transformation/optimization on representations used in theorem-proving tools that use extensions of the lambda-calculus as an underlying representation.

 Failure to provide examples/applications that speak to a broader community: Early work in partial evaluation often used the "power function", "dot product" or similar examples to illustrate a technique. Since PE concepts are now fairly well-understood in the PEPM community, such examples should be avoided in PEPM submissions and replaced with examples that could convey the utility of PE and other program transformation techniques to a larger audience. Our aim is to grow the number of people from other areas that look to PEPM for solutions relevant to the in much lance. Describe from a their explicitions

| sfgate.com

The

-

ART TOMOBBOW

Chronicle critics in theater, music, Datebook, 16

BAGEDY AT VEAR'S END

A young father knowing that sumfire himself over his 9 vear-old daughter In saving her, Albert Collins became San Francisco's final homicide victim in a deadly year. Bay Area, B1

NUNDERKIND

Rain keeps coming, snow pounds the Sierra - many homes, businesses will be without electricity for days because of storm's brutality

MORE THAN 50,000 STILL LACK POWER

Printed on recycled paper | SUNDAY, JANUARY 6, 2008

An employee at Nick's Restaurant in Pacifica gets light from a propane lastern as the makes coffee. Like much of

voters are showing up

under-30

CAMPAIGN 2008 This time,

For more than three decades, it

* Following the votes:

> Democraty

+ COP; High

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

 $\lambda x.\ x \times 1$

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

$$\langle \lambda x. x \times 1 \rangle$$

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

 $\langle \lambda x. \sim (\text{power } 7 \langle x \rangle) \rangle$

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

 $\operatorname{run}\langle\lambda x.\sim(\operatorname{power} 7 \langle x \rangle)\rangle$

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

Type safety

- generate well-typed, well-scoped code: no scope extrusion
- splice open code yet run closed code: keep α-equivalence

run $\langle \lambda x. \sim (\text{power } 7 \langle x \rangle) \rangle$ run $\langle \lambda x. \sim (\text{power } \langle x \rangle 7) \rangle \times$

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

- generate well-typed, well-scoped code: no scope extrusion
- splice open code yet run closed code: keep α-equivalence

```
run\langle \lambda x. \sim (\text{power } 7 \langle x \rangle) \rangle
run\langle \lambda x. \sim (\text{power } 7 \langle 2 \rangle) \rangle
```

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

- generate well-typed, well-scoped code: no scope extrusion
- splice open code yet run closed code: keep α-equivalence

```
run\langle \lambda x. \sim (\text{power } 7 \langle x \rangle) \rangle
run\langle \lambda x. \sim (\text{power } 7 \langle \text{true} \rangle) \rangle \times
```

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

Type safety

- generate well-typed, well-scoped code: no scope extrusion
- splice open code yet run closed code: keep α-equivalence

run $\langle \lambda x. \sim (\text{power } 7 \langle x \rangle) \rangle$ run $\langle \lambda x. \sim (\text{power } 7 \langle \text{true} \rangle) \rangle \times$ run $\langle x \rangle \times$

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

- generate well-typed, well-scoped code: no scope extrusion
- splice open code yet run closed code: keep α-equivalence

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

- generate well-typed, well-scoped code: no scope extrusion
- splice open code yet run closed code: keep α-equivalence

$$\operatorname{run} \langle \lambda x. \sim (\operatorname{power} 7 \langle x \rangle) \rangle$$

$$\operatorname{run} \langle \lambda x. \sim (\operatorname{power} 7 \langle \operatorname{true} \rangle) \rangle \rangle$$

$$\operatorname{run} \langle x \rangle \rangle$$

$$\operatorname{run} \langle \lambda x. \sim (\dots \operatorname{run} \langle 2 \rangle \dots) \rangle$$

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

- generate well-typed, well-scoped code: no scope extrusion
- splice open code yet run closed code: keep α-equivalence

$$\operatorname{run}\langle\lambda x. \sim (\operatorname{power} 7 \langle x \rangle)\rangle$$

$$\operatorname{run}\langle\lambda x. \sim (\operatorname{power} 7 \langle \operatorname{true}\rangle)\rangle \qquad \qquad \times$$

$$\operatorname{run}\langle x \rangle \qquad \qquad \qquad \times$$

$$\operatorname{run}\langle\lambda x. \sim (\ldots \operatorname{run}\langle x \rangle \ldots)\rangle \qquad \qquad \qquad \times$$

