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FFTW is an implementation of the discrete Fourier transform
(DFT) that adapts to the hardware in order to maximize perfor-
mance. This paper shows that such an approach can yield an im-
plementation that is competitive with hand-optimized libraries, and
describes the software structure that makes our current FFTW3 ver-
sion flexible and adaptive. We further discuss a new algorithm for
real-data DFTs of prime size, a new way of implementing DFTs by
means of machine-specific single-instruction, multiple-data (SIMD)
instructions, and how a special-purpose compiler can derive opti-
mized implementations of the discrete cosine and sine transforms
automatically from a DFT algorithm.
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I. INTRODUCTION

FFTW [1] is a widely used free-software library that
computes the discrete Fourier transform (DFT) and its
various special cases. Its performance is competitive even
with vendor-optimized programs, but unlike these programs,
FFTW is not tuned to a fixed machine. Instead, FFTW
uses a planner to adapt its algorithms to the hardware in
order to maximize performance. The input to the planner
is a problem, a multidimensional loop of multidimensional
DFTs. The planner applies a set of rules to recursively
decompose a problem into simpler subproblems of the same
type. “Sufficiently simple” problems are solved directly by
optimized, straight-line code that is automatically generated
by a special-purpose compiler. This paper describes the
overall structure of FFTW as well as the specific improve-
ments in FFTW3, our latest version.

Manuscript received November 24, 2003; revised October 15, 2004.
The work of M. Frigo was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under Contract NBCH30390004.
The work of S. G. Johnson was supported in part by the Materials Research
Science and Engineering Center program of the National Science Founda-
tion under Award DMR-9400334.

M. Frigo is with the IBM Austin Research Laboratory, Austin, TX 78758
USA (e-mail: Athena@fftw.org).

S. G. Johnson is with the Massachusetts Institute of Technology, Cam-
bridge, MA 02139 USA.

Digital Object Identifier 10.1109/JPROC.2004.840301

FFTW is fast, but its speed does not come at the expense of
flexibility. In fact, FFTW is probably the most flexible DFT
library available.

• FFTW is written in portable C and runs well on many
architectures and operating systems.

• FFTW computes DFTs in time for any
length . (Most other DFT implementations are either
restricted to a subset of sizes or they become
for certain values of , for example, when is prime.)

• FFTW imposes no restrictions on the rank (dimension-
ality) of multidimensional transforms. (Most other im-
plementations are limited to one-dimensional (1-D), or
at most two-dimensional (2-D) and three-dimensional
data.)

• FFTW supports multiple and/or strided DFTs; for ex-
ample, to transform a three-component vector field or a
portion of a multidimensional array. (Most implemen-
tations support only a single DFT of contiguous data.)

• FFTW supports DFTs of real data, as well as of real
symmetric/antisymmetric data [also called the discrete
cosine transform (DCT) and the discrete sine transform
(DST)].

The interaction of the user with FFTW occurs in two
stages: planning, in which FFTW adapts to the hardware,
and execution, in which FFTW performs useful work for
the user. To compute a DFT, the user first invokes the
FFTW planner, specifying the problem to be solved. The
problem is a data structure that describes the “shape” of the
input data—array sizes and memory layouts—but does not
contain the data itself. In return, the planner yields a plan,
an executable data structure that accepts the input data and
computes the desired DFT. Afterwards, the user can execute
the plan as many times as desired.

The FFTW planner works by measuring the actual run-
time of many different plans and by selecting the fastest one.
This process is analogous to what a programmer would do
by hand when tuning a program to a fixed machine, but in
FFTW’s case no manual intervention is required. Because
of the repeated performance measurements, however, the
planner tends to be time-consuming. In performance-critical
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Abstract 

