
Functional Pearl: Implicit Configurations

—or, Type Classes Reflect the Values of Types

Oleg Kiselyov
Fleet Numerical Meteorology
and Oceanography Center
Monterey, CA 93943, USA

oleg@pobox.com

Chung-chieh Shan
Division of Engineering and Applied

Sciences, Harvard University
Cambridge, MA 02138, USA

ccshan@post.harvard.edu

ABSTRACT
The configurations problem is to propagate run-time preferences
throughout a program, allowing multiple concurrent configuration
sets to coexist safely under statically guaranteed separation. This
problem is common in all software systems, but particularly acute
in Haskell, where currently the most popular solution relies on un-
safe operations and compiler pragmas.

We solve the configurations problem in Haskell using only sta-
ble and widely implemented language features like the type-class
system. In our approach, a term expression can refer to run-time
configuration parameters as if they were compile-time constants
in global scope. Besides supporting such intuitive term notation
and statically guaranteeing separation, our solution also helps im-
prove the program’s performance by transparently dispatching to
specialized code at run-time. We can propagate any type of config-
uration data—numbers, strings, IO actions, polymorphic functions,
closures, and abstract data types. No previous approach to propa-
gating configurations implicitly in any language provides the same
static separation guarantees.

The enabling technique behind our solution is to propagate val-
ues via types, with the help of polymorphic recursion and higher-
rank polymorphism. The technique essentially emulates local type-
class instance declarations while preserving coherence. Configu-
ration parameters are propagated throughout the code implicitly as
part of type inference rather than explicitly by the programmer. Our
technique can be regarded as a portable, coherent, and intuitive al-
ternative to implicit parameters. It motivates adding local instances
to Haskell, with a restriction that salvages principal types.

Categories and Subject Descriptors: D.1.1 [Programming
Techniques]: Applicative (Functional) Programming; D.3.2
[Language Classifications]: Haskell; D.3.3 [Programming Tech-
niques]: Language Constructs and Features—abstract data types;
polymorphism; recursion

General Terms: Design, Languages

Keywords: Type classes; implicit parameters; polymorphic recur-
sion; higher-rank polymorphism; existential types

An appendectomized version of this Harvard University technical report is
published in the proceedings of the 2004 Haskell Workshop [15].
.

1. INTRODUCTION
Most programs depend on configuration parameters. For exam-
ple, a pretty-printing function needs to know the width of the page,
modular arithmetic depends on the modulus, numerical code heav-
ily depends on tolerances and rounding modes, and most end-user
applications depend on user preferences. Sometimes the param-
eters of the computation are known when the code is written or
compiled. Most of the time, however, the parameters are initialized
at the beginning of the computation, such as read from a configu-
ration file. Sometimes the parameters stay the same throughout a
program execution, but other times they need to be re-initialized.
For example, numerical code may need to be re-executed with dif-
ferent rounding modes [12]. Also, a cryptography program may
need to perform modular arithmetic with various moduli. Library
code especially should support multiple sets of parameters that are
simultaneously in use, possibly in different threads.

We refer to the problem of setting and propagating preference
parameters as the configurations problem. We use the term “con-
figurations” in the plural to emphasize that we aim to parameterize
code at run time for several concurrent sets of preferences.

A solution to the configurations problem should keep configura-
tion parameters out of the way: code that uses no parameters should
not require any change. In particular, the programmer should not be
forced to sequence the computation (using a monad, say) when it
is not otherwise needed. The parameters should be statically typed
and fast to access—ideally, just like regular lexical variables. Con-
figuration data should be allowed to become known only at run
time. Moreover, different configurations should be able to coexist.
When different configurations do coexist, the user should be stat-
ically prevented from inadvertently mixing them up; such subtle
errors are easy to make when the first goal above (that configura-
tion parameters be implicit) is achieved. The solution should be
available on existing programming language systems.

Given how pervasive the configurations problem is, it is not sur-
prising that the topic provokes repeated discussions in mailing lists
[1, 7, 29], conferences [19], and journals [9]. As these discussions
conclude, no previous solution is entirely satisfactory.

Historically, the configurations problem is “solved” with muta-
ble global variables or dynamically-scoped variables. Neither so-
lution is satisfactory, because concurrent sets of parameters are
hard to support reliably, be the language pure or impure, func-
tional or imperative. Furthermore, in a pure functional language
like Haskell, mutable global variables are either unwieldy (all code
is written in monadic style) or unsafe (unsafePerformIO is used).
Another common solution is to store configuration data in a glob-
ally accessible registry. That approach suffers from run-time over-
head and often the loss of static typing. Finally, one type-safe and

pure approach is to place all configuration data into a record and
pass it from one function to another. However, it is unappealing
to do so explicitly throughout the whole program, not the least be-
cause managing concurrent sets of parameters is error-prone.

Implicit parameters [19] are a proposal to extend Haskell with
dynamically-scoped variables like LISP’s [28]. As a solution to
the configurations problem, implicit parameters inherit from dy-
namically-scoped variables the difficulty of supporting concurrent
sets of parameters: they interact unintuitively with other parts of
Haskell [26] and easily lead to quite subtle errors [9], whether or
not the monomorphism restriction is abolished. As Peyton Jones
[26] puts it, “it’s really not clear what is the right thing to do.”

In this paper, we present a solution to the configurations prob-
lem in Haskell that meets all the requirements enumerated above.
We rely on type classes, higher-rank polymorphism, and—in ad-
vanced cases—the foreign function interface. These are all well-
documented and widely-implemented Haskell extensions, for in-
stance in Hugs and in the Glasgow Haskell Compiler. The notation
is truly intuitive; for example, the term

foo :: (Integral a, Modular s a)⇒ M s a
foo = 1000 × 1000 × 5 + 2000

expresses a modular computation in which each addition and multi-
plication is performed modulo a modulus. The type signature here1

describes a polymorphic “modulus-bearing number” of type M s a.
As we detail in Section 3, the type-class constraints require that the
type a be an Integral type (such as Int), and that the type s carry
configuration data for Modular arithmetic on a. The modulus is
supplied at run time, for example:

withIntegralModulus′ 1280 foo

The same computation can be re-executed with different moduli:

[withIntegralModulus′ m foo | m← [1 . . 100]]

We take advantage of the compiler’s existing, automatic type infer-
ence to propagate configuration data as type-class constraints. Thus
the type annotations that are sometimes needed are infrequent and
mostly attached to top-level definitions. Type inference also affords
the programmer the flexibility to choose the most convenient way to
pass configuration data: take an argument whose type mentions s;
return a result whose type mentions s (as foo above does), and let
unification propagate the type information in the opposite direction
of data flow; or even propagate configuration data from one argu-
ment of a function to another, by unifying their types. This flex-
ibility reflects the fact that the compile-time flow of configuration
types need not follow the run-time flow of configuration values.

Our technique handles not only “conventional” parameters, like
numbers and strings, but any Haskell value, including polymorphic
functions and abstract data types. We let configuration data include
functions tuned to run-time input, such as faster modular-arithmetic
functions that exist for composite moduli [16, 25, 30]. For another
example, we can treat an array lookup function as a configuration
parameter, and selectively disable bounds-checking where we have
verified already that array indices are in bounds. In general, we can
treat global imports like the Prelude as configuration data, so that
different pieces of code can “import their own specialized Prelude”.

The basic idea behind our approach is not new. Thurston [31] in-
dependently discovered and used our technique for modular arith-
metic. Our contribution here is not just to introduce Thurston’s
technique to a broader audience, but also to extend it to the general
configurations problem at any type, beyond integers. We achieve
more intuitive notation, as shown above, as well as better perfor-

1This type signature is required. We argue at the end of Section 5.1
that this is an advantage.

mance by specializing code at run-time. Along the way, we survey
existing attempts at solving the configurations problem. For multi-
ple configurations, our solution is more portable, coherent, and in-
tuitive than implicit parameters. Finally, our technique effectively
declares local type-class instances, which prompts us to sketch an
extension to Haskell.

This paper is organized as follows. In Section 2, we discuss the
configurations problem and survey previous attempts at solving it.
We demonstrate why these attempts are unsatisfactory and illustrate
how acute the problem is if otherwise pure functional programmers
are willing to resort to operations with no safety guarantee. Sec-
tion 3 introduces the running example of modular arithmetic. This
example calls for the peaceful coexistence and static separation of
several concurrent configurations. Section 4 develops our solution
in three stages: passing integers; passing serializable data types,
including floating-point numbers and strings; and finally, passing
any type, including functional and abstract values. In Section 5
we present two real-world examples to demonstrate that our solu-
tion scales to multiple parameters and helps the programmer write
fast code with intuitive notation. Our solution improves over the
OpenSSL cryptography library, where the lack of static separation
guarantees seems to have stunted development. In Section 6, we
compare our solution to previous work, especially Lewis et al.’s
implicit parameters [19]. We argue for adding local type-class in-
stances to Haskell and sketch how. We then conclude in Section 7.

2. THE CONFIGURATIONS PROBLEM
A Haskell program is a collection of definitions, which are rarely
closed. For example,

result approx = last $ take maxIter $ iterate approx (pi / 2)
is an open definition: last, take, iterate, pi, and maxIter are defined
elsewhere. The values associated with these symbols are known at
compile time. Such a static association is proper for pi, which is
truly a constant. However, maxIter is more of a user preference. A
user may reasonably wish to run the program for different values of
maxIter, without recompiling the code. Unfortunately, if the value
of maxIter is to be read from a configuration file at the beginning of
the computation, or may change from run to run of result, it seems
that we can no longer refer to maxIter as neatly as above.

The configurations problem is to make run-time user preferences
available throughout a program. As “configurations” in the plu-
ral shows, we aim to support concurrent sets of preferences and
keep them from being accidentally mixed. The sets of preferences
should stay out of the way, yet it should be clear to both the pro-
grammer and the compiler which set is used where. (We discuss the
latter coherence requirement in Section 6.) In this general formula-
tion, the problem is an instance of run-time code parameterization.

The configurations problem is pervasive and acute, as evidenced
by recurrent discussions on the Haskell mailing list [1, 7, 29]. It
is often pointed out, for example, that numerical code typically de-
pends on a multitude of parameters like maxIter: tolerances, initial
approximations, and so on. Similarly, most end-user applications
support some customization.

The existing approaches to the configurations problem can be
summarized as follows [1, 9].

