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Q&A

How to reconcile generality with performance?
» Write custom code generators! Common practice.
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How to reconcile generality with performance?

» Write custom code generators! Common practice.

How to assure generated code well-formed? (Why?)

» Use MetaOCaml! Extends full OCaml. Widely used.

MetaOCaml BER MetaOCaml

—January 2006 March 2010-7?
OCaml 3.09.1 OCaml 3.11.2
bytecode + native bytecode
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Q&A

How to reconcile generality with performance?

» Write custom code generators! Common practice.

How to assure generated code well-formed?

» Use MetaOCaml! Extends full OCaml. Widely used.

How to type-check generated code?

» Preserve type environments
» Rename shadowed identifiers?
» Follow explicit substitutions?

How to maintain type soundness with side effects?

» Later binders delimit earlier effects
» Regions of generated names?
» Earlier effects prevent later generalization?

How to implement code generation as syntactic sugar?
» camlp4/5 quotations

» Represent 1let-polymorphism by higher polymorphism?

2/15



Crash course

MetaOCaml is not quite like Lisp

bracket .<x+y>. quasiquote  ‘ (+ x y)
escape .~body unquote ,body

run .!code eval (eval code)
persist r ’or
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Crash course

MetaOCaml is not quite like Lisp
bracket .<x+y>. quasiquote  ‘ (+ x y)
escape .~body unquote ,body
run .!code eval (eval code)
persist r ’or
.<fun x -> .~(let body = .<x>.

in .<fun x -> .~body>.)>.

“(lambda (x) ,(let ((body ‘x))
“(lambda (x) ,body)))

‘(lambda (x) (lambda (x) x))

Implicit binding context . ..

3/15


.~
.~
.~
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MetaOCaml is not quite like Lisp

bracket .<x+y>. quasiquote  ‘ (+ x y)
escape .~body unquote ,body

run .'code eval (eval code)
persist r ’or
.<fun x -> .~(let body = .<x>.

<fun x_1 ->

<fun x_1 ->

<fun x_1 ->

<fun x_1 ->

<fun x_1 ->

in .<fun x -> .~body>.)>.

.~(let body = .<x_1>.
in .<fun x -> .~body>.)>.

~<fun x > .~ .<x_1>.>.>.
~.<fun x_2 > .~ .<x_1>.>.>.
~.<fun x_2 -> x_1>.>.

fun x_2 -> x_1>.
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Q&A

How to type-check generated code?

» Preserve type environments
» Rename shadowed identifiers?
» Follow explicit substitutions?
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Source text

parse

[T ]

type-check

Typed IR

1

compile

Executable

run

5/15



Passes

Source text

parse

[ AT ]

enerated code never goes wrong either
type-check g g ¢

1

Typed IR

compile

Executable

run

5/15



Passes

[sourcetex

Source text

parse

[ psT ]

type-check

1

compile

generated code never goes wrong either

Typed IR Typed IR

compile

Executable Executable

run

run

5/15



Passes

Source text

parse

[ psT ]

generated code never goes wrong either
each node annotated with type environment

Typed IR Typed IR

type-check

1

compile compile
Executable Executable
run run
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Preserving type environments

# type foo = Foo
let x = .<Foo>.
type bar = Foo | Bar
let y = .<Foo>.
let z = .<(.~x, .~y)>. ;;

val z : (’a, foo * bar) code = .<((Foo), (Foo))>.
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Preserving type environments

# type foo = Foo
let x = .<Foo>.
type bar = Foo
let y = .<Foo>.
let z <oz, Lmy)>l g

| Bar

val z : (’a, foo * bar) code = .<((Foo), (Foo))>.

Currently, .<Foo>. means to make an AST node Foo
and stash the type environment here in it.
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Preserving type environments

# type foo = Foo
let x = .<Foo>.
type bar = Foo | Bar
let y = .<Foo>.
let z <oz, Lmy)>l g

val z : (’a, foo * bar) code = .<((Foo), (Foo))>.

Perhaps simpler:

Fool
Foo2 | Bar—]

N

. Cmo

type foo
type bar

Need guidance from a calculus with explicit substitutions!
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Q&A

How to maintain type soundness with side effects?

» Later binders delimit earlier effects
» Regions of generated names?
» Earlier effects prevent later generalization?
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Scope extrusion

Pure staging works great, especially with polymorphism.
But effects are oh so useful.
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Scope extrusion

Pure staging works great, especially with polymorphism.
But effects are oh so useful.

