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Abstract

Griffin [22] pointed out that, just as the pure λ-calculus
corresponds to intuitionistic logic, a λ-calculus with first-
class continuations corresponds to classical logic. We study
how first-class delimited continuations [13], in the form of
Danvy and Filinski’s shift and reset operators [10, 11], can
also be logically interpreted.

First, we refine Danvy and Filinski’s type system for shift
and reset to distinguish between pure and impure functions.
This refinement not only paves the way for answer type poly-
morphism, which makes more terms typable, but also helps
us invert the continuation-passing-style (CPS) transform:
any pure λ-term with an appropriate type is βη-equivalent
to the CPS transform of some shift-reset expression. We
conclude that the λ-calculus with shift and reset and the
pure λ-calculus have the same logical interpretation, namely
good old intuitionistic logic.

Second, we mix delimited continuations with undelimited
ones. Informed by the preceding conclusion, we translate
the λ-calculus with shift and reset into a polarized variant
of linear logic [34] that integrates classical and intuitionis-
tic reasoning. Extending previous work on the λµ-calculus
[36, 37, 40], this unifying intermediate language expresses
computations with and without control effects, on delimited
and undelimited continuations, in call-by-value and call-by-
name settings.

1 Introduction

The formulas-as-types correspondence, also known as the
Curry-Howard isomorphism, treats propositions in a logic
as types in a programming language, and proofs of these
propositions as programs of these types [21]. In the original
instance of this correspondence, Church’s λ-calculus [7, 8] is
seen to be not just a functional programming language but
also a proof system for intuitionistic logic.

Extending the correspondence to classical logic, Griffin
[22] pointed out that logical axioms for classical reasoning
are types of control operators in programming languages
with first-class continuations. For example, the call-with-
current-continuation (call/cc) operator in Scheme [31] can
be assigned the type ((A → B) → A) → A, which, read as
a proposition, is Pierce’s law, a classical reasoning principle
invalid in intuitionistic logic. Another example of such a law
is double negation, ¬¬A→A, which is the type of Felleisen’s
C operator [14, 15] and the basis for Parigot’s λµ-calculus
[40] if we read the type ¬A as a continuation waiting for A.

First-class continuations represent “the entire (default)
future for the computation” [31]. Refining this concept,
Felleisen [13] introduced delimited continuations, which en-
capsulate only a prefix of that future. (Delimited continua-
tions are also called composable, partial, or truncated con-
tinuations.) In Felleisen’s work, first-class delimited con-
tinuations are manipulated using two control operators, #
(“prompt”) and F . Many variants of these operators have
been introduced [10, 11, 23, 42].

Given Griffin’s logical interpretation of undelimited con-
tinuations, it is natural to ask: is there also a logical inter-
pretation for delimited continuations? Kameyama [28, 29]
answers this question for a λ-calculus equipped with what he
calls statically scoped delimited continuations. In this pa-
per, we study delimited continuations that in Kameyama’s
terminology are dynamically scoped. Specifically, we study
how to logically interpret Danvy and Filinski’s shift and re-
set operators [10, 11], a popular choice of control operators
for delimited continuations. We give two answers to the
question of how to logically interpret shift and reset.

From shift and reset to intuitionistic logic The first part of
this paper (Sections 2 and 3) argues that, despite the con-
nection Griffin made between first-class continuations and
classical logic, a proper logical interpretation of shift and
reset requires returning to intuitionistic logic via the contin-
uation-passing-style (CPS) transform. This answer makes
sense at the level of types as well as terms.

At the level of types: With delimited continuations, the
answer type of a program is not fixed at ⊥ but changes as
the program executes, so the answer type can no longer be
left implicit in the classical negation connective. Rather,
any logical interpretation of shift and reset must keep track
of answer types explicitly, which is precisely what the CPS
transform does in the types of its output. Conversely, as we
will see in Section 2.2, when the answer type is irrelevant be-
cause control effects are absent, it is natural to refine Danvy
and Filinski’s type system to reflect that fact.

At the level of terms: By showing a “direct-style” trans-
form in Section 3, we formalize and prove the folklore that
shift and reset, as control operators, let the programmer tap
into all of the power in the pure λ-calculus that is the target
of the CPS transform. More precisely, any pure λ-term with
an appropriate type is βη-equivalent to the CPS conversion
of some shift-reset expression.1 Thus any logical interpreta-

1Note the phrase “βη-equivalent to”: our “direct-style” transform
is less of a CPS-inverse than Danvy and Lawall’s [9, 12], which operate
up to α-equivalence.



tion of shift and reset must be a logical interpretation of the
pure λ-calculus, and vice versa. That is to say, the logical
interpretation of shift and reset is simply intuitionistic logic.

