
Inverse scope as metalinguistic quotation
in operational semantics

Chung-chieh Shan

Rutgers University
ccshan@rutgers.edu

Abstract. We model semantic interpretation operationally : constituents
interact as their combination in discourse evolves from state to state. The
states are recursive data structures and evolve from step to step by con-
text-sensitive rewriting. These notions of context and order let us explain
inverse-scope quantifiers and their polarity sensitivity as metalinguistic
quotation of the wider scope.

1 Introduction

An utterance is both an action and a product [1]. On one hand, when we use
an utterance, it acts on the world: its parts affect us and our conversation.
For example, a referring expression reminds us of its referent and adjusts the
discourse context so that a pronoun later may refer to it. On the other hand,
linguistics describes the syntax and semantics of a sentence as a mathematical
object: a product, perhaps a tree or a function. But trees and functions do not
remind or adjust; at their most active, they merely contain or map. How then
does the meaning of an utterance determine its effects on the discourse and its
participants? In particular, how do utterances affect their context, and in the
order that they do?

We approach this “mind-body problem” the way many programming-lan-
guage semanticists approach an analogous issue. On one hand, a program such as

(1) 2→ n; n · 3

expresses a sequence of actions: store the number 2 in the memory location n,
then retrieve the contents of n and multiply it by 3. On the other hand, computer
science describes the syntax and semantics of the program as a tree or a function.
To view the same program as both a dynamic action and a static product,
programming-language theory uses operational semantics alongside denotational
semantics. A denotational semantics assigns a denotation to each expression—
compositionally, by specifying the denotation of a complex expression in terms
of the denotations of its parts. In contrast, an operational semantics defines
a transition relation on states—for each state, what it can become after one
step of computation [2]. Technical conditions relate denotational and operational
semantics. For example, adequacy requires that two utterances with the same
denotation must have the same operational outcome.

To analyze the example (1), we could define a state as an ordered pair of
an integer n and a current program, and the transition relation as a set that
includes the three transitions

(2) 〈0, (2→ n; n · 3)〉 〈2, n · 3〉 〈2, 2 · 3〉 〈2, 6〉.

These transitions together say that the program (1) starting with the memory
location n initialized to 0 yields the final result 6 with the contents of n changed
to 2. Unlike in denotational semantics, we specify the outcome of a program
without recursively specifying what each part of the program denotes. Rather,
we specify rewriting rules such as

(3) 〈x, (y → n; P)〉 〈y, P 〉 for any numbers x, y and any program P

to be elements of the transition relation, so that the first computation step in (2)
goes through. In other words, we include

(4)
{ 〈
〈x, (y → n; P)〉, 〈y, P 〉

〉
| x and y are two numbers; P is a program

}
in the transition relation as a subset.

Following a longstanding analogy between natural and formal languages, we
model natural-language semantics operationally. In Section 2, we review a stan-
dard operational semantics for a λ-calculus with delimited control. In Section 3,
we use this operational semantics to explain quantification and polarity sensitiv-
ity. We focus on these applications because they go beyond phenomena such as
anaphora and presupposition, where dynamic semantics has long been fruitful.
In particular, metalinguistic quotation (or multistage programming) extends our
account to inverse scope. We conclude in Section 4.

2 Context and order

We use the λ-calculus to introduce the notions of context and order, then let an
expression interact actively with its context. These computational notions recur
in various linguistic guises, especially in analyses of quantification, as Section 3
makes concrete.

2.1 Expressions and contexts

The set of λ-calculus expressions is recursively defined by the following gram-
mar. In words, an expression is either a variable x, an abstraction λx.E, or an
application EE.

E → x E → λx.E E → EE(5)

The derivation below shows that λx. xx is an expression, even though no func-
tion x can apply to itself in standard set theory.

(6) E → λx.E → λx.EE → λx.Ex→ λx. xx

In programming practice, constants such as 2 and multiplication · are also expres-
sions. Not shown in the grammar is the convention that we equate expressions
that differ only by variable renaming, so λx. λx. x = λx. λy. y = λy. λx. x 6=
λx. λy. x.

We specify certain expressions to be values, namely those generated by the
following grammar. In words, a value is any variable or abstraction, but not an
application.

