
There’s treasure everywhere:
a Calvin and Hobbes collection by Bill Watterson

Embedding languages

Chung-chieh Shan



2

Oatmeal pancakes

Soak 3/4 cup oats in 3/4 cup water.
In a separate bowl, mix:

I 1 cup whole wheat flour
I 2 tablespoons flax seed meal
I 3 teaspoons baking [powder]
I 2 tablespoons sugar (evaporated cane sugar or whatever,

please no bone sugar!)
I Cinnamon, allspice, fresh grated nutmeg “to taste”

Add the soaked oats with water to the flour mixture.
Add soymilk to make a good thick mixture.
Cook in a medium hot skillet with light olive oil . . .

(Emily Thurston)



3

Interpreting recipes

Make it. How long does it take to make?
Reserve kitchen equipment. How many calories does it have?
Typeset it. How much does it cost?
Is it vegetarian? How much cinnamon to add?

pancakes
= cook (mix [soak (3/4) cup (measure (3/4) cup oats),

measure 1 cup whole_wheat_flour,
measure 2 tablespoon flax_seed_meal,
measure 3 teaspoon baking_powder,
measure 2 tablespoon sugar,
...],

...)



3

Interpreting recipes

Make it. How long does it take to make?
Reserve kitchen equipment. How many calories does it have?
Typeset it. How much does it cost?
Is it vegetarian? How much cinnamon to add?

pancakes
= cook (mix [soak (3/4) cup (measure (3/4) cup oats),

measure 1 cup whole_wheat_flour,
measure 2 tablespoon flax_seed_meal,
measure 3 teaspoon baking_powder,
measure 2 tablespoon sugar,
...],

...)



4

Representing knowledge as programs
Some examples:

I recipes
I contracts (stock options)
I decision processes (games)
I grammars (printf formats, regular expressions)
I media (music, animation)
I user interfaces (layout, validation)
I natural language

Whether procedural or declarative—
What is a program?

I executable
I composable
I expressive
I intuitive



4

Representing knowledge as programs
Some examples:

I recipes
I contracts (stock options)
I decision processes (games)
I grammars (printf formats, regular expressions)
I media (music, animation)
I user interfaces (layout, validation)
I natural language

Whether procedural or declarative—
What is a program?

I executable
I composable
I expressive
I intuitive



5

Outline

I Representing knowledge as programs
Recursive syntactic structure
Multiple semantic interpretations
Binding and procedural abstraction
Types

Embedding languages
Tagging overhead
Common subexpressions
Embedding interpreters

Preserving types and binding
Finally tagless
Closing the stage



6

?



7

Recursive syntactic structure
cook

mix

soak

3/4 cup measure

3/4 cup oats

measure

1 cup whole_wheat_flour

...

...

E ::= mix[E; : : : ] j soak n U E j measure n U E j oats j : : :

U ::= cup j tablespoon j teaspoon j : : :



7

Recursive syntactic structure
cook

mix

soak

3/4 cup measure

3/4 cup oats

measure

1 cup whole_wheat_flour

...

...

E ::= mix[E; : : : ] j soak n U E j measure n U E j oats j : : :

U ::= cup j tablespoon j teaspoon j : : :



8

Multiple semantic interpretations

Many back-ends: action, text, nutrition, cost, time, policy, . . .

We prefer a bottom-up (compositional) interpreter.

[[oats]] = 300 kcal : 1 cup : 80 gram

[[water]] = 0 kcal : 1 cup : 230 gram

[[measure n cup E]] =
xn

y
kcal : n cup :

zn

y
gram

where [[E]] = x kcal : y cup : z gram

[[mix [E1; : : : ; En]]] =
nX

i=1

[[Ei]]

(Ignoring fine points about chemistry and ratios.)



8

Multiple semantic interpretations

Many back-ends: action, text, nutrition, cost, time, policy, . . .
We prefer a bottom-up (compositional) interpreter.

