The MetaOCaml files

Status report and research proposal

Oleg Kiselyov
FNMOC
oleg@pobox.com

Abstract

Custom code generation is the leading approach to reconciling gen-
erality with performance. MetaOCaml, a dialect of OCaml, is the
best-developed way today to write custom code generators and as-
sure them type-safe across multiple stages of computation. Never-
theless, the continuing interest from the community has yet to result
in a mature implementation of MetaOCaml that integrates cleanly
with OCaml’s type checker and run-time system. Even in theory,
it is unclear how staging interacts with effects, polymorphism, and
user-defined data types.

We report on the status of the ongoing MetaOCaml project,
focusing on the gap between theory and practice and the difficulties
that arise in a full-featured staged language rather than an idealized
calculus. We highlight foundational problems in type soundness
and cross-stage persistence that demand investigation. We also
suggest a lightweight implementation of a two-stage dialect of
OCaml, as syntactic sugar.

1. Introduction

From the Berkeley Packet Filter (Begel et al. 1999) to the Fastest
Fourier Transform in the West (Frigo and Johnson 2005), the world
is full of metaprogramming applications. Most metaprogrammers
use printf to generate program texts, when they are not abusing
the C preprocessor or C++ templates. The ML community knows
better (Kamin 1996; Sheard 2001).

Static type-checking is even more helpful to metaprogrammers
than to ordinary programmers, because the typical metaprogram
is both very abstract and very computation-intensive. But when it
comes to assuring that a well-typed code generator not only never
goes wrong but also generates well-formed programs that never go
wrong, pretty much the only practical game in town today is Meta-
OCaml, a dialect of OCaml. Although it receives no French govern-
ment funding and is maintained only by volunteers, MetaOCaml is
now widely used to generate ML and C code in a broad range of ap-
plications (Carette and Kiselyov 2008; Lengauer and Taha 2006).
Carette’s petition drive! witnesses continuing interest.

MetaOCaml is not just an implementation of a small and
metatheoretically convenient multistage calculus such as A% (Taha
and Nielsen 2003), ll"et (Calcagno et al. 2004), or A-U (Calcagno
et al. 2003). Rather, MetaOCaml adds staging constructs to full
OCaml, so both code generators and generated code can use user-
defined data types, records, mutable state, exceptions, polymorphic
variants, and so on. As one would expect, MetaOCaml is imple-
mented by extending the OCaml implementation.

Retrofitting a production compiler with staging, without chang-
ing the underlying bytecode machine or hardware instruction set,
poses both undocumented implementation challenges and unre-

"http://caml.inria.fr/mantis/view.php?id=4608

Chung-chieh Shan

Rutgers University
ccshanQcs.rutgers.edu

solved theoretical issues. This talk attempts to explain the major
pitfalls and their current, imperfect solutions, then invites contribu-
tions from the community in the form of code as well as theorems.

2. Generated code is type-checked again

The metatheory of multistage programming assures us that a well-
typed code generator never generates code that is ill-formed (for
example, containing an unbound variable) or goes wrong. In ad-
dition to making it easier to develop code generators that work,
this theorem might make one think that a MetaOCaml program that
generates some code then runs it would not need to type-check the
generated code at all. That is unfortunately not the case.

The OCaml compiler uses a typed intermediate representation,
so any generated code must be annotated with types in order to
be run. In principle, these type annotations can be generated along
with the code, but the size and impurity of OCaml’s type checker
stymies this approach. Just to take one example, OCaml annotates
each AST node by its type environment, so the code generator
would have to apply weakening (along the lines of Kameyama et al.
(2008)) whenever splicing code under a binder.

Instead of generating typed code directly, MetaOCaml pro-
grams as currently compiled generate untyped code and wait until
it is run to invoke the type checker again. This strategy fortuitously
avoids Taha and Nielsen’s (2003) complicated demotion opera-
tion and prevents some type unsoundness due to effects (described
in §4). However, the MetaOCaml program must keep all the in-
formation that the type checker needs to understand the generated
code. Serializing this information is challenging—for example,
OCaml 3.11 introduced closures in the type checker’s environment.