The most obvious solution is to pass all needed parameters ex-
plicitly as function arguments. For example:

result maxIter approx =
last $ take maxIter $ iterate approx (pi / 2)

An obvious drawback of this solution is that many computations
depend on many parameters, and passing a multitude of positional
arguments is error-prone. A more subtle problem is that, if there

are several sets of configuration data (as in Section 3.1), it is easy
to make a mistake and pass parameters of the wrong set deep within
the code. The mix-up cannot be detected or prevented statically.

The second solution is to group all the parameters in a single
Haskell record with many fields, and pass it throughout the code:

data ConfigRecord = ConfigRecord
{maxIter :: Int, tolerance :: Float . . .}

result conf approx =
last $ take (maxIter conf) $ iterate approx (pi / 2)

This approach effectively turns the configuration parameters from
positional arguments to keyword arguments. This way, the func-
tions are easier to invoke and have tidier signatures. However, to
refer to a configuration parameter, we have to write the more ver-
bose maxIter conf . Moreover, we still have to pass the configura-
tion record explicitly from function to function. Therefore, there is
still a danger of passing the wrong record in the middle of the code
when several configuration records are in scope. The same crit-
icism applies to the analogous approach of passing configuration
data in first-class objects or modules in the ML language family.

The third approach, advocated with some reluctance by Hughes
[9], is to use implicit parameters [19]. As the name implies, im-
plicit parameters do not need to be passed explicitly among func-
tions that use them. Unfortunately, implicit parameters disturbingly
weaken the equational theory of the language: a piece of code may
behave differently if we add or remove a type signature, or even
just perform a β- or η-expansion or reduction. We compare implicit
parameters to our approach in more detail in Section 6.2.

The fourth approach to the configurations problem is to use a
reader monad [3]. Its drawback is that any code that uses configu-
ration data (even only indirectly, by calling other functions that do)
must be sequenced into monadic style—even if it does not other-
wise have to be. Alternatively, we may use mutable reference cells
(IORef) in conjunction with the IO monad. This method obviously
emulates mutable global variables, which are often used to store
configuration data in impure languages. If our program uses mul-
tiple configurations, we may need to mutate the global variables in
the middle of the computation, which, as is well-known in impera-
tive languages, is greatly error-prone. Because IORef calls for the
IO monad, using IORef for configuration data requires either the
tedium of coding in monadic style all the time or the unsoundness
of using unsafePerformIO [5]. Regrettably, the most popular solu-
tion to the configurations problem in Haskell seems to be the latter:
issue compiler pragmas to disable inlining and common subexpres-
sion elimination, invoke unsafePerformIO, and pray [7, 9].

A fifth approach is to generate code at run time, after the neces-
sary configuration data is known [14]. At that time, maxIter above
can be treated just like pi: as a compile-time constant. This ap-
proach has the drawback that a compiler and a linker enter the
footprint of the run-time system, and can become a performance
bottleneck. Moreover, it is harder for program components using
different sets of configuration data to communicate.

A final possible solution to the configurations problem is to turn
global definitions into local ones:

topLevel maxIter tolerance epsilon . . . = main where
main = · · ·
. . .
result approx = last $ take maxIter $ iterate approx (pi / 2)

Most of the code above is local inside topLevel. We pass parameters
explicitly to that function only. Within a local definition like result,
the configuration parameters are in scope, do not have to be passed
around, and can be used just by mentioning their names. Further-
more, to use different sets of configuration data, we merely invoke

topLevel with different arguments. We are statically assured that
computations with different configuration data cannot get mixed
up. The solution seems ideal—except putting all code within one
giant function completely destroys modularity and reuse.

In the following sections, we show how to attain all the bene-
fits of the last approach with modular code arranged in top-level
definitions. Our type-class constraints, like Modular s a in the in-
troduction, can be thought of as top-level labels for local scopes.

3. MOTIVATING EXAMPLE:
MODULAR ARITHMETIC

Modular arithmetic is arithmetic in which numbers that differ by
multiples of a given modulus are treated as identical: 2 + 3 = 1
(mod 4) because 2 + 3 and 1 differ by a multiple of 4. Many appli-
cations, such as modern cryptography, use modular arithmetic with
multiple moduli determined at run time. To simplify these compu-
tations, we can define functions in Haskell like

add :: Integral a⇒ a→ a→ a→ a
add m a b = mod (a + b) m
mul :: Integral a⇒ a→ a→ a→ a
mul m a b = mod (a × b) m

(where mod is a member function of the Integral type class in the
Prelude) so we can write

test1 m a b = add m (mul m a a) (mul m b b)

to compute a × a + b × b modulo m. The modulus m is the param-
eter of these computations, which is passed explicitly in the above
examples, and which we want to pass implicitly. Like test1 above,
many cryptographic routines perform long sequences of arithmetic
operations with the same modulus. Since the parameter m is passed
explicitly in test1 above, it is easy to make a mistake and write, for
example, add m′ (mul m a a) (mul m b b), where m′ is some
other integral variable in scope. As the first step towards making
the modulus parameter implicit, let us make sure that sequences of
modular operations like test1 indeed all use the same modulus.

3.1 Phantom Types for Parameter Threads
Our first subgoal, then, is to statically guarantee that a sequence of
modular operations is executed with the same modulus. Launch-
bury and Peyton Jones’s [17, 18] ST monad for state threads in
Haskell uses a type parameter s to keep track of the state thread
in which each computation takes place. Similarly, we use a type
parameter s to keep track of the modulus used for each computa-
tion. However, because this piece of state is fixed over the course of
the computation, we do not force the programmer to sequence the
computation by writing in monadic or continuation-passing style.

newtype Modulus s a = Modulus a deriving (Eq, Show)
newtype M s a = M a deriving (Eq, Show)
add :: Integral a⇒ Modulus s a→ M s a→ M s a→ M s a
add (Modulus m) (M a) (M b) = M (mod (a + b) m)
mul :: Integral a⇒ Modulus s a→ M s a→ M s a→ M s a
mul (Modulus m) (M a) (M b) = M (mod (a × b) m)

Also, we need the function unM to give us the number back from
the wrapped data type M s a.

unM :: M s a→ a
unM (M a) = a

The type parameter s is phantom. That is, it has no term repre-
sentation: the parameter s occurs only in type expressions without
affecting term expressions. The expression test1 remains the same,
but it now has a different type:

test1 :: Integral a⇒ Modulus s a→ M s a→ M s a→ M s a

The argument and result types of add and mul share the same type
variable s. During type checking, the compiler automatically prop-
agates this type information to infer the above type for test1. As
with the ST monad, the type parameter s is threaded, but unlike with
the ST monad, the term-level expression is not sequenced monadi-
cally. Hence the compiler knows that the subexpressions mul m a a
and mul m b b of test1 can be computed in any order.

We can now existentially quantify over the type variable s to dis-
tinguish among different moduli at the type level and make sure that
a series of modular operations is performed with the same modulus.

data AnyModulus a = ∀s. AnyModulus (Modulus s a)
makeModulus :: a→ AnyModulus a
makeModulus a = AnyModulus (Modulus a)

This makeModulus function is typically used as follows.

case makeModulus 4 of
AnyModulus m→

let a = M 3; b = M 5 in
unM $ add m (mul m a a) (mul m b b)

In the case alternative case makeModulus 4 of AnyModulus m →,
the type variable s is existentially quantified. The compiler will
therefore make sure that s does not “leak”—that is, accidentally
unify with other quantified type variables or types. Because s is
threaded through the type of add and mul, all modular operations
in the argument to unM are guaranteed to execute with the same s,
that is, with the same modulus.

There is a redundancy, though: the data constructor AnyModulus
is applied in makeModulus, then peeled off right away in the case
alternative. To eliminate this redundant packing and unpacking, we
apply a continuation-passing-style transform to turn the existential
type in makeModulus into a rank-2 polymorphic type:

withModulus :: a→ (∀s.Modulus s a→ w)→ w
withModulus m k = k (Modulus m)

The withModulus function is more usable than makeModulus, be-
cause it avoids the verbiage of unpacking data constructors.

We can now write

test2 = withModulus 4 (λm→
let a = M 3; b = M 5 in

unM $ add m (mul m a a) (mul m b b))

to get the result 2. If we by mistake try to mix moduli and evaluate

withModulus 4 (λm→
withModulus 7 (λm′ →

let a = M 3; b = M 5 in
unM $ add m′ (mul m a a) (mul m b b)))

we get a type error, as desired:

Inferred type is less polymorphic than expected
Quantified type variable s escapes
It is mentioned in the environment: m :: Modulus s a

In the second argument of withModulus , namely (λm′ → · · ·)

3.2 Type Classes for Modulus Passing
The second step in our development is to avoid explicitly mention-
ing the modulus m in terms. On one hand, in the term test1 above,
every occurrence of add and mul uses the same modulus value m.
On the other hand, in the type of test1 above, every instantiation of
the type-schemes of add and mul uses the same phantom type s.
Given that the type checker enforces such similarity between m
and s in appearance and function, one may wonder if we could
avoid explicitly mentioning m by somehow associating it with s.

The idea to associate a value with a type is not apocryphal, but
quite easy to realize using Haskell’s type-class facility. If we con-
strain our type variable s to range over types of a specific type class,
then the compiler will associate a class dictionary with s. When-
ever s appears in the type of a term, the corresponding dictionary is
available. We just need a slot in that dictionary for our modulus:

class Modular s a | s→ a where modulus :: s→ a
normalize :: (Modular s a, Integral a)⇒ a→ M s a
normalize a :: M s a = M (mod a (modulus (⊥ :: s)))

The functional dependency s → a signifies the fact that the type s
represents a value of at most one type a [11]. As we shall see below,
a stronger invariant holds: each value of type a is represented by a
(different) type s.

For conciseness, the code uses lexically-scoped type variables
[27] in a non-essential way:2 in the left-hand side normalize a ::
M s a above, the type M s a annotates the result of normalize and
binds the type variable s in ⊥ :: s to the right of the equal sign.
Also, we denote undefined with ⊥. One may be aghast at the ap-
pearance of ⊥ in terms, but that appearance is only symptomatic of
the fact that the polymorphic function modulus does not need the
value of its argument. The type checker needs the type of that ar-
gument to choose the correct instance of the class Modular. Once
the instance is chosen, modulus returns the modulus value stored
in that class dictionary. Informally speaking, modulus retrieves the
value associated with the type s. If Haskell had a way to pass a type
argument, we would have used it.