From call/cc, shift, and reset to polarized linear logic The
second part of this paper (Section 4) gives a single logical
interpretation, or equivalently, a unifying intermediate lan-
guage, that encompasses delimited and undelimited contin-
uations. Since we have found that shift and reset correspond
to intuitionistic, not classical, logic, this language must in-
tegrate classical and intuitionistic reasoning. Our approach
is the judicious use of exponential connectives in linear logic
to distinguish between classical and intuitionistic implica-
tion, as exemplified by Girard’s Logic of Unity [20]. We
take Laurent’s LLP [34], a polarized variant of linear logic
that expresses first-class (undelimited) continuations in both
call-by-value and call-by-name settings [36, 37], and add a
connective that lets us encode intuitionistic logic through
linearly used continuations.

Technical contributions and outline To summarize the
technical contributions of this paper:

Section 2 refines Danvy and Filinski’s type system for shift
and reset to distinguish functions with and without
control effects.

Section 3 inverts the CPS transform up to βη-equivalence,
transforming pure λ-terms back to shift-reset expres-
sions.

Section 4 specifies a polarized variant of classical linear
logic that expresses computations with and without
control effects, on delimited and undelimited contin-
uations, in call-by-value and call-by-name settings.

2 Calculi for shift and reset

In this section, we present Danvy and Filinski’s original λ-
calculus with shift and reset, which we call the λξ-calculus.
Motivated by a desire to type more terms, we then extend
the type system to distinguish pure functions from others.

We assume a fixed set of base types, notated ι. (In ex-
amples below, we use Int and Bool as base types, along with
term constants like 3.) We use lowercase Roman letters
x, f, g, c to name variables (freshly generated as needed),
and lowercase Greek letters τ, ω to name types. Typing an-
tecedents Γ are finite maps from variable names to types.
Terms are denoted with uppercase Roman letters E, F .

2.1 The original λξ-calculus

Figure 1 presents the λξ-calculus. The only types in this
calculus are base types ι and function types τ1/ω1 → τ2/ω2.
Types of the latter form are to be thought of as functions
from τ1 to τ2 whose control effect changes the answer type
from ω1 to ω2. (Product and sum types can easily be added
to the system, and the results in this paper carried over.)

Our presentation of the λξ-calculus uses sequents of two
kinds. An impure sequent is of the form

Γ � ω1 ` E : τ � ω2.

Its intuitive meaning is that, provided with an environment
of type Γ, the expression E can be evaluated in a context
whose answer type is ω1, yielding a result of type τ while
changing the answer type to ω2. The word “impure” here

Types τ, ω ::= ι | τ1/ω1 → τ2/ω2

Antecedents Γ ::= x1 : τ1, . . . , xn : τn

Terms E, F ::= x | λx. E | FE | 〈E〉 | ξf. E

Sequents Γ � ω1 ` E : τ � ω2 (impure)

Γ `◦ E : τ (pure)

Axiom
Γ, x : τ `◦ x : τ

Γ, x : τ1 � ω1 ` E : τ2 � ω2
→I

Γ `◦ λx. E : τ1/ω1 → τ2/ω2

Γ � ω3 ` F : τ1/ω1 → τ2/ω2 � ω4 Γ � ω2 ` E : τ1 � ω3
→E

Γ � ω1 ` FE : τ2 � ω4

Γ `◦ E : τ
Pure

Γ � ω ` E : τ � ω

Γ � τ ` E : τ � ω
Reset

Γ `◦ 〈E〉 : ω

Γ, f : τ1/ω → τ2/ω � ω1 ` E : ω1 � ω2
Shift

Γ � τ2 ` ξf. E : τ1 � ω2

Figure 1: The λξ-calculus

Values V ::= λx. E

Contexts C[ ] ::= [ ] | (C[ ])E | V (C[ ])

Metacontexts D[ ] ::= [ ] | C[〈D[ ]〉]

D
ˆ
C[(λx. E)V ]

˜
⇒ D

ˆ
C[E{x 7→ V }]

˜
D

ˆ
C[〈V 〉]

˜
⇒ D

ˆ
C[V ]

˜
D

ˆ
C[ξf. E]

˜
⇒ D

ˆ
E{f 7→ λx. 〈C[x]〉}

˜
Figure 2: Reductions for the λξ-calculus

refers to the control effects that may occur when E is evalu-
ated, as indicated by the presence of answer types ω1 and ω2

in the sequent. By contrast, a pure sequent has the form

Γ `◦ E : τ,

and guarantees that evaluating E will incur no control effect.
The Axiom typing rule creates a term that retrieves the

value of a variable from the environment; this retrieval is
pure because the language is call-by-value. The →I rule cre-
ates a λ-abstraction, which is also pure because any control
effect in the body of the abstraction is delayed until the func-
tion is invoked using the →E rule. A pure sequent can be
converted to an impure sequent using the Pure rule, which
turns a lack of control effects into a trivial effect that leaves
the answer type intact. This conversion is semantically an
injection, and is left implicit in terms. An impure sequent
can be converted to a pure sequent using the Reset rule,
which masks control effects in an expression by delimiting
the current continuation during its execution. This conver-
sion is semantically a left inverse to the Pure injection, and
is notated with angle brackets 〈 . . . 〉 in terms.