V → x V → λx.E(7)

For example, the identity expression λx. x (henceforth I) is a value. In practice,
constants such as 2 and multiplication · are also values. Intuitively, a value is an
expression that is done computing, so the expression 2 · 3 is not a value.

An operational semantics is a relation on states. (More precisely, we consider
small-step operational semantics.) Our states are just closed expressions (that
is, expressions with no unbound variables), and the transition relation is in fact
a partial function that maps each closed expression to what it becomes after one
step of computation. We define the transition relation as follows. A context is
an expression with a gap, which we write as []. For example, λx. x(y[]) is a
context. The set of evaluation contexts C[] is defined by the grammar below, in
the style of [3]. The notation C[. . .] means to replace the gap [] in the context
C[] by an expression or another context.

C[]→ [] C[]→ C
[
[]E

]
C[]→ C

[
V []

]
(8)

The first production above says that the null context []—the context with noth-
ing but a gap—is an evaluation context. The second production says that, when-
ever C[] is an evaluation context, replacing its gap by []E (that is, the applica-
tion of a gap to any expression E) gives another evaluation context. The third
production says that, whenever C[] is an evaluation context, replacing its gap
by V [] (that is, the application of any value V to a gap) gives another evaluation
context. For example, the derivation below shows that I

(
[](II)

)
is an evaluation

context. (Recall from above that I stands for λx. x.)

(9) C[]→ C
[
[](II)

]
→ C

[
I
(
[](II)

)]
→ I

(
[](II)

)
We now define the transition relation to be the set of expression-pairs

(10) { 〈C[(λx.E)V], C[E′]〉 | C[] is an evaluation context; E′ substitutes the
value V for the variable x in the expression E },

or for short,

(11) C[(λx.E)V] C[E {x 7→ V }].

In words, a transition is a λ-conversion in an evaluation context where the ar-
gument is a value expression. Letting C[] = I

(
[](II)

)
, V = I, and E = x

gives

(12) I
(
(II)(II)

)
 I

(
I(II)

)
.

In fact, this is the only step that a computation starting at I
(
(II)(II)

)
can take.

It takes three more steps to reach a value, namely I:

(13) I
(
I(II)

)
 I(II) II I.

In practice, λ-conversions are joined by other transitions such as 1+2 ·3 1+6.
This operational semantics is not the only reasonable one for the λ-calculus.

Instead of or in addition to the transition (12), I
(
(II)(II)

)
could transition

to (II)(II) or I
(
(II)I

)
. Different operational semantics regulate the order in

which to run parts of a program differently, by constraining the set of evaluation
contexts and the rewriting that takes place inside. Our transition relation in (10)–
(11) implements a call-by-value, left-to-right evaluation order: it only performs λ-
conversion when the argument is a value (the V in (10)–(11) rules out a transition
to (II)(II)) and everything to the left is also a value (the V in (8) rules out a
transition to I

(
(II)I

)
).

2.2 Delimited control

The simple expression I
(
(II)(II)

)
above is not sensitive to the evaluation order:

pretty much any reasonable order will bring it to the final value I after a few
transitions. However, as we add functionality to the λ-calculus as a programming
language, different operational semantics result in different program outcomes.
A particularly powerful and linguistically relevant addition is delimited control
[3, 4], which lets an expression manipulate its context. To illustrate, we add ’s
delimited-control operators shift and reset [5, 6, 7] to the λ-calculus.

Before specifying shift and reset formally, let us first examine some example
transition sequences among arithmetic expressions. Reset by itself does not per-
form any computation, so the programs 1 + 2 · 3 and 1 + reset(2 · 3) yield the
same final value:

1 + 2 · 3 1 + 6 7,(14)
1 + reset(2 · 3) 1 + reset 6 1 + 6 7.(15)

Shift means to remove the surrounding context—up to the nearest enclosing
reset—into a variable. This functionality lets an expression manipulate its con-
text. For example, the variable f below receives the context that multiplies by 2,
so the program computes 1 + 3 · 2 · 2 · 5.