We can now avoid mentioning m in add and mul. This move
makes these functions binary rather than ternary, so we overload
the ordinary arithmetic operators + and × for modular arithmetic,
simply by defining an instance of the class Num for our “modulus-
bearing numbers” M s a. Modular arithmetic now becomes an
instance of general arithmetic, which is mathematically pleasing.

instance (Modular s a, Integral a)⇒ Num (M s a) where
M a +M b = normalize (a + b)
M a −M b = normalize (a − b)
M a ×M b = normalize (a × b)
negate (M a) = normalize (negate a)
fromInteger i = normalize (fromInteger i)
signum = error “Modular numbers are not signed”
abs = error “Modular numbers are not signed”

It is thanks to signatures in the Num class that this code propagates
the modulus so effortlessly. For example, the arguments and result
of + share the modulus because Num assigns + the type M s a →
M s a → M s a. As we will keep seeing, it is often natural to
propagate parameters via types. By contrast, if we think of + as
taking two equal modulus terms as input, and passing that modulus
on to normalize, then we might define + much less simply:

(M a :: M s1 a) + (M b :: M s2 a) = normalize (a + b) :: M s1 a
where = [⊥ :: s1, ⊥ :: s2] -- equate the two input moduli

Anyway, it seems that we are done. We just need to redefine the
function withModulus to incorporate our new type class Modular.

withModulus :: a→ (∀s.Modular s a⇒ s→ w)→ w

But here we encounter a stumbling block: how to actually imple-
ment withModulus? Given a modulus value m of type a and a
polymorphic continuation k, we need to pass to k an instance of
Modular s a defined by modulus s = m, for some type s. That

2This paper is written in literate Haskell and works in the Glasgow
Haskell Compiler. (The code is available alongside this technical
report.) Not shown here is another version of the code that avoids
lexically-scoped type variables and (so) works in Hugs.

is, we need to construct an instance of the class Modular such that
the function modulus in that instance returns the desired value m.
Constructing such instances is easy when m is statically known:

m = 5
data Label
instance Modular Label Int where modulus = m

Hughes [8] shows many practical examples of such instances. But
in our case, m is not statically known. We want withModulus to
manufacture a new instance, based on the value of its first argu-
ment. One may wonder if this is even possible in Haskell, given
that instance declarations cannot appear in the local scope of a def-
inition and cannot be added at run time.

Another way to look at our difficulty is from the point of view
of type-class dictionaries. The function withModulus must pass
to k an implicit parameter, namely a dictionary for the type class
Modulus. This dictionary is not hard to construct—it just contains
the term λs → m. However, even though type classes have always
been explicated by translating them to dictionary passing [6, 33],
Haskell does not expose dictionaries to the programmer. In other
words, Haskell does not let us explicitly pass an argument for a
double arrow ⇒ (as in Modular s a ⇒ · · ·), even though it is
internally translated to a single arrow→ (as in Modulus s a→ · · ·).

In the next section, we explain how to pass dictionary arguments
using some widely-implemented extensions to Haskell. We build
up this capability in three stages:

1. We describe how to pass an integer as a dictionary argument.
This case handles the motivating example above: modular
arithmetic over an integral domain.

2. We use Haskell’s foreign function interface to pass any type
in the Storable class as a dictionary argument. This case han-
dles modular arithmetic over a real (fractional) domain.

3. We take advantage of stable pointers in the foreign function
interface to pass any type whatsoever—even functions and
abstract data types—as a dictionary argument. This tech-
nique generalizes our approach to all configuration data.

4. BUILDING DICTIONARIES BY
REFLECTING TYPES

Dictionaries at run time reflect context reductions at compile time,
in a shining instance of the Curry-Howard correspondence. To pass
a dictionary argument explicitly, then, we need to reify it as a type
that can in turn reflect back as the intended value.

4.1 Reifying Integers
We start by reifying integers. We build a family of types such that
each member of the family corresponds to a unique integer. To
encode integers in binary notation, we introduce the type constant
Zero and three unary type constructors.

data Zero; data Twice s; data Succ s; data Pred s

For example, the number 5, or 101 in binary, corresponds to the
type Succ (Twice (Twice (Succ Zero))). This representation is in-
spired by the way Okasaki [23] encodes the sizes of square matri-
ces. Our types, unlike Okasaki’s, have no data constructors, so they
are only inhabited by the bottom value ⊥. We are not interested in
values of these types, only in the types themselves.3

3Like Okasaki, we include Twice to perform reification and re-
flection in time linear (rather than exponential) in the number of
bits. We also include Pred to encode negative numbers. These
two type constructors make our type family larger than neces-
sary: an integer can be encoded in an infinite number of differ-

We need to convert a type in our family to the corresponding
integer—and back. The first process—reflecting a type into the
corresponding integer—is given by the class ReflectNum:

class ReflectNum s where reflectNum :: Num a⇒ s→ a
instance ReflectNum Zero where

reflectNum = 0
instance ReflectNum s⇒ ReflectNum (Twice s) where

reflectNum = reflectNum (⊥ :: s) × 2
instance ReflectNum s⇒ ReflectNum (Succ s) where

reflectNum = reflectNum (⊥ :: s) + 1
instance ReflectNum s⇒ ReflectNum (Pred s) where

reflectNum = reflectNum (⊥ :: s) − 1
The instances of the class deconstruct the type and perform corre-
sponding operations (doubling, incrementing, and so on). Again,
we should not be afraid of ⊥ in terms. As the underscores show,
the function reflectNum never examines the value of its argument.
We only need the type of the argument to choose the instance. In-
formally speaking, reflectNum “maps types to values”.

The inverse of reflectNum is reifyIntegral, which turns a signed
integer into a type that represents the given number in binary nota-
tion. In other words, the type says how to make the given number
by applying increment, decrement and double operations to zero.

reifyIntegral :: Integral a⇒
a→ (∀s. ReflectNum s⇒ s→ w)→ w

reifyIntegral i k = case quotRem i 2 of
(0, 0)→ k (⊥ :: Zero)
(j, 0)→ reifyIntegral j (λ(:: s)→ k (⊥ :: Twice s))
(j, 1)→ reifyIntegral j (λ(:: s)→ k (⊥ :: Succ (Twice s)))
(j, −1)→ reifyIntegral j (λ(:: s)→ k (⊥ :: Pred (Twice s)))

The second argument to the function reifyIntegral is a continua-
tion k from the generated type s to the answer type w. The gener-
ated type s is in the class ReflectNum, so the reflectNum function
can convert it back to the value it came from. To be more pre-
cise, reifyIntegral passes to the continuation k a value whose type
belongs to the class ReflectNum. As we are interested only in the
type of that value, the value itself is ⊥. The continuation passed to
reifyIntegral should be able to process a value of any type belong-
ing to the class ReflectNum. Therefore, the continuation is poly-
morphic and the function reifyIntegral has a rank-2 type.

At the end of Section 3.2, we stumbled over creating an instance
of the class Modular to incorporate a modulus unknown until run
time. Haskell does not let us create instances at run time or locally,
but we can now get around that. We introduce a polymorphic in-
stance of the class Modular, parameterized over types in the class
ReflectNum. Each instance of ReflectNum corresponds to a unique
integer. In essence, we introduce instances of the Modular class for
every integer. At run time, we do not create a new instance for the
Modular class—rather, we use polymorphic recursion to choose
from the infinite family of instances already introduced.

data ModulusNum s a
instance (ReflectNum s, Num a)⇒

Modular (ModulusNum s a) a where
modulus = reflectNum (⊥ :: s)

We can now implement the function withModulus, which was the
stumbling block above. We call this function withIntegralModulus,
as it will be generalized below.

ent ways. For example, the number 5 also corresponds to the type
Succ (Succ (Succ (Succ (Succ Zero)))). We can easily use a dif-
ferent set of type constructors to enforce a unique representation of
integers (we elide the code for brevity), but there is no need for the
representation to be unique in this paper, and the type constructors
above are easier to understand.

withIntegralModulus :: Integral a⇒
a→ (∀s.Modular s a⇒ s→ w)→ w

withIntegralModulus i k =
reifyIntegral i (λ(:: s)→ k (⊥ :: ModulusNum s a))

We can test the function by evaluating withIntegralModulus (−42)
modulus. The result is −42: the round-trip through types even
leaves negative numbers unscathed. Our ability to reify any integer,
not just positive ones, is useful below beyond modular arithmetic.

One caveat: The correctness of the round-trip is not checked by
the type system, unlike what one might expect from type systems
that truly offer singleton or dependent types. For example, if we ac-
cidentally omitted Succ in reifyIntegral above, the compiler would
not detect the error. The reflection and reification functions there-
fore belong to a (relatively compact) trusted kernel of our solution,
which must be verified manually and can be put into a library.

We can now write our running example as

test′3 :: (Modular s a, Integral a)⇒ s→ M s a
test′3 = let a = M 3; b = M 5 in a × a + b × b
test3 = withIntegralModulus 4 (unM ◦ test′3)

The sequence of modular operations appears in the mathematically
pleasing notation a × a + b × b. The modulus is implicit, just as
desired. Because we defined the method fromInteger in the class
Num, this example can be written more succinctly:

test′3 :: (Modular s a, Integral a)⇒ s→ M s a
test′3 = 3 × 3 + 5 × 5

Section 5.1 further simplifies this notation.
A word on efficiency: With an ordinary compiler, every time a

modulus needs to be looked up (which is quite often), reflectNum
performs recursion of time linear in the number of bits in the mod-
ulus. That is pretty inefficient. Fortunately, we can adjust the code
so that Haskell’s lazy evaluation memoizes the result of reflectNum,
which then only needs to run once per reification, not once per re-
flection. For clarity, we do not make the adjustment here. However,
the code in Section 4.3 is so adjusted to memoize appropriately, out
of necessity; the crucial subexpression there is const a in reflect.

Thurston [31] independently discovered the above techniques for
typing modular arithmetic in Haskell. The following extends this
basic idea to reifying values of serializable type, then any type.

4.2 Reifying Lists
Our immediate goal of implementing modular arithmetic without
explicitly passing moduli around is accomplished. Although the
type-class machinery we used to achieve this goal may seem heavy
at first, it statically and implicitly distinguishes multiple concur-
rent moduli, which cannot be said of any previous solution to the
configurations problem in any pure or impure language. We also
avoid using unsafePerformIO. Section 5 below shows more real-
world examples to further illustrate the advantages of our approach.
Those examples are independent of the rest of Section 4 here.

We now turn to a larger goal—passing configuration data other
than integers. For example, many parameters for numerical code
are floating point numbers, such as tolerances. Also, user prefer-
ences are often strings.