The semantics of the λξ-calculus, in particular the mean-
ing of the Shift rule, can be specified operationally, by the
reductions shown in Figure 2, or denotationally, by the CPS
transform shown in Figure 3. (A sound and complete ax-
iomatization of term equivalence is also available [30].) The
target of the CPS transform is the pure λ-calculus, in which
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Types and antecedents

dιe = ι

dτ1/ω1 → τ2/ω2e = dτ1e →
`
dτ2e → dω1e

´
→ dω2e

dx1 : τ1, . . . , xn : τne = x1 : dτ1e , . . . , xn : dτne

Pure sequents and terms˚
Γ `◦ E : τ

ˇ
= dΓe B dEe◦ : dτe

(Axiom) dxe◦ = x

(→I) dλx. Ee◦ = λx. dEe
(Reset) d〈E〉e◦ = dEe (λx. x)

Impure sequents and terms˚
Γ � ω1 ` E : τ � ω2

ˇ
= dΓe B dEe :

`
dτe → dω1e

´
→ dω2e

(→E) dFEe = λc. dF e
`
λf. dEe (λx. fxc)

´
(Pure) dEe = λc. c

`
dEe◦

´
if dEe◦ is defined

(Shift) dξf. Ee = λc.
`
λf. dEe

´
(λxc′. c′(cx))(λx. x)

Figure 3: CPS transform from the λξ-calculus to the pure λ-
calculus

terms are typed by sequents of the form

Γλ B Eλ : τλ.

Here Γλ is an antecedent mapping variable names to pure
λ-types, Eλ is a pure λ-term, and τλ is its pure λ-type.

Roughly speaking, when a shift-expression ξf. E is eval-
uated, its context is captured and removed to f , up to the
nearest enclosing reset. For example [10], the closed λξ-term

1 + 〈3 + (ξf. f 0 + f 1)〉 : Int

evaluates to 8 via the following sequence of reductions. (The
evaluated expression is underlined at each step.)

1 +
˙
3 + (ξf. f 0 + f 1)

¸
⇒ 1 +

˙
(λx. 〈3 + x〉)(0) + (λx. 〈3 + x〉)(1)

¸
⇒ 1 +

˙˙
3 + 0

¸
+ (λx. 〈3 + x〉)(1)

¸
⇒ 1 +

˙
〈3〉+ (λx. 〈3 + x〉)(1)

¸
⇒ 1 +

˙
3 + (λx. 〈3 + x〉)(1)

¸
⇒ 1 +

˙
3 +

˙
3 + 1

¸¸
⇒ 1 +

˙
3 + 〈4〉

¸
⇒ 1 +

˙
3 + 4

¸
⇒ 1 + 〈7〉 ⇒ 1 + 7 ⇒ 8

Meanwhile, the CPS transform maps the same λξ-term to a
pure λ-term that is βη-equivalent to

λc. c(8) : (Int→ ω)→ ω,

which can be applied to the trivial continuation λx. x to
recover the same answer 8.

The CPS transform given in Figure 3 leaves administra-
tive redexes unreduced. This excess can be removed [10, 11],
but is irrelevant to our present purpose, which is to study
the logical interpretation of shift and reset. We need only
regard pure λ-terms up to βη-equivalence.

2.2 Purity as answer type polymorphism

The following λξ-term cannot be typed.

ξf. if 〈f 2〉 and f 3 then 4 else 5 (1)

Types τ ::= · · · | τ1
◦→ τ2

Terms E ::= · · · | λ◦x. E | F ◦ E

Γ, x : τ1 `◦ E : τ2 ◦→I
Γ `◦ λ◦x. E : τ1

◦→ τ2

Γ `◦ F : τ1 → τ2 Γ `◦ E : τ1 ◦→E
Γ `◦ F ◦ E : τ2

Γ � ω2 ` F : τ1
◦→ τ2 � ω3 Γ � ω1 ` E : τ1 � ω2 ◦→E′

Γ � ω1 ` F ◦ E : τ2 � ω3

Γ, f : τ1
◦→ τ2 � ω1 ` E : ω1 � ω2

Shift (replacing old rule)
Γ � τ2 ` ξf. E : τ1 � ω2

Figure 4: The λξ◦-calculus, where it differs from λξ

The reason is that the two uses of f place conflicting re-
quirements on the answer types part of its type. The
first use of f , inside the reset, forces f to take the type
Int/Bool → Bool/Bool. The second use, outside the reset,
calls for the type Int/Int → Bool/Int. The Shift rule in Fig-
ure 1 lets f take either type, but only one.

A captured continuation is always polymorphic in its an-
swer type, as can be seen in the Shift rule where it assigns
to f the type τ1/ω→τ2/ω for arbitrary ω. Thus the type we
really want to assign to f is ∀ω. Int/ω→Bool/ω. This desire
tempts us to invoke let-bound polymorphism [6, 26, 38] on
answer types, but even that fails on the following λ-bound
version of (1).