[[oats]] = 300 kcal : 1 cup : 80 gram

[[water]] = 0 kcal : 1 cup : 230 gram

[[measure n cup E]] =
xn

y
kcal : n cup :

zn

y
gram

where [[E]] = x kcal : y cup : z gram

[[mix [E1; : : : ; En]]] =
nX

i=1

[[Ei]]

(Ignoring fine points about chemistry and ratios.)



9

Binding

seasoning = mix [measure 1 teaspoon cinnamon,
measure 1 teaspoon allspice,
measure 1 teaspoon (grate nutmeg)]

soak n u x = wait (mix [x, measure n u water])

map f [] = []
map f (x :: xs) = f x :: map f xs

Bound variables!

Functions!
Callback (higher-order) functions! “one teaspoon each of . . . ”



9

Binding and procedural abstraction

seasoning = mix [measure 1 teaspoon cinnamon,
measure 1 teaspoon allspice,
measure 1 teaspoon (grate nutmeg)]

soak n u x = wait (mix [x, measure n u water])

map f [] = []
map f (x :: xs) = f x :: map f xs

Bound variables!
Functions!

Callback (higher-order) functions! “one teaspoon each of . . . ”



9

Binding and procedural abstraction

seasoning = mix (map (measure 1 teaspoon)
[cinnamon, allspice,
grate nutmeg])

soak n u x = wait (mix [x, measure n u water])

map f [] = []
map f (x :: xs) = f x :: map f xs

Bound variables!
Functions!
Callback (higher-order) functions! “one teaspoon each of . . . ”



10

Types

Classify terms more finely.

T ::= food j number j unit j T list j T ! T

water : food

[x : T1]
���

E : T2

�x:E : T1 ! T2

E1 : T1 ! T2 E2 : T1

E1(E2) : T2

seasoning : food soak : number ! unit ! food ! food

Further distinctions: mass (oats) vs count (pancakes),
carnivore (bone sugar) vs vegetarian (cane sugar), . . .
Static safety guarantees.

Like terms, types also have recursive syntax,
multiple semantics, binding, procedures.



10

Types

Classify terms more finely.

T ::= food j number j unit j T list j T ! T

water : food

[x : T1]
���

E : T2

�x:E : T1 ! T2

E1 : T1 ! T2 E2 : T1

E1(E2) : T2

seasoning : food soak : number ! unit ! food ! food

Further distinctions: mass (oats) vs count (pancakes),
carnivore (bone sugar) vs vegetarian (cane sugar), . . .
Static safety guarantees.

Like terms, types also have recursive syntax,
multiple semantics, binding, procedures.



10

Types

Classify terms more finely.

T ::= food j number j unit j T list j T ! T

water : food

[x : T1]
���

E : T2

�x:E : T1 ! T2

E1 : T1 ! T2 E2 : T1

E1(E2) : T2

seasoning : food soak : number ! unit ! food ! food

Further distinctions: mass (oats) vs count (pancakes),
carnivore (bone sugar) vs vegetarian (cane sugar), . . .
Static safety guarantees.

Like terms, types also have recursive syntax,
multiple semantics, binding, procedures.



10

Types

Classify terms more finely.

T ::= food j number j unit j T list j T ! T

water : food

[x : T1]
���

E : T2

�x:E : T1 ! T2

E1 : T1 ! T2 E2 : T1

E1(E2) : T2

seasoning : food soak : number ! unit ! food ! food

Further distinctions: mass (oats) vs count (pancakes),
carnivore (bone sugar) vs vegetarian (cane sugar), . . .
Static safety guarantees.

Like terms, types also have recursive syntax,
multiple semantics, binding, procedures.



10

Types

Classify terms more finely.