A packer filter is a programmable selection criterion for classify- 
ing or selecting packets from a packet stream in a generic, reusable 
fashion. Previous work on packet filters falls roughly into two cate- 
gories, namely those efforts that investigate flexible and extensible 
filter abstractions but sacrifice performance, and those that focus 
on low-level, optimized filtering representations but sacrifice flex- 
ibility. Applications like network monitoring and intrusion detec- 
tion, however, require both high-level expressiveness and raw per- 
formance. In this paper, we propose a fully general packet filter 
framework that affords both a high degree of flexibility and good 
performance. In our framework, a packet filter is expressed in a 
high-level language that is compiled into a highly efficient native 
implementation. The optimization phase of the compiler uses a 
flowgraph set relation called edge dominators and the novel appli- 
cation of an optimization technique that we call “redundant predi- 
cate elimination,” in which we interleave partial redundancy elim- 
ination, predicate assertion propagation, and flowgraph edge elim- 
ination to carry out the filter predicate optimization. Our resulting 
packet-filtering framework, which we call BPF+, derives from the 
BSD packet filter (BPF), and includes a filter program translator, a 
byte code optimizer, a byte code safety verifier to allow code lo mi- 
grate across protection boundaries, and a just-in-time assembler to 
convert byte codes to efficient native code. Despite the high degree 
of flexibility afforded by our generalized framework, our perfor- 
mance measurements show that our system achieves performance 
comparable to state-of-the-art packet filter architectures and better 
than hand-coded filters written in C. 

1 Introduction 

Over the past decade, a number of innovative research efforts have 
built upon each other by iteratively refining the concept of a pucker 
filter. First proposed by Mogul, Rashid, and Accetta in 19874161, a 
packet filter in its simplest form is a programmable abstraction for 
a boolean predicate function applied to a stream of packets to select 
some specific subset of that stream. While this filtering model has 
been heavily exploited for network monitoring, traffic collection, 
performance measurement, and user-level protocol demultiplexing, 
more recently, filtering has been proposed for packet classification 
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in routers (e.g., for real-time services or layer-four switching) [ 14, 
201, firewall filtering, and intrusion detection [19]. 

The earliest representations for packet filters were based on 
an imperative execution model. In this form, a packet filter is 
represented as a sequence of instructions that conform to some 
abstract virtual machine, much as modern Java byte codes rep- 
resent programs that can be executed on a Java virtual machine. 
Mogul ef al.‘s original packet filter (known as the CMU/Stanford 
packet filter or CSPF) was based on a stack-oriented virtual ma- 
chine, where selected packet contents could be pushed on a stack 
and boolean and arithmetic operations could be performed over 
these stack operands. The BSD packet filter (BPF) modernized 
CSPF with a higher-performance register-model instruction set. Sub- 
sequent research introduced a number of further improvements: the 
Mach Packet Filter (MPF) extended BPF to efficiently support an 
arbitrary number of independent filters [24]; PathFinder provided 
a new virtual machine abstraction based on pattern-matching that 
achieved impressive performance enhancements and was amenable 
to hardware implementation [2]; and DPF enhanced Pathfinder’s 
core model with dynamic-code generation (DCG) to exploit run- 
time knowledge for even greater performance [7]. An alternative 
approach to the imperative style of packet filtering was explored by 
Jayaram and Cytron [ 131. A filter specification takes the form of a 
set of rules written as a context-free grammar. An LR parser then 
interprets the grammar on the fly for each processed packet. 

More recent work on packet ciassification for “layer four switch- 
ing” has focused on table-based representations of predicate tem- 
plates to yield very high filtering performance. Srinivasan ef al. [20] 
propose a special data structure that they call a “grid of tries” to re- 
duce the common case of source/destination classification to a few 
memory references, while Lakshman and Stiliadis [I41 elegantly 
cast packet classification as the multidimensional point location 
problem from computational geometry. 

None of the earlier work addresses the issue of compiling an 
abstract, declarative representation of a packet filter into an effi- 
cient low-level form. It also does not consider the minimization of 
computation by exploiting semantic redundancies across multiple, 
independent filters in a generalizable fashion. Work on such opti- 
mizations has not been forthcoming for good reason. If we model 
a packet filter program as a function of boolean predicates, we can 
reduce filter optimization to the “decision tree reduction” [lo] prob- 
Icm. Since this problem is “NP-complete”, we know that filter opti- 
mization is a hard problem. As a natural consequence, decision tree 
reduction methods have relied upon heuriskcs for optimization [5]. 

