
1/17

How to reify fresh type variables?

Oleg Kiselyov Chung-chieh Shan

15 September 2011

2/17

Waiter, there’s a term in my type!

Rank-2 polymorphism (ab)used, for safety:
I mutable state runST :: (8s. ST s a) -> a
I array index bounds
I environment classifiers
I staged lexical scope

term gensym ! type gensym

I resource control

term gensym ! type gensym

I automatic differentiation

[� : ?]
�
�
�

E : �
8I

��:E : 8�: �

� is fresh, but the program doesn’t know it.
Type-level gensyms for expressivity?

2/17

Waiter, there’s a term in my type!

Rank-2 polymorphism (ab)used, for safety:
I mutable state runST :: (8s. ST s a) -> a
I array index bounds
I environment classifiers

I staged lexical scope term gensym ! type gensym
I resource control term gensym ! type gensym

I automatic differentiation

8, see you later.

3/17

Waiter, there’s a term in my type!

Rank-2 polymorphism (ab)used, for safety:
I mutable state runST :: (8s. ST s a) -> a
I array index bounds
I environment classifiers

I staged lexical scope term gensym ! type gensym
I resource control term gensym ! type gensym

I automatic differentiation

8, see you later.

4/17

Effects beyond generated binders
Don’t want
I syntax errors
I type errors
I unexpectedly unbound variables
I unexpectedly bound variables

R. Clint Whaley, ATLAS documentation:

You may have a naturally strong and negative reaction to
these crude mechanisms, tempting you to send
messages decrying my lack of humanity, decency, and
legal parentage. . . The proper bitch format involves

First thanking me for spending time in hell
getting things to their present crude state

Then, supplying your constructive ideas

4/17

Effects beyond generated binders
Don’t want
I syntax errors
I type errors
I unexpectedly unbound variables
I unexpectedly bound variables

R. Clint Whaley, ATLAS documentation:

You may have a naturally strong and negative reaction to
these crude mechanisms, tempting you to send
messages decrying my lack of humanity, decency, and
legal parentage. . . The proper bitch format involves

First thanking me for spending time in hell
getting things to their present crude state

Then, supplying your constructive ideas

5/17

Higher-order abstract syntax
I lam (\x -> x)

Lam "x1" (Var "x1")

I lam (\x -> let body = x in lam (\x -> body))
Lam "x2" (let body = Var "x2" in lam (\x -> body))
Lam "x2" (lam (\x -> Var "x2"))
Lam "x2" (Lam "x3" (Var "x2"))

Effects (error, state, let-insertion, etc.) beyond binders are hard.

I lam (\x -> throw "hello") ???

I lam (\x -> throw x) ???

It seems rather difficult, if not impossible, to manipulate
open code in a satisfactory manner when higher-order
code representation is chosen. (Chen & Xi, JFP 2005)

We need name generation, but dissociated from binding.

5/17

Higher-order abstract syntax
I lam (\x -> x)

Lam "x1" (Var "x1")

I lam (\x -> let body = x in lam (\x -> body))
Lam "x2" (let body = Var "x2" in lam (\x -> body))
Lam "x2" (lam (\x -> Var "x2"))
Lam "x2" (Lam "x3" (Var "x2"))

Effects (error, state, let-insertion, etc.) beyond binders are hard.

I lam (\x -> throw "hello") ???

I lam (\x -> throw x) ???

It seems rather difficult, if not impossible, to manipulate
open code in a satisfactory manner when higher-order
code representation is chosen. (Chen & Xi, JFP 2005)

We need name generation, but dissociated from binding.

6/17

Gensym
I let x = gensym() in Lam x (Var x)

Lam "x1" (Var "x1")

I let x = gensym() in Lam x

(let body = Var x in

let x = gensym() in Lam x body)
Lam "x2" (Lam "x3" (Var "x2"))

I let x = gensym() in cogen (fun body -> Lam x body)

Ruling out scope extrusion is hard.

I let x = gensym() in Lam x (throw "hello")

I let x = gensym() in Lam x (throw (Var x))

6/17

Gensym
I let x = gensym() in Lam x (Var x)

Lam "x1" (Var "x1")

I let x = gensym() in Lam x

(let body = Var x in

let x = gensym() in Lam x body)
Lam "x2" (Lam "x3" (Var "x2"))

I let x = gensym() in cogen (fun body -> Lam x body)

Ruling out scope extrusion is hard.

I let x = gensym() in Lam x (throw "hello")

I let x = gensym() in Lam x (throw (Var x))

7/17

So, de Bruijn
I Lam Zero

I Lam (let body = Zero in Lam (Succ body))
Lam (Lam (Succ Zero))

I let x = Zero in cogen (fun body -> Lam body)

Mourn the loss of HOAS beauty.

Meta-types should reflect object type judgments
(Nanevski, Pfenning & Pientka, TOCL 2008).

