Computational effects across generated
binders, part 2: enforcing lexical scope

Yukiyoshi Kameyama Oleg Kiselyov Chung-chieh Shan
University of Tsukuba Currently Cornell

5 September 2011

112

Goals

Effects (error, state, let-insertion, etc.) beyond generated binders.
Prevent generating

» syntax errors

> type errors

» unexpectedly unbound variables

» unexpectedly bound variables

2/12

Goals

Effects (error, state, let-insertion, etc.) beyond generated binders.
Prevent generating

» syntax errors

> type errors

» unexpectedly unbound variables
» unexpectedly bound variables

R. Clint Whaley, ATLAS documentation:

You may have a naturally strong and negative reaction to
these crude mechanisms, tempting you to send
messages decrying my lack of humanity, decency, and
legal parentage... The proper bitch format involves
First thanking me for spending time in hell
getting things to their present crude state
Then, supplying your constructive ideas

2/12

Higher-order abstract syntax

» lam

(\x => x) ~
"Xl“ (Var "Xi")

(\x -> let body = x in lam (\x -> body)) ~»

"x2" (let body = Var "x2" in lam (\x -> body)) ~~
"x2" (lam (\x -> Var "x2")) ~~

Nxon (La.m "yg3n (Var ||X2||))

3/12

Higher-order abstract syntax

» lam

(\x => x) ~
"Xl“ (Var “Xl")

(\x -> let body = x in lam (\x -> body)) ~~

"x2" (let body = Var "x2" in lam (\x -> body)) ~~
"x2" (lam (\x -> Var "x2")) ~~

Nxon (Lam "yg3n (Var ||X2||))

Effects (error, state, let-insertion, etc.) beyond binders are hard.

» lam

» lam

(\x -> throw "hello") ~~ ??7?

(\x -> throw x) ~» 7?7

It seems rather difficult, if not impossible, to manipulate
open code in a satisfactory manner when higher-order
code representation is chosen. (Chen & Xi, JFP 2005)

We need name generation, but dissociated from binding.

3/12

Gensym

> let x = gensym() in Lam x (Var x) ~»

Lam "x1" (Var "x1")

> let x = gensym() in Lam x
(let body = Var x in

let x = gensym() in Lam x body) ~-

Lam "x2" (Lam "x3" (Var "x2"))

> let x = gensym() in cogen (fun body -> Lam x body) ~~

4/12

Gensym

> let x = gensym() in Lam x (Var x) ~»
Lam "x1" (Var "x1")

> let x = gensym() in Lam x
(let body = Var x in
let x = gensym() in Lam x body) ~~
Lam "x2" (Lam "x3" (Var "x2"))

> let x = gensym() in cogen (fun body -> Lam x body) ~~

Ruling out scope extrusion is hard.
» let x = gensym() in Lam x (throw "hello") ~-

> let x = gensym() in Lam x (throw (Var x)) ~»

4/12

So, de Bruijn

» Lam

» Lam
Lam

» let

Zero

(let body = Zero in Lam (Succ body)) ~
(Lam (Succ Zero))

X = Zero in cogen (fun body -> Lam body) ~-

5/12

So, de Bruijn
» Lam Zero

» Lam (let body = Zero in Lam (Succ body)) ~»
Lam (Lam (Succ Zero))

> let x = Zero in cogen (fun body -> Lam body) ~~

Mourn the loss of HOAS beauty.

Meta-types should reflect object type judgments
(Nanevski, Pfenning & Pientka, TOCL 2008).

Zero : (', Int - Int)
Succ Zero: (I', Int,Bool - Int)
Lam (Succ Zero) : (', Int - Bool — Int)

Lam (Lam (Succ Zero)) : (I'k Int — Bool — Int)

5/12

Type safety

Open code and closed code have distinct types:

catch (throw (Lam Zero)) : (F Int — Int)

run (catch (throw (Lam Zero))) : Int — Int

catch (Lam (throw "hello")) : String
catch (Lam (throw Zero)) : (I',Int I Int)

catch (Lam (throw Zero)) : (Int I Int)
Lam (catch (Lam (throw Zero))) : (- Int — Int)

run (Lam (catch (Lam (throw Zero)))) : Int — Int
(Kim, Yi & Calcagno, POPL 2006, §6.4)

Where did lexical scope go?
6/12

Unexpectedly bound variables
uneasy f = Lam (Lam (f Zero)) (Chen & Xi, JFP 2005)
» uneasy id ~» Lam (Lam Zero)
» uneasy Succ ~» Lam (Lam (Succ Zero))

» uneasy (fun body -> Lam (Succ body)) ~
Lam (Lam (Lam (Succ Zero)))

In light of these examples, we claim that, perhaps
contrary to popular belief, well-scopedness of de Bruijn
indices is not good enough: it does not guarantee that
indices are correctly adjusted where needed.