1 + reset
(
2 · shift f. (3 · f(f(5)))

)
(16)

 1 + reset
(
3 · (λx. reset(2 · x))((λx. reset(2 · x))(5))

)
 1 + reset

(
3 · (λx. reset(2 · x))(reset(2 · 5))

)
 1 + reset

(
3 · (λx. reset(2 · x))(reset 10)

)
 1 + reset

(
3 · (λx. reset(2 · x))10

)
 1 + reset

(
3 · reset(2 · 10)

)
 1 + reset(3 · reset 20)

 1 + reset(3 · 20) 1 + reset 60 1 + 60 61

To take another example, the shift expression below does not use the variable f
and so discards its surrounding context and supplies the reset with the result 4
right away.

(17) 1 + reset
(
2 · 3 · (shift f. 4) · 5

)
 1 + reset 4 1 + 4 5

We call reset a control delimiter because it delimits how much context an en-
closed shift expression manipulates.

For concreteness, the rest of this subsection formalizes the delimited-control
operators shift and reset; it can be skipped if the examples above suffice. We
add two productions for expressions.

E → resetE E → shift f.E(18)

The expression “shift f.E” binds the variable f in the body E, so for instance
the expressions “shift f. f” and “shiftx. x” are equal because they differ only by
variable renaming.

We add one production for evaluation contexts.

C[]→ C
[
reset[]

]
(19)

We call D[] a subcontext if it is an evaluation context built without this new pro-
duction. Finally, we add two new kinds of transitions to our transition relation,
one for reset and one for shift:

{〈C
[
resetV

]
, C
[
V
]
〉 | C[] is an evaluation context and V is a value },(20)

{〈C
[
resetD[shift f.E]

]
, C
[
resetE′]〉(21)

| C[] is an evaluation context; D[] is a subcontext;
E′ substitutes λx. resetD[x] for the variable f
in the expression E, where x is a fresh variable },

or for short,

C
[
resetV

]
 C

[
V],(22)

C
[
resetD[shift f.E]

]
 C

[
resetE {f 7→λx. resetD[x]}

]
.(23)

3 Linguistic applications

Linguistic theory traditionally views syntax, semantics, and pragmatics as a
pipeline, in which semantics maps expressions to denotations. We envision a
semantic theory for natural language that is operational in the sense that it
specifies transitions among representations rather than mappings to denotations.
That is, whereas denotational semantics interprets a syntactic constituent (such
as a verb phrase) by mapping it to a separate semantic domain (such as of
functions), operational semantics interprets a constituent by rewriting it to other
constituents. The rewriting makes sense insofar as the constituents represent
real objects. Thus we may specify a fragment of operational semantics as a set
of states, a transition relation over the states, and an ideally trivial translation
from utterances to states.

3.1 Quantification

We now use delimited control to model quantification. We assume that the sen-
tence
(24) Somebody saw everybody

translates to the program (state)

reset
(
(

somebody︷ ︸︸ ︷
shift f. ∃x. fx)<

(saw︷︸︸︷
saw >(

everybody︷ ︸︸ ︷
shift g.∀y. gy)

))
,(25)

where < and > indicate backward and forward function application. The occur-
rences of shift in this translation arise from the lexical entries for the quantifiers
somebody and everybody, whereas the occurrence of reset is freely available at
every clause boundary. This program then makes the following transitions to
yield the surface-scope reading of (25).

 reset
(
∃x. (λx. reset(x<(saw> shift g.∀y. gy)))x

)
 reset

(
∃x. reset(x<(saw> shift g.∀y. gy))

)
 reset

(
∃x. reset(∀y. (λy. reset(x<(saw>y)))y)

)
 reset

(
∃x. reset(∀y. reset(x<(saw>y)))

)
 reset

(
∃x. reset(∀y. x<(saw>y))

)
 reset

(
∃x. ∀y. x<(saw>y)

)
 ∃x. ∀y. x<(saw>y).

The last three transitions assume that the final formula and its subformulas are
values.

This example illustrates that the context of a shift operator is the scope of
a quantifier, and the order in which expressions are evaluated is that in which
they take scope. This analogy is appealing because it extends to other apparently
noncompositional phenomena [8–11] and tantalizing because it links meaning to
processing.

3.2 Polarity sensitivity

We now extend the model above to capture basic polarity sensitivity: a polarity
item such as anybody needs to take scope (right) under a polarity licensor such
as existential nobody.