ξg. (λf. if 〈f 2〉 and f 3 then 4 else 5)(g) (2)

The reason f is polymorphic in its answer type is that it
is pure. That all delimited continuations captured by shift
are devoid of control effects can be seen in Figure 2: when
reducing a term of the form ξf. E, the variable f is bound to
a function whose entire body is enclosed in reset. It can also
be seen in Figure 3: the CPS transform of ξf. E binds to f
a function that only deals with the current continuation c′

by passing it the value cx. Unfortunately, the purity of f
is lost from the type system by the time f is applied to an
argument. There may also be other, user-defined functions,
such as λx. x + 1, that are pure and would benefit from
answer type polymorphism.

One way to work around this problem is as follows. In the
body E of a shift-expression ξf. E, replace all occurrences
of f with λx. 〈fx〉. Now the captured continuation f can
always take the type τ1/τ2 → τ2/τ2; every time we use f ,
we use reset to “remind” the type system that it is pure.
Rewritten thus, the term (1) type-checks successfully.

ξf. if 〈(λx. 〈fx〉)(2)〉 and (λx. 〈fx〉)(3) then 4 else 5

The same workaround applies to λ-bound pure functions,
such as f in (2) above: to express a pure function from τ1

to τ2 in the type system, use the type τ1/τ2 → τ2/τ2 as a
proxy, and remind the type system of purity when invoking
the function.

ξg. (λf. if 〈(λx. 〈fx〉)(2)〉 and (λx. 〈fx〉)(3) then 4 else 5)(g)

We will return to this workaround in Section 3.
A more principled approach is to use an effect system

[16, 44, 45] to mechanically keep track of which functions
are pure. Figure 4 shows the λξ◦-calculus, which adds to
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Values V ::= · · · | λ◦x. E

Contexts C[ ] ::= · · · | C[ ] ◦ E | V ◦ C[ ]

D
ˆ
C[(λ◦x. E) ◦ V ]

˜
⇒ D

ˆ
C[E{x 7→ V }]

˜
Figure 5: Reductions for the λξ◦-calculus, where it extends λξ

Types ˚
τ1

◦→ τ2

ˇ
= dτ1e → dτ2e

Pure terms

( ◦→I) dλ◦x. Ee◦ = λx. dEe
( ◦→E) dF ◦ Ee◦ = dF e◦ dEe◦ if dF e◦, dEe◦ are defined

Impure terms

( ◦→E′) dF ◦ Ee = λc. dF e
`
λf. dEe (λx. c(fx))

´
(Shift) dξf. Ee = λf. dEe (λx. x)

Figure 6: CPS transform from the λξ◦-calculus to the pure
λ-calculus, where it differs from λξ

the λξ-calculus the types τ1
◦→ τ2 and terms λ◦x. E for pure

functions. Pure functions are created either by abstracting
over an expression using the ◦→I rule, or by capturing the
current continuation using the revised Shift rule. They are
invoked using either the ◦→E rule or the ◦→E′ rule, depending
on whether the computations producing the function and
the argument are themselves pure. For clarity, we write
f ◦x to apply a pure function f to an argument x, though we
could reuse the syntax fx for impure function application.

The terms (1) and (2) are directly typable in the new
calculus: unlike in the λξ-calculus, the subterms f 2 and f 3
can now coexist, as f ◦ 2 and f ◦ 3.

The reductions of λξ◦, shown in Figure 5, trivially extend
those of λξ: simply β-reduce pure function applications as
one would impure ones. The CPS transform from λξ◦ to the
pure λ-calculus is shown in Figure 6. The typing rule and
CPS transform for shift-expressions are simpler here than
in the original λξ-calculus, because they no longer need to
convert the captured continuation from pure to impure.2

One caveat of the typing rules of the λξ◦-calculus is that
two derivations may culminate in what is syntactically the
same term. For example, if Γ contains f : τ1

◦→τ2 and x : τ1,
then the sequent Γ� ω ` f ◦x : τ2 � ω can be derived in two
different ways.

Axiom
Γ `◦ f : τ1

◦→ τ2

Axiom
Γ `◦ x : τ1 ◦→E

Γ `◦ f ◦ x : τ2
Pure

Γ � ω ` f ◦ x : τ2 � ω

2A further opportunity remains to take advantage of purity as
answer type polymorphism: note that the Shift rules in both calculi
are still polymorphic in the answer type ω1. We can simplify Shift by
changing its premise to a pure sequent.

Γ, f : τ1
◦→ τ2 `◦ E : ω2

Γ � τ2 ` ξf. E : τ1 � ω2

With this change, our term syntax would diverge from Danvy and
Filinski’s: their ξf. E would become ξf. 〈E〉.

Axiom
Γ `◦ f : τ1

◦→ τ2
Pure

Γ � ω ` f : τ1
◦→ τ2 � ω

Axiom
Γ `◦ x : τ1

Pure
Γ � ω ` x : τ1 � ω

◦→E′

Γ � ω ` f ◦ x : τ2 � ω

This ambiguity is a natural consequence of the (even very
weak) effect subtyping that our new calculus engages in. It
is harmless because the syntax is still coherent with respect
to the semantics: On one hand, the reduction rules are obliv-
ious to purity. On the other hand, the CPS transform maps
different derivations of the same λξ◦-term to pure λ-terms
that are βη-equivalent—in fact, α-equivalent once adminis-
trative redexes are reduced.

