Theory of mind and bounded rationality
without interpretive overhead

Chung-chieh Shan (Rutgers < Aarhus), with Oleg Kiselyov

WHAT IF T HADSOME € rent You'VE TRAPPED US IN

ICE CREAM? WOULONT THETICAL 51TUATION!
THAT BE AWESOME? A HeFO A) °
INO, %TOP— / MAYBE IF I HAD

M E A KNIFE T COULD
\ CUT OUR Way FREE ...

/
ﬁ % 0000
HERE,TAKE?Q%“‘ %
THIS ONE.

% @ N
A e
- CREAM,

http://xkcd.com/248/

Theory of mind

v

False-belief (Sally-Anne) task

» Gricean reasoning

» p-beauty contest

» Focal points in coordination games

» Information cascade

Securities trading

Plausibly deniable bribing (Pinker, Nowak, Lee)

v

v

Crucial for collaboration among human and computer agents!

Want executable models.

2/8

Modeling minds as programs

An agent’s A rational agent’s Bounded rationality
intention beliefs desires
A probability A utility
distribution function

A program A stochastic program Approximate inference

The amount of detail varies.

3/8

Modeling minds as programs

An agent’s A rational agent’s Bounded rationality
intention beliefs desires
A probability A utility
distribution function

A program A stochastic program Approximate inference

val random : random
val dist : random -> (prob * ’a) list -> ’a
val fail : random -> ’a

let flip random p = dist random [p, true; 1.-.p, false] in
let x = flip random 0.5 in

let y = flip random 0.5 in

if x || y then (x,y) else fail random

The amount of detail varies.

3/8

Modeling minds as programs

An agent’s A rational agent’s Bounded rationality
intention beliefs desires
A probability A utility
distribution function

A program A stochastic program Approximate inference

An agent’s theory of mind
A rational agent’s theory of rational mind
A bounded-rational agent’s theory of bounded-rational mind

A program about programs
A stochastic program about stochastic programs
Approximate inference about approximate inference

The amount of detail varies. Encapsulated weighted search.

3/8

Marr’'s computational vs algorithmic models

4/8

Marr’'s computational vs algorithmic models

4/8

Marr’'s computational vs algorithmic models

4/8

A computational model of the modeler nests an algorithmic model
of the modelee.

For arbitrary nesting, implement inference as a stochastic program.

B3> Run deterministic code at full speed, to avoid slowdown
exponential in the nesting depth (e.g., quantifier depth, plys).

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add layered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

5/8

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add layered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

» With delimited control, threads of execution can be
suspended, resumed, copied, discarded.

5/8

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add /ayered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

» With delimited control, threads of execution can be
suspended, resumed, copied, discarded.

» Represent stochastic programs not as data but as normal
programs that suspend when they want randomness.

5/8

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add layered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

» With delimited control, threads of execution can be
suspended, resumed, copied, discarded.

» Represent stochastic programs not as data but as normal
programs that suspend when they want randomness.

» Convert a stochastic program to a lazy tree of execution
traces without interpretive overhead.

5/8

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add layered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

» With delimited control, threads of execution can be
suspended, resumed, copied, discarded.

» Represent stochastic programs not as data but as normal
programs that suspend when they want randomness.

» Convert a stochastic program to a lazy tree of execution
traces without interpretive overhead.

» Inference operates on this lazy tree. Implemented in OCaml.

5/8

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add /ayered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

» With delimited control, threads of execution can be
suspended, resumed, copied, discarded.

» Represent stochastic programs not as data but as normal
programs that suspend when they want randomness.

» Convert a stochastic program to a lazy tree of execution
traces without interpretive overhead.

» Inference operates on this lazy tree. Implemented in OCaml.

» Inference is itself a stochastic program (e.g., importance
sampling): it suspends when it wants randomness.

5/8

How to eliminate interpretive overhead

Filinski: given a programming language with delimited control,
add layered side effects (probabilities, memoization, etc.)
while still running deterministic code at full speed.

» With delimited control, threads of execution can be
suspended, resumed, copied, discarded.

» Represent stochastic programs not as data but as normal
programs that suspend when they want randomness.

» Convert a stochastic program to a lazy tree of execution
traces without interpretive overhead.

» Inference operates on this lazy tree. Implemented in OCaml.

» Inference is itself a stochastic program (e.g., importance
sampling): it suspends when it wants randomness.

» Intuitions for nesting: sandboxes, virtualization, randomness
adapters, mock objects.

5/8

What comes in the box?

Represent
as
using

Represent
as
using

Represent
as
using

stochastic programs
normal programs
dist fail laze delay

approximate inference
exploring a lazy tree of execution traces

sample_reify exact_reify collate at_least

theory of mind
recursive invocations of approximate inference
multiple randomness sources (values of type random)

6/8

Example: plausibly deniable bribing

generate random ;;
.<fun random ->
let make_boolean () =
laze random (fun () -> flip random 0.5) in
let gq_1 = make_boolean () in
let q_2 = make_boolean () in
let q_3 = make_boolean () in
let q_4 = make_boolean () in
let q_5 = make_boolean () in
if not (g4 OO <> q.3 O <> q_1 O) &
(g2 O <> g5 O <>q4 0) &
not (q_2 () <> 9.3) <> g2 O) &
not (g3) <> q.3 O <>q.5) &&
(g3 O <> g4 O <> q.5 O)
then q 5 OO && q_4 O
else fail random>.

7/8

Example: plausibly deniable bribing

let predict random innocent problem =
match collate

(sample_reify random (Some 2) 5 problem)

with

| [-> fail random (* police rejects sentence *)

| [_, false] ->
if innocent then Ticketed (* naive driver *)
else (* police perceives (unambiguous) bribe *)
if flip random 0.5 then Bribe (* corrupt police *)
else (* honest police *)
if at_least 0.01 true (* criminal trial *)

(sample_reify random (Some 4) 20 problem)

then Ticketed (* court finds reasonable doubt *)
else Convicted (* court finds bribe *)

| _ -> Ticketed (* police does not perceive bribe *)

7/8

Example: plausibly deniable bribing

let prefer random = function
| Ticketed -> if flip random 0.2 then fail random
| Bribe -> 0O
| Convicted -> fail random

let analyze problem =
List.map snd (exact_reify problem)

let driver innocent random =
let problem = .!(generate random) in
prefer random (predict random innocent problem) ;

analyze problem

7/8

Example: =

(* innocent driver *)
collate (sample_reify random (Some 3) 1000
(driver true)) ;;

[(0.0724, [true; falsel); (* 21%
(0.0498, [truel); (* 15%
(0.2183, [falsel)] (* 64%

(* bribing driver *)
collate (sample_reify random (Some 3) 1000
(driver false)) ;;

[(0.0768, [true; falsel); (* 30%
(0.0457, [truel); (* 18%
(0.1327, [falsel)] (* 52%

7io

Summary

People people model model
» Concise, concrete, composable, compilable
» Can model unknown nesting depth

Next steps
» Applications please!

» Faster inference: conditional independence; memoization;
Markov chain Monte Carlo

» From probability to expected value and maximum utility
» Imperfect information: staging

8/8