T ::= food j number j unit j T list j T ! T

water : food

[x : T1]
���

E : T2

�x:E : T1 ! T2

E1 : T1 ! T2 E2 : T1

E1(E2) : T2

seasoning : food soak : number ! unit ! food ! food

Further distinctions: mass (oats) vs count (pancakes),
carnivore (bone sugar) vs vegetarian (cane sugar), . . .
Static safety guarantees.

Like terms, types also have recursive syntax,
multiple semantics, binding, procedures.



11

Outline

Representing knowledge as programs
Recursive syntactic structure
Multiple semantic interpretations
Binding and procedural abstraction
Types

I Embedding languages
Tagging overhead
Common subexpressions
Embedding interpreters

Preserving types and binding
Finally tagless
Closing the stage



12

Domain-specific languages

Some examples:
I recipes
I contracts (stock options)
I decision processes (games)
I grammars (printf formats, regular expressions)
I media (music, animation)
I user interfaces (layout, validation)
I natural language
I . . .



13

Better together

Embedding languages in each other:
I downloading and parsing recipes
I generating and running shaders and SQL
I “to taste”
I theory of mind:

Object values � what the modeled agent knows
Object terms � what the modeling agent believes

I mixed quotation:
Bush also said his administration would “achieve our
objectives” in Iraq. (New York Times, November 4, 2004)
Logic and Engineering of Natural Language Semantics 2007.
Amsterdam Colloquium 2007.

Nested containers—but with recursive syntax,
multiple semantics, binding, procedures, types.



13

Better together

Embedding languages in each other:
I downloading and parsing recipes
I generating and running shaders and SQL
I “to taste”
I theory of mind:

Object values � what the modeled agent knows
Object terms � what the modeling agent believes

I mixed quotation:
Bush also said his administration would “achieve our
objectives” in Iraq. (New York Times, November 4, 2004)
Logic and Engineering of Natural Language Semantics 2007.
Amsterdam Colloquium 2007.

Nested containers—but with recursive syntax,
multiple semantics, binding, procedures, types.



14

Programs as data

The central question:

How to represent object programs in the metalanguage?

Desiderata:
I Multiple interpretations
I Preserve types and binding
I Preserve sharing
I Embed interpreters



15

Programs as data

String pancakes = "cook (mix [...], ...)";
double kcal = Nutrition.interpret(pancakes);

(cf. POSIX regcomp)
Object program may be ill-formed, and nesting is tricky.

“Exploits of a mom”, http://xkcd.com/327/

http://xkcd.com/327/


15

Programs as data

String pancakes = "cook (mix [...], ...)";
double kcal = Nutrition.interpret(pancakes);

(cf. POSIX regcomp)
Object program may be ill-formed, and nesting is tricky.

“Exploits of a mom”, http://xkcd.com/327/

http://xkcd.com/327/


15

Programs as data

Recipe pancakes = new Cook(new Mix(...), ...);
double kcal = Nutrition.interpret(pancakes);

(cf. POSIX regcomp)

Object program may be ill-typed or contain unbound variables,
and we won’t find out until we actually generate it. Besides—

“Exploits of a mom”, http://xkcd.com/327/

http://xkcd.com/327/


16

Tagging overhead

Object program

Type checker

Interpreter

Meaning

error Value use and environment lookup
require dispatch that may fail.

error Well-typed programs
don’t go wrong.



16

Tagging overhead

Object program

Type checker

Interpreter

Meaning

error Value use and environment lookup
require dispatch that may fail.

error Well-typed programs
don’t go wrong.



16

Tagging overhead

Object program

Type checker

Interpreter

Meaning

error Value use and environment lookup
require dispatch that may fail.

error Well-typed programs
don’t go wrong.



16

Tagging overhead

Object program

Type checker

Interpreter

Meaning

error Type and binding safety in the
object language should be ensured

by the metalanguage.

error Well-typed programs
don’t go wrong.



17

Common subexpressions
Known-shared terms should be interpreted just once.

r = ... measure 1 teaspoon salt ...
... measure 1 teaspoon salt ...