(26) Nobody saw anybody.
(27) Nobody saw everybody.
(28)*Somebody saw anybody.

Following [12, 13], we treat a polarity license ` as a dynamic resource [14] that
is produced by nobody, required by anybody, and disposed of implicitly. To this
end, we translate nobody to

(29) shift f.¬∃x. fx`,

translate anybody to

(30) shift g. λ`.∃y. gy`,

and add license-disposal transitions of the form

(31) C[V `] C[V].

In (30), λ` denotes a function that must take the constant ` as argument.
The sentence (26) translates and computes as follows. The penultimate tran-

sition disposes of the used license using (31).

reset
(
(

nobody︷ ︸︸ ︷
shift f.¬∃x. fx`)<

(saw︷︸︸︷
saw >(

anybody︷ ︸︸ ︷
shift g. λ`. ∃y. gy`)

))
(32)

 reset
(
¬∃x. (λx. reset(x<(saw> shift g. λ`. ∀y. gy`)))x`

)
 reset

(
¬∃x. reset(x<(saw> shift g. λ`.∀y. gy`))`

)
 reset

(
¬∃x. reset(λ`.∀y. (λy. reset(x<(saw>y)))y`)`

)
 reset

(
¬∃x. (λ`.∀y. (λy. reset(x<(saw>y)))y`)`

)
 reset

(
¬∃x.∀y. (λy. reset(x<(saw>y)))y`

)
 reset

(
¬∃x.∀y. reset(x<(saw>y))`

)
 reset

(
¬∃x.∀y. x<(saw>y)`

)
 reset

(
¬∃x.∀y. x<(saw>y)

)
 ¬∃x. ∀y. x<(saw>y)

Similarly for (27), but not for (28): the transitions for (28) get stuck, because
λ` in (30) needs a license and does not get it.

As in Fry’s analyses, our translations of nobody and anybody integrate the
scope-taking and polarity-licensing aspects of their meanings. Consequently, no-
body must take scope immediately over one or more occurrences of anybody in
order to license them. Essentially, (29)–(31) specify a finite-state machine that
accepts strings of scope-taking elements in properly licensed order. It is easy
to incorporate into the same system other scope-taking elements, such as the
positive polarity item somebody and its surprising interaction with everybody
[15–17]: surface scope is possible in (33) but not the simpler sentence (34).

(33) Nobody introduced everybody to somebody.
(34) Nobody introduced Alice to somebody.

3.3 Quotation

A deterministic transition relation predicts wrongly that quantifier scope can
never be ambiguous. In particular, the transition relation above enforces call-
by-value, left-to-right evaluation and thus forces quantifiers that do not contain
each other to take surface scope with respect to each other. We refine our em-
pirical predictions using the notion of metalinguistic quotation, as expressed in
operational semantics by multistage programming [18, inter alia].

Briefly, multistage programming makes three new constructs available in pro-
grams: quotation, splice, and run. Quoting an expression such as 1 + 2, notated
d1 + 2e, turns it into a static value, a piece of code. If x is a piece of code, then
it can be spliced into a quotation, notated bxc. For example, if x is d1 + 2e, then
dbxc×bxce is equivalent to d(1+2)× (1+2)e. Finally, !x notates running a piece
of code. The transitions below illustrate.(

λx. !dbxc × bxce
)(
d1 + 2e

)
 !dbd1 + 2ec × bd1 + 2ece
 !d(1 + 2)× bd1 + 2ece !d(1 + 2)× (1 + 2)e
 (1 + 2)× (1 + 2) 3× (1 + 2) 3× 3 9

(35)

We need to add to our transition relation the general cases of the second, third,
and fourth transitions above. We omit these formal definitions, which involve
augmenting evaluation contexts too.

We contend that inverse scope is an instance of multistage programming.
Specifically, we propose that the sentence (24) has an inverse-scope reading
because it translates not just to the program (25) but also to the multistage
program

reset!
⌈
reset

(
(

somebody︷ ︸︸ ︷
shift f. ∃x. fx)<(

saw︷︸︸︷
saw >b

everybody︷ ︸︸ ︷
shift g.∀y. gdyec)

)⌉
.(36)

This latter program makes the following transitions, even under left-to-right
evaluation.

 reset
(
∀y.
(
λy. reset!

