
Theory of mind and bounded rationality
without interpretive overhead

Chung-chieh Shan (Rutgers Aarhus), with Oleg Kiselyov

http://xkcd.com/248/

2/8

Theory of mind

I False-belief (Sally-Anne) task
I Gricean reasoning
I p-beauty contest
I Focal points in coordination games
I Information cascade
I Securities trading
I Plausibly deniable bribing (Pinker, Nowak, Lee)

Crucial for collaboration among human and computer agents!

Want executable models.

3/8

Modeling minds as programs

An agent’s A rational agent’s Bounded rationality
intention beliefs desires

A probability A utility
distribution function| {z }

A program A stochastic program Approximate inference

The amount of detail varies.

Encapsulated weighted search.

3/8

Modeling minds as programs

An agent’s A rational agent’s Bounded rationality
intention beliefs desires

A probability A utility
distribution function| {z }

A program A stochastic program Approximate inference

val random : random
val dist : random -> (prob * ’a) list -> ’a
val fail : random -> ’a

let flip random p = dist random [p, true; 1.-.p, false] in
let x = flip random 0.5 in
let y = flip random 0.5 in
if x || y then (x,y) else fail random

The amount of detail varies.

Encapsulated weighted search.

3/8

Modeling minds as programs

An agent’s A rational agent’s Bounded rationality
intention beliefs desires

A probability A utility
distribution function| {z }

A program A stochastic program Approximate inference

An agent’s
A rational agent’s

A bounded-rational agent’s

9>=
>;

8><
>:

theory of mind
theory of rational mind
theory of bounded-rational mind

A program
A stochastic program

Approximate inference

9>=
>;

8><
>:

about programs
about stochastic programs
about approximate inference

The amount of detail varies. Encapsulated weighted search.

4/8

Marr’s computational vs algorithmic models

stochastic program
(e.g., grammar)

A computational model of the modeler nests an algorithmic model
of the modelee.

For arbitrary nesting, implement inference as a stochastic program.

Z Run deterministic code at full speed, to avoid slowdown
exponential in the nesting depth (e.g., quantifier depth, plys).

4/8

Marr’s computational vs algorithmic models

approximate inference
(e.g., comprehension)
approximate inference
(e.g., comprehension)

stochastic program
(e.g., grammar)

A computational model of the modeler nests an algorithmic model
of the modelee.

For arbitrary nesting, implement inference as a stochastic program.

Z Run deterministic code at full speed, to avoid slowdown
exponential in the nesting depth (e.g., quantifier depth, plys).

4/8

Marr’s computational vs algorithmic models

stochastic program (e.g., don’t go to jail)stochastic program (e.g., don’t go to jail)stochastic program (e.g., don’t go to jail)

approximate inference
(e.g., comprehension)

stochastic program
(e.g., grammar)

A computational model of the modeler nests an algorithmic model
of the modelee.

For arbitrary nesting, implement inference as a stochastic program.

Z Run deterministic code at full speed, to avoid slowdown
exponential in the nesting depth (e.g., quantifier depth, plys).

4/8

Marr’s computational vs algorithmic models

approximate inference (e.g., plan utterance)approximate inference (e.g., plan utterance)approximate inference (e.g., plan utterance)approximate inference (e.g., plan utterance)

stochastic program (e.g., don’t go to jail)

approximate inference
(e.g., comprehension)

stochastic program
(e.g., grammar)

A computational model of the modeler nests an algorithmic model
of the modelee.

For arbitrary nesting, implement inference as a stochastic program.

Z Run deterministic code at full speed, to avoid slowdown
exponential in the nesting depth (e.g., quantifier depth, plys).

4/8

Marr’s computational vs algorithmic models

approximate inference (e.g., plan utterance)

stochastic program (e.g., don’t go to jail)

approximate inference
(e.g., comprehension)

stochastic program
(e.g., grammar)

A computational model of the modeler nests an algorithmic model
of the modelee.

