The MetaOCaml files

Status report and research proposal

Oleg Chung-chieh
Kiselyov Shan

ICFP Eve, 2010 Somewhere in Maryland

http://www.flickr.com/photos/cristiano_deana/943892617/

Q&A

How to reconcile generality with performance?
» Write custom code generators! Common practice.

2/15

Q&A

How to reconcile generality with performance?

» Write custom code generators! Common practice.

The Design and Implementation of FFTW3

MATTEO FRIGO AND STEVEN G. JOHNSON

Invited Paper

FIT
(FT)
plemen B o
acm/;n BPF+: Exploiting Global Data-flow Optimization in a
veatda Generalized Packet Filter
e Andrew Begel, Steven McCanne, Susan L. Graham
automal University of California, Berkeley

Keyn {abegel, mccanne, graham} @cs.berkeley.edu
iransfor

Abstract in routers (e.., for real-time services or layer-four switching) [14,
20),frewall filtering, and intrusion detection (19).
A packet filtr is a programmable selection criterion for classify- “The carliest represcntations for packet firs were based on
i i ble an imperative execution model. In this form, a packet filter is
fashion. Previous work on packet fltrs falls oughly into two cate- represented as a sequence of instructions thal conform 1o some
gories, namely those efforts that investigale flexible and extensible abstract virtual machine, much as modem Java byte codes rep-
fiter abstractions b sacrifice performance, and those that focus resent programs thet can be exccuted on a Java virtual machine.

on low-level, optimized filtering representations but sacrifice flex- Mogul er al.s original packet filter (known as the CMU/Stanford

2/15

Q&A

How to reconcile generality with performance?
» Write custom code generators! Common practice.

The Design

MATTEO FRIGO AND

Invited Paper

FET
(DFT)
plement
describ
sion fle
real-da
insiruct]
mized i
automal

Keyw
transfor
1IN

FFT|
compul
various Abstrag
with v A packel
FFTW, ing orse
uses a fashion.

goris,

order { e
is a pn on low-|

Accomplishments and Research Challenges in

Meta-programming
Invited Paper

Tim Sheard

In ¢
wor
bee!
revi

will
mefl

Standard ML as a Meta-Programming Language

Samuel Kamin *
Computer Science Dept.
University of Illinois
Urbana, Tllinois
s-kamin@uiuc.edu

P

2/15

Q&A

How to reconcile generality with performance?

» Write custom code generators! Common practice.
How to assure generated code well-formed? (Why?)

» Use MetaOCaml! Extends full OCaml. Widely used.

2/15

Q&A

How to reconcile generality with performance?

» Write custom code generators! Common practice.

How to assure generated code well-formed? (Why?)

» Use MetaOCaml! Extends full OCaml. Widely used.

MetaOCaml BER MetaOCaml

—January 2006 March 2010-7?
OCaml 3.09.1 OCaml 3.11.2
bytecode + native bytecode

2/15

Q&A

How to reconcile generality with performance?

» Write custom code generators! Common practice.

How to assure generated code well-formed?

» Use MetaOCaml! Extends full OCaml. Widely used.

How to type-check generated code?

» Preserve type environments
» Rename shadowed identifiers?
» Follow explicit substitutions?

How to maintain type soundness with side effects?

» Later binders delimit earlier effects
» Regions of generated names?
» Earlier effects prevent later generalization?

How to implement code generation as syntactic sugar?
» camlp4/5 quotations

» Represent 1let-polymorphism by higher polymorphism?

2/15

Crash course

MetaOCaml is not quite like Lisp

bracket .<x+y>. quasiquote ‘ (+ x y)
escape .~body unquote ,body

run .!code eval (eval code)
persist r ’or

3/15

.~

Crash course

MetaOCaml is not quite like Lisp
bracket .<x+y>. quasiquote ‘ (+ x y)
escape .~body unquote ,body
run .!code eval (eval code)
persist r ’or
.<fun x -> .~(let body = .<x>.

in .<fun x -> .~body>.)>.

“(lambda (x) ,(let ((body ‘x))
“(lambda (x) ,body)))

‘(lambda (x) (lambda (x) x))

Implicit binding context . ..

3/15

.~
.~
.~

Crash course

MetaOCaml is not quite like Lisp

bracket .<x+y>. quasiquote ‘ (+ x y)
escape .~body unquote ,body

run .'code eval (eval code)
persist r ’or
.<fun x -> .~(let body = .<x>.