3. Environment persistence needs to be modeled

Algebraic data types illustrate the problem of serializing type infor-
mation and the gap between theory and practice in typed multistage
programming. Take for example the following interaction, in which
the identifier Foo is redefined. (MetaOCaml crash course: .< >. is
quasiquote; .~ is unquote; . ! is eval.)

type foo = Foo
let x = .<Foo>.
type bar = Foo | Bar
let y = .<Foo>.
let z = .<(.7x, .7y)>.;;
val z : (’a, foo * bar) code = .<((Foo), (Foo))>.

OCaml uses timestamps to distinguish internally between the two
definitions of Foo. For z to be type-checked correctly when it is
eventually run, its two occurrences of Foo are annotated with dif-
ferent type environments—one without bar and one with. Essen-
tially, each part of a code value is a closure over the type environ-
ment where it was created. This way, even if z is run in yet another

type environment, where Foo, foo, and bar are defined differently
or not at all, the type information from when z was created would
persist and be available for run-time code generation.

It may be simpler to implement MetaOCaml by renaming shad-
owed identifiers rather than serializing type environments. Using
this alternative implementation strategy, the code above would pro-
duce the value .<Fool, Foo2>., which can be type-checked at
run time in the renamed type environment type foo = Fool;
type bar = Foo2 | Bar. We can store this single type environ-
ment in a . cmo file, without worrying about timestamps.

Neither implementation strategy just described is guided by
theory, because no multistage calculus today models environments
(that is, explicit substitutions). We need such a calculus.

4. Imperative polymorphism redux

The type soundness of basic, pure multistage programming is well
understood, even in the presence of polymorphism. In fact, para-
metric polymorphism—a la the ST monad (Launchbury and Pey-
ton Jones 1994)—is used to prevent running generated code with
unbound variables (Calcagno et al. 2004; Taha and Nielsen 2003).
However, the presence of side effects brings MetaOCaml into un-
charted territory.

It is not just a formality for a code generator written in Meta-
OCaml to type-check the code it just generated before running it.
It is useful for the generator to involve code values in effects such
as state, exceptions, or control (Bondorf 1992; Danvy and Filinski
1990; Dussart and Thiemann 1996; Kameyama et al. 2009; Lawall
and Danvy 1994; Sumii and Kobayashi 2001), but scope extrusion
may then occur:

let code =
let x = ref .<1>. in
let _ = .<fun v -> ."(x := .<v>.; .<()>.)>. in
%55

val code : (’a, int) code = .<v_1>.

.!code;;
Unbound value v_1
Ezception: Trx.TypeCheckingError.

More recently, we discovered that imperative polymorphism in
MetaOCaml makes it possible to generate code that passes the type
checker yet dumps core:

.!.<let foo x =

let t = ."(let r = ref None in .<r>.) in
match !t with | None -> t := Some x; x
| Some y -> t := Some x; y

in (foo "xxx", foo true, foo [1,2])>.;;
Segmentation fault (core dumped)

‘We hope (but have yet to prove) that this problem can be prevented
by generalizing generated code only when it is pure not only at the
future stage but also at the present stage. In general, the interaction
between polymorphism and effects in multistage programming is a
wide-open problem.

5. Multistage programming as syntactic sugar?

To sidestep OCaml’s complex internals, we are tempted to imple-
ment multistage programming by turning quotations into AST con-
structor calls using camlp4/5. This way works for generating C
code, but generating polymorphic let requires a typed represen-
tation of polymorphism. That is tricky, especially when there are
more than two stages, because the metalanguage seems to need
strictly more polymorphism than the object language (Carette et al.
2009; Rendel et al. 2009).

References

Begel, Andrew, Steven McCanne, and Susan L. Graham. 1999. BPF+:
Exploiting global data-flow optimization in a generalized packet filter
architecture. SIGCOMM Computer Communication Review 29(4):123—
134.

Bondorf, Anders. 1992. Improving binding times without explicit CPS-
conversion. In Proceedings of the 1992 ACM conference on Lisp and
Sfunctional programming, ed. William D. Clinger, vol. V(1) of Lisp Point-
ers, 1-10. New York: ACM Press.

