated, but the programs typically consist
of manually derived formulas that operate on numbers, so
any intent that relates programs to distributions is lost. We
envision programs that refer to distributions directly and
operate on them compositionally, using the same vocabulary
as human practitioners communicating with each other. We
expect such an executable vocabulary to make program fam-
ilies [14] that compute with distributions easier to express
and evolve over time. This vision is one view of probabilistic
programming.

2 Representing distributions

We must represent distributions before we can automate
reasoning about them. To start, we write the informal type
M« for distributions (measures) over «. For example, the
normal distribution over reals has the type M R.

It is popular to represent distributions as densities. For
example, it is popular to regard the normal distribution over
reals as a function R — R, . But a density only represents a
distribution in conjunction with a base measure (or dominat-
ing measure), and leaving out the latter is like leaving out
the unit on a physical quantity: it works at the beginning
but becomes confusing.

https://doi.org/10.1145/ 3236950.3236973
https://doi.org/10.1145/ 3236950.3236973
https://doi.org/10.1145/ 3236950.3236973

PPDP ’18, September 3-5, 2018, Frankfurt am Main, Germany

Instead, we represent distributions using operations of a
monad [7, 16]. Here we notate monad unit by return and
monad bind by Haskell’s do-notation, and add primitives for
elementary distributions. For example, consider the follow-
ing problem (adapted from Eddy’s [5]):

An unknown random process yields a stateless
coin that can be flipped repeatedly to produce
heads (H) or tails (T). We assume that the prob-
ability p that the coin produces H each time is
distributed uniformly between 0 and 1 by the
process. We flip the coin 8 times and observe
THTHHTHH. What is the probability that the
next flip produces H versus T?

Using the primitive distributions
uniform: R - R - MR (1)
flip : [0,1] - M {H, T}, (2)
we represent the process producing 9 coin flips as follows:

do {p « uniform 0 1; (3)
x1 « flipp; ... x9 « flip p;
return (x1,...,%0)} : M {H, T}’

Each of the 10 bindings («) in this expression can be viewed
as a node in a graph whose edges are data dependencies.

2 3 4 6 7 8

This directed acyclic graph is a Bayes net [15], so the monadic
representation of distributions is essentially a Bayes net.
One difference is that monadic bindings are ordered—for
example, x; is chosen before xg in (3). But that is just a
matter of bureaucracy: reordering bindings is justified by the
semantics introduced by Staton [18], where measure terms
denote well-defined s-finite kernels.

Two terms equivalent to (3) are worth mentioning on
the side. First, for programmers comfortable with treating
monadic actions as values, it may be more natural to repre-
sent the coin not by p : [0, 1] but by ¢ : M[{H, T}:

do {c « do {p « uniform 0 1; return (flip p)}; (4)
X1 € C...; X9 4« C;

return (xi,...,%x9)} : M {H, T}’

(Treating monadic actions as values helps represent their
mixtures [6, 8, 11].) Second, the repeated calls to flip in (3)
(or to ¢ in (4)) can be coalesced using a loop combinator such
as what Haskell calls replicateM : Z — M a — M [«]:

do {p « uniform 0 1; replicateM 9 (flip p)} (5)

Repetition in a Bayes net can similarly be no- p
tated using plates [3] such as the rectangular \
box to the right. Handling repetition efficiently v

is called lifted inference and a research topic
for both Bayes nets and probabilistic programs.

Chung-chieh Shan

It remains to represent the observations THTHHTHH.
Because the space of observations {H, T} is discrete (see
Section 6), we can use the primitive scoring construct factor :
R; — M 1, which maps 0 to the zero measure and 1 to the
trivial measure return ().

do {p « uniform 0 1; (6)
x1 «~ flipp; ... x9 « flip p;
() « factor (if (xy,...,x3) = (T,H, T,H,H, T,H, H)
then 1 else 0);
return xo} : M {H, T}

The use of factor zeros out the portion of the distribution
that does not match the observed 8 flips, and the return xy
at the bottom makes this expression denote a distribution
over just the outcome of the 9th flip.

3 Sampling and integrator semantics

One way to understand the meaning of a program using
factor like (6) is that it can be directly executed as a sampler
that collects samples of xg weighted by the scores. These
weighted samples can then be analyzed; for example, to
estimate the conditional probability of xg given x1, ..., xs,
we can plot a histogram by totaling the weights (not counting
the samples) in each of the two bins. In short, the program (6)
can be interpreted as a rejection sampler. But to rewrite these
programs to more efficient ones, we need to allow ourselves
to preserve a coarser semantics than weighted sampling.

