
1/12

Computational effects across generated
binders, part 2: enforcing lexical scope

Yukiyoshi Kameyama Oleg Kiselyov Chung-chieh Shan
University of Tsukuba Currently Cornell

5 September 2011

2/12

Goals
Effects (error, state, let-insertion, etc.) beyond generated binders.
Prevent generating
I syntax errors
I type errors
I unexpectedly unbound variables
I unexpectedly bound variables

R. Clint Whaley, ATLAS documentation:

You may have a naturally strong and negative reaction to
these crude mechanisms, tempting you to send
messages decrying my lack of humanity, decency, and
legal parentage. . . The proper bitch format involves

First thanking me for spending time in hell
getting things to their present crude state

Then, supplying your constructive ideas

2/12

Goals
Effects (error, state, let-insertion, etc.) beyond generated binders.
Prevent generating
I syntax errors
I type errors
I unexpectedly unbound variables
I unexpectedly bound variables

R. Clint Whaley, ATLAS documentation:

You may have a naturally strong and negative reaction to
these crude mechanisms, tempting you to send
messages decrying my lack of humanity, decency, and
legal parentage. . . The proper bitch format involves

First thanking me for spending time in hell
getting things to their present crude state

Then, supplying your constructive ideas

3/12

Higher-order abstract syntax
I lam (\x -> x)

Lam "x1" (Var "x1")

I lam (\x -> let body = x in lam (\x -> body))
Lam "x2" (let body = Var "x2" in lam (\x -> body))
Lam "x2" (lam (\x -> Var "x2"))
Lam "x2" (Lam "x3" (Var "x2"))

Effects (error, state, let-insertion, etc.) beyond binders are hard.

I lam (\x -> throw "hello") ???

I lam (\x -> throw x) ???

It seems rather difficult, if not impossible, to manipulate
open code in a satisfactory manner when higher-order
code representation is chosen. (Chen & Xi, JFP 2005)

We need name generation, but dissociated from binding.

3/12

Higher-order abstract syntax
I lam (\x -> x)

Lam "x1" (Var "x1")

I lam (\x -> let body = x in lam (\x -> body))
Lam "x2" (let body = Var "x2" in lam (\x -> body))
Lam "x2" (lam (\x -> Var "x2"))
Lam "x2" (Lam "x3" (Var "x2"))

Effects (error, state, let-insertion, etc.) beyond binders are hard.

I lam (\x -> throw "hello") ???

I lam (\x -> throw x) ???

It seems rather difficult, if not impossible, to manipulate
open code in a satisfactory manner when higher-order
code representation is chosen. (Chen & Xi, JFP 2005)

We need name generation, but dissociated from binding.

4/12

Gensym
I let x = gensym() in Lam x (Var x)

Lam "x1" (Var "x1")

I let x = gensym() in Lam x

(let body = Var x in

let x = gensym() in Lam x body)
Lam "x2" (Lam "x3" (Var "x2"))

I let x = gensym() in cogen (fun body -> Lam x body)

Ruling out scope extrusion is hard.

I let x = gensym() in Lam x (throw "hello")

I let x = gensym() in Lam x (throw (Var x))

4/12

Gensym
I let x = gensym() in Lam x (Var x)

Lam "x1" (Var "x1")

I let x = gensym() in Lam x

(let body = Var x in

let x = gensym() in Lam x body)
Lam "x2" (Lam "x3" (Var "x2"))

I let x = gensym() in cogen (fun body -> Lam x body)

Ruling out scope extrusion is hard.

I let x = gensym() in Lam x (throw "hello")

I let x = gensym() in Lam x (throw (Var x))

5/12

So, de Bruijn
I Lam Zero

I Lam (let body = Zero in Lam (Succ body))
Lam (Lam (Succ Zero))

I let x = Zero in cogen (fun body -> Lam body)

Mourn the loss of HOAS beauty.

Meta-types should reflect object type judgments
(Nanevski, Pfenning & Pientka, TOCL 2008).

Zero : (Γ, Int ` Int)

Succ Zero : (Γ, Int, Bool ` Int)

Lam (Succ Zero) : (Γ, Int ` Bool → Int)

Lam (Lam (Succ Zero)) : (Γ ` Int → Bool → Int)

5/12

So, de Bruijn
I Lam Zero

I Lam (let body = Zero in Lam (Succ body))
Lam (Lam (Succ Zero))

I let x = Zero in cogen (fun body -> Lam body)

Mourn the loss of HOAS beauty.

Meta-types should reflect object type judgments
(Nanevski, Pfenning & Pientka, TOCL 2008).