Zero : (�; Int ` Int)

Succ Zero : (�; Int; Bool ` Int)

Lam (Succ Zero) : (�; Int ` Bool! Int)

Lam (Lam (Succ Zero)) : (� ` Int! Bool! Int)

7/17

So, de Bruijn
I Lam Zero

I Lam (let body = Zero in Lam (Succ body))
Lam (Lam (Succ Zero))

I let x = Zero in cogen (fun body -> Lam body)

Mourn the loss of HOAS beauty.

Meta-types should reflect object type judgments
(Nanevski, Pfenning & Pientka, TOCL 2008).

Zero : (�; Int ` Int)

Succ Zero : (�; Int; Bool ` Int)

Lam (Succ Zero) : (�; Int ` Bool! Int)

Lam (Lam (Succ Zero)) : (� ` Int! Bool! Int)

8/17

Type safety

Open code and closed code have distinct types:

catch (throw (Lam Zero)) : (` Int! Int)

run (catch (throw (Lam Zero))) : Int! Int

catch (Lam (throw "hello")) : String

catch (Lam (throw Zero)) : (�; Int ` Int)

catch (Lam (throw Zero)) : (Int ` Int)

Lam (catch (Lam (throw Zero))) : (` Int! Int)

run (Lam (catch (Lam (throw Zero)))) : Int! Int
(Kim, Yi & Calcagno, POPL 2006, §6.4)

Where did lexical scope go?

9/17

Unexpectedly bound variables
uneasy f = Lam (Lam (f Zero)) (Chen & Xi, JFP 2005)

I uneasy id Lam (Lam Zero)

I uneasy Succ Lam (Lam (Succ Zero))

I uneasy (fun body -> Lam (Succ body))
Lam (Lam (Lam (Succ Zero)))

In light of these examples, we claim that, perhaps
contrary to popular belief, well-scopedness of de Bruijn
indices is not good enough: it does not guarantee that
indices are correctly adjusted where needed.

(Pouillard & Pottier, ICFP 2010)

9/17

Unexpectedly bound variables
uneasy f = Lam (Lam (f Zero)) (Chen & Xi, JFP 2005)

I uneasy id Lam (Lam Zero)

I uneasy Succ Lam (Lam (Succ Zero))

I uneasy (fun body -> Lam (Succ body))
Lam (Lam (Lam (Succ Zero)))

In light of these examples, we claim that, perhaps
contrary to popular belief, well-scopedness of de Bruijn
indices is not good enough: it does not guarantee that
indices are correctly adjusted where needed.

(Pouillard & Pottier, ICFP 2010)

10/17(McBride)

11/17

Safety in numbers
I let x = gensym() in Lam x (Zero x)

Lam 1 (Zero 1)

I let x = gensym() in Lam x

(let body = Zero x in

let x = gensym() in Lam x (Succ body))
Lam 2 (Lam 3 (Succ (Zero 2)))

I let x = gensym() in cogen (fun body -> Lam x body)

Lexical scope = labels all match.

I let x = gensym() in Lam x

(catch (let y = gensym() in Lam y

(throw (Zero x))))
Lam 4 (Zero 4)

11/17

Safety in numbers
I let x = gensym() in Lam x (Zero x)

Lam 1 (Zero 1)

I let x = gensym() in Lam x

(let body = Zero x in

let x = gensym() in Lam x (Succ body))
Lam 2 (Lam 3 (Succ (Zero 2)))

I let x = gensym() in cogen (fun body -> Lam x body)

Lexical scope = labels all match.

I let x = gensym() in Lam x

(catch (let y = gensym() in Lam y

(throw (Zero x))))
Lam 4 (Zero 4)

11/17

Safety in numbers
I let x = gensym() in Lam x (Zero x)

Lam 1 (Zero 1)

I let x = gensym() in Lam x

(let body = Zero x in

let x = gensym() in Lam x (Succ body))
Lam 2 (Lam 3 (Succ (Zero 2)))

I let x = gensym() in cogen (fun body -> Lam x body)

Lexical scope = labels all match.

I let x = gensym() in Lam x

(catch (let y = gensym() in Lam y

(throw (Zero y))))
Lam 4 (Zero 5)

12/17

Meta-scope expresses binding expectations
uneasy f = let x = gensym() in Lam x

(let y = gensym() in Lam y

(f (Zero y)))

I uneasy id Lam 6 (Lam 7 (Zero 7))

I uneasy Succ Lam 6 (Lam 7 (Succ (Zero 7)))

I uneasy (fun body ->

let z = gensym() in Lam z (Succ body))
Lam 6 (Lam 7 (Lam 8 (Succ (Zero 7))))

Checking easily made compositional (incremental).

13/17

Static capabilities

lam :: Functor m =>

(8s. ((H Code s �, �) -> Code �)

-> m ((H Code s �, �) -> Code �))

-> m (� -> Code (�->�))

Here m is the effect
s is the static proxy for the gensym, attached using H

� is the domain of the generated function
� is the range of the generated function
� is the type environment of the generated function

Claim: if the generator is well-typed, then the generated code is
well-labeled.