Recipe s = new Measure(1, new Teaspoon(), new Salt());
Recipe r = ... s ... s ...;
double kcal = Nutrition.interpret(r);

Sharing object values Sharing object terms

Cook something once
and use it many times

Cook the same thing
many times

Make a decision once
and use it many times

Make the same decision
many times

Parse an input once
and use it many times

Parse the same input format
many times



17

Common subexpressions
Known-shared terms should be interpreted just once.

r = ... measure 1 teaspoon salt ...
... measure 1 teaspoon salt ...

Recipe s = new Measure(1, new Teaspoon(), new Salt());
Recipe r = ... s ... s ...;
double kcal = Nutrition.interpret(r);

Sharing object values Sharing object terms

Cook something once
and use it many times

Cook the same thing
many times

Make a decision once
and use it many times

Make the same decision
many times

Parse an input once
and use it many times

Parse the same input format
many times



17

Common subexpressions
Known-shared terms should be interpreted just once.

r = ... measure 1 teaspoon salt ...
... measure 1 teaspoon salt ...

Recipe s = new Measure(1, new Teaspoon(), new Salt());
Recipe r = ... s ... s ...;
double kcal = Nutrition.interpret(r);

Sharing object values Sharing object terms

Cook something once
and use it many times

Cook the same thing
many times

Make a decision once
and use it many times

Make the same decision
many times

Parse an input once
and use it many times

Parse the same input format
many times



18

Embedding interpreters

Distributions

Expectation.interpret

Recipes

Nutrition.interpret

Container “map”/“functoriality”

Need to either make a “native call” to the nutrition interpreter,
or port the nutrition interpreter into the distribution language.



18

Embedding interpreters

Distributions

Expectation.interpret

Recipes

Nutrition.interpret

�

Container “map”/“functoriality”

Need to either make a “native call” to the nutrition interpreter,
or port the nutrition interpreter into the distribution language.



19

Outline

Representing knowledge as programs
Recursive syntactic structure
Multiple semantic interpretations
Binding and procedural abstraction
Types

Embedding languages
Tagging overhead
Common subexpressions
Embedding interpreters

I Preserving types and binding
Finally tagless
Closing the stage



20

Programs as data

The central question:

How to represent object programs in the metalanguage?

Desiderata:
I Multiple interpretations
I Preserve types and binding
I Preserve sharing
I Embed interpreters



21

It should also be possible to define
languages, such as ALGOL 68, with a highly
refined syntactic type structure. Ideally, such
a treatment should be meta-circular . . .

(John Reynolds, 1972)

Systems F and F! (Jean-Yves Girard, 1972)
Interprétation fonctionnelle et élimination des coupures
dans l’arithmétique d’ordre supérieur. Thèse de doctorat
d’état, Université Paris VII.



21

It should also be possible to define
languages, such as ALGOL 68, with a highly
refined syntactic type structure. Ideally, such
a treatment should be meta-circular . . .

(John Reynolds, 1972)

Systems F and F! (Jean-Yves Girard, 1972)
Interprétation fonctionnelle et élimination des coupures
dans l’arithmétique d’ordre supérieur. Thèse de doctorat
d’état, Université Paris VII.



22

Two ways to represent type and binding safety

1. “Finally tagless, partially evaluated: tagless staged
interpreters for simpler typed languages.”
Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. APLAS 2007.
Journal version submitted.

Replace term constructors by interpreter branches.
Payoffs (using generics over generics):

I Eliminate tagging
I Preserve sharing
I Ease “native calling”
I Interpret terms and types multiply

2. “Closing the stage: from staged code to typed closures.”
Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. PEPM 2008.