(Pouillard & Pottier, ICFP 2010)

712

Unexpectedly bound variables
uneasy f = Lam (Lam (f Zero)) (Chen & Xi, JFP 2005)
» uneasy id ~» Lam (Lam Zero)
» uneasy Succ ~» Lam (Lam (Succ Zero))

» uneasy (fun body -> Lam (Succ body)) ~
Lam (Lam (Lam (Succ Zero)))

In light of these examples, we claim that, perhaps
contrary to popular belief, well-scopedness of de Bruijn
indices is not good enough: it does not guarantee that
indices are correctly adjusted where needed.

(Pouillard & Pottier, ICFP 2010)

712

e (McBride)

Safety in numbers

> let x = gensym() in Lam x (Zero x) ~~
Lam 1 (Zero 1)

> let x = gensym() in Lam x
(let body = Zero x in
let x = gensym() in Lam x (Succ body)) ~-
Lam 2 (Lam 3 (Succ (Zero 2)))

> let x = gensym() in cogen (fun body -> Lam x body) ~~

9/12

Safety in numbers

> let x = gensym() in Lam x (Zero x) ~~
Lam 1 (Zero 1)

> let x = gensym() in Lam x
(let body = Zero x in
let x = gensym() in Lam x (Succ body)) ~-
Lam 2 (Lam 3 (Succ (Zero 2)))

> let x = gensym() in cogen (fun body -> Lam x body) ~~

Lexical scope = labels all match.

» let x = gensym() in Lam x
(catch (let y = gensym() in Lam y
(throw (Zero x)))) ~
Lam 4 (Zero 4)

9/12

Safety in numbers

> let x = gensym() in Lam x (Zero x) ~~
Lam 1 (Zero 1)

> let x = gensym() in Lam x
(let body = Zero x in
let x = gensym() in Lam x (Succ body)) ~-
Lam 2 (Lam 3 (Succ (Zero 2)))

> let x = gensym() in cogen (fun body -> Lam x body) ~~

Lexical scope = labels all match.

> let x = gensym() in Lam x
(catch (let y = gensym() in Lam y
(throw (Zero y)))) ~
Lam 4 (Zero 5)

9/12

Meta-scope expresses binding expectations

uneasy f = let x = gensym() in Lam x
(let y = gensym() in Lam y
(f (Zero y)))

» uneasy id ~» Lam 6 (Lam 7 (Zero 7))
» uneasy Succ ~» Lam 6 (Lam 7 (Succ (Zero 7)))

» uneasy (fun body ->
let z = gensym() in Lam z (Succ body)) ~>
Lam 6 (Lam 7 (Lam 8 (Succ (Zero 7))))

Checking easily made compositional (incremental).

10/12

Static capabilities

lam :: Functor m =>
(Vs. ((H Code s a, I') -> Code)
> m ((H Code s o, I') —> Code f3))
-> m (I' -> Code (a->f))

Here m is the effect
s s the static proxy for the gensym, attached using H
«a is the domain of the generated function
B is the range of the generated function
I' s the type environment of the generated function

Claim: if the generator is well-typed, then the generated code is
well-labeled.

For loop tiling, m is the continuation monad for loop-insertion.

11/12

Summary
Goal:
Effects (error, state, let-insertion, etc.) beyond generated binders.
Prevent generating

> syntax errors

» type errors

» unexpectedly unbound variables
» unexpectedly bound variables

Conclusions:

Meta-types should reflect object type judgments,
but that’s not enough.

Meta-bindings should reflect object bindings.
Static capabilities for early assurance.

HOAS clarity + de Bruijn flexibility.
How to improve notation? What is type-level gensym?
12/12