Running the program (6) as a weighted sampler is one way
to estimate the conditional probability of xy. But instead of
collecting lots of samples weighted by 0 or 1, we can reduce
the variance of the estimator—that is, make its accuracy
depend less on chance—by rewriting it to generate weights
other than 0 or 1. It is intuitive to replace drawing x; then
testing x; = T by scoring 1 — p. Hence, we get the same
histogram on average when we replace (6) by

do {p « uniform 0 1; (7)
() « factor p°(1 — p)3;
X9 « flip p; return xo} : M {H, T}.

This new program only draws p and xo randomly. It is an
example of an importance sampler.

Rewriting (6) to (7) does not preserve weighted-sampling
semantics but does preserve measure semantics. A measure
over « is characterized by how it integrates functions e >R,
to yield results in R. For example, uniform 0 1 integrates a
function f : R — R, to yield the result fol f(p) dp. Similarly,
(6) and (7) integrate a function f : {H,T} — R, to yield
the expected weight accumulated in a histogram bin. That
expected weight is the same whether a sampler accumulates 1
in the bin 20% of the time or 0.2 in the bin 100% of the time,
so (6) and (7) denote the same measure. Characterized thus
as integrators, these measure denotations are easy to define
compositionally on probabilistic programs.

Calculating distributions

4 Recognizing a density function

The first two lines of (7) express a distribution over p
do {p « uniform 0 1; () « factor p°(1 — p)°; return p} (8)

by naming the base measure uniform 0 1 and the density
p°(1 = p)3. As is common, the base measure represents our
prior belief, and the density scores how likely the observed
flips are under each possible value of p, so they are called
the prior distribution and the likelihood, and together they
define the posterior distribution (8).

It turns out that we can better understand the program (8)
as a measure, and further reduce its variance as a weighted
sampler, by rewriting it to the equivalent program

do {() « factor (1/504); beta 6 4}. 9)

Here beta is a primitive distribution that, like uniform and
flip, is well studied and comes with a sampling algorithm
that doesn’t even need to generate weights. The constant
normalizing factor (1/504) is the total probability of our
observed flips; it does not concern our belief about p.

Thanks to this conjugacy relationship between the prior
and the likelihood on p, we can improve the program (7) by
rewriting it to the equivalent program

do {() « factor (1/504); (10)
p <« beta 6 4;
X9 « flip p; return xo} : M {H, T}.

To automate this rewrite, a probabilistic programming
system needs to recognize the formula p°(1—p)* as a density
of beta 6 4 with respect to uniform 0 1 up to a normalizing
factor. Recognizing density formulas is a problem solved
by holonomic representation in computer algebra [4, 9]. The
basic idea is to characterize the function h(p) = p>(1 — p)*
up to a factor by a homogeneous linear differential equation

gn(p) - K (p) +++++ 91(p) - H'(p) + go(p) - h(p) =0, (11)
in which each g;(p) is a polynomial in p. In this case, the
holonomic equation (unique up to a factor) is

p1=p)-H(p)+ (3p-5(1-p)) -h(p)=0. (12)
Because this equation can be computed compositionally, and
polynomials and their ratios can be matched robustly, we
can rewrite (7) to (10) without being stymied—like syntac-
tic pattern matching would—by algebraic variations such as
polynomial expansion and variable substitution. We have au-
tomated such rewriting for many one-dimensional primitive
distributions, without hard-coding each conjugacy relation-
ship. Thus, holonomy offers a promising representation of
densities, closed under operations such as product and sum.

5 Eliminating a random variable

In the programs (6), (7), and (10), the last line return x, says
that we want to predict the next flip but we don’t care to
learn about p (the coin itself). Consequently, a little calculus
can help us improve the programs even more. Let (h, t) be

PPDP ’18, September 3-5, 2018, Frankfurt am Main, Germany

(1,0) if x9 is H and (0, 1) if xo is T. Then the total weight of
the outcome xo is

T6+hT(4+t)

ra0+h+1t) - (13)

1
[pa-ppha-prap-
0
Specifically, the outcomes H and T have weights 6/5040 and
4/5040 respectively, so the program is equivalent to just

do {() « factor (1/504); flip (6/10)}. (14)

The variable p has been eliminated, or integrated out. We
have derived the exact solution to the original problem: the
probability of the next flip is H 6/10 versus T 4/10.