Fortunately, many packet filters have a regular structure that we 
can use to our advantage in our optimization framework. One way 
to exploit this structure is to account for it in the underlying filtering 
engine itself. Both PathFinder and MPF are based on this design 
principle: PathFinder utilizes a template-based matching scheme 
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1 Introduction

In the last ten years the study of meta-programming systems, as formal systems
worthy of study in their own right, has vastly accelerated. In that time a lot has
been accomplished, yet much remains to be done. In this invited talk I wish to
review recent accomplishments and future research challenges in hopes that this
will spur interest in meta-programming in general and lead to new and better
meta-programming systems.

I break this paper into several sections. As an overview, in Section 2, I try and
classify meta-programs into groups. The purpose of this is to provide a common
vocabulary which we can use to describe meta-programming systems in the rest
of the paper.

In Section 3, I describe a number of contexts in which the use of meta-
programming has been found useful. Some knowledge of the areas where meta-
programming techniques have been developed helps the reader understand the
motivation for many of the research areas I will discuss.

In Section 4, I motivate why meta-programming systems are the right tools
to use for many problems, and I outline a number particular areas where I believe
interesting research has been accomplished, and where new research still needs
to be done. I do not claim that this set of issues is exclusive, or that every meta-
programming system must address all of the issues listed. A meta-programming
system designer is like a diner at a restaurant, he must pick and choose a full
meal from a menu of choices. This section is my menu.

In the following Sections I elaborate in more detail on many of the areas
outlined in Section 4. I will discuss many ideas from many different researchers
that I think are important in the overall meta-programming picture. For some
areas, I have outlined proposed research projects. My proposals are at the level
of detail I would assign to a new student as a project, and I have not personally
carried the research to its conclusions.

If we continue using the food metaphor, in these sections we discuss the
general preparation of menu items; which ingredients need special handling; and

W. Taha (Ed.): SAIG 2001, LNCS 2196, pp. 2–44, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Standard ML as a Meta-Programming LanguageSamuel Kamin �Computer Science Dept.University of IllinoisUrbana, Illinoiss-kamin@uiuc.eduSeptember 20, 1996AbstractMeta-programming languages, or program generators, are languages whose programs pro-duce programs in other languages. We show how Standard ML makes an excellent meta-programming language, by adding appropriate program-valued | by which we mean string-valued | operations for each domain. We do so by giving four examples of meta-programminglanguages: a top-down parser generator; a \geometric region server" language modelled onone developed at Yale; a version of the \Message Speci�cation Language," developed atOregon Graduate Institute; and a pretty-printing speci�cation language. Embedding meta-programming languages in ML in this way is easy to do, and the result is a language that,unlike most meta-programming languages, is higher-order.1 IntroductionIt is a kind of folklore in the programming language community thatprogramming language = �-calculus + constantsIn this paper, we explore this claim by developing several languages by adding constants toStandard ML.All of our examples are meta-programming languages, intended to aid in the production ofC++ programs. The examples are:� Top-down parser generator. This is a well known example of \combinator-style" program-ming [8]. The combinators used in developing a parser in a functional language can berede�ned to generate a parser in C++.� Geometric region server. The Haskell code presented by Carlson et al. [4] to solve thisproblem directly can be modi�ed to produce C++ code that solves it. The metaprogram isremarkably similar to the original.�Supported by NSF Contract CCR 93{03043 1
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Preserving type environments

# type foo = Foo

let x = .<Foo>.

type bar = Foo | Bar

let y = .<Foo>.

let z = .<(.~x, .~y)>. ;;

val z : (’a, foo * bar) code = .<((Foo), (Foo))>.

.~
.~
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let x = .<Foo>.

type bar = Foo | Bar

let y = .<Foo>.

let z = .<(.~x, .~y)>. ;;

val z : (’a, foo * bar) code = .<((Foo), (Foo))>.