A string can be regarded as a list of integers (character codes).
As the next step, we reify lists of integers into types. In principle,
this step is redundant: we already know how to reify integers, and
a list of integers can always be represented as one (huge) integer.
Supporting lists directly, however, is faster and more convenient.
We extend our family of types with a type constant Nil and a binary
type constructor Cons, to build singly-linked lists at the type level.

data Nil; data Cons s ss

class ReflectNums ss where reflectNums :: Num a⇒ ss→ [a]
instance ReflectNums Nil where

reflectNums = []
instance (ReflectNum s, ReflectNums ss)⇒

ReflectNums (Cons s ss) where
reflectNums = reflectNum (⊥ :: s) : reflectNums (⊥ :: ss)

reifyIntegrals :: Integral a⇒
[a]→ (∀ss. ReflectNums ss⇒ ss→ w)→ w

reifyIntegrals [] k = k (⊥ :: Nil)
reifyIntegrals (i : ii) k = reifyIntegral i (λ(:: s)→

reifyIntegrals ii (λ(:: ss)→
k (⊥ :: Cons s ss)))

We can check that lists of numbers round-trip unscathed: the ex-
pression reifyIntegrals [−10 . . 10] reflectNums returns the list of
integers from −10 to 10.

Being able to reify a list of numbers to a type is more useful
than it may appear: we gain the ability to reflect any value whose
type belongs to the Storable type class in Haskell’s foreign function
interface, or FFI [4]. A Storable value is one that can be serialized
as a sequence of bytes, then reconstructed after being transported—
over the network; across a foreign function call; or, in our case, to
the left of⇒. (For reference, Appendix B summarizes what we use
of FFI.)

type Byte = CChar
data Store s a
class ReflectStorable s where

reflectStorable :: Storable a⇒ s a→ a
instance ReflectNums s⇒ ReflectStorable (Store s) where

reflectStorable = unsafePerformIO
$ alloca
$ λp→ do pokeArray (castPtr p) bytes

peek p
where bytes = reflectNums (⊥ :: s) :: [Byte]

reifyStorable :: Storable a⇒
a→ (∀s. ReflectStorable s⇒ s a→ w)→ w

reifyStorable a k =
reifyIntegrals (bytes :: [Byte]) (λ(:: s)→ k (⊥ :: Store s a))

where bytes = unsafePerformIO
$ with a (peekArray (sizeOf a) ◦ castPtr)

The reifyStorable function defined here first serializes the value a
into an array of (sizeOf a) bytes, temporarily allocated by FFI’s
with. It then uses reifyIntegrals above to reify the bytes into a
type. In the opposite direction, the reflectStorable function first
uses reflectNums to reflect the type into another array of bytes, tem-
porarily allocated by FFI’s alloca to ensure proper alignment. It
then reconstructs the original value using FFI’s peek.

We must comment on the use of unsafePerformIO above, which
emphatically neither compromises static typing nor weakens static
guarantees. The type signatures of reifyStorable and reflectStorable
make it clear that the values before reification and after reflection
have the same type; we do not replace type errors with run-time ex-
ceptions. The code above invokes unsafePerformIO only because
it relies on FFI, in which even mere serialization operates in the IO
monad. If functions like pokeArray, peek, and peekArray operated
in the ST monad instead, then we would be able to (happily) re-
place unsafePerformIO with runST . We do not see any reason why
serialization should require the IO monad.

We can now round-trip floating-point numbers through the type
system into a dictionary: the expression

reifyStorable (2.5 :: Double) reflectStorable
returns 2.5. This capability is useful for modular arithmetic over

a real (fractional) domain—that is, over a circle with a specified
circumference as a metric space. Although multiplication no longer
makes sense in such a domain, addition and subtraction still do.

Admittedly, a floating-point number can be converted into a pair
of integers using the decodeFloat function, which provides a more
portable way to reify a value whose type belongs to the RealFloat
type class in the Prelude. Furthermore, any type that belongs to
both the Show class and the Read class can be transported without
involving FFI, as long as read ◦ show is equivalent to the identity as
usual so that we can serialize the data thus. However, we are about
to reify StablePtr values from FFI, and the StablePtr type belongs
to none of these classes, only Storable.

4.3 Reifying Arbitrary Values
We now turn to our ultimate goal: to round-trip any Haskell value
through the type system, so as to be able to pass any dictionary as
an explicit argument, even ones involving polymorphic functions
or abstract data types. To achieve this, we use FFI to convert the
value to a StablePtr (“stable pointer”), which we then reify as a
type. From the perspective of an ordinary Haskell value, Haskell’s
type system and type-class instances are foreign indeed!4

class Reflect s a | s→ a where reflect :: s→ a
data Stable (s :: ?→ ?) a
instance ReflectStorable s⇒ Reflect (Stable s a) a where

reflect = unsafePerformIO
$ do a← deRefStablePtr p

return (const a)
where p = reflectStorable (⊥ :: s p)

reify :: a→ (∀s. Reflect s a⇒ s→ w)→ w
reify (a :: a) k = unsafePerformIO

$ do p← newStablePtr a
reifyStorable p (λ(:: s p)→

k′ (⊥ :: Stable s a))
where k′ s = return (k s)

We can now define the completely polymorphic withModulus func-
tion that we set out to implement.

data ModulusAny s
instance Reflect s a⇒ Modular (ModulusAny s) a where

modulus = reflect (⊥ :: s)
withModulus a k = reify a (λ(:: s)→ k (⊥ :: ModulusAny s))

This code passes configuration data “by reference”, whereas the
code in Sections 4.1–2 passes them “by value”. Configuration data
of arbitrary type may not be serialized, so they must be passed by
reference. We use a stable pointer as that reference, so that the value
is not garbage-collected away while the reference is in transit.

The code above has a memory leak: it allocates stable pointers
using newStablePtr but never deallocates them using freeStablePtr.
Thus every set of configuration data leaks a stable pointer when
reified. Configuration data in programs are typically few and long-
lived, so this memory leak is usually not a problem. However, if
the program dynamically generates and discards many pieces of
configuration data over its lifetime, then leaking one stable pointer
per reification is a significant resource drain.

If these memory leaks are significant, then we need to care-
fully ensure that the StablePtr allocated in each reification oper-
ation is freed exactly once. Unfortunately, this requires us to worry
about how lazy evaluation and seq interact with impure uses of
unsafePerformIO: we need to make sure that each stable pointer
is freed exactly once. Below is the modified code.

4The type variable p in this section is bound but never used.

instance ReflectStorable s⇒ Reflect (Stable s a) a where
reflect = unsafePerformIO

$ do a← deRefStablePtr p
freeStablePtr p
return (const a)

where p = reflectStorable (⊥ :: s p)
reify :: a→ (∀s. Reflect s a⇒ s→ w)→ w
reify (a :: a) k = unsafePerformIO

$ do p← newStablePtr a
reifyStorable p (λ(:: s p)→

k′ (⊥ :: Stable s a))
where k′ (s :: s) = (reflect :: s→ a) ‘seq‘ return (k s)

We emphasize that this impure use of unsafePerformIO is only nec-
essary if the program reifies many non-serializable parameters out-
side the IO monad over its lifetime. Such programs are rare in
practice; for example, a numerical analysis program or a cryptog-
raphy server may reify many parameters in a single run, but these
parameters are Storable values, like numbers.

5. MORE EXAMPLES
In this section we discuss two more examples of our approach to the
configurations problem. The first example illustrates how the flex-
ibility of our solution and its integration with type inference helps
the programmer write code in the most intuitive notation. The sec-
ond example demonstrates how our solution helps write fast code
by guaranteeing that specialized versions of algorithms are used
when appropriate. The second example also shows that our ap-
proach is wieldy to apply to more realistic problems. In particu-
lar, it shows that it is straightforward to generalize our technique
from one parameter (modulus) to many. Appendix A contains an-
other real-world example, where we contrast our approach more
concretely with implicit parameters.

5.1 Flexible Propagation for
Intuitive Notation

Let us revisit the modular arithmetic example from Section 4.1, and
trace how the modulus is propagated.

withIntegralModulus :: Integral a⇒
a→ (∀s.Modular s a⇒ s→ w)→ w

withIntegralModulus i k =
reifyIntegral i (λ(:: t)→ k (⊥ :: ModulusNum t a))

test′3 :: (Modular s a, Integral a)⇒ s→ M s a
test′3 = 3 × 3 + 5 × 5
test3 = withIntegralModulus 4 (unM ◦ test′3)

The modulus 4 starts out as the argument to withIntegralModulus.
Given this modulus, the function reifyIntegral finds the correspond-
ing type of the ReflectNum family. That type, denoted by the type
variable t, is then used to build the type ModulusNum t a. The
latter type is an instance of the Modular s a class, with the type
variable s now instantiated to ModulusNum t a. When the function
test′3 is applied to the (bottom) value of the latter type, s propagates
from the argument of test′3 throughout the body of test′3. Because s
is instantiated to ModulusNum t a, and t uniquely corresponds to a
particular modulus, the modulus is available throughout test′3.

In this example, then, a parameter is propagated to test′3 when the
argument type s of test′3 is unified with ModulusNum t a. Because
type unification works the same way for a function’s argument type
and return type, the type checker can propagate type information
not only via arguments of the function but also via its result. In the
case of modular arithmetic, propagating configuration information
via the return type rather than argument type of test′3 leads to a

particularly concise and intuitive notation. As the first step, we
move the function unM inside withIntegralModulus:

withIntegralModulus :: Integral a⇒
a→ (∀s.Modular s a⇒ s→ M s w)→ w

withIntegralModulus i k =
reifyIntegral i (λ(:: t)→ unM $ k (⊥ :: ModulusNum t a))

The type variable s now appears in the result type of k. The mod-
ulus is now propagated to k—in other words, the type variable s is
now instantiated in the type of k—in two ways: through its argu-
ment type as well as its return type. If only for brevity, we can now
eliminate the first way by getting rid of the argument to k:

withIntegralModulus′ :: Integral a⇒
a→ (∀s.Modular s a⇒ M s w)→ w

withIntegralModulus′ (i :: a) k :: w =
reifyIntegral i (λ(:: t)→

unM (k :: M (ModulusNum t a) w))
test4′ :: (Modular s a, Integral a)⇒ M s a
test4′ = 3 × 3 + 5 × 5
test4 = withIntegralModulus′ 4 test4′

In the terminology of logic programming, we have switched from
one mode of invoking k, where the argument type is bound and the
result type is free, to another mode, where the result type is bound.
The resulting definition test4′ = 3 × 3 + 5 × 5 cannot be more intu-
itive. The body of test4′ performs a sequence of arithmetic compu-
tations using the same modulus, which however appears nowhere
in the term, only in the type. The modulus parameter is implicit;
it explicitly appears only in the function normalize used in the im-
plementation of modular operations. The configuration data are
indeed pervasive and do stay out of the way. Furthermore, test4′

is a top-level binding, which can be exported from its home mod-
ule and imported into other modules. We have achieved implicit
configuration while preserving modularity and reuse.