In many real-world problems, such an exact solution is
not tractable to compute. However, key to deriving an ap-
proximation algorithm is still exact equational reasoning,
subject to human guidance in the foreseeable future [12, 19].

A computer algebra system can perform the integral (13)
symbolically. But feeding a probabilistic program to com-
puter algebra willy-nilly can easily make it worse, so au-
tomation requires judicious control over which integrals to
try [4].

Another way to perform integrals that arise from prob-
abilistic programs is to forego existing facilities for sym-
bolic definite integration but to recognize the integrand
in (13) by its holonomic representation to be a density of
beta (6 + h) (4 + t) up to a normalizing factor. We can then
use the fact that beta (6 + h) (4 + t) integrates to 1 (in other
words, is a probability distribution), so the integral (13) is
equal to the normalizing factor.

6 Disintegrating a joint measure

Consider the following problem, which is analogous to the
running example so far but with real-valued observations:

An unknown random process yields a stateless
particle whose one-dimensional position can be
measured repeatedly to produce a real number.
We assume that the position p of the particle is
distributed normally with mean 3 and standard
deviation 2. We measure the particle 8 times,
each time drawing independently from the nor-
mal distribution with mean p and standard devi-
ation 1, and observe —1.4, +1.0, —0.2, —0.5, —1.4,
+0.9, +1.1, —0.9. What is the distribution of the
next measurement?

Using the primitive distribution
normal : R - R, —» MR, (15)

we can represent the process producing 9 measurements as
in (3):

do {p « normal 3 2; (16)
x1 «~normalp 1;...; x9 «~ normal p 1;
return (xi,...,%)} : MR®

PPDP ’18, September 3-5, 2018, Frankfurt am Main, Germany

However, it is no longer correct to represent the 8 observa-
tions using scores that are zero most of the time. The obstacle
is that the probability of drawing any particular number from
a normal distribution is exactly zero. Thus, when by analogy
to (6) we write

do {p « normal 3 2; (17)
x1 «~normalp 1; ...; x9 « normal p 1;
() « factor (if (xi,...,x3) = (-1.4,+1.0,...,-0.9)
then 1 else 0);
return xo} : M[R,

we get a program equivalent to the zero measure. In other
words, we might as well have written factor 0 instead.

To express the conditional distribution given xi, . .., X3,
we need to use nonzero scores that are the densities of
normal p 1 at x;. Because normal is primitive, we can look
up the density function (call it dnorm p 1) from a table:

do {p «~ normal 3 2; (18)
() « factor (dnorm p 1 (-1.4) -
dnormp 1 (+1.0) - --- -
dnorm p 1 (-0.9));
X9 «~normal p 1; return x,} : MR

This program is analogous to (7) directly and, thanks to a con-
jugacy relationship among normal distributions, amenable
to the same equational reasoning as in Sections 4 and 5.
These calculations are the basis of Kalman filters [10], which
estimate the state of a system from measurements over time.

When an observed quantity is not drawn directly from a
primitive distribution, but rather a result computed by the
model (such as the center of mass of random particles [1]), it
is more involved to specify and implement the disintegration
program transformation turning (16) into (18) [13, 17]. In
particular, we recently extended automatic disintegration to
applications where the distribution of the observation has
no density with respect to the Lebesgue base measure. For
example, if the positions measured are clamped to the inter-
val [0, 1], so x; < 0 is measured as 0 and x; > 1 is measured
as 1, we can still infer the distribution of p and xy. In these
cases, it is crucial for our representation of distributions to
make explicit the base measure behind each density.

Acknowledgments

This research was supported by DARPA contract FA8750-
14-2-0007, NSF grant CNS-0723054, Lilly Endowment, Inc.
(through its support for the Indiana University Pervasive
Technology Institute), and the Indiana METACyt Initiative.
The Indiana METACyt Initiative at IU is also supported in
part by Lilly Endowment, Inc.

References
[1] Hadi Mohasel Afshar, Scott Sanner, and Christfried Webers. 2016.
Closed-Form Gibbs Sampling for Graphical Models with Algebraic
Constraints. In Proceedings of the 30th AAAI Conference on Artificial
Intelligence.