# let code =
let r = ref .<1>. in
let _ = .<fun x -> .~(r := .<x>.; .<(0>.)>. in
'r ;;

val code : (’a, int) code = .<z_1>.
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Scope extrusion

Pure staging works great, especially with polymorphism.
But effects are oh so useful.

# let code =
let r = ref .<1>. in
let _ = .<fun x -> .~(r := .<x>.; .<(0>.)>. in
'r ;;

val code : (’a, int) code = .<z_1>.

# .lcode ;;

Unbound value z_1
Ezception: Trz.TypeCheckingError.

To restore soundness: later binders delimit earlier effects
To express even more: regions of generated names?
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Imperative polymorphism redux

# let £ () = ref []
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Imperative polymorphism redux

# let £ () = ref []
in £ O := [1];
"hello" :: '(£f Q) ;;

- : string list = ["hello"]
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Imperative polymorphism redux

# let ¢ = .<let £ () = ref []
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Imperative polymorphism redux

# let ¢ = .<let f () = ref []
in £ O := [1];
"hello" :: I (£ O)>. ;;

val ¢ : (’a, string list) code =
.<tet f_2(0) = ref []
an f_2 () := [1];
"hello" :: 1(f_2 ()>.

# .1c ;;

- : string list = ["hello"]
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Imperative polymorphism redux

# let ¢ = .<let £ () = .=(<ref [1>.)
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Imperative polymorphism redux

<let £ 0 = zC<ref [1>.)

in £ () := [1];
"hello" :: '(f O)>. ;;

# let c =

val ¢ : (’a, string list) code =
<let f. 20 = ref []

in f.2 () := [1];
"hello" :: 1(f_2 ()>.

# .!c ;;

- : string list = ["hello"]
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Imperative polymorphism redux

# let ¢ = .<let £ () = .~(Ret r = ref [] in .<r>.)
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Imperative polymorphism redux

#let ¢ = .<let £ () = .~(Let r = ref [] in .<r>.)
in £ ) := [1];
"hello" :: !'(f O)>. ;;

val ¢ : (’a, string list) code =
.<let f_2 () = (* cross-stage persistent value
(as id: 7) *)
wn f_2 (0 := [1];
"hello" :: 1(f_2(0)>.
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Imperative polymorphism redux

#let c = .<let £ () = .~(Ret r = ref [] in .<r>.)
in £ O := [1];
"hello" :: !(f O)>. ;;

val ¢ : (’a, string list) code =
.<let f_2 () = (* cross-stage persistent value
(as id: r) *)
wn f_2 (0 := [1];
"hello" :: 1(f_2(0)>.
# .lc ;;

Segmentation fault

To restore soundness:
earlier effects prevent later generalization?

12/15


.~

Q&A

How to implement code generation as syntactic sugar?

» camlp4/5 quotations
» Represent let-polymorphism by higher polymorphism?
13/15



Code generation as syntactic sugar

camlp4/5 quotations? CUFP BoF, tutorial.

.<let id = fun x -> x in id 1>.
Let_ (Lam (fun x -> x)) (fun id -> App id (Lit 1))

Seems straightforward
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camlp4/5 quotations? CUFP BoF, tutorial.

.<let id = fun x -> x in id id>.
Let_ (Lam (fun x -> x)) (fun id -> App id id)

Seems straightforward, but how to represent polymorphic 1et?

e:T
———— Gen : V7ix—*. (Va. a7 code) — (Va. aT) code
e:Va.1
e:Vo.T1
———— Spec : V7ix—*. (Va. aT) code — (Vo a T code)
e: Tlo/al

Need higher-rank, higher-kind polymorphism?
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Code generation as syntactic sugar

camlp4/5 quotations? CUFP BoF, tutorial.

.<let id = fun x -> x in id id>.
Let_ (Lam (fun x -> x)) (fun id -> App id id)

Seems straightforward, but how to represent polymorphic 1et?

e:T
———— Gen : V7ix—*. (Va. a7 code) — (Va. aT) code
e:Va.1
e:Vo.T1
———— Spec : V7ix—*. (Va. aT) code — (Vo a T code)
e: Tlo/al

Need higher-rank, higher-kind polymorphism?
Don’t generate code that uses polymorphism? ‘Metacircular let’

let id = Lam (fun x -> x) in App id id
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How to type-check generated code?
How to maintain type soundness with side effects?
How to implement code generation as syntactic sugar?
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