The definition test4′ = 3 × 3 + 5 × 5 looks so intuitive that one
may even doubt whether every arithmetic operation in the term is
indeed performed modulo the invisible modulus. One might even
think that we first compute 3 × 3 + 5 × 5 and later on divide 34 by
the modulus. However, what term4′ actually computes is

mod (mod (mod 3 m × mod 3 m) m
+ mod (mod 5 m × mod 5 m) m) m

Each operation is performed modulo the modulus m corresponding
to the type s in the signature of test4′. That top-level type signa-
ture is the only indication that implicit configuration is at work, as
desired. To check that each operation in term4′ is performed mod-
ulo m, we can trace the code using a debugger. We can also try to
omit the type signature of test4′. If we do that, we get a type error:

Inferred type is less polymorphic than expected
Quantified type variable s escapes
It is mentioned in the environment: test4′ :: M s w

In the second argument of withIntegralModulus′ , namely test4′

In the definition of test4 : test4 = withIntegralModulus′ 4 test4′

The fact that we get an error contrasts with the implicit parameter
approach [19]. In the latter, omitting the signature may silently
change the behavior of the code. Our approach thus is both free
from unpleasant surprises and notationally intuitive.

5.2 Run-Time Dispatch for Fast Performance
We now turn from optimizing the visual appearance of the code
to optimizing its run-time performance. A general optimization
strategy is to identify “fast paths”—that is, particular circumstances
that permit specialized, faster algorithms. We can then structure our

code to first check for auspicious circumstances. If they are present,
we branch to the specialized code; otherwise, generic code is run.

Modular arithmetic is a good example of such a specialization.
Modern cryptography uses lots of modular arithmetic, so it is im-
portant to exploit fast execution paths. OpenSSL [24], a well-
known open-source cryptography library, uses specialized code on
many levels. At initialization time, it detects any cryptographic
acceleration hardware and sets up method handlers accordingly.
Cryptographic operations include sequences of modular addition
and multiplication over the same modulus. Moduli of certain forms
permit faster computations. OpenSSL maintains a context CTX
with pointers to addition and multiplication functions for the modu-
lus in effect. When initializing CTX, OpenSSL checks the modulus
to see if a faster version of modular operations can be used.

To use these optimized functions, one can pass them as explicit
function arguments, as OpenSSL does. This impairs the appear-
ance and maintainability of the code. If several moduli are in use,
each with its own CTX structure, it is easy to pass the wrong one
by mistake. Our technique can improve this situation. Because we
can pass functions implicitly, we can pass the addition and multi-
plication functions themselves as configuration data.

In simple cases, specialized functions use the same data repre-
sentation but a more efficient implementation. For example, the
Haskell mod function can be specialized to use bitwise operators
when the modulus is a power of 2. More often, however, special-
ized functions operate on custom representations of input data. For
example, Montgomery’s technique for modular multiplication [22]
is much faster than the standard algorithm when the modulus is odd,
but it requires input numbers to be represented by their so-called N-
residues. Furthermore, the algorithm needs several parameters that
are pre-computed from the modulus. Therefore, at the beginning of
a sequence of operations, we have to convert the inputs into their N-
residues, and compute and cache required parameters. At the end,
we have to convert the result from its N-residue back to the reg-
ular representation. For a long sequence of operations, switching
representations induces a net performance gain.

OpenSSL uses Montgomery multiplication for modular expo-
nentiation when the modulus is odd. Modular exponentiation is
a long sequence of modular multiplications. As exponentiation be-
gins, OpenSSL converts the radix into its N-residue, computes the
parameters, and caches them. At the end, the library converts the
result back from its N-residue and disposes of the cache. Diffie-
Hellman key exchanges, for example, invoke modular exponentia-
tion several times. To avoid converting representations and comput-
ing parameters redundantly, OpenSSL can save the Montgomery
context as the part of the overall CTX. This option raises correct-
ness concerns that are more severe than the mere inconvenience of
explicitly passing CTX around: While the Montgomery context is
in effect, what appears to be modular numbers to the client are ac-
tually their N-residues. The client must take care not to pass them
to functions unaware of the Montgomery context. The program-
mer must keep track of which context—generic or Montgomery—
is in effect and thus which representation is in use. In sum, al-
though the Montgomery specialization is faster, its implementation
in OpenSSL invites user errors that jeopardize data integrity.

In this section, we show how to use a specialized representation
for modular numbers that is even more different from the standard
representation than Montgomery multiplication calls for. We repre-
sent a modular number as not one N-residue but a pair of residues.
The type system statically guarantees the safety of the specializa-
tion; different representations are statically separated. Yet actual
code specifying what to compute is not duplicated.

In our code so far, only the modulus itself is propagated through

the type environment. Our instance of the Num class for the mod-
ulus-bearing numbers M s a implements general, unspecialized al-
gorithms for modular addition and multiplication. If the modulus m
is even, say of the form 2pq where p is positive and q is odd, we can
perform modular operations more efficiently: taking advantage of
the Chinese Remainder Theorem, we can represent each modular
number not as one residue modulo 2pq but as two residues, modulo
2p and q. When we need to perform a long sequence of modular op-
erations, such as multiplications to compute an mod m for large n,
we first determine the residues of a mod 2p and q. We perform
the multiplications on each of the two residues, then recombine
them into one result. We use the fact that the two factor moduli are
smaller, and operations modulo 2p are very fast. This technique is
known as residue number system arithmetic [16, 25, 30].

Four numbers need to be precomputed that depend on the mod-
ulus: p, q, u, and v, such that the modulus is 2pq and

u ≡ 1 (mod 2p), u ≡ 0 (mod q), v ≡ 0 (mod 2p), v ≡ 1 (mod q).

In order to propagate these four numbers as configuration data for
even-modulus-bearing numbers, we define a new data type Even.
The type arguments to Even specifies the configuration data to prop-
agate; the data constructor E of Even specifies the run-time repre-
sentation of even-modulus-bearing numbers, as a pair of residues.

data Even p q u v a = E a a deriving (Eq, Show)

We then define a Num instance for Even.

normalizeEven :: (ReflectNum p, ReflectNum q, Integral a,
Bits a)⇒ a→ a→ Even p q u v a

normalizeEven a b :: Even p q u v a =
E (a .&. (shiftL 1 (reflectNum (⊥ :: p)) − 1)) -- a mod 2p

(mod b (reflectNum (⊥ :: q))) -- b mod q
instance (ReflectNum p, ReflectNum q,

ReflectNum u, ReflectNum v,
Integral a, Bits a)⇒ Num (Even p q u v a) where

E a1 b1 + E a2 b2 = normalizeEven (a1 + a2) (b1 + b2)
...

Following this pattern, we can introduce several varieties of modu-
lus-bearing numbers, optimized for particular kinds of moduli.

Each time the withIntegralModulus′ function is called with a
modulus, it should select the best instance of the Num class for
that modulus. The implementation of modular operations in that
instance will then be used throughout the entire sequence of modu-
lar operations. This pattern of run-time dispatch and compile-time
propagation is illustrated below with two Num instances: the gen-
eral instance for M, and the specialized instance for Even.

withIntegralModulus′′ :: (Integral a, Bits a)⇒
a→ (∀s. Num (s a)⇒ s a)→ a

withIntegralModulus′′ (i :: a) k = case factor 0 i of
(0, i) → withIntegralModulus′ i k -- odd case
(p, q)→ let (u, v) = · · · in -- even case: i = 2pq

reifyIntegral p (λ(:: p)→
reifyIntegral q (λ(:: q)→
reifyIntegral u (λ(:: u)→
reifyIntegral v (λ(:: v)→
unEven (k :: Even p q u v a)))))

factor :: (Num p, Integral q)⇒ p→ q→ (p, q)
factor p i = case quotRem i 2 of

(0, 0)→ (0, 0) -- just zero
(j, 0)→ factor (p + 1) j -- accumulate powers of two

→ (p, i) -- not even
unEven :: (ReflectNum p, ReflectNum q, ReflectNum u,

ReflectNum v, Integral a, Bits a)⇒ Even p q u v a→ a

unEven (E a b :: Even p q u v a) =
mod (a × (reflectNum (⊥ :: u)) + b × (reflectNum (⊥ :: v)))

(shiftL (reflectNum (⊥ :: q)) (reflectNum (⊥ :: p)))
The function withIntegralModulus′′ checks at run time whether the
received modulus is even. This check is done only once per se-
quence of modular operations denoted by the continuation k. If the
modulus is even, the function chooses the instance Even and com-
putes the necessary parameters for that instance: p, q, u, and v. The
continuation k then uses the faster versions of modular operations,
without any further checks or conversions between representations.

In Section 4, we introduced our technique with a type class with
a single member (modulus), parameterized by a single integer. The
code above propagates multiple pieces of configuration informa-
tion (namely the members of the Num class: +, −, ×, etc.), param-
eterized by four integers. The generalization is straightforward:
withIntegralModulus′′ calls reifyIntegral four times, and the in-
stance Num (Even p q u v a) defines multiple members at once.

OpenSSL’s source code for modular exponentiation (bn_exp.c)
mentions, in comments, this specialized multiplication algorithm
for even moduli. However, it does not implement the specializa-
tion, perhaps because it is too much trouble for the programmer
to explicitly deal with the significantly different representation of
numbers (as residue pairs) and ensure the correctness of the C code.

The example below tests both the general and specialized cases:
test5 :: Num (s a)⇒ s a
test5 = 1000 × 1000 + 513 × 513
test5′ = withIntegralModulus′′ 1279 test5 :: Integer
test5′′ = withIntegralModulus′′ 1280 test5 :: Integer

The body of test5 contains two multiplications and one addition.
Whereas test5′ uses the generic implementation of these operations,
test5′′ invokes the specialized versions as the modulus 1280 is even.
We can see that by tracing both versions of functions.

This example shows that types can propagate not just integers but
also functions parameterized by them—in other words, closures.
Crucially, exactly the same sequence of operations test5 uses ei-
ther generic or specialized modular operations, depending on the
modulus value at run time. The specialized modular operations use
a different representation of numbers, as residue pairs. The type
system encapsulates the specialized representation of numbers. We
thus attain a static correctness guarantee that OpenSSL cannot pro-
vide. This comparison underscores the fact that our approach to the
configurations problem benefits pure and impure languages alike.

