Grammaticalizing mixed quotations

Chung-chieh Shan Rutgers ⇄ Aarhus ccshan@rutgers.edu

2 December 2008

Quine says 'quotation has a certain anomalous feature'.

Indirect quotation (use)

Quine says quotation has a certain anomalous feature.

Mixed quotation (Davidson 1979)

Quine says quotation 'has a certain anomalous feature'.

Quine says 'quotation has a certain anomalous feature'.

Indirect quotation (use)

Quine says quotation has a certain anomalous feature.

Mixed quotation (Davidson 1979)

Quine says quotation 'has a certain anomalous feature'.

Mixed quotation by presupposition (Geurts & Maier 2003) Bush is proud of his 'eckullectic' reading list.

'eckullectic' $\approx \underline{x} \ \underline{e} \ Q \ \underline{E}_{e}(x, Q, \text{'eckullectic'}) \ Q$

Quine says 'quotation has a certain anomalous feature'.

Indirect quotation (use)

Quine says quotation has a certain anomalous feature.

Mixed quotation (Davidson 1979)

Quine says quotation 'has a certain anomalous feature'.

Mixed quotation by presupposition (Geurts & Maier 2003) Bush is proud of his 'eckullectic' reading list. $\approx \underline{e} \ \underline{Q} \ \underline{E_e(Bush, Q, \text{'eckullectic'})}$ Bush is proud of his Q reading list 'eckullectic' $\approx x \ e \ Q \ \underline{E_e(x, Q, \text{'eckullectic'})} \ Q$

Quine says 'quotation has a certain anomalous feature'.

Indirect quotation (use)

Quine says quotation has a certain anomalous feature.

Mixed quotation (Davidson 1979)

Quine says quotation 'has a certain anomalous feature'.

'has a certain anomalous feature'

 $\approx \underline{x} \underline{e} Q \underline{E_e(x, Q, \text{`has a certain anomalous feature'})} Q$

Mixed quotation by presupposition (Geurts & Maier 2003)

Bush is proud of his 'eckullectic' reading list.

 $\approx \underline{e} \ Q \ \underline{E_e(\mathsf{Bush}, Q, \text{`eckullectic'})}$ Bush is proud of his Q reading list

'eckullectic' $\approx \underline{x} \ \underline{e} \ Q \ \underline{E}_{e}(x, Q, \text{'eckullectic'}) \ Q$

Quine says 'quotation has a certain anomalous feature'.

Indirect quotation (use)

Quine says quotation has a certain anomalous feature.

Mixed quotation (Davidson 1979)

Quine says quotation 'has a certain anomalous feature'. $\approx \exists e. Q \quad \underline{E_e(\text{Quine}, Q, \text{'has a certain anomalous feature'})}$ Quine says_e quotation Q

'has a certain anomalous feature'

 $\approx \underline{x} \underline{e} Q \underline{E_e(x, Q, \text{`has a certain anomalous feature'})} Q$

Mixed quotation by presupposition (Geurts & Maier 2003)

Bush is proud of his 'eckullectic' reading list.

 $\approx \underline{e} \ \underline{Q} \ \underline{E_e(\text{Bush}, Q, \text{`eckullectic'})}$ Bush is proud of his Q reading list

'eckullectic' $\approx \underline{x} \ \underline{e} \ Q \ \underline{E}_{e}(x, Q, \text{'eckullectic'}) \ Q$

The syntax of mixed quotation

Hard vs soft presupposition failure?

- 1. Bush is proud of his 'eckullectic' reading list.
- 2. Bush is proud of his 'misunderestimate' reading list.
- 3. Bush says his reading list 'eckullectic'.
- 4. Bush met the king of France.

The syntax of mixed quotation

Hard vs soft presupposition failure?

- 1. Bush is proud of his 'eckullectic' reading list.
- 2. Bush is proud of his 'misunderestimate' reading list.
- 3. Bush says his reading list 'eckullectic'.
- 4. Bush met the king of France.

This talk

What To enshrine presupposition failure in mixed quotation as ungrammaticality

How A modal interface between syntax and semantics

On the way Semantic interjection

Quoted languages are like possible worlds

Starting point

A ::= A/B B $A ::= B \ B \setminus A$ DP ::= Quine DP ::= BushDP ::= quotation $(DP \setminus S)/S ::= says$ TV ::= is proud of $(TV = (DP \setminus S)/DP)$ N/N ::= eclectic N ::= reading list

Starting point

Abusing notation: [A]

A ::= A/B B[A](w) = [A/B](w)([B]) $A ::= B \ B \setminus A$ $\llbracket A \rrbracket(w) = \llbracket B \setminus A \rrbracket(w) (\llbracket B \rrbracket)$ ÷ DP ::= QuineDP ::= BushDP ::= quotation $(DP \setminus S)/S ::= says$ $TV ::= is proud of (TV = (DP \setminus S)/DP)$ N/N := eclectic N ::= reading list