3 Direct-style transforms

Given that pure functions are explicitly represented in the
λξ◦-calculus, there is a trivial sense in which the CPS trans-
form from it to the pure λ-calculus is surjective.

Proposition 1. Every sequent Γλ B Eλ : τλ derivable in the
pure λ-calculus is the CPS-transform image of some (pure)
sequent Γ ◦̀ E : τ derivable in the λξ◦-calculus.

Proof. The pure λ-calculus embeds into the λξ◦-calculus if
we map → to ◦→ in types, and λ to λ◦ and fx to f ◦ x in
terms.

In a less trivial sense, the CPS transform from both the
λξ-calculus and the λξ◦-calculus are surjective.

Proposition 2. Let L be either the λξ-calculus or the λξ◦-
calculus. Let Eλ be any pure λ-term, and suppose that Γ is
an L -antecedent and τ is an L -type.

1. If the sequent
dΓe B Eλ : dτe

is derivable in the pure λ-calculus, then there exists an
L -term bEλc so that the pure sequent

Γ `◦ bEλc : τ

is derivable in L , and dbEλce◦ is βη-equivalent to Eλ.

2. For any L -types ω1 and ω2, if the sequent

dΓe B Eλ :
`
dτe → dω1e

´
→ dω2e

is derivable in the pure λ-calculus, then there exists an
L -term bEλc so that the impure sequent

Γ � ω1 ` bEλc : τ � ω2

is derivable in L , and dbEλce is βη-equivalent to Eλ.

The goal of this section is to constructively prove this
proposition. We first prove it for L being the λξ◦-calculus,
then apply the workaround in Section 2.2 for the λξ-calculus.

Proof. For the λξ◦-calculus: Without loss of generality, we
assume that Eλ is in long βη-normal form [27, 41]. The proof
is by induction on the term Eλ, simultaneously for both
clauses of the proposition. By the preceding assumption,
the term Eλ must be either:

1. λx. E0
λ, an abstraction; or

4



2. fE1
λ · · ·En

λ , a variable applied successively to zero or
more terms to give a base-type result.

In the first case, we need to invert one of the following
three pure-λ sequents to a λξ◦-sequent.

dΓe B λx. E0
λ : dτ1/ω1 → τ2/ω2e (3)

dΓe B λx. E0
λ : dτ1

◦→ τ2e (4)

dΓe B λx. E0
λ :

`
dτe → dω1e

´
→ dω2e (5)

To invert (3), let bEλc be λx. bE0
λc. To invert (4), let bEλc

be λ◦x. bE0
λc. To invert (5), let bEλc be ξx. bE0

λc.
In the second case, only the first clause of the proposition

is possible, because Eλ has base type. Let τ0 be the λξ◦-type
of f in the antecedent Γ. We can write τ0 as

τ0 = τ1
?→1 · · · ?→m−1 τm

?→m τ,

where, slightly abusing notation, each arrow ?→i stands for
either “ ◦→” (in which case we call it “pure”) or “/ · · ·→· · · /”
(in which case we call it “impure”). These arrows associate
to the right as usual. For example, if τ0 is the type

τ0 = Address/Bool→ (Char ◦→ Double)/(Error ◦→ Float),

then we can write it as

τ0 = Address ?→1 Error ?→2 Float.

The impure arrow ?→1 stands for “/Bool→(Char ◦→Double)/”;
the pure arrow ?→2 stands for “ ◦→”.

We now iteratively compute terms E0, . . . , Em of the λξ◦-
calculus, and indices j0, . . . , jm ascending from 0 to n. (The
intention is for each Ei to be the direct-style transform of
the subterm fE1

λ · · ·E
ji
λ .) First, set j0 = 0 and E0 = f .

Then, for each i from 1 to m, set

ji = ji−1 + 1, Ei = Ei−1 ◦ bEji
λ c

if the arrow ?→i is pure;

ji = ji−1 + 2, Ei =
˙
bEji

λ c
`
Ei−1 bEji−1

λ c
´¸

if the arrow ?→i is impure.

It is easy to check that jm = n. Finally, let bEλc be Em.
For the λξ-calculus: Take the direct-style transform

bEλc constructed above from Eλ for the λξ◦-calculus. Re-
place F ◦E with (λfx. 〈fx〉)FE throughout the term bEλc,
and τ1

◦→τ2 with τ1/τ2→τ2/τ2 throughout its type, to obtain
a direct-style transform for the λξ-calculus.

The construction above demonstrates that the CPS
transform from shift and reset to the pure λ-calculus covers
all of intuitionistic reasoning. Therefore, any logical inter-
pretation of shift and reset must be a logical interpretation
of the pure λ-calculus, and vice versa. In other words:

The logical interpretation of shift and reset is just
intuitionistic logic.