⌈
reset((shift f. ∃x. fx)<(saw>byc))

⌉)
dye
)

 reset
(
∀y. reset!

⌈
reset((shift f. ∃x. fx)<(saw>bdyec))

⌉)
 reset

(
∀y. reset!

⌈
reset((shift f. ∃x. fx)<(saw>y))

⌉)
 reset

(
∀y. reset reset((shift f. ∃x. fx)<(saw>y))

)
 reset

(
∀y. reset reset(∃x. (λx. reset(x<(saw>y)))x)

)
 reset

(
∀y. reset reset(∃x. reset(x<(saw>y)))

)
 reset

(
∀y. reset reset(∃x. x<(saw>y))

)
 reset

(
∀y. reset(∃x. x<(saw>y))

)
 reset

(
∀y.∃x. x<(saw>y)

)
 ∀y.∃x. x<(saw>y)

The intuition behind this translation is that the scope of everybody in the
inverse-scope reading of (24) is metalinguistically quoted. The program (36) may
be glossed as “Everybody y is such that the sentence Somebody saw y is true”,
except it makes no sense to splice a person into a sentence, but it does make
sense to splice the quotation dye in (36) into a sentence [19].

Several empirical advantages of this account of inverse scope, as opposed
to just allowing non-left-to-right evaluation, lie in apparently noncompositional

phenomena other than (but closely related to) quantification. In particular, we
explain why a polarity licensor cannot take inverse scope over a polarity item
[13, 20].

(37)*Anybody saw nobody.

Surface scope is unavailable for (37) simply because anybody must take scope
(right) under its licensor. All current accounts of polarity sensitivity capture this
generalization, including that sketched in Section 3.2. A more enduring puzzle
is why inverse scope is also unavailable. Intuitively, our analysis of inverse scope
rules out (37) because it would gloss it as “Nobody y is such that the sentence
Anybody saw y is true” but Anybody saw y is not a well-formed sentence.

Formally, we hypothesize that quotation only proceeds by enclosing the trans-
lation of clauses in reset!dIt reset . . . e, where It is an identity function restricted
to take proposition arguments only. In other words, the only transition from a
program of the form C[ItV], where C[] is any evaluation context, is to C[V]
when V is a proposition (rather than a function such as λ`. . . .). We hypothesize
It not because the operational semantics forces us to, but to express the intuition
(some might say stipulation) that quotation applies to propositions only.

Replacing reset!dreset . . . e in (36) by reset!dIt reset . . . e does not hamper
the transitions there, because ∃x. x<(saw>y) is a proposition. In contrast, even
though (37) translates successfully to the program

reset!
⌈
It reset

(
(

anybody︷ ︸︸ ︷
shift f. λ`.∃x. fx`)<(

saw︷︸︸︷
saw >b

nobody︷ ︸︸ ︷
shift g.¬∃y. gdye`c)

)⌉
,(38)

it then gets stuck after the following transitions.

 reset
(
¬∃y.

(
λy. reset!

⌈
It reset((shift f. λ`.∃x. fx`)<(saw>byc))

⌉)
dye`

)
 reset

(
¬∃y.

(
reset!

⌈
It reset((shift f. λ`.∃x. fx`)<(saw>bdyec))

⌉)
`
)

 reset
(
¬∃y.

(
reset!

⌈
It reset((shift f. λ`.∃x. fx`)<(saw>y))

⌉)
`
)

 reset
(
¬∃y.

(
reset(It reset((shift f. λ`.∃x. fx`)<(saw>y)))

)
`
)

 reset
(
¬∃y.

(
reset(It reset(λ`.∃x. (λx. reset(x<(saw>y)))x`))

)
`
)

 reset
(
¬∃y.

(
reset(It(λ`. ∃x. (λx. reset(x<(saw>y)))x`))

)
`
)

The scope of nobody, namely anybody saw , is a function rather than a propo-
sition, so the intervening It blocks licensing. (The It would block licensing even
if we quote the license `—that is, even if we replace the last ` in (38) by d`e.) In
general, a polarity item must be evaluated after its licensor, because a quantifier
can take inverse scope only over a proposition.