Convert terms to closures with typed environments.

http://www.cs.rutgers.edu/~ccshan/tagless/aplas.pdf
http://www.cs.rutgers.edu/~ccshan/tagless/aplas.pdf
http://www.cs.rutgers.edu/~ccshan/tagless/jfp.pdf
http://www.cs.rutgers.edu/~ccshan/metafx/pepm66-kameyama.pdf


22

Two ways to represent type and binding safety

1. “Finally tagless, partially evaluated: tagless staged
interpreters for simpler typed languages.”
Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. APLAS 2007.
Journal version submitted.

Replace term constructors by interpreter branches.
Payoffs (using generics over generics):

I Eliminate tagging
I Preserve sharing
I Ease “native calling”
I Interpret terms and types multiply

2. “Closing the stage: from staged code to typed closures.”
Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. PEPM 2008.

Convert terms to closures with typed environments.

http://www.cs.rutgers.edu/~ccshan/tagless/aplas.pdf
http://www.cs.rutgers.edu/~ccshan/tagless/aplas.pdf
http://www.cs.rutgers.edu/~ccshan/tagless/jfp.pdf
http://www.cs.rutgers.edu/~ccshan/metafx/pepm66-kameyama.pdf


23

Finally tagless
Just an abstract data type (Milner).

E ::= oats j water j measure 1 cup E j mix E E

soaked_oats = mix (measure 1 cup oats)
(measure 1 cup water)

interface Symantics<Repr> {
Repr oats(); Repr water();
Repr measure_1_cup(Repr e);
Repr mix(Repr e1, Repr e2);

}

Repr lambda({Repr => Repr} body);
Repr apply(Repr fun, Repr arg);

}
<Repr> Repr soaked_oats(Symantics<Repr> s) {

return s.mix(s.measure_1_cup(s.oats()),
s.measure_1_cup(s.water()));

}



23

Finally tagless
Just an abstract data type (Milner).

E ::= oats j water j measure 1 cup E j mix E E

soaked_oats = mix (measure 1 cup oats)
(measure 1 cup water)

interface Symantics<Repr> {
Repr oats(); Repr water();
Repr measure_1_cup(Repr e);
Repr mix(Repr e1, Repr e2);

}

Repr lambda({Repr => Repr} body);
Repr apply(Repr fun, Repr arg);

}

<Repr> Repr soaked_oats(Symantics<Repr> s) {
return s.mix(s.measure_1_cup(s.oats()),

s.measure_1_cup(s.water()));
}



23

Finally tagless with binding safety
Meta-binding represents object binding (Washburn & Weirich).

E ::= oats j water j measure 1 cup E j mix E E

j x j �x:E j E(E)

soak = �x: mix x (measure 1 cup water)

interface Symantics<Repr> {
Repr oats(); Repr water();
Repr measure_1_cup(Repr e);
Repr mix(Repr e1, Repr e2);

}

Repr lambda({Repr => Repr} body);
Repr apply(Repr fun, Repr arg);

}
<Repr> Repr soak(Symantics<Repr> s) {

return s.lambda(Repr x =>
s.mix(x, s.measure_1_cup(s.water())));

}



23

Finally tagless with type and binding safety
Meta-typing represents object typing (us).

E ::= oats j water j measure 1 cup E j mix E E

j x j �x:E j E(E)

T ::= food j T ! T

interface Symantics<Repr> {
Repr oats(); Repr water();
Repr measure_1_cup(Repr e);
Repr mix(Repr e1, Repr e2);

}

Repr lambda({Repr => Repr} body);
Repr apply(Repr fun, Repr arg);

}
<Repr> Repr soak(Symantics<Repr> s) {

return s.lambda(Repr x =>
s.mix(x, s.measure_1_cup(s.water())));

}



23

Finally tagless with type and binding safety
Meta-typing represents object typing (us).