Currently, .<Foo>. means to make an AST node Foo

and stash the type environment here in it.
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Preserving type environments

# type foo = Foo

let x = .<Foo>.

type bar = Foo | Bar

let y = .<Foo>.

let z = .<(.~x, .~y)>. ;;

val z : (’a, foo * bar) code = .<((Foo), (Foo))>.

Perhaps simpler:

type foo = Foo1

type bar = Foo2 | Bar

.cmo

Need guidance from a calculus with explicit substitutions!

.~
.~
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Q&A
How to reconcile generality with performance?

I Write custom code generators! Common practice.

How to assure generated code well-formed?

(Why?)

I Use MetaOCaml! Extends full OCaml. Widely used.

How to type-check generated code?
I Preserve type environments
I Rename shadowed identifiers?
I Follow explicit substitutions?

How to maintain type soundness with side effects?
I Later binders delimit earlier effects
I Regions of generated names?
I Earlier effects prevent later generalization?

How to implement code generation as syntactic sugar?
I camlp4/5 quotations
I Represent let-polymorphism by higher polymorphism?
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Scope extrusion

Pure staging works great, especially with polymorphism.
But effects are oh so useful.

# let code =

let r = ref .<1>. in

let _ = .<fun x -> .~(r := .<x>.; .<()>.)>. in

!r ;;

val code : (’a, int) code = .<x_1>.

# .!code ;;

Unbound value x_1

Exception: Trx.TypeCheckingError.

To restore soundness: later binders delimit earlier effects
To express even more: regions of generated names?
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Imperative polymorphism redux

#
:::
let

::::::
f ()

::
=
:::::
ref

::::
[]

in f () := [1];

"hello" :: !(f ()) ;;

- : string list = ["hello"]
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# let c = .<
::::
let
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f ()

:::
=
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::::
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in f () := [1];

"hello" :: !(f ())>. ;;

val c : (’a, string list) code =

.<let f_2 () = ref []

in f_2 () := [1];

"hello" :: !(f_2 ())>.

# .!c ;;

- : string list = ["hello"]
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Imperative polymorphism redux

# let c = .<
::::
let

:::::
f ()

:::
=
::::::::::::::::::::::::::
.~(let r = ref [] in

:::::::::
.<r>.)

in f () := [1];

"hello" :: !(f ())>. ;;

val c : (’a, string list) code =

.<let f_2 () = (* cross-stage persistent value
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To restore soundness:
earlier effects prevent later generalization?
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Q&A
How to reconcile generality with performance?

I Write custom code generators! Common practice.

How to assure generated code well-formed?

(Why?)

I Use MetaOCaml! Extends full OCaml. Widely used.

How to type-check generated code?
I Preserve type environments
I Rename shadowed identifiers?
I Follow explicit substitutions?

How to maintain type soundness with side effects?
I Later binders delimit earlier effects
I Regions of generated names?
I Earlier effects prevent later generalization?

How to implement code generation as syntactic sugar?
I camlp4/5 quotations
I Represent let-polymorphism by higher polymorphism?
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Code generation as syntactic sugar

camlp4/5 quotations? CUFP BoF, tutorial.

.<let id = fun x -> x in id 1>.

Let_ (Lam (fun x -> x)) (fun id -> App id (Lit 1))

Seems straightforward, but how to represent polymorphic let?

e : �

e : 8�: �
Gen : 8� :?!?: (8�: � � code)! (8�: � � ) code

e : 8�: �

e : � [�=�]
Spec : 8� :?!?: (8�: � � ) code! (8�: � � code)

Need higher-rank, higher-kind polymorphism?
Don’t generate code that uses polymorphism? ‘Metacircular let’

let id = Lam (fun x -> x) in App id id
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How to type-check generated code?
How to maintain type soundness with side effects?
How to implement code generation as syntactic sugar?

http://www.flickr.com/photos/glenneroo/149258631/