Our operational semantics of metalinguistic quotation, like Barker and Shan’s
analyses of polarity sensitivity [8, 21], thus joins a syntactic notion of order to
a semantic notion of scope in an account of polarity—as desired [13, 20]. The
general strategy is to proliferate clause types: a clause in the analysis above
may denote not a proposition but a function from ` to propositions. We can

generalize this strategy to more clause types in order to account for additional
quantifiers and polarity items, such as in English [15], Dutch, Greek, Italian [22],
and Hungarian [23].

3.4 Other linguistic phenomena

Quantification and polarity sensitivity are just two out of many apparently non-
compositional phenomena in natural language, which we term linguistic side
effects [11]. Two other linguistic side effects are anaphora and interrogation. As
the term suggests, each effect finds a natural treatment in operational seman-
tics. For example, it is an old idea to treat anaphora as mediated by a record
of referents introduced so far in the discourse [24–26]. We can express this idea
in an operational semantics either by adding the record to the state as a sepa-
rate component, as sketched in Section 1, or by integrating the record into the
evolving program as it rewrites [27]. Another old idea is that wh-words take
scope to circumscribe how an asker and an answerer may interact [28]. Our use
of delimited control extends to this instance of scope taking.

The payoff of recasting these old ideas in a general operational framework
goes beyond conceptual clarity and notational simplicity. Our notions of context
and order apply uniformly to all linguistic phenomena and make borne-out pre-
dictions. For example, left-to-right evaluation explains not just the interaction
between quantification and polarity sensitivity but also crossover in binding and
superiority in questions [8, 9].

4 Conclusion

We have shown how an operational semantics for delimited control and multi-
stage programming in natural language helps explain inverse scope, polarity
sensitivity, and their interaction. We are actively investigating the foundations
and applications of our metalanguage, where many open issues remain. In partic-
ular, there is currently no type system or denotational semantics on the market
that soundly combines delimited control and quotation, so we have no way to
understand type-logically or statically what it means for a program such as (38)
to get stuck, much as we would like to.

Our approach extends dynamics semantics from the intersentential level to
the intrasentential level, where side effects are incurred not only by sentences (A
man walks in the park) but also by other phrases (nobody). Thus discourse con-
text is not a sequence of utterances in linear order but a tree of constituents in
evaluation order. This view unifies many aspects of human language—syntactic
derivation, semantic evaluation, and pragmatic update—as compatible transi-
tions among a single set of states. A tight link between operational and denota-
tional semantics [5] promises to strengthen the connection between the views of
language as product and language as action [1].

References

[1] Trueswell, J.C., Tanenhaus, M.K., eds.: Approaches to Studying World-
Situated Language Use: Bridging the Language-as-Product and Language-
as-Action Traditions. MIT Press, Cambridge (2005)

[2] Plotkin, G.D.: A structural approach to operational semantics. Techni-
cal Report DAIMI FN-19, Department of Computer Science, University of
Aarhus (1981) Revised version submitted to Journal of Logic and Algebraic
Programming.

[3] Felleisen, M.: The Calculi of λv-CS Conversion: A Syntactic Theory of
Control and State in Imperative Higher-Order Programming Languages.
PhD thesis, Computer Science Department, Indiana University (1987) Also
as Tech. Rep. 226.

[4] Felleisen, M.: The theory and practice of first-class prompts. In: POPL
’88: Conference Record of the Annual ACM Symposium on Principles of
Programming Languages, New York, ACM Press (1988) 180–190

[5] Danvy, O., Filinski, A.: A functional abstraction of typed contexts. Tech-
nical Report 89/12, DIKU, University of Copenhagen, Denmark (1989)
http://www.daimi.au.dk/~danvy/Papers/fatc.ps.gz.