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

- generate well-typed, well-scoped code: no scope extrusion
- splice open code yet run closed code: keep α-equivalence

gensym + binding
run
$$\langle \lambda x. \sim$$
 (power 7 $\langle x \rangle$) \rangle
run $\langle \lambda x. \sim$ (power 7 $\langle true \rangle$) \rangle \times
run $\langle x \rangle$ \times
run $\langle \lambda x. \sim$ (... run $\langle x \rangle$...) \rangle \times

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

- generate well-typed, well-scoped code: no scope extrusion
- splice open code yet run closed code: keep α-equivalence

gensym + binding
run
$$\langle \lambda y \rangle$$
. ~(power 7 $\langle y \rangle$)
run $\langle \lambda x \rangle$. ~(power 7 $\langle true \rangle$)
run $\langle x \rangle$
run $\langle x \rangle$
run $\langle \lambda x \rangle$. ~(... run $\langle x \rangle$...)

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

Type safety

- generate well-typed, well-scoped code: no scope extrusion
- splice open code yet run closed code: keep α-equivalence

Mutable state

- Iet insertion, assert insertion
- count generated operations

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

Type safety

- generate well-typed, well-scoped code: no scope extrusion
- splice open code yet run closed code: keep α-equivalence

Mutable state and delimited control

- Iet insertion, assert insertion
- count generated operations
- partial evaluation of sum types and delimited control

Code generation

- partial evaluation
- embedded domain-specific languages
- special-purpose processors

Type safety

- generate well-typed, well-scoped code: no scope extrusion
- splice open code yet run closed code: keep α-equivalence

Mutable state and delimited control

- Iet insertion, assert insertion
- count generated operations
- partial evaluation of sum types and delimited control

Pick two.

We translate staging away: Simplified MetaOCaml \Rightarrow System F

Closing the stage From staged code to typed closures

Yukiyoshi Kameyama

University of Tsukuba kameyama@acm.org Oleg Kiselyov FNMOC oleg@pobox.com Chung-chieh Shan Rutgers University ccshan@rutgers.edu