E ::= oats j water j measure 1 cup E j mix E E

j x j �x:E j E(E)

T ::= food j T ! T

interface Symantics<Repr> {
Repr

<Food>

oats(); Repr

<Food>

water();
Repr

<Food>

measure_1_cup(Repr

<Food>

e);
Repr

<Food>

mix(Repr

<Food>

e1, Repr

<Food>

e2);

} <A,B>

Repr

<{A=>B}>

lambda({Repr

<A>

=> Repr

<B>

} body);

<A,B>

Repr

<B>

apply(Repr

<{A=>B}>

fun, Repr

<A>

arg);
}
<Repr> Repr

<{Food=>Food}>

soak(Symantics<Repr> s) {
return s.lambda(Repr

<Food>

x =>
s.mix(x, s.measure_1_cup(s.water())));

}



23

Finally tagless with type and binding safety
Meta-typing represents object typing (us).

E ::= oats j water j measure 1 cup E j mix E E

j x j �x:E j E(E)

T ::= food j T ! T

interface Symantics<Repr> {
Repr<Food> oats(); Repr<Food> water();
Repr<Food> measure_1_cup(Repr<Food> e);
Repr<Food> mix(Repr<Food> e1, Repr<Food> e2);

}

<A,B> Repr<{A=>B}> lambda({Repr<A> => Repr<B>} body);
<A,B> Repr<B> apply(Repr<{A=>B}> fun, Repr<A> arg);

}
<Repr> Repr<{Food=>Food}> soak(Symantics<Repr> s) {
return s.lambda(Repr<Food> x =>

s.mix(x, s.measure_1_cup(s.water())));
}



24

Two ways to represent type and binding safety

1. “Finally tagless, partially evaluated: tagless staged
interpreters for simpler typed languages.”
Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. APLAS 2007.
Journal version submitted.

Replace term constructors by interpreter branches.
Payoffs (using generics over generics):

I Eliminate tagging
I Preserve sharing
I Ease “native calling”
I Interpret terms and types multiply

2. “Closing the stage: from staged code to typed closures.”
Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. PEPM 2008.

Convert terms to closures with typed environments.

http://www.cs.rutgers.edu/~ccshan/tagless/aplas.pdf
http://www.cs.rutgers.edu/~ccshan/tagless/aplas.pdf
http://www.cs.rutgers.edu/~ccshan/tagless/jfp.pdf
http://www.cs.rutgers.edu/~ccshan/metafx/pepm66-kameyama.pdf


24

Two ways to represent type and binding safety

1. “Finally tagless, partially evaluated: tagless staged
interpreters for simpler typed languages.”
Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. APLAS 2007.
Journal version submitted.

Replace term constructors by interpreter branches.
Payoffs (using generics over generics):

I Eliminate tagging
I Preserve sharing
I Ease “native calling”
I Interpret terms and types multiply

2. “Closing the stage: from staged code to typed closures.”
Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. PEPM 2008.

Convert terms to closures with typed environments.

http://www.cs.rutgers.edu/~ccshan/tagless/aplas.pdf
http://www.cs.rutgers.edu/~ccshan/tagless/aplas.pdf
http://www.cs.rutgers.edu/~ccshan/tagless/jfp.pdf
http://www.cs.rutgers.edu/~ccshan/metafx/pepm66-kameyama.pdf


24

Two ways to represent type and binding safety

1. “Finally tagless, partially evaluated: tagless staged
interpreters for simpler typed languages.”
Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. APLAS 2007.
Journal version submitted.

Replace term constructors by interpreter branches.
Payoffs (using generics over generics):

I Eliminate tagging
I Preserve sharing
I Ease “native calling”
I Interpret terms and types multiply

2. “Closing the stage: from staged code to typed closures.”
Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. PEPM 2008.

Convert terms to closures with typed environments.

http://www.cs.rutgers.edu/~ccshan/tagless/aplas.pdf
http://www.cs.rutgers.edu/~ccshan/tagless/aplas.pdf
http://www.cs.rutgers.edu/~ccshan/tagless/jfp.pdf
http://www.cs.rutgers.edu/~ccshan/metafx/pepm66-kameyama.pdf


25

Closing the stage

x

Encode binding in the object language
using tuples and generics in the metalanguage.