6. DISCUSSION AND RELATED WORK
Our solution to the configurations problem can be understood from
several different perspectives.

1. It emulates local type-class instance declarations while pre-
serving principal types.

2. It ensures the coherence of implicit parameters by associat-
ing them with phantom types.

3. It fakes dependent types: types can depend on not values but
types that faithfully represent each value.

We now detail these perspectives in turn. Overall, we recommend
that local type-class instances be added to Haskell as a built-in fea-
ture to replace implicit parameters and fake dependent types.

6.1 Local Type-Class Instances
The purpose of the type-system hackery in Section 4, first stated
in Section 3.2, is not to market headache medicine but to explicitly
pass a dictionary to a function with a qualified type. For example,
we want to apply a function of type ∀s.Modular s a ⇒ s → w to

a dictionary witnessing the type-class constraint Modular s a. In
general, we want to manufacture and use type-class instances at run
time. In other words, we want to declare type-class instances not
just at the top level but also locally, under the scope of variables.

Sections 3 and 5 of this paper show that local type-class instances
are very useful. Although we can emulate local instances using the
hackery in Section 4, it would be more convenient if a future ver-
sion of Haskell could support them directly as a language feature.
At first try, the syntax for this feature might look like the following.

data Label
withModulus :: a→ (∀s.Modular s a⇒ s→ w)→ w
withModulus (m :: a) k =

let instance Modular Label a where modulus = m
in k (⊥ :: Label)

The new syntax added is the instance declaration under let, against
which the continuation k resolves its overloading.

A problem with this first attempt, pointed out early on by Wadler
and Blott [33, Section A.7], is that principle types are lost in the
presence of unrestricted local instances. For example, the term

data Label1; data Label2

let instance Modular Label1 Int where modulus = 4
instance Modular Label2 Int where modulus = 4

in modulus

has no principle type, only the types Label1 → Int and Label2 →

Int, neither of which subsumes the other. (It may seem that this
term should have the (principal) type Modular s Int ⇒ s→ Int, but
that would result in unresolved overloading and defeat the purpose
of the local instances.) This problem is one reason why Haskell
today allows only global instances, as Wadler and Blott suggested.

Wadler and Blott close their paper by asking the open ques-
tion “whether there is some less drastic restriction that still ensures
the existence of principal types.” We conjecture that one such re-
striction is to require that the type-class parameters of each local
instance mention some opaque type at the very same let-binding
scope. We define an opaque type at a given scope to be a type vari-
able whose existential quantification is eliminated (“opened”), or
universal quantification is introduced (“generalized”), at that scope.
For example, withModulus would be implemented as follows.

data Any = ∀s. Any s
withModulus (m :: a) k =

let Any (:: s) = Any ()
instance Modular s a where modulus = m

in k (⊥ :: s)

The above code satisfies our proposed restriction because the local
instance Modular s a mentions the type variable s, which results
from existential elimination (let Any (:: s) = · · ·) at the very same
scope. This restriction is directly suggested by our technique in
Section 4. There, we build a different type for each modulus value
to be represented, so a function that can take any modulus value as
input is one that can take any modulus-representing opaque type as
input. Just as Launchbury and Peyton Jones [17, 18] use an opaque
type to represent an unknown state thread, we use an opaque type
to represent an unknown modulus.

The term below is analogous to the problematic term above with-
out a principal type, but adheres to our proposed restriction.

let Any (:: s1) = Any ()
instance Modular s1 Int where modulus = 4
Any (:: s2) = Any ()
instance Modular s2 Int where modulus = 4

in modulus

This term satisfies the principal type property—vacuously, because
it simply does not type! Although modulus has both the type s1 →

Int and the type s2 → Int within the scope of the let, neither type
survives outside, because the type variables s1 and s2 cannot escape.

Our proposed restriction not only rescues the principal type prop-
erty in Wadler and Blott’s example above, but also preserves the co-
herence of type classes. Coherence means that two typing deriva-
tions for the same term at the same type in the same environment
must be observationally equivalent. Coherence is important in our
solution to the configurations problem, because we need each type
to represent at most one value in order to statically separate mul-
tiple configuration sets—be they multiple moduli as in the exam-
ples above, or multiple threads of the Java virtual machine as in
Appendix A. Standard Haskell ensures coherence by prohibiting
overlapping instances. By requiring that every local instance men-
tion an opaque type, we ensure that two local instances from dif-
ferent scopes cannot overlap—at least, not if their parameters are
fully instantiated. We leave local instances with uninstantiated type
variables in the head for future research.

To sum up, when examined from the perspective of local type-
class instances, our type-system hackery suggests a restriction on
local instances that (we conjecture) salvages principal types. In
other words, we suggest adding local instances to Haskell as syn-
tactic sugar for our reification technique. As an aside, local in-
stances as a built-in language feature would allow constraints in
their contexts. To support such constraints under our current tech-
nique would call for Trifonov’s simulation [32].

6.2 Implicit Parameters
Our approach to the configurations problem is in the same im-
plicit spirit as Lewis et al.’s implicit parameters [19]. Emulating
LISP’s dynamically-scoped variables (as explained by Queinnec
[28] among others), Lewis et al. extend Haskell’s type-class con-
straints like Modular s a with implicit-parameter constraints like
?modulus :: a. Under this proposal, modular arithmetic would be
implemented by code such as

add :: (Integral a, ?modulus :: a)⇒ a→ a→ a
add a b = mod (a + b) ?modulus
mul :: (Integral a, ?modulus :: a)⇒ a→ a→ a
mul a b = mod (a × b) ?modulus

The type checker can infer the signatures above. The implicit pa-
rameter ?modulus can be assigned a value within a dynamic scope
using a new with construct; for example:5

add (mul 3 3) (mul 5 5) with ?modulus = 4 -- evaluates to 2
Lewis et al., like us, intend to solve the configurations problem,
so the programming examples they give to justify their work apply
equally to ours. Both approaches rely on dictionaries, which are
arguments implicitly available to any polymorphic function with
a quantified type. Dictionary arguments are passed like any other
argument at run-time, but they are hidden from the term representa-
tion and managed by the compiler, so the program is less cluttered.

Whereas we take advantage of the type-class system, implicit
parameters augment it. Lewis et al. frame their work as “the first
half of a larger research programme to de-construct the complex
type class system of Haskell into simpler, orthogonal language fea-
tures”. Unfortunately, because implicit parameters are a form of
dynamic scoping, they interact with the type system in several un-
desirable ways [26]:
5In the Glasgow Haskell Compiler, implicit parameters are bound
not using a separate with construct but using a special let or where
binding form, as in let ?modulus = 4 in add (mul 3 3) (mul 5 5).
We stick with Lewis et al.’s notation here.

1. It is not sound to inline code (in other words, to β-reduce) in
the presence of implicit parameters.

2. A term’s behavior can change if its signature is added, re-
moved, or changed.

3. Generalizing over implicit parameters is desirable, but may
contradict the monomorphism restriction.

4. Implicit parameter constraints cannot appear in the context
of a class or instance declaration.

One may claim that the many troubles of implicit parameters come
from the monomorphism restriction, which ought to be abandoned.
Without defending the monomorphism restriction in any way, we
emphasize that trouble (such as unexpected loss of sharing and un-
desired generalization) would still remain without the monomor-
phism restriction. Hughes [9, Section 6] shows a problem that
arises exactly when the monomorphism restriction does not apply.

The trouble with implicit parameters begins when multiple con-
figurations come into play in the same program, as Lewis et al.
allow. We blame the trouble on the fact that implicit parameters ex-
press configuration dependencies in dynamic scopes, whereas we
express those dependencies in static types. Dynamic scopes change
as the program executes, whereas static types do not. Because de-
pendencies should not change once established by the program-
mer, static types are more appropriate than dynamic scopes for car-
rying multiple configurations. Expressing value dependencies in
static types is the essence of type classes, which our solution relies
on. Because Haskell programmers are already familiar with type
classes, they can bring all their intuitions to bear on the propaga-
tion of configuration data, along with guarantees of coherence. In
particular, a type annotation can always be added without ill effects.

We ask the programmer to specify which configurations to pass
where by giving type annotations. Taking advantage of type flow as
distinct from data flow in this way enables notation that can be more
flexible than extending the term language as Lewis et al. propose,
yet more concise than passing function arguments explicitly. Ap-
pendix A shows a real-world example, where we contrast our type-
based approach more concretely with the scope-based approach of
implicit parameters.

Because we tie configuration dependencies to type variables, we
can easily juggle multiple sets of configurations active in the same
scope, such as multiple modular numbers with different moduli.
More precisely, we use phantom types to distinguish between mul-
tiple instances of the same configuration class. For example, if two
moduli are active in the same scope, two instances Modular s1 a
and Modular s2 a are available and do not overlap with each other.
Another way to make multiple instances available while avoiding
the incoherence problem caused by overlapping instances is to in-
troduce named instances into the language, as proposed by Kahl
and Scheffczyk [13]. By contrast, when multiple implicit param-
eters with the same name and type are active in the same scope,
Hughes [9] cautions that “programmers must just be careful!”

One way to understand our work is that we use the coherence
of type classes to temper ambiguous overloading among multiple
implicit parameters. There is a drawback to using types to propa-
gate configurations, though: any dependency must be expressed in
types, or the overloading will be rejected as unresolved or ambigu-
ous. For example, whereas sort can have the type

sort :: (?compare :: a→ a→ Ordering)⇒ [a]→ [a]
with implicit parameters, the analogous type on our approach

sort :: Compare s a⇒ [a]→ [a] -- illegal
class Compare s a where compare :: s→ a→ a→ Ordering

is illegal because the phantom type s does not appear in the type
[a]→ [a]. Instead, we may write one of the following signatures.

sort1 :: Compare s a⇒ s→ [a]→ [a] -- ok
sort2 :: Compare s a⇒ [M s a]→ [M s a] -- ok

Using sort1 is just like passing the comparison function as an ex-
plicit argument. Using sort2 is just like defining a type class to com-
pare values. Standard Haskell already provides for both of these
possibilities, in the form of the sortBy function and the Ord class.
We have nothing better to offer than using them directly, except we
effectively allow an instance of the Ord class to be defined locally,
in case a comparison function becomes known only at run time.
By contrast, a program that uses only one comparison function (so
that coherence is not at stake) can be written more succinctly and
intuitively using implicit parameters, or even unsafePerformIO.