Calcagno, Cristiano, Eugenio Moggi, and Walid Taha. 2004. ML-like in-
ference for classifiers. In Programming languages and systems: Pro-
ceedings of ESOP 2004, 13th European symposium on programming,
ed. David A. Schmidt, 79-93. Lecture Notes in Computer Science 2986,
Berlin: Springer.

Calcagno, Cristiano, Walid Taha, Liwen Huang, and Xavier Leroy. 2003.
Implementing multi-stage languages using ASTs, gensym, and reflec-
tion. In Proceedings of GPCE 2003: 2nd international conference on
generative programming and component engineering, ed. Frank Pfen-
ning and Yannis Smaragdakis, 57-76. Lecture Notes in Computer Sci-
ence 2830, Berlin: Springer.

Carette, Jacques, and Oleg Kiselyov. 2008. Multi-stage programming with
functors and monads: Eliminating abstraction overhead from generic
code. Science of Computer Programming. In press.

Carette, Jacques, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally
tagless, partially evaluated: Tagless staged interpreters for simpler typed
languages. Journal of Functional Programming 19(5):509-543.

Danvy, Olivier, and Andrzej Filinski. 1990. Abstracting control. In Pro-
ceedings of the 1990 ACM conference on Lisp and functional program-
ming, 151-160. New York: ACM Press.

Dussart, Dirk, and Peter Thiemann. 1996. Imperative functional specializa-
tion. Tech. Rep. WSI-96-28, Universitit Tiibingen.

Frigo, Matteo, and Steven G. Johnson. 2005. The design and implementa-
tion of FFTW3. Proceedings of the IEEE 93(2):216-231. Special issue
on program generation, optimization, and platform adaptation.

Kameyama, Yukiyoshi, Oleg Kiselyov, and Chung-chieh Shan. 2008. Clos-
ing the stage: From staged code to typed closures. In Proceedings of the
2008 ACM SIGPLAN symposium on partial evaluation and semantics-
based program manipulation, ed. Robert Gliick and Oege de Moor, 147—
157. New York: ACM Press.

. 2009. Shifting the stage: Staging with delimited control. In Pro-
ceedings of the 2009 ACM SIGPLAN symposium on partial evaluation
and semantics-based program manipulation, ed. German Puebla and
German Vidal, 111-120. New York: ACM Press.

Kamin, Samuel. 1996. Standard ML as a meta-programming language.
http://loome.cs.uiuc.edu/pubs.html.

Launchbury, John, and Simon L. Peyton Jones. 1994. Lazy functional
state threads. In PLDI ’94: Proceedings of the ACM conference on
programming language design and implementation, vol. 29(6) of ACM
SIGPLAN Notices, 24-35. New York: ACM Press.

Lawall, Julia L., and Olivier Danvy. 1994. Continuation-based partial
evaluation. In Proceedings of the 1994 ACM conference on Lisp and
Sfunctional programming, 227-238. New York: ACM Press.

Lengauer, Christian, and Walid Taha, eds. 2006. Special issue on the
1st MetaOCaml workshop (2004), vol. 62(1) of Science of Computer
Programming. Amsterdam: Elsevier Science.

Rendel, Tillmann, Klaus Ostermann, and Christian Hofer. 2009. Typed self-
representation. In PLDI '09: Proceedings of the ACM conference on
programming language design and implementation, ed. Michael Hind
and Amer Diwan. New York: ACM Press.

Sheard, Tim. 2001. Accomplishments and research challenges in meta-
programming. In Proceedings of SAIG 2001: 2nd international work-
shop on semantics, applications, and implementation of program gener-
ation, ed. Walid Taha, 2-44. Lecture Notes in Computer Science 2196,
Berlin: Springer.

Sumii, Eijiro, and Naoki Kobayashi. 2001. A hybrid approach to online
and offline partial evaluation. Higher-Order and Symbolic Computation
14(2-3):101-142.

Taha, Walid, and Michael Florentin Nielsen. 2003. Environment classifiers.
In POPL °03: Conference record of the annual ACM symposium on
principles of programming languages, 26-37. New York: ACM Press.