The type of $\llbracket A \rrbracket$ is $\tau(A)$, defined to be $\langle s, \sigma(A) \rangle$, where

 $\sigma(A/B) = \sigma(B \setminus A) = \langle \tau(B), \sigma(A) \rangle, \ \ \sigma(\mathsf{DP}) = e, \ \ \sigma(\mathsf{S}) = t, \ \ \ldots$

Presupposing mixed quotes

$$A ::= `\dots` [[A]] = \underline{x} \underline{e} Q \underline{E_e(x, A, Q, `\dots')} Q$$

The type of Q is $\tau(A)$.

$$\exists e. \exists Q. E_e(Bush, N/N, Q, \text{`eckullectic'}) \\ \exists e. \exists Q. E_e(Bush, TV, Q, \text{`misunderestimate'}) \\ \neg \exists e. \exists Q. E_e(Bush, TV, Q, \text{`eckullectic'}) \\ \neg \exists e. \exists Q. E_e(Bush, N/N, Q, \text{`misunderestimate'}) \\ \end{cases}$$

Quoted ungrammaticality is presupposition failure.

Assumption: the quoted language is compositional (enough). Payoff: *semantic interjection*.

Bush says 'I have an [eclectic] reading list'.

Assumption: the quoted language is compositional (enough). Payoff: *semantic interjection*.

Bush says 'I have an [eclectic] reading list'.

Add a syntactic category A' to the quoting language for each syntactic category A of the quoted language.

A ::= `A'' $A' ::= \dots$ A' ::= (A/B)' B' $A' ::= B' (B \setminus A)'$ \vdots A' ::= [A]

Assumption: the quoted language is compositional (enough). Payoff: *semantic interjection*.

Bush says 'I have an [eclectic] reading list'.

Add a syntactic category A' to the quoting language for each syntactic category A of the quoted language.

Assumption: the quoted language is compositional (enough). Payoff: *semantic interjection*.

Bush says 'I have an [eclectic] reading list'.

Add a syntactic category A' to the quoting language for each syntactic category A of the quoted language.

$$A ::= `A'' \qquad [\![A]\!] = [\![A']\!] (\underline{x} \in I_e(x)) \text{where } I_e(x)(A ::= q) = \underline{Q} \underline{E}_e(x, A, Q, q) Q A' ::= \dots \qquad [\![A']\!](i) = i(A ::= \dots) \qquad -\text{may be undefined} A' ::= (A/B)' B' [\![A']\!](i) = i(A ::= A/B B) ([\![(A/B)']\!](i), [\![B']\!](i)) A' ::= B' (B \land A)' [\![A']\!](i) = i(A ::= B B \land A) ([\![B']\!](i), [\![(B \land A)']\!](i)) \\ \vdots \qquad \vdots \\ A' ::= [A]$$

Assumption: the quoted language is compositional (enough). Payoff: *semantic interjection*.

Bush says 'I have an [eclectic] reading list'.

Add a syntactic category A' to the quoting language for each syntactic category A of the quoted language.

$$\begin{array}{ll} A ::= `A'' & [\![A]\!] = [\![A']\!] (\underline{x} \in I_e(x)) \\ & \text{where } I_e(x)(A ::= q) = \underline{Q} \ \underline{E}_e(x, A, Q, q) \ Q \\ A' ::= \dots & [\![A']\!](i) = i(A ::= m) & -\text{may be undefined} \\ A' ::= (A/B)' \ B' & [\![A']\!](i) = i(A ::= A/B \ B) ([\![(A/B)']\!](i), [\![B']\!](i)) \\ A' ::= B' \ (B \setminus A)' & [\![A']\!](i) = i(A ::= B \ B \setminus A) ([\![B']\!](i), [\![(B \setminus A)']\!](i)) \\ \vdots & \vdots \\ A' ::= [A] & [\![A']\!](i) = [\![A]\!] & -\text{ignoring the interpreter } i \end{array}$$

Syntax: Environment classifiers (Taha & Nielsen 2003) Replace A' by $A^{\alpha}, A^{\beta}, \ldots$:

$$A ::= `A' `$$

 $A' ::= [A]$

Syntax: Environment classifiers (Taha & Nielsen 2003) Replace A' by $A^{\alpha}, A^{\beta}, \ldots$:

$$A ::= `A^{\beta}'$$
$$A^{\beta} ::= [A]$$

Syntax: Environment classifiers (Taha & Nielsen 2003) Replace A' by $A^{\alpha}, A^{\beta}, \ldots$:

Replace the catch-all rule by individual rules:

$$A' ::= \dots$$

Syntax: Environment classifiers (Taha & Nielsen 2003) Replace A' by $A^{\alpha}, A^{\beta}, \ldots$:

Replace the catch-all rule by individual rules:

 $(N/N)^{\beta} ::= eckullectic$ $TV^{\beta} ::= misunderestimate$

Syntax: Environment classifiers (Taha & Nielsen 2003) Replace A' by $A^{\alpha}, A^{\beta}, \ldots$:

$$A ::= `A^{eta}$$

 $A^{eta} ::= [A]$

Replace the catch-all rule by individual rules:

 $(N/N)^{\beta} ::= eckullectic$ $TV^{\beta} ::= misunderestimate$

Semantics 1: Code switching (Recanati; Stainton?)