Chung-chieh Shan

[2] Bruno Buchberger. 2006. Mathematical Theory Exploration. In Au-
tomated Reasoning: 3rd International Joint Conference (Lecture Notes
in Computer Science), Ulrich Furbach and Natarajan Shankar (Eds.).
Springer, 1-2. Invited talk.

[3] Wray L. Buntine. 1994. Operations for Learning with Graphical Models.
Journal of Artificial Intelligence Research 2 (1994), 159-225.

[4] Jacques Carette and Chung-chieh Shan. 2016. Simplifying Probabilistic

Programs Using Computer Algebra. In Practical Aspects of Declarative

Languages: 18th International Symposium, PADL 2016 (Lecture Notes in

Computer Science), Marco Gavanelli and John H. Reppy (Eds.). Springer,

135-152.

Sean R. Eddy. 2004. What is Bayesian Statistics? Nature Biotechnology

22, 9 (Sept. 2004), 1177-1178.

Thomas S. Ferguson. 1973. A Bayesian Analysis of Some Nonparamet-

ric Problems. The Annals of Statistics 1, 2 (March 1973), 209-230.

Michéle Giry. 1982. A Categorical Approach to Probability Theory. In

Categorical Aspects of Topology and Analysis: Proceedings of an Interna-

tional Conference Held at Carleton University, Ottawa, August 11-15,

1981 (Lecture Notes in Mathematics), Bernhard Banaschewski (Ed.).

Springer, 68-85.

Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz,

and Joshua B. Tenenbaum. 2008. Church: A Language for Generative

Models. In Proceedings of the 24th Conference on Uncertainty in Artificial

Intelligence, David Allen McAllester and Petri Myllyméki (Eds.). AUAI

Press, 220-229.

Manuel Kauers. 2013. The Holonomic Toolkit. In Computer Algebra in

Quantum Field Theory: Integration, Summation and Special Functions,

Carsten Schneider and Johannes Blimlein (Eds.). Springer, 119-144.

[10] Peter S. Maybeck. 1979. Stochastic Models, Estimation, and Control.
Number 141 in Mathematics in Science and Engineering. Academic
Press.

[11] Jeffrey W. Miller and Matthew T. Harrison. 2018. Mixture Models with
a Prior on the Number of Components. . Amer. Statist. Assoc. 113, 521
(2018), 340-356.

[12] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh
Shan, and Robert Zinkov. 2016. Probabilistic Inference by Program
Transformation in Hakaru (System Description). In Proceedings of
FLOPS 2016: 13th International Symposium on Functional and Logic
Programming (Lecture Notes in Computer Science), Oleg Kiselyov and
Andy King (Eds.). Springer, 62-79.

[13] Praveen Narayanan and Chung-chieh Shan. 2017. Symbolic Condi-
tioning of Arrays in Probabilistic Programs. Proceedings of the ACM
on Programming Languages 1, ICFP (2017), 11:1-11:25.

[14] David Lorge Parnas. 1976. On the Design and Development of Program
Families. IEEE Transactions on Software Engineering SE-2, 1 (March
1976), 1-9.

[15] Judea Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann.

[16] Norman Ramsey and Avi Pfeffer. 2002. Stochastic Lambda Calculus and
Monads of Probability Distributions. In POPL ’02: Conference Record of
the Annual ACM Symposium on Principles of Programming Languages.
ACM Press, 154-165.

[17] Chung-chieh Shan and Norman Ramsey. 2017. Exact Bayesian Infer-
ence by Symbolic Disintegration. In POPL ’17: Conference Record of
the Annual ACM Symposium on Principles of Programming Languages.
ACM Press, 130-144.

[18] Sam Staton. 2017. Commutative Semantics for Probabilistic Program-
ming. In Programming Languages and Systems: Proceedings of ESOP
2017, 26th European Symposium on Programming (Lecture Notes in
Computer Science), Yang Hongseok (Ed.). Springer, 855-879.

[19] Robert Zinkov and Chung-chieh Shan. 2017. Composing Inference
Algorithms as Program Transformations. In Proceedings of the 33rd
Conference on Uncertainty in Artificial Intelligence, Gal Elidan, Kristian
Kersting, and Alexander T. Ihler (Eds.). AUAI Press.

(5

—

(6

—

[7

—

[8

[t

[9

—

	Abstract
	1 Introduction
	2 Representing distributions
	3 Sampling and integrator semantics
	4 Recognizing a density function
	5 Eliminating a random variable
	6 Disintegrating a joint measure
	Acknowledgments
	References