4 On to polarized linear logic

For the purpose of expressing delimited and undelimited
continuations in a single intermediate language, we now con-
sider how to embed classical and intuitionistic reasoning into
a single logic. As mentioned in the introduction, we inte-
grate classical and intuitionistic logic by translating both
into linear logic.

Positive types φ ::= ι | 1 | φ1 ⊗ φ2 | ↓¬φ | !¬φ

Multiple positive types µ ::= 1 | µ1 ⊗ µ2 | !¬φ

Antecedents Φ ::= φ, . . . , φ

Multiple antecedents M ::= µ, . . . , µ

Sequents Φ (φ)

Parenthesized positive formulas like (φ) are optional.

Axiom
φ φ

Φ1, φ (φ′) Φ2  φ
Cut

Φ1, Φ2  (φ′)

Φ (φ)
1L

Φ, 1 (φ)
1R

 1

Φ, φ1, φ2  (φ′)
⊗L

Φ, φ1 ⊗ φ2  (φ′)

Φ1  φ1 Φ2  φ2
⊗R

Φ1, Φ2  φ1 ⊗ φ2

Φ φ
↓¬L

Φ, ↓¬φ 

Φ, φ 
↓¬R

Φ ↓¬φ

Φ φ
Dereliction

Φ, !¬φ 

M, φ 
Of Course Not

M !¬φ

Φ (φ)
Weakening

Φ, µ (φ)

Φ, µ, µ (φ)
Contraction

Φ, µ (φ)

Figure 7: CHL, an extension of LLP to incorporate intuitionistic
reasoning

Classical implication A→B can be translated into a lin-
ear implication formula !A( ?B. The exponential connec-
tives ! (“of course”) and ? (“why not”) say that the assump-
tion A and the conclusion B, respectively, may be freely
copied or discarded in a proof or computation. Because clas-
sical logic can be translated into classical linear logic along
these lines, the syntax and semantics of linear logic, such as
sequent systems and proof nets on one hand, and categorical
and game semantics on the other, can be brought to bear on
the computational interpretation of classical logic. In par-
ticular, programs using undelimited continuations—be they
call-by-name or call-by-value—can be translated into a sin-
gle intermediate language [37], with concomitant theories
of confluent proof nets [33, 36] and fully complete game se-
mantics [35]. The image of this translation is Laurent’s LLP
[34], a polarized variant of classical linear logic.

Intuitionistic implication A ◦→ B can also be translated
into an implication formula in classical linear logic, namely
!A( B. The absence of ? in this formula reflects the cru-
cial difference between classical and intuitionistic logic: in
Gentzen’s [17] sequent formulations, classical logic (LK) is
distinguished from intuitionistic logic (LJ) in allowing multi-
ple conclusions to the right of the turnstile [19]. Accordingly,
to integrate classical and intuitionistic reasoning, we extend
LLP with an additional connective, lowered negation, and
use it to enforce the linearity of intuitionistic conclusions.

Figure 7 shows CHL, our polarized variant of linear logic.
The formulas in CHL are called positive types. Each positive
type can be

• a base type ι;
• the multiplicative unit 1;
• the multiplicative conjunction (tensor) φ1 ⊗ φ2 of two

positive types;
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• the lowered negation ↓¬φ of a positive type; or
• the boxed negation !¬φ of a positive type.

Additive disjunction (plus) φ1⊕φ2, which is needed to trans-
late sum types from λ-calculi, is omitted but easy to add.3

The word “polarized” refers to the fact that this logic
does not allow formulas like ι ⊗ ¬ι that mix positive and
negative types. In polarized systems of linear logic (both
CHL and others), multiplicative conjunction is inherently
positive and requires positive components, so the only way
to tensor the positive type ι with the negative type ¬ι is
to lower the latter to the positive ↓¬ι, then build the pos-
itive type ι ⊗ ↓¬ι. Dually, multiplicative disjunction O is
inherently negative and requires negative components, so
the only way to express the linear implication ι( ι (equiva-
lent to ¬ι O ι) is to lift the second ι to the negative ↑ι, then
build the negative type ι( ↑ι (equivalent to ¬ι O ↑ι and
¬(ι⊗ ↓¬ι)).

Polarization of linear logic makes it easier to construct
well-behaved syntax and semantics. For example, in game
semantics [35], where types are interpreted as games and
values as strategies, positive types are interpreted as games
in which the proponent moves first, and negative types as
games in which the opponent moves first. To lower a neg-
ative type to a positive type is to prepend a dummy pro-
ponent move to an opponent-first game; dually, to lift a
positive type is to prepend a dummy opponent move.

The presentation here of polarized linear logic differs
from Laurent’s [34] in using positive types only. Because
any negative type ¬φ is immediately lowered (as in ↓¬φ) or
boxed (as in !¬φ) to make a positive type, we can treat nega-
tion ¬ as a literal part of the unary connectives ↓¬ and !¬,
rather than as an involution that maps between positive and
negative types.