This problem is essentially the ambiguity of show ◦ read. Such
overloading issues have proven reasonably intuitive for Haskell pro-
grammers to grasp and fix, if only disappointedly. The success of
type classes in Haskell suggests that the natural type structure of
programs often makes expressing dependencies easy. Our exam-
ples, including the additional example in Appendix A, illustrate
this point. Nevertheless, our use of types to enforce coherence in-
curs some complexity that is worthwhile only in more advanced
cases of the configurations problem, when multiple configurations
are present.

6.3 Other Related Work
Our use of FFI treats the type (class) system as foreign to values,
and uses phantom types to bridge the gap. Blume’s foreign function
interface for SML/NJ [2] also uses phantom types extensively—for
array dimensions, const-ness of objects, and even names of C struc-
tures. For names of C structures, he introduces type constructors
for each letter that can appear in an identifier. The present paper
shows how to reflect strings into types more frugally.

We showed how to specialize code at run time with different sets
of primitive operations (such as for modular arithmetic). Our ap-
proach in this regard is related to overloading but specifically not
partial evaluation, nor run-time code generation. It can however
be fruitfully complemented by partial evaluation [10], for example
when an integral modulus is fixed at compile time. In our approach,
specialized code can use custom data representations.

The example in Section 5.2 shows that we effectively select a
particular class instance based on run-time values. We are therefore
“faking it” [21]—faking a dependent type system—more than be-
fore. McBride’s paper [21] provides an excellent overview of vari-
ous approaches to dependent types in Haskell. In approaches based
on type classes, Haskell’s coherence property guarantees that each
type represents at most one value (of a given type), so compile-time
type equality entails (that is, soundly approximates) run-time value
equality. Appendix A demonstrates the utility of this entailment.

McBride mentions that, with all the tricks, the programmer still
must decide if data belong in compile-time types or run-time terms.
“The barrier represented by :: has not been broken, nor is it likely
to be in the near future.” If our reflect and especially reify functions
have not broken the barrier, they at least dug a tunnel underneath.

7. CONCLUSIONS
We have presented a solution to the configurations problem that
satisfies our desiderata. Although its start-up cost in complexity is
higher than previous approaches, it is more flexible and robust, es-
pecially in the presence of multiple configurations. We have shifted
the burden of propagating user preferences from the programmer to
the type checker. Hence, the configuration data are statically typed,
and differently parameterized pieces of code are statically sepa-
rated. Type annotations are required, but they are infrequent and

mostly attached to top-level terms. The compiler will point out if a
type annotation is missing, as a special case of the monomorphism
restriction. By contrast, implicit parameters interact badly with the
type system, with or without the monomorphism restriction.

Our solution leads to intuitive term notation: run-time config-
uration parameters can be referred to just like compile-time con-
stants in global scope. We can propagate any type of configuration
data—numbers, strings, polymorphic functions, closures, and ab-
stract data like IO actions. Our code only uses unsafePerformIO
as part of FFI, so no dynamic typing is involved. Furthermore,
unsafePerformIO is unnecessary for the most frequent parameter
types—numbers, lists, and strings. At run-time, our solution in-
troduces negligible time and space overhead: linear in the size of
the parameter data or pointers to them, amortized over their life-
times. Our solution is available in Haskell today; this paper shows
all needed code.

Our solution to the configurations problem lends itself to per-
formance optimizations by dynamically dispatching to specialized,
optimized versions of code based on run-time input values. The
optimized versions of code may use specialized data representa-
tions, whose separation is statically guaranteed. Refactoring exist-
ing code to support such run-time parameterization requires mini-
mum or no changes, and no code duplication.

Our approach relies on phantom types, polymorphic recursion,
and higher-rank polymorphism. To propagate values via types, we
build a family of types, each corresponding to a unique value. In
one direction, a value is reified into its corresponding type by a
polymorphic recursive function with a higher-rank continuation ar-
gument. In the other direction, a type is reflected back into its
corresponding value by a type class whose polymorphic instances
encompass the type family. In effect, we emulate local type-class
instance declarations by choosing, at run time, the appropriate in-
stance indexed by the member of the type family that reifies the
desired dictionary. This emulation suggests adding local instances
to Haskell, with a restriction that we conjecture preserves principal
types and coherence. This technique allows Haskell’s existing type
system to emulate dependent types even more closely.

8. ACKNOWLEDGEMENTS
Thanks to Jan-Willem Maessen, Simon Peyton Jones, Andrew Pim-
lott, Gregory Price, Stuart Shieber, Dylan Thurston, and the anony-
mous reviewers for the 2004 ICFP and Haskell Workshop. The
second author is supported by the United States National Science
Foundation Grant BCS-0236592.

9. REFERENCES
[1] J. Adriano. Re: I need some help. Message to the Haskell mailing list; http://
www.mail-archive.com/haskell@haskell.org/msg10565.html, 26 Mar.
2002.

[2] M. Blume. No-longer-foreign: Teaching an ML compiler to speak C “natively”.
In P. N. Benton and A. Kennedy, editors, BABEL’01: 1st International Workshop
on Multi-Language Infrastructure and Interoperability, number 59(1) in Elec-
tronic Notes in Theoretical Computer Science, Amsterdam, Nov. 2001. Elsevier
Science.

[3] A. Bromage. Dealing with configuration data. Message to the Haskell
mailing list; http://www.haskell.org/pipermail/haskell-cafe/
2002-September/003411.html, Sept. 2002.

[4] M. Chakravarty, S. Finne, F. Henderson, M. Kowalczyk, D. Leijen, S. Marlow,
E. Meijer, S. Panne, S. L. Peyton Jones, A. Reid, M. Wallace, and M. Weber.
The Haskell 98 foreign function interface 1.0: An addendum to the Haskell 98
report. http://www.cse.unsw.edu.au/~chak/haskell/ffi/, 2003.

[5] K. Claessen. Dealing with configuration data. Message to the Haskell
mailing list; http://www.haskell.org/pipermail/haskell-cafe/
2002-September/003419.html, Sept. 2002.

[6] C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler. Type classes
in Haskell. ACM Transactions on Programming Languages and Systems, 18(2):
109–138, Mar. 1996.

[7] L. Hu et al. Dealing with configuration data. Messages to the Haskell
mailing list; http://www.haskell.org/pipermail/haskell-cafe/
2002-September/thread.html, Sept. 2002.

[8] J. Hughes. Restricted datatypes in Haskell. In E. Meijer, editor, Proceedings of
the 1999 Haskell Workshop, number UU-CS-1999-28 in Tech. Rep. Department
of Computer Science, Utrecht University, 1999.

[9] J. Hughes. Global variables in Haskell. Journal of Functional Programming,
2001. To appear. http://www.cs.chalmers.se/~rjmh/Globals.ps.

[10] M. P. Jones. Dictionary-free overloading by partial evaluation. In Proceedings of
the 1994 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, New York, 1994. ACM Press.

[11] M. P. Jones. Type classes with functional dependencies. In G. Smolka, editor,
Programming Languages and Systems: Proceedings of ESOP 2000, 9th Euro-
pean Symposium on Programming, number 1782 in Lecture Notes in Computer
Science, pages 230–244, Berlin, 2000. Springer-Verlag.

[12] W. Kahan. How Java’s floating-point hurts everyone everywhere. Invited talk,
ACM 1998 Workshop on Java for High-Performance Network Computing;
http://www.cs.ucsb.edu/conferences/java98/papers/javahurt.
pdf, 1 Mar. 1998.

[13] W. Kahl and J. Scheffczyk. Named instances for Haskell type classes. In
R. Hinze, editor, Proceedings of the 2001 Haskell Workshop, number UU-CS-
2001-23 in Tech. Rep., pages 71–99. Department of Computer Science, Utrecht
University, 2 Sept. 2001.

[14] O. Kiselyov. Pure file reading (was: Dealing with configuration data). Mes-
sage to the Haskell mailing list; http://www.haskell.org/pipermail/
haskell-cafe/2002-September/003423.html, Sept. 2002.

[15] O. Kiselyov and C.-c. Shan. Functional pearl: Implicit configurations—or, type
classes reflect the values of types. In Proceedings of the 2004 Haskell Workshop,
New York, 2004. ACM Press.

[16] I. Koren. Computer Arithmetic Algorithms. A K Peters, Natick, MA, 2002.
[17] J. Launchbury and S. L. Peyton Jones. Lazy functional state threads. In PLDI

’94: Proceedings of the ACM Conference on Programming Language Design
and Implementation, volume 29(6) of ACM SIGPLAN Notices, pages 24–35,
New York, 1994. ACM Press.

[18] J. Launchbury and S. L. Peyton Jones. State in Haskell. Lisp and Symbolic
Computation, 8(4):293–341, Dec. 1995.

[19] J. R. Lewis, M. B. Shields, E. Meijer, and J. Launchbury. Implicit parameters:
Dynamic scoping with static types. In POPL ’00: Conference Record of the
Annual ACM Symposium on Principles of Programming Languages, pages 108–
118, New York, 2000. ACM Press.

[20] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In POPL ’95: Conference Record of the Annual ACM Symposium on Principles
of Programming Languages, pages 333–343, New York, 1995. ACM Press.

[21] C. McBride. Faking it: Simulating dependent types in Haskell. Journal of Func-
tional Programming, 12(4–5):375–392, 2002.

[22] P. L. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44(170):519–521, Apr. 1985.

[23] C. Okasaki. From fast exponentiation to square matrices: An adventure in types.
In ICFP ’99: Proceedings of the ACM International Conference on Functional
Programming, volume 34(9) of ACM SIGPLAN Notices, pages 28–35, New
York, 1999. ACM Press.

[24] OpenSSL. The open source toolkit for SSL/TLS. Version 0.9.7d; http://www.
openssl.org/, 17 Mar. 2004.

[25] B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford
University Press, New York, 2000.

[26] S. L. Peyton Jones. Solution to the monomorphism restriction/implicit parameter
problem. Message to the Haskell mailing list; http://www.haskell.org/
pipermail/haskell/2003-August/012412.html, 5 Aug. 2003.

[27] S. L. Peyton Jones and M. B. Shields. Lexically-scoped type variables, Mar.
2002. To be submitted to Journal of Functional Programming.

[28] C. Queinnec. Lisp in Small Pieces. Cambridge University Press, Cambridge,
1996.

[29] G. Russell. Initialisation without unsafePerformIO. Message to the Haskell
mailing list; http://www.haskell.org/pipermail/haskell/2004-June/
014104.html, June 2004.

[30] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor, editors. Residue
Number System Arithmetic: Modern Applications in Digital Signal Processing.
IEEE Computer Society Press, Washington, DC, 1986.