Zero : (Γ, Int ` Int)

Succ Zero : (Γ, Int, Bool ` Int)

Lam (Succ Zero) : (Γ, Int ` Bool → Int)

Lam (Lam (Succ Zero)) : (Γ ` Int → Bool → Int)

6/12

Type safety

Open code and closed code have distinct types:

catch (throw (Lam Zero)) : (` Int → Int)

run (catch (throw (Lam Zero))) : Int → Int

catch (Lam (throw "hello")) : String

catch (Lam (throw Zero)) : (Γ, Int ` Int)

catch (Lam (throw Zero)) : (Int ` Int)

Lam (catch (Lam (throw Zero))) : (` Int → Int)

run (Lam (catch (Lam (throw Zero)))) : Int → Int
(Kim, Yi & Calcagno, POPL 2006, §6.4)

Where did lexical scope go?

7/12

Unexpectedly bound variables
uneasy f = Lam (Lam (f Zero)) (Chen & Xi, JFP 2005)

I uneasy id Lam (Lam Zero)

I uneasy Succ Lam (Lam (Succ Zero))

I uneasy (fun body -> Lam (Succ body))
Lam (Lam (Lam (Succ Zero)))

In light of these examples, we claim that, perhaps
contrary to popular belief, well-scopedness of de Bruijn
indices is not good enough: it does not guarantee that
indices are correctly adjusted where needed.

(Pouillard & Pottier, ICFP 2010)

7/12

Unexpectedly bound variables
uneasy f = Lam (Lam (f Zero)) (Chen & Xi, JFP 2005)

I uneasy id Lam (Lam Zero)

I uneasy Succ Lam (Lam (Succ Zero))

I uneasy (fun body -> Lam (Succ body))
Lam (Lam (Lam (Succ Zero)))

In light of these examples, we claim that, perhaps
contrary to popular belief, well-scopedness of de Bruijn
indices is not good enough: it does not guarantee that
indices are correctly adjusted where needed.

(Pouillard & Pottier, ICFP 2010)

8/12(McBride)

9/12

Safety in numbers
I let x = gensym() in Lam x (Zero x)

Lam 1 (Zero 1)

I let x = gensym() in Lam x

(let body = Zero x in

let x = gensym() in Lam x (Succ body))
Lam 2 (Lam 3 (Succ (Zero 2)))

I let x = gensym() in cogen (fun body -> Lam x body)

Lexical scope = labels all match.

I let x = gensym() in Lam x

(catch (let y = gensym() in Lam y

(throw (Zero x))))
Lam 4 (Zero 4)

9/12

Safety in numbers
I let x = gensym() in Lam x (Zero x)

Lam 1 (Zero 1)

I let x = gensym() in Lam x

(let body = Zero x in

let x = gensym() in Lam x (Succ body))
Lam 2 (Lam 3 (Succ (Zero 2)))

I let x = gensym() in cogen (fun body -> Lam x body)

Lexical scope = labels all match.

I let x = gensym() in Lam x

(catch (let y = gensym() in Lam y

(throw (Zero x))))
Lam 4 (Zero 4)

9/12

Safety in numbers
I let x = gensym() in Lam x (Zero x)

Lam 1 (Zero 1)

I let x = gensym() in Lam x

(let body = Zero x in

let x = gensym() in Lam x (Succ body))
Lam 2 (Lam 3 (Succ (Zero 2)))

I let x = gensym() in cogen (fun body -> Lam x body)

Lexical scope = labels all match.

I let x = gensym() in Lam x

(catch (let y = gensym() in Lam y

(throw (Zero y))))
Lam 4 (Zero 5)

10/12

Meta-scope expresses binding expectations
uneasy f = let x = gensym() in Lam x

(let y = gensym() in Lam y

(f (Zero y)))

I uneasy id Lam 6 (Lam 7 (Zero 7))

I uneasy Succ Lam 6 (Lam 7 (Succ (Zero 7)))

I uneasy (fun body ->

let z = gensym() in Lam z (Succ body))
Lam 6 (Lam 7 (Lam 8 (Succ (Zero 7))))

Checking easily made compositional (incremental).

11/12

Static capabilities

lam :: Functor m =>

(∀s. ((H Code s α, Γ) -> Code α)
-> m ((H Code s α, Γ) -> Code β))

-> m (Γ -> Code (α->β))

Here m is the effect
s is the static proxy for the gensym, attached using H

α is the domain of the generated function
β is the range of the generated function
Γ is the type environment of the generated function

Claim: if the generator is well-typed, then the generated code is
well-labeled.

For loop tiling, m is the continuation monad for loop-insertion.

12/12

Summary
Goal:

Effects (error, state, let-insertion, etc.) beyond generated binders.
Prevent generating
I syntax errors
I type errors
I unexpectedly unbound variables
I unexpectedly bound variables

Conclusions:

Meta-types should reflect object type judgments,
but that’s not enough.

Meta-bindings should reflect object bindings.
Static capabilities for early assurance.

HOAS clarity + de Bruijn flexibility.
How to improve notation? What is type-level gensym?