[6] Danvy, O., Filinski, A.: Abstracting control. In: Proceedings of the 1990
ACM Conference on Lisp and Functional Programming, New York, ACM
Press (1990) 151–160

[7] Danvy, O., Filinski, A.: Representing control: A study of the CPS transfor-
mation. Mathematical Structures in Computer Science 2 (1992) 361–391

[8] Barker, C., Shan, C.c.: Types as graphs: Continuations in type logical
grammar. Journal of Logic, Language and Information 15 (2006) 331–370

[9] Shan, C.c., Barker, C.: Explaining crossover and superiority as left-to-right
evaluation. Linguistics and Philosophy 29 (2006) 91–134

[10] Shan, C.c.: Linguistic side effects. In Barker, C., Jacobson, P., eds.: Direct
Compositionality, New York, Oxford University Press (2007) 132–163

[11] Shan, C.c.: Linguistic Side Effects. PhD thesis, Harvard University (2005)
[12] Fry, J.: Negative polarity licensing at the syntax-semantics interface. In

Cohen, P.R., Wahlster, W., eds.: Proceedings of the 35th Annual Meeting
of the Association for Computational Linguistics and 8th Conference of the
European Chapter of the Association for Computational Linguistics, San
Francisco, Morgan Kaufmann (1997) 144–150

[13] Fry, J.: Proof nets and negative polarity licensing. In Dalrymple, M., ed.:
Semantics and Syntax in Lexical Functional Grammar: The Resource Logic
Approach. MIT Press, Cambridge (1999) 91–116

[14] Kiselyov, O., Shan, C.c., Sabry, A.: Delimited dynamic binding. In: ICFP
’06: Proceedings of the ACM International Conference on Functional Pro-
gramming, New York, ACM Press (2006) 26–37

[15] Shan, C.c.: Polarity sensitivity and evaluation order in type-logical gram-
mar. In Dumais, S., Marcu, D., Roukos, S., eds.: Proceedings of the 2004
Human Language Technology Conference of the North American Chapter
of the Association for Computational Linguistics. Volume 2., Somerset, NJ,
Association for Computational Linguistics (2004) 129–132

[16] Kroch, A.S.: The Semantics of Scope in English. PhD thesis, Massachusetts
Institute of Technology (1974) Reprinted by New York: Garland, 1979.

[17] Szabolcsi, A.: Positive polarity—negative polarity. Natural Language and
Linguistic Theory 22 (2004) 409–452

[18] Taha, W., Nielsen, M.F.: Environment classifiers. In: POPL ’03: Confer-
ence Record of the Annual ACM Symposium on Principles of Programming
Languages, New York, ACM Press (2003) 26–37

[19] Quine, W.V.O.: Word and Object. MIT Press, Cambridge (1960)
[20] Ladusaw, W.A.: Polarity Sensitivity as Inherent Scope Relations. PhD

thesis, Department of Linguistics, University of Massachusetts (1979)
Reprinted by New York: Garland, 1980.

[21] Shan, C.c.: Delimited continuations in natural language: Quantification
and polarity sensitivity. In Thielecke, H., ed.: CW’04: Proceedings of the
4th ACM SIGPLAN Continuations Workshop. Number CSR-04-1 in Tech.
Rep., School of Computer Science, University of Birmingham (2004) 55–64

[22] Bernardi, R.: Reasoning with Polarity in Categorial Type Logic. PhD
thesis, Utrecht Institute of Linguistics (OTS), Utrecht University (2002)

[23] Bernardi, R., Szabolcsi, A.: Partially ordered categories: Optionality, scope,
and licensing. http://ling.auf.net/lingBuzz/000372 (2006)

[24] Kamp, H.: A theory of truth and semantic representation. In Groenendijk,
J.A.G., Janssen, T.M.V., Stokhof, M.B.J., eds.: Formal Methods in the
Study of Language: Proceedings of the 3rd Amsterdam Colloquium, Ams-
terdam, Mathematisch Centrum (1981) 277–322

[25] Groenendijk, J., Stokhof, M.: Dynamic predicate logic. Linguistics and
Philosophy 14 (1991) 39–100

[26] Heim, I.: The Semantics of Definite and Indefinite Noun Phrases. PhD
thesis, Department of Linguistics, University of Massachusetts (1982)

[27] Felleisen, M., Friedman, D.P.: A syntactic theory of sequential state. The-
oretical Computer Science 69 (1989) 243–287

[28] Karttunen, L.: Syntax and semantics of questions. Linguistics and Philos-
ophy 1 (1977) 3–44