For arbitrary nesting, implement inference as a stochastic program.

Z Run deterministic code at full speed, to avoid slowdown
exponential in the nesting depth (e.g., quantifier depth, plys).

5/8

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add layered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

I With delimited control, threads of execution can be
suspended, resumed, copied, discarded.

I Represent stochastic programs not as data but as normal
programs that suspend when they want randomness.

I Convert a stochastic program to a lazy tree of execution
traces without interpretive overhead.

I Inference operates on this lazy tree. Implemented in OCaml.
I Inference is itself a stochastic program (e.g., importance

sampling): it suspends when it wants randomness.
I Intuitions for nesting: sandboxes, virtualization, randomness

adapters, mock objects.

5/8

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add layered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

I With delimited control, threads of execution can be
suspended, resumed, copied, discarded.

I Represent stochastic programs not as data but as normal
programs that suspend when they want randomness.

I Convert a stochastic program to a lazy tree of execution
traces without interpretive overhead.

I Inference operates on this lazy tree. Implemented in OCaml.
I Inference is itself a stochastic program (e.g., importance

sampling): it suspends when it wants randomness.
I Intuitions for nesting: sandboxes, virtualization, randomness

adapters, mock objects.

5/8

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add layered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

I With delimited control, threads of execution can be
suspended, resumed, copied, discarded.

I Represent stochastic programs not as data but as normal
programs that suspend when they want randomness.

I Convert a stochastic program to a lazy tree of execution
traces without interpretive overhead.

I Inference operates on this lazy tree. Implemented in OCaml.
I Inference is itself a stochastic program (e.g., importance

sampling): it suspends when it wants randomness.
I Intuitions for nesting: sandboxes, virtualization, randomness

adapters, mock objects.

5/8

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add layered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

I With delimited control, threads of execution can be
suspended, resumed, copied, discarded.

I Represent stochastic programs not as data but as normal
programs that suspend when they want randomness.

I Convert a stochastic program to a lazy tree of execution
traces without interpretive overhead.

I Inference operates on this lazy tree. Implemented in OCaml.
I Inference is itself a stochastic program (e.g., importance

sampling): it suspends when it wants randomness.
I Intuitions for nesting: sandboxes, virtualization, randomness

adapters, mock objects.

5/8

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add layered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

I With delimited control, threads of execution can be
suspended, resumed, copied, discarded.

I Represent stochastic programs not as data but as normal
programs that suspend when they want randomness.

I Convert a stochastic program to a lazy tree of execution
traces without interpretive overhead.

I Inference operates on this lazy tree. Implemented in OCaml.
I Inference is itself a stochastic program (e.g., importance

sampling): it suspends when it wants randomness.
I Intuitions for nesting: sandboxes, virtualization, randomness

adapters, mock objects.

5/8

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add layered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

I With delimited control, threads of execution can be
suspended, resumed, copied, discarded.

I Represent stochastic programs not as data but as normal
programs that suspend when they want randomness.

I Convert a stochastic program to a lazy tree of execution
traces without interpretive overhead.

I Inference operates on this lazy tree. Implemented in OCaml.
I Inference is itself a stochastic program (e.g., importance

sampling): it suspends when it wants randomness.
I Intuitions for nesting: sandboxes, virtualization, randomness

adapters, mock objects.

5/8

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add layered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

I With delimited control, threads of execution can be
suspended, resumed, copied, discarded.

I Represent stochastic programs not as data but as normal
programs that suspend when they want randomness.

I Convert a stochastic program to a lazy tree of execution
traces without interpretive overhead.

I Inference operates on this lazy tree. Implemented in OCaml.
I Inference is itself a stochastic program (e.g., importance

sampling): it suspends when it wants randomness.
I Intuitions for nesting: sandboxes, virtualization, randomness

adapters, mock objects.

6/8

What comes in the box?