A sequent in CHL is of the form

φ1, . . . , φn  (φ),

where the antecedent φ1, . . . , φn is a multiset of zero or more
positive types, and the conclusion (φ) is either a positive
type φ or nothing. The intended interpretation of the se-
quent is

φ1 ⊗ · · · ⊗ φn( φ or φ1 ⊗ · · · ⊗ φn(⊥,

depending on whether a conclusion φ is present. In words,
the resources in the antecedent can be combined without
waste to produce the resource that is the conclusion, if any.
Given that classical logic differs from intuitionistic logic in
allowing multiple conclusions in a single sequent, it may
seem strange that at most one conclusion formula is allowed
in a CHL (or LLP) sequent, yet classical logic is supposed
to embed into CHL. As it turns out, assumptions and con-
clusions in classical logic are both encoded as CHL assump-
tions, so it is best to think of a CHL sequent as a one-sided
sequent or a tableau branch.

The CHL inference rules Axiom, Cut, 1L, 1R, ⊗L,
and ⊗R simply restate multiplicative linear logic. More in-
triguing are the negating connectives ↓¬ and !¬ and their

3Briefly:

φ ::= · · · | 0 | φ ⊕ φ µ ::= · · · | 0 | µ ⊕ µ

0L
0, Φ (φ)

Φ, φ1  (φ
′
) Φ, φ2  (φ

′
)
⊕L

Φ, φ1 ⊕ φ2  (φ
′
)

Φ φ1
⊕R1

Φ φ1 ⊕ φ2

Φ φ1
⊕R2

Φ φ1 ⊕ φ2

associated rules. A lowered negation ↓¬φ can be thought of
as a linearly used (undelimited) continuation [4, 5, 25, 32].
A value of type ↓¬φ is created by the ↓¬R rule; it waits for
a φ-value to consume using the ↓¬L rule. A boxed nega-
tion !¬φ can be thought of as a non-linearly-used (undelim-
ited) continuation. A value of type !¬φ is created by the
Of Course Not rule; it can consume zero or more φ-values
using the Dereliction rule.

Some positive types are multiple; they represent data
that can be freely copied or discarded in a proof or com-
putation, as controlled by the Weakening and Contraction
rules. The multiplicative unit 1 and any boxed negation are
multiple; in addition, a tensor is multiple if its components
both are. We write µ instead of φ for a positive type that
is multiple. In LLP, all types are multiple; that is not the
case in CHL, which adds the non-multiple connective ↓¬
precisely to encode intuitionistic reasoning through linearly
used continuations.

Because CHL extends LLP, the call-by-name and call-by-
value translations from classical logic to LLP [37] transfer
right away to CHL. What is new in CHL is the ability to
express intuitionistic reasoning as well. Figure 8 shows how
to translate formulas and proofs of intuitionistic logic (and
hence, via the CPS transforms in Figures 3 and 6, shift
and reset) into those of CHL. The translation is essentially
a polarized version of Girard’s “boring” translation ∗ from
intuitionistic to linear logic [19, p. 81] (which corresponds
[3] to Moggi’s call-by-value translation to his computational
metalanguage [39]).

At the level of formulas, the translation maps each pure-
λ type τ to a multiple positive type τ̄ of CHL—multiple,
to match how Weakening and Contraction apply freely to
assumptions in intuitionistic logic. A base type ι is mapped
to the boxed type

!¬ι, (6)

so as to be multiple. A function type τ1 → τ2 is mapped to
the boxed type

!¬(τ̄1 ⊗ ↓¬τ̄2), (7)

with the following intuition. To call a function is to produce
an argument (τ̄1) and at the same time (⊗) decide what to
do after the function returns (¬τ̄2). A pure function returns
exactly once; in other words, the return continuation ¬τ̄2

is used linearly. Thus to call a pure function is to produce
a value of the (positive) type τ̄1 ⊗ ↓¬τ̄2. A function can
be called any number of times, so it is a non-linearly-used
(undelimited) continuation that is happy to consume zero
or more values of type τ̄1⊗↓¬τ̄2—hence the type in (7). By
comparison, the CHL type

!¬(τ̄1 ⊗ !¬τ̄2) (8)

models a function that may not use the return continuation
linearly, that is, an impure function from τ1 to τ2. Indeed,
the type in (8) is the call-by-value translation of the λµ-
calculus type τ1 → τ2.

At the level of proofs, Figure 8 shows the crucial infer-
ence rules Axiom, →L and →R in intuitionistic logic (more
specifically in Gentzen’s LJ [17]) as they translate into par-
tial proofs in CHL. Each (proof of a) LJ sequent

τ1, . . . , τn B ω

is translated to (a proof of) the CHL sequent

τ̄1, . . . , τ̄n, ↓¬ω̄  
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Translating intuitionistic types τ to CHL types τ̄ : ι = !¬ι, τ1 → τ2 = !¬(τ̄1 ⊗ ↓¬τ̄2).