<fun x_1 ->

<fun x_1 ->

<fun x_1 ->

<fun x_1 ->

<fun x_1 ->

in .<fun x -> .~body>.)>.

.~(let body = .<x_1>.
in .<fun x -> .~body>.)>.

~<fun x > .~ .<x_1>.>.>.
~.<fun x_2 > .~ .<x_1>.>.>.
~.<fun x_2 -> x_1>.>.

fun x_2 -> x_1>.

3/15

.~
.~
.~
.~
.~
.~
.~
.~
.~
.~

Crash course

MetaOCaml is not quite like Lisp

bracket .<x+y>. quasiquote ‘ (+ x y)
escape .~body unquote ,body

run .'code eval (eval code)
persist r ’or
.<fun x -> .~(let body = .<x>.

<fun x_1 ->

<fun x_1 ->

<fun x_1 ->

<fun x_1 ->

<fun x_1 ->

in .<fun x -> .~body>.)>.

.~(let body = .<x_1>.
in .<fun x -> .~body>.)>.

~<fun x > .~ .<x_1>.>.>.
~.<fun x_2 > .~ .<x_1>.>.>.
~.<fun x_2 -> x_1>.>.

fun x_2 -> x_1>.

3/15

.~
.~
.~
.~
.~
.~
.~
.~
.~
.~

Q&A

How to type-check generated code?

» Preserve type environments
» Rename shadowed identifiers?
» Follow explicit substitutions?

4/15

Passes

Source text

parse

[T]

type-check

Typed IR

1

compile

Executable

run

5/15

Passes

Source text

parse

[AT]

enerated code never goes wrong either
type-check g g ¢

1

Typed IR

compile

Executable

run

5/15

Passes

[sourcetex

Source text

parse

[psT]

type-check

1

compile

generated code never goes wrong either

Typed IR Typed IR

compile

Executable Executable

run

run

5/15

Passes

Source text

parse

[psT]

generated code never goes wrong either
each node annotated with type environment

Typed IR Typed IR

type-check

1

compile compile
Executable Executable
run run

5/15

Passes

Source text

parse

[T]

type-check

Typed IR

compile

1

run

AST

type-check

Executable

Typed IR

compile

run

5/15

Preserving type environments

type foo = Foo
let x = .<Foo>.
type bar = Foo | Bar
let y = .<Foo>.
let z = .<(.~x, .~y)>. ;;

val z : (’a, foo * bar) code = .<((Foo), (Foo))>.

6/15

.~
.~

Preserving type environments

type foo = Foo
let x = .<Foo>.
type bar = Foo
let y = .<Foo>.
let z <oz, Lmy)>l g

| Bar

val z : (’a, foo * bar) code = .<((Foo), (Foo))>.

Currently, .<Foo>. means to make an AST node Foo
and stash the type environment here in it.

6/15

.~
.~

Preserving type environments

type foo = Foo
let x = .<Foo>.
type bar = Foo | Bar
let y = .<Foo>.
let z <oz, Lmy)>l g

val z : (’a, foo * bar) code = .<((Foo), (Foo))>.

Perhaps simpler:

Fool
Foo2 | Bar—]

N

. Cmo

type foo
type bar

Need guidance from a calculus with explicit substitutions!

6/15

.~
.~

Q&A

How to maintain type soundness with side effects?

» Later binders delimit earlier effects
» Regions of generated names?
» Earlier effects prevent later generalization?

7/15

Scope extrusion

Pure staging works great, especially with polymorphism.
But effects are oh so useful.

8/15

.~

Scope extrusion

Pure staging works great, especially with polymorphism.
But effects are oh so useful.

let code =
let r = ref .<1>. in
let _ = .<fun x -> .~(r := .<x>.; .<(0>.)>. in
'r ;;

val code : (’a, int) code = .<z_1>.

8/15

.~

Scope extrusion

Pure staging works great, especially with polymorphism.
But effects are oh so useful.

let code =
let r = ref .<1>. in
let _ = .<fun x -> .~(r := .<x>.; .<(0>.)>. in
'r ;;

val code : (’a, int) code = .<z_1>.

.lcode ;;

Unbound value z_1
Ezception: Trz.TypeCheckingError.

To restore soundness: later binders delimit earlier effects
To express even more: regions of generated names?