25

Closing the stage

x; y ` x �hx; yi: x

Encode binding in the object language
using tuples and generics in the metalanguage.



25

Closing the stage

x; y ` x �hx; yi: x

x; y ` 3 �hx; yi: 3

x; y ` x+ 3 �hx; yi: x+ 3

Encode binding in the object language
using tuples and generics in the metalanguage.



25

Closing the stage

x; y ` x �hx; yi: x

x; y ` 3 �hx; yi: 3

x; y ` x+ 3 �hx; yi: x+ 3

x; y; z ` x �hx; y; zi: x

x; y; z ` 3 �hx; y; zi: 3

x; y; z ` x+ 3 �hx; y; zi: x+ 3

Encode binding in the object language
using tuples and generics in the metalanguage.



25

Closing the stage

x; y ` x �hx; yi: x

x; y ` 3 �hx; yi: 3

x; y ` x+ 3 �hx; yi: x+ 3

x; y; z ` x �hx; y; zi: x

x; y; z ` 3 �hx; y; zi: 3

x; y; z ` x+ 3 �hx; y; zi: x+ 3

coerce

Encode binding in the object language
using tuples and generics in the metalanguage.



25

Closing the stage

x; y ` x �hx; yi: x

x; y ` 3 �hx; yi: 3

x; y ` x+ 3 �hx; yi: x+ 3

x; y; z ` x �hx; y; zi: x

x; y; z ` 3 �hx; y; zi: 3

x; y; z ` x+ 3 �hx; y; zi: x+ 3

coerce

Encode binding in the object language
using tuples and generics in the metalanguage.



25

Closing the stage

x; y ` x �hx; yi: x

x; y ` 3 �hx; yi: 3

x; y ` x+ 3 �hx; yi: x+ 3

x; y; z ` x �hx; y; zi: x

x; y; z ` 3 �hx; y; zi: 3

x; y; z ` x+ 3 �hx; y; zi: x+ 3

coerce

Encode binding in the object language
using tuples and generics in the metalanguage.



25

Closing the stage

x; y ` x �hx; yi: x

x; y ` 3 �hx; yi: 3

x; y ` x+ 3 �hx; yi: x+ 3

x; y; z ` x �hx; y; zi: x

x; y; z ` 3 �hx; y; zi: 3

x; y; z ` x+ 3 �hx; y; zi: x+ 3

Encode binding in the object language
using tuples and generics in the metalanguage.



25

Closing the stage

x; y ` x �hx; yi: x

x; y ` 3 �hx; yi: 3

x; y ` x+ 3 �hx; yi: x+ 3

x; y; z ` x �hx; y; zi: x

x; y; z ` 3 �hx; y; zi: 3

x; y; z ` x+ 3 �hx; y; zi: x+ 3

coerce

Encode binding in the object language
using tuples and generics in the metalanguage.



25

Closing the stage

x; y ` x �hx; yi: x

x; y ` 3 �hx; yi: 3

x; y ` x+ 3 �hx; yi: x+ 3

x; y; z ` x �hx; y; zi: x

x; y; z ` 3 �hx; y; zi: 3

x; y; z ` x+ 3 �hx; y; zi: x+ 3

coerce

Encode binding in the object language
using tuples and generics in the metalanguage.



26

Conclusion

Represent knowledge as programs!
I It’s executable!
I It’s composable!
I It’s expressive!
I It’s intuitive!

Embedding languages in each other:
How to preserve types and binding?

I Replace term constructors by interpreter branches.
I Convert terms to closures with typed environments.


	Representing knowledge as programs
	Recursive syntactic structure
	Multiple semantic interpretations
	Binding and procedural abstraction
	Types

	Embedding languages
	Tagging overhead
	Common subexpressions
	Embedding interpreters

	Preserving types and binding
	Finally tagless
	Closing the stage