Represent stochastic programs

as normal programs

using dist fail laze delay

Represent approximate inference

as exploring a lazy tree of execution traces

using sample reify exact reify collate at least

Represent theory of mind

as recursive invocations of approximate inference

using multiple randomness sources (values of type random)

7/8

Example: plausibly deniable bribing

stochastic program
(e.g., grammar)

A computational model of the modeler nests an algorithmic model
of the modelee.

For arbitrary nesting, implement inference as a stochastic program.

Z Run deterministic code at full speed, to avoid slowdown
exponential in the nesting depth (e.g., quantifier depth, plys).

generate random ;;

.<fun random ->
let make_boolean () =
laze random (fun () -> flip random 0.5) in

let q_1 = make_boolean () in
let q_2 = make_boolean () in
let q_3 = make_boolean () in
let q_4 = make_boolean () in
let q_5 = make_boolean () in
if not (q_4 () <> q_3 () <> q_1 ()) &&

(q_2 () <> q_5 () <> q_4 ()) &&
not (q_2 () <> q_3 () <> q_2 ()) &&
not (q_3 () <> q_3 () <> q_5 ()) &&

(q_3 () <> q_4 () <> q_5 ())
then q_5 () && q_4 ()
else fail random>.

7/8

Example: plausibly deniable bribing

stochastic program
(e.g., grammar)

A computational model of the modeler nests an algorithmic model
of the modelee.

For arbitrary nesting, implement inference as a stochastic program.

Z Run deterministic code at full speed, to avoid slowdown
exponential in the nesting depth (e.g., quantifier depth, plys).

let predict random innocent problem =

match collate
(sample_reify random (Some 2) 5 problem)

with
| [] -> fail random (* police rejects sentence *)

| [_, false] ->
if innocent then Ticketed (* na��ve driver *)

else (* police perceives (unambiguous) bribe *)

if flip random 0.5 then Bribe (* corrupt police *)

else (* honest police *)

if at_least 0.01 true (* criminal trial *)

(sample_reify random (Some 4) 20 problem)
then Ticketed (* court �nds reasonable doubt *)

else Convicted (* court �nds bribe *)

| _ -> Ticketed (* police does not perceive bribe *)

7/8

Example: plausibly deniable bribing

stochastic program
(e.g., grammar)

A computational model of the modeler nests an algorithmic model
of the modelee.

For arbitrary nesting, implement inference as a stochastic program.

Z Run deterministic code at full speed, to avoid slowdown
exponential in the nesting depth (e.g., quantifier depth, plys).

let prefer random = function
| Ticketed -> if flip random 0.2 then fail random
| Bribe -> ()
| Convicted -> fail random

let analyze problem =

List.map snd (exact_reify problem)

let driver innocent random =

let problem = .!(generate random) in
prefer random (predict random innocent problem);
analyze problem

7/8

Example: plausibly deniable bribing

stochastic program
(e.g., grammar)

A computational model of the modeler nests an algorithmic model
of the modelee.

For arbitrary nesting, implement inference as a stochastic program.

Z Run deterministic code at full speed, to avoid slowdown
exponential in the nesting depth (e.g., quantifier depth, plys).

(* innocent driver *)

collate (sample_reify random (Some 3) 1000

(driver true)) ;;

[(0.0724, [true; false]); (* 21% *)

(0.0498, [true]); (* 15% *)

(0.2183, [false])] (* 64% *)

(* bribing driver *)

collate (sample_reify random (Some 3) 1000

(driver false)) ;;

[(0.0768, [true; false]); (* 30% *)

(0.0457, [true]); (* 18% *)

(0.1327, [false])] (* 52% *)

8/8

Summary

People people model model
I Concise, concrete, composable, compilable
I Can model unknown nesting depth

Next steps
I Applications please!
I Faster inference: conditional independence; memoization;

Markov chain Monte Carlo
I From probability to expected value and maximum utility
I Imperfect information: staging