8/15

.~

Imperative polymorphism redux

let £ () = ref []

9/15

Imperative polymorphism redux

let £ () = ref []
in £ O := [1];
"hello" :: '(£f Q) ;;

- : string list = ["hello"]

9/15

Imperative polymorphism redux

let ¢ = .<let £ () = ref []

10/15

Imperative polymorphism redux

let ¢ = .<let f () = ref []
in £ O := [1];
"hello" :: I (£ O)>. ;;

val ¢ : (’a, string list) code =
.<tet f_2(0) = ref []
an f_2 () := [1];
"hello" :: 1(f_2 ()>.

.1c ;;

- : string list = ["hello"]

10/15

Imperative polymorphism redux

let ¢ = .<let £ () = .=(<ref [1>.)

11/15

.~

Imperative polymorphism redux

<let £ 0 = zC<ref [1>.)

in £ () := [1];
"hello" :: '(f O)>. ;;

let c =

val ¢ : (’a, string list) code =
<let f. 20 = ref []

in f.2 () := [1];
"hello" :: 1(f_2 ()>.

.!c ;;

- : string list = ["hello"]

11/15

.~

Imperative polymorphism redux

let ¢ = .<let £ () = .~(Ret r = ref [] in .<r>.)

12/15

.~

Imperative polymorphism redux

#let ¢ = .<let £ () = .~(Let r = ref [] in .<r>.)
in £) := [1];
"hello" :: !'(f O)>. ;;

val ¢ : (’a, string list) code =
.<let f_2 () = (* cross-stage persistent value
(as id: 7) *)
wn f_2 (0 := [1];
"hello" :: 1(f_2(0)>.

12/15

.~

Imperative polymorphism redux

#let c = .<let £ () = .~(Ret r = ref [] in .<r>.)
in £ O := [1];
"hello" :: !(f O)>. ;;

val ¢ : (’a, string list) code =
.<let f_2 () = (* cross-stage persistent value
(as id: r) *)
wn f_2 (0 := [1];
"hello" :: 1(f_2(0)>.
.lc ;;

Segmentation fault

To restore soundness:
earlier effects prevent later generalization?

12/15

.~

Q&A

How to implement code generation as syntactic sugar?

» camlp4/5 quotations
» Represent let-polymorphism by higher polymorphism?
13/15

Code generation as syntactic sugar

camlp4/5 quotations? CUFP BoF, tutorial.

.<let id = fun x -> x in id 1>.
Let_ (Lam (fun x -> x)) (fun id -> App id (Lit 1))

Seems straightforward

14/15

Code generation as syntactic sugar

camlp4/5 quotations? CUFP BoF, tutorial.

.<let id = fun x -> x in id id>.
Let_ (Lam (fun x -> x)) (fun id -> App id id)

Seems straightforward, but how to represent polymorphic 1et?

e: T
—— Gen
e:Vo.1

e:Vo.T1 S
e: Tlo/al pee

14/15

Code generation as syntactic sugar

camlp4/5 quotations? CUFP BoF, tutorial.

.<let id = fun x -> x in id id>.
Let_ (Lam (fun x -> x)) (fun id -> App id id)

Seems straightforward, but how to represent polymorphic 1et?

e:T
———— Gen : V7ix—*. (Va. a7 code) — (Va. aT) code
e:Va.1
e:Vo.T1
———— Spec : V7ix—*. (Va. aT) code — (Vo a T code)
e: Tlo/al

Need higher-rank, higher-kind polymorphism?

14/15

Code generation as syntactic sugar

camlp4/5 quotations? CUFP BoF, tutorial.

.<let id = fun x -> x in id id>.
Let_ (Lam (fun x -> x)) (fun id -> App id id)

Seems straightforward, but how to represent polymorphic 1et?

e:T
———— Gen : V7ix—*. (Va. a7 code) — (Va. aT) code
e:Va.1
e:Vo.T1
———— Spec : V7ix—*. (Va. aT) code — (Vo a T code)
e: Tlo/al

Need higher-rank, higher-kind polymorphism?
Don’t generate code that uses polymorphism? ‘Metacircular let’

let id = Lam (fun x -> x) in App id id

14/15

How to type-check generated code?
How to maintain type soundness with side effects?
How to implement code generation as syntactic sugar?

http://www.flickr.com/photos/glenneroo/149258631/