[31] D. Thurston. Modular arithmetic. Messages to the Haskell mailing list;
http://www.haskell.org/pipermail/haskell-cafe/2001-August/
002132.html; http://www.haskell.org/pipermail/haskell-cafe/
2001-August/002133.html, 21 Aug. 2001.

[32] V. Trifonov. Simulating quantified class constraints. In Proceedings of the 2003
Haskell Workshop, pages 98–102, New York, 2003. ACM Press.

[33] P. L. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In
POPL ’89: Conference Record of the Annual ACM Symposium on Principles of
Programming Languages, pages 60–76, New York, 1989. ACM Press.

APPENDIX
A. ANOTHER EXAMPLE:

JAVA NATIVE INTERFACE
This appendix shows a real-world example in which the natural
type structure of the program lends itself to phantom-type annota-
tions on not just one type (like M in modular arithmetic) but many
types. We contrast our solution with the implicit parameters solu-
tion originally given by Lewis et al. [19, Section 4.4].

The problem arises in a Haskell binding to the Java Native In-
terface (JNI). JNI is to Java as FFI is to Haskell: the purpose of
JNI is for Java code to call and be called by code written in C and
(from there) Haskell (say). These calls require passing an abstract
JNIEnv value back and forth, which points to a virtual method table
(approximated with Int below) and roughly corresponds to a thread
in the Java virtual machine. Lewis et al. propose that this JNIEnv
value be passed as an implicit parameter.

type JNIEnv = Ptr Int

To take Lewis et al.’s example, suppose we want to implement the
following Java class with a method written in Haskell.
class HaskellPrompt {
String prompt;
native String ask();

}

The ask method is supposed to display the prompt string, then
read and return a line of input. Although the ask method appears
to take no arguments on the Java side, the corresponding Haskell-
side function ask takes two arguments: a JNIEnv pointer repre-
senting the current thread, and a Jobject pointer representing the
HaskellPrompt object whose ask method is being invoked.

ask :: JNIEnv→ Jobject → IO JString

To do its job, ask needs to access the prompt field of the Jobject it
received, as well as create a new Java String containing the user’s
response. JNI provides myriad utility functions for such operations,
each of which takes JNIEnv as the first argument.6

getObjectClass :: JNIEnv→ Jobject → IO Jclass
getFieldID :: JNIEnv→ Jclass→

String→ String→ IO FieldID
getObjectField :: JNIEnv→

Jobject → FieldID→ IO JString
getStringUTFChars :: JNIEnv→ JString→ IO String
newStringUTF :: JNIEnv→ String→ IO JString

Passing parameters explicitly, then, the ask function can be imple-
mented as follows.

ask jnienv this =
do cls ← getObjectClass jnienv this

field ← getFieldID jnienv cls “prompt”
“Ljava/lang/String;”

jprompt ← getObjectField jnienv this field
prompt ← getStringUTFChars jnienv jprompt
putStr prompt
answer ← getLine
newStringUTF jnienv answer

It is tedious to pass the same JNIEnv argument all over the place,
as we have to above.

Suppose we move the JNIEnv argument into an implicit param-
eter. That is, suppose we change the signatures of the JNI utility
6For simplicity, we assume that the getObjectField function returns
a JString. To be more precise, it returns a Jobject that in our case
can be coerced to a JString.

functions to the following.
getObjectClass :: (?jnienv :: JNIEnv)⇒

Jobject → IO Jclass
getFieldID :: (?jnienv :: JNIEnv)⇒ Jclass→

String→ String→ IO FieldID
getObjectField :: (?jnienv :: JNIEnv)⇒

Jobject → FieldID→ IO JString
getStringUTFChars :: (?jnienv :: JNIEnv)⇒

JString→ IO String
newStringUTF :: (?jnienv :: JNIEnv)⇒

String→ IO JString
We can then write cleaner code for ask:

ask this =
do cls ← getObjectClass this

field ← getFieldID cls “prompt”
“Ljava/lang/String;”

jprompt ← getObjectField this field
prompt ← getStringUTFChars jprompt
putStr prompt
answer ← getLine
newStringUTF answer

Gone is the tedious sprinkle of jnienv throughout our code. More-
over, the compiler automatically infers the correct type for ask:

ask :: (?jnienv :: JNIEnv)⇒ Jobject → IO JString
However, nothing prevents the programmer from mixing up one
JNIEnv with another. For example, the following code overrides
the value of ?jnienv during the call to getFieldID.

ask this = do cls ← getObjectClass this
field ← getFieldID cls “prompt”

“Ljava/lang/String;” with ?jnienv = · · ·
. . .

This code passes the type-checker, but is disallowed by JNI.
Using the technique in this paper, we can pass JNIEnv values

implicitly while statically preventing this illicit mixing. To apply
our approach, we need to involve a phantom type in the signatures
of functions like getObjectClass and ask. As in Section 5.2, one
phantom type suffices for any number of parameters, now or poten-
tially added later. Fortunately, as is often the case, our code already
uses many custom types, namely JNI’s Jobject, Jclass, and JString.
These types are the ideal host for a parasitic phantom type.

We change the abstract types Jobject, Jclass, and JString to take
a phantom-type argument. They become Jobject s, Jclass s, and
JString s. The JNIEnv can then piggyback on any of these types,
without affecting the run-time representation of any data or other-
wise inflicting too much pain.

data Jobject s -- abstract
data Jclass s -- abstract
data JString s -- abstract

We use the fact that JNIEnv is a Storable type to reify it. Because all
JNI calls take place in the IO monad, we no longer need to resort to
unsafePerformIO for reification and reflection, however safe it was
to do so in Section 4.2.

data JNIENV s
class JNI s where jnienv :: s→ IO JNIEnv
instance ReflectNums s⇒ JNI (JNIENV s) where

jnienv = alloca $ λp→ do pokeArray (castPtr p) bytes
peek p

where bytes = reflectNums (⊥ :: s) :: [Byte]
reifyJNIEnv :: JNIEnv→ (∀s. JNI s⇒ s→ IO w)→ IO w
reifyJNIEnv jnienv k =

do bytes← with jnienv (peekArray (sizeOf jnienv) ◦ castPtr)
reifyIntegrals (bytes :: [Byte])

(λ(:: s)→ k (⊥ :: JNIENV s))
We then assign new type signatures to the JNI utility functions.

getObjectClass :: JNI s⇒ Jobject s→ IO (Jclass s)
getFieldID :: JNI s⇒ Jclass s→

String→ String→ IO FieldID
getObjectField :: JNI s⇒ Jobject s→

FieldID→ IO (JString s)
getStringUTFChars :: JNI s⇒ JString s→ IO String
newStringUTF :: JNI s⇒ String→ IO (JString s)

The cleaner version of ask above, written to use implicit param-
eters, works exactly as is! Of course, our approach assigns it a
different type signature:

ask :: JNI s⇒ Jobject s→ IO (JString s)
Moreover, it no longer type-checks to call getObjectClass with one
JNIEnv and getFieldID subsequently with another JNIEnv, as al-
lowed under the implicit parameters approach. The mismatch is
caught under our approach, because the return type Jclass s from
getObjectClass is unified against the argument type Jclass s to
getFieldID. Incidentally, it is semantically significant for us to as-
sociate the implicit JNIEnv value with other J-types: for example,
a Jobject pointer makes sense only in the context of the JNIEnv
where it was obtained. Thus our approach statically ensures an in-
variant of JNI. This kind of invariant is present in many application
frameworks—graphical toolkits, database libraries, and so on.

Unlike with implicit parameters, we can ensure that JNIEnv val-
ues are equal at run time by unifying phantom types at compile
time. We can do so because, as mentioned in Section 3.2, each
type s corresponds to at most one JNIEnv value. This uniqueness
guarantee in turn obtains because Haskell prohibits overlapping in-
stances to ensure the coherence of overloading.

One advantage shared by implicit parameters and our approach is
the ability to interact transparently with higher-order combinators.
For example, consider the handle function that is part of Haskell’s
exception facility.

handle :: (Exception→ IO a)→ IO a→ IO a
The handle function takes two arguments, an exception handler and
an IO action. The exception handler is invoked in case the IO action
throws an exception. In our ask function, to prepare for times when
the Java virtual machine is not feeling well, we can wrap handle
around some monadic code, as follows.

ask′ this = handle handler (ask this)
handler exception = newStringUTF “error”

Even though the exception handler is outside the lexical scope of
ask and ask′, the necessary configuration information is still propa-
gated. Haskell knows that an exception handler must use the same
JNIEnv value to invoke newStringUTF as the main ask function
does, because both arguments to handle return the same type IO a,
or IO (JString s) with the same phantom type s. Here, as in Sec-
tion 5.1, the configuration information flows from the return type
of a function (handle) to its arguments, and from one argument to
another—not necessarily in the same direction as data flow. Here,
just as in Section 3.2, it is more natural to propagate configura-
tions via types than via terms: The two arguments to handle, like
multiple branches of a case expression, can receive the same con-
figuration via a single type signature.

By contrast, if we chose to solve the configurations problem by
putting JNIEnv information in a reader monad transformer applied
to the IO monad, then the handle combinator would need to un-
dergo custom lifting in order to have the right type in order to oper-

ate on the lifted IO monad. That is, if we lift IO to IO′, then we also
need to lift handle to the type (Exception → IO′ a) → IO′ a →
IO′ a. This is a special case of the long-standing issue of lifting
monadic operations through a monad transformer [20].

B. FOREIGN FUNCTION INTERFACE
The following type signatures summarize the part of Haskell’s for-
eign function interface that Section 4 uses.

unsafePerformIO :: IO a→ a
castPtr :: Ptr a→ Ptr b

A value of type Ptr a points to a storage area to or from which
Haskell values of type a, where a belongs to the Storable type class,
may be marshalled.

alloca :: Storable a⇒ (Ptr a→ IO b)→ IO b
peek :: Storable a⇒ Ptr a→ IO a
peekArray :: Storable a⇒ Int → Ptr a→ IO [a]
pokeArray :: Storable a⇒ Ptr a→ [a]→ IO ()
sizeOf :: Storable a⇒ a {-unused -} → Int
with :: Storable a⇒ a→ (Ptr a→ IO b)→ IO b

A value of type StablePtr a refers to a Haskell value of type a that
will not be garbage-collected until freeStablePtr is called.

newStablePtr :: a→ IO (StablePtr a)
deRefStablePtr :: StablePtr a→ IO a
freeStablePtr :: StablePtr a→ IO ()