Bush is proud of his 'eckullectic' reading list.

Syntax: Environment classifiers (Taha & Nielsen 2003) Replace A' by $A^{\alpha}, A^{\beta}, \ldots$:

$$A ::= `A^{\beta}` \qquad [\![A]\!] = [\![A^{\beta}]\!]$$
$$A^{\beta} ::= [A] \qquad [\![A^{\beta}]\!] = [\![A]\!]$$

Replace the catch-all rule by individual rules:

$$\begin{split} (N/N)^{\beta} & ::= \text{eckullectic} & [[(N/N)^{\beta}]] = \text{eclectic} \\ & TV^{\beta} & ::= \text{misunderestimate} & [[TV^{\beta}]] = \text{misestimate} \end{split}$$

Semantics 1: Code switching (Recanati; Stainton?)

Fix a finite number of environment classifiers. Use one classifier to quote each speech event e (and speaker x). Then, just get rid of the interpreter.

Syntax: Environment classifiers (Taha & Nielsen 2003) Replace A' by $A^{\alpha}, A^{\beta}, \ldots$:

$$A ::= `A^{\beta}` \qquad [\![A]\!] = [\![A^{\beta}]\!]$$
$$A^{\beta} ::= [A] \qquad [\![A^{\beta}]\!] = [\![A]\!]$$

Replace the catch-all rule by individual rules:

$$\begin{split} (N/N)^{\beta} & ::= \text{eckullectic} & [[(N/N)^{\beta}]] = \text{eclectic} \\ & TV^{\beta} & ::= \text{misunderestimate} & [[TV^{\beta}]] = \text{misestimate} \end{split}$$

Semantics 2: Closures (Kameyama, Kiselyov & Shan)

Every president is proud of their 'eckullectic' reading list.

Syntax: Environment classifiers (Taha & Nielsen 2003) Replace A' by $A^{\alpha}, A^{\beta}, \ldots$:

$$A ::= {}^{*}A^{\beta}, \qquad [\![A]\!] = [\![A^{\beta}]\!] \underbrace{(\text{eclectic, misestimate})}_{A^{\beta}} ::= [A] \qquad [\![A^{\beta}]\!](i) = [\![A]\!]$$

Replace the catch-all rule by individual rules:

 $(N/N)^{\beta} ::=$ eckullectic $[(N/N)^{\beta}](e, m) = e$ $TV^{\beta} ::=$ misunderestimate $[TV^{\beta}](e, m) = m$

Semantics 2: Closures (Kameyama, Kiselyov & Shan)

Fix a finite number of environment classifiers. Some classifiers may be used to quote multiple speech events. Then, pass a 'slim interpreter' like a world. $\tau(A^{\beta}) = \langle \beta, \tau(A) \rangle$

Syntax: Environment classifiers (Taha & Nielsen 2003) Replace A' by $A^{\alpha}, A^{\beta}, \ldots$:

$$A ::= {}^{\boldsymbol{\prime}} A^{\boldsymbol{\beta}}, \qquad [\![A]\!] = [\![A^{\boldsymbol{\beta}}]\!] \overbrace{\left(\text{eclectic, misestimate}\right)}^{\boldsymbol{\prime}}$$
$$A^{\boldsymbol{\beta}} ::= [A] \qquad [\![A^{\boldsymbol{\beta}}]\!](i) = [\![A]\!]$$

Replace the catch-all rule by individual rules:

 $(N/N)^{\beta} ::=$ eckullectic $[(N/N)^{\beta}](e, m) = e$ $TV^{\beta} ::=$ misunderestimate $[TV^{\beta}](e, m) = m$

Semantics 3: Extensible parsing? Dependent types?

A man walks in the park. He uses the word 'eckullectic' as an adjective. He is proud of his 'eckullectic' reading list.

The syntax of mixed quotation

Hard vs soft presupposition failure?

- 1. Bush is proud of his 'eckullectic' reading list.
- 2. Bush is proud of his 'misunderestimate' reading list.
- 3. Bush says his reading list 'eckullectic'.
- 4. Bush met the king of France.

This talk

What To enshrine presupposition failure in mixed quotation as ungrammaticality

How A modal interface between syntax and semantics

On the way Semantic interjection

Quoted languages are like possible worlds