I How to reify type-level gensym?
I How to unify compile-time and run-time gensym?
I How to automate weakening?

13/17

Static capabilities

lam :: Functor m =>

(8s. ((H Code s �, �) -> Code �)

-> m ((H Code s �, �) -> Code �))

-> m (� -> Code (�->�))

Here m is the effect
s is the static proxy for the gensym, attached using H

� is the domain of the generated function
� is the range of the generated function
� is the type environment of the generated function

Claim: if the generator is well-typed, then the generated code is
well-labeled.

I How to reify type-level gensym?
I How to unify compile-time and run-time gensym?
I How to automate weakening?

14/17

Waiter, there’s a term in my type!

Rank-2 polymorphism (ab)used, for safety:
I mutable state runST :: (8s. ST s a) -> a
I array index bounds
I environment classifiers

I staged lexical scope term gensym ! type gensym
I resource control term gensym ! type gensym

I automatic differentiation

8, see you later.

15/17

Lightweight monadic regions (Haskell 2008)

Goal: Resource management

I No access after close (down with run-time checking)
I Timely disposal (especially for scarce resources)
I Error handling

Accessible
Open Close

Access

16/17

Type-state

test h1 = do h2 <- hOpen "config" ReadMode

fname <- hGetLine h2

h3 <- hOpen fname WriteMode

hPutStrLn h3 fname

till (liftM2 (||) (hIsEOF h2) (hIsEOF h1))

(hGetLine h2 >>= hPutStrLn h3 >>

hGetLine h1 >>= hPutStrLn h3)

hClose h2

return h3

do h3 <- runSIO (... test ...)

runSIO (... hPutStrLn h3 ...)

16/17

Type-state

test :: Handle -> IO Handle

test h1 = do h2 <- hOpen "config" ReadMode

fname <- hGetLine h2

h3 <- hOpen fname WriteMode

hPutStrLn h3 fname

till (liftM2 (||) (hIsEOF h2) (hIsEOF h1))

(hGetLine h2 >>= hPutStrLn h3 >>

hGetLine h1 >>= hPutStrLn h3)

hClose h2

return h3

do h3 <- runSIO (... test ...)

runSIO (... hPutStrLn h3 ...)

16/17

Type-state
class Monadish m where

return :: a -> m p p a

(>>=) :: m p q a -> (a -> m q r b) -> m p r b

test :: SHandle 0 ->

SIO (1,[0]) (3,[2,0]) (SHandle 2)

test h1 = do h2 <- hOpen "config" ReadMode

fname <- hGetLine h2

h3 <- hOpen fname WriteMode

hPutStrLn h3 fname

till (liftM2 (||) (hIsEOF h2) (hIsEOF h1))

(hGetLine h2 >>= hPutStrLn h3 >>

hGetLine h1 >>= hPutStrLn h3)

hClose h2

return h3

do h3 <- runSIO (... test ...)

runSIO (... hPutStrLn h3 ...)

16/17

Type-state
class Monadish m where

return :: a -> m p p a

(>>=) :: m p q a -> (a -> m q r b) -> m p r b

test :: SHandle 0 ->

SIO (1,[0]) (3,[2,0]) (SHandle 2)

test h1 = do h2 <- hOpen "config" ReadMode

fname <- hGetLine h2

h3 <- hOpen fname WriteMode

hPutStrLn h3 fname

till (liftM2 (||) (hIsEOF h2) (hIsEOF h1))

(hGetLine h2 >>= hPutStrLn h3 >>

hGetLine h1 >>= hPutStrLn h3)

hClose h2

return h3

do h3 <- runSIO (... test ...)

runSIO (... hPutStrLn h3 ...)

16/17

Type-state
class Monadish m where

return :: a -> m p p a

(>>=) :: m p q a -> (a -> m q r b) -> m p r b

test :: SHandle s 0 ->

SIO s (1,[0]) (3,[2,0]) (SHandle s 2)

test h1 = do h2 <- hOpen "config" ReadMode

fname <- hGetLine h2

h3 <- hOpen fname WriteMode

hPutStrLn h3 fname

till (liftM2 (||) (hIsEOF h2) (hIsEOF h1))

(hGetLine h2 >>= hPutStrLn h3 >>

hGetLine h1 >>= hPutStrLn h3)

hClose h2

return h3

do h3 <- runSIO (... test ...)

runSIO (... hPutStrLn h3 ...)

17/17

Waiter, there’s a term in my type!

Rank-2 polymorphism (ab)used, for safety:
I mutable state runST :: (8s. ST s a) -> a
I array index bounds
I environment classifiers
I staged lexical scope

term gensym ! type gensym

I resource control

term gensym ! type gensym

I automatic differentiation

Questions:
I How to reify type-level gensym?
I How to unify compile-time and run-time gensym?
I How to compare for equality?