Axiom
τ B τ

Z=⇒
Axiom

τ̄  τ̄
↓¬L

τ̄ , ↓¬τ̄  

···
Γ, τ1 B τ2

→R
Γ B τ1 → τ2

Z=⇒

···
Γ̄, τ̄1, ↓¬τ̄2  

⊗L
Γ̄, τ̄1 ⊗ ↓¬τ̄2  

Of Course Not
Γ̄ !¬(τ̄1 ⊗ ↓¬τ̄2)

↓¬L
Γ̄, ↓¬!¬(τ̄1 ⊗ ↓¬τ̄2) 

···
Γ1 B τ1

···
Γ2, τ2 B ω

→L
Γ1, Γ2, τ1 → τ2 B ω

Z=⇒
···

Γ̄1, ↓¬τ̄1  

Axiom
τ̄1  τ̄1

Axiom
↓¬τ̄2  ↓¬τ̄2

⊗R
τ̄1, ↓¬τ̄2  τ̄1 ⊗ ↓¬τ̄2

Dereliction
!¬(τ̄1 ⊗ ↓¬τ̄2), τ̄1, ↓¬τ̄2  

↓¬R
!¬(τ̄1 ⊗ ↓¬τ̄2), ↓¬τ̄2  ↓¬τ̄1

Cut
Γ̄1, !¬(τ̄1 ⊗ ↓¬τ̄2), ↓¬τ̄2  

···
Γ̄2, τ̄2, ↓¬ω̄  

↓¬R
Γ̄2, ↓¬ω̄  ↓¬τ̄2

Cut
Γ̄1, Γ̄2, !¬(τ̄1 ⊗ ↓¬τ̄2), ↓¬ω̄  

Figure 8: Translating intuitionistic logic into CHL

with no conclusion formula. By contrast, the call-by-value
translation from classical logic maps each (proof of a) se-
quent

τ1, . . . , τn B ω1, . . . , ωm

in Gentzen’s LK to (a proof of) the CHL (or LLP) sequent

τ̄1, . . . , τ̄n, !¬ω̄1, . . . , !¬ω̄m  .

Again, these translations of intuitionistic and classical logic
differ in whether a return continuation is lowered, as in ↓¬ω,
or boxed, as in !¬ω.

Returning to shift and reset, the translations from LJ
and LK to CHL give us a logical interpretation of the dis-
tinction between delimited and undelimited continuations
that is more refined than the usual statement that an unde-
limited continuation is a function whose range is the bottom
type. In CHL, the type of an undelimited τ -continuation is

!¬τ̄ ∼= !¬(τ̄ ⊗ 1) ∼= !¬(τ̄ ⊗ !¬0) ∼= !¬(τ̄ ⊗ ↓¬0),

where 0 is the unit of additive conjunction ⊕. Meanwhile, a
delimited τ -continuation has the type

!¬(τ̄ ⊗ ↓¬ω̄),

where ω is the answer type. Comparing these two types, we
see that an undelimited continuation is a delimited continua-
tion with the answer type False, if we add a base type False to
the pure λ-calculus and translate it as False = 0. Conversely,
undelimited continuations are to negation as delimited con-
tinuations are to negation relative to an answer type. More
generally, intuitionistic implication is relativized negation,
parameterized by the answer type of a delimited continua-
tion or the return type of a pure function.

Even though the type 0 is multiple, it is not (isomorphic
to) the boxed negation of any type, so the base type False
is special in that it is not covered by the ordinary transla-
tion (6) of base types. This specialness is in contrast to the
CHL type !¬1, which is equivalent to !⊥ but not 0. A telling
difference between the two “false-looking” types 0 and !¬1

is that only the former validates Ex Falso Quodlibet. That
is, the sequent (in CHL with additives)

0, ↓¬φ 

is valid for all φ, whereas the sequent

!¬1, ↓¬φ 

is not. This difference is explored further in Ariola and
Herbelin’s work on Minimal Classical Logic [2].

5 Conclusion and related work

According to Section 3, the logical interpretation of shift and
reset is simply intuitionistic logic. As explained in Section 4,
the difference between intuitionistic and classical logic is
that the former uses continuations linearly. Making this
linearity explicit in a unifying intermediate language, such
as CHL here, allows a programming style that mixes pure
code with impure code, or code using shift and reset with
code using call/cc.

For example, Berdine et al. [4, 5] express many nontrivial
control features (not including full call/cc) under a typing
discipline of linearly used continuations. They can maintain
this discipline as long as the impurity of the control fea-
tures can be locally contained—that is, the control effects
masked so that the system appears to the environment to
be a pure function. This idea is also explored by Thielecke
[44], who manages the masking of control effects using an
effect system. Like us, Thielecke relates purity to answer
type polymorphism and linearly used continuations, though
there in the setting of undelimited continuations.

As an intermediate language, CHL tries to be just expres-
sive enough for call/cc, shift, reset, and pure computations.
This intention lies in scope between calculi that express clas-
sical computations only (such as Parigot’s λµ-calculus [40],
Laurent and Regnier’s LLP and CLC [37], and Wadler’s
dual calculus [46]) and calculi that provide the full power of
classical linear logic (such as Hasegawa [24]’s DCLL). CHL

7



inherits from LLP its distinction between call-by-value and
call-by-name computations; we hope this distinction will let
us study call-by-name analogues of shift and reset as control
operators.
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