PEPM, January 7, 2008


```
let rec power n x =

if n = 0

then 1

else x \times (power (n-1) x)

let power 7 = \lambda x. (power 7 x)
```

```
let rec power n x =

if n = 0

then 1

else x \times (power (n-1) x)

let power 7 = \lambda x. (power 7 x)
```

```
let rec power n c =

if n = 0

then \langle 1 \rangle

else \langle c \times c \rangle (power (n - 1) c \rangle)

let power 7 = \langle \lambda x. c \rangle
```

```
let rec power n c =
     if n = 0
     then \langle 1 \rangle
     else \langle -c \times -(\text{power}(n-1)c) \rangle
let power7 = \langle \lambda x. \sim (\text{power 7} \langle x \rangle) \rangle
                       let rec power n c =
     if n = 0
     then \lambda(). 1
     else \lambda(). c() × power (n-1) c()
let power7 = \lambda(). \lambda x. power 7 (\lambda(). x) ()
```

```
let rec power n c =
     if n = 0
     then \langle 1 \rangle
     else \langle \sim c \times \sim (\text{power}(n-1)c) \rangle
let power7 = \langle \lambda x. \sim (\text{power } 7 \langle x \rangle) \rangle
                         let rec power n c =
     if n = 0
     then \lambda(). 1
     else \lambda(). c() \times \text{power}(n-1)c()
let power7 = \lambda(). \lambda x. power 7 (\lambda(). x) ()
```

```
let rec power n c =
     if n = 0
     then \langle 1 \rangle
     else \langle \sim c \times \sim (\text{power}(n-1)c) \rangle
let power7 = \langle \lambda x. \sim (\text{power } 7 \langle x \rangle) \rangle
                         let rec power n c =
     if n = 0
     then \lambda(). 1
                                                      \lambda(). c() \times \text{power}(n-1) c()
     else
                                                                 \lambda(). \lambda x. power 7 (\lambda(). x) ()
let power7 =
```

```
let rec power n c =
     if n = 0
     then \langle 1 \rangle
     else \langle \sim c \times \sim (\text{power} (n-1) c) \rangle
let power7 = \langle \lambda x. \sim (\text{power } 7 \langle x \rangle) \rangle
                       let rec power n c =
     if n = 0
     then \lambda(). 1
     else let v = power(n-1)c in \lambda().c() \times v()
let power7 = let v = power 7 (\lambda(). x) in \lambda(). \lambda x. v()
```

```
let rec power n c =
     if n = 0
     then \langle 1 \rangle
     else \langle -c \times -(\text{power}(n-1)c) \rangle
let power7 = \langle \lambda x. \sim (\text{power } 7 \langle x \rangle) \rangle
                       let rec power n c =
     if n = 0
     then \lambda(). 1
     else let v = \text{power}(n-1)c in \lambda().c() \times v()
let power7 = let v = power 7 (\lambda(). x) in \lambda(). \lambda x. v()
```

```
let rec power n c =
    if n = 0
     then \langle 1 \rangle
    else \langle \sim c \times \sim (\text{power} (n-1) c) \rangle
let power7 = \langle \lambda x. \sim (\text{power 7} \langle x \rangle) \rangle
                       let rec power n c =
    if n = 0
     then \lambda(). 1
    else let v = power(n-1)c in \lambda().c() \times v()
let power7 = let v = power 7 (\lambda(). x) in \lambda(). \lambda x. v()
```

```
let rec power n c =
     if n = 0
     then \langle 1 \rangle
     else \langle \sim c \times \sim (\text{power} (n-1) c) \rangle
let power7 = \langle \lambda x. \sim (\text{power } 7 \langle x \rangle) \rangle
                         let rec power n c =
     if n = 0
     then \lambda(\mathbf{x}). 1
     else let v = \text{power}(n-1) c \text{ in } \lambda(x) . c(x) \times v(x)
let power7 = let v = power 7 (\lambda(x). x) in \lambda(). \lambda x. v(x)
```

```
let rec power n c =
     if n = 0
     then \langle 1 \rangle
     else \langle \sim c \times \sim (\text{power} (n-1) c) \rangle
let power7 = \langle \lambda x. \sim (\text{power 7} \langle x \rangle) \rangle
                       let rec power n c =
     if n = 0
     then \lambda(x). 1
     else let v = power(n-1)c in \lambda(x).c(x) \times v(x)
let power7 = let v = power 7 (\lambda(x). x) in \lambda(). \lambda x. v(x)
```

```
let rec power n c =
     if n = 0
     then \langle 1 \rangle
     else \langle \sim c \times \sim (\text{power} (n-1) c) \rangle
let power7 = \langle \lambda x. \sim (\text{power 7} \langle x \rangle) \rangle
let power7sum = \langle \lambda x, \lambda y, \sim (\text{power } 7 \langle x + y \rangle) \rangle
                         ][
let rec power n c =
     if n = 0
     then \lambda(x). 1
     else let v = \text{power}(n-1)c in \lambda(x).c(x) \times v(x)
let power7 = let v = power 7 (\lambda(x). x) in \lambda(). \lambda x. v(x)
```

```
let rec power n c =
     if n = 0
     then \langle 1 \rangle
     else \langle -c \times -(\text{power}(n-1)c) \rangle
let power7 = \langle \lambda x. \sim (\text{power 7 } \langle x \rangle) \rangle
let power7sum = \langle \lambda x. \lambda y. \sim (\text{power } 7 \langle x + y \rangle) \rangle
let rec power n c =
     if n = 0
     then \lambda(x). 1
     else let v = \text{power}(n-1) c in \lambda(x). c(x) \times v(x)
let power7 = let v = power 7 (\lambda(x). x) in \lambda(). \lambda x. v(x)
```

```
let rec power n c =
     if n = 0
     then \langle 1 \rangle
     else \langle -c \times -(\text{power}(n-1)c) \rangle
let power7 = \langle \lambda x. \sim (\text{power 7 } \langle x \rangle) \rangle
let power7sum = \langle \lambda x. \lambda y. \sim (\text{power } 7 \langle x + y \rangle) \rangle
                         ][
let rec power n c =
     if n = 0
     then \lambda r. 1
     else let v = \text{power}(n-1)c in \lambda r \cdot c r \times v r
let power7 = let v = power 7 (\lambda(x). x) in \lambda(). \lambda x. v(x)
```

```
let rec power n c =
     if n = 0
     then \langle 1 \rangle
     else \langle -c \times -(\text{power}(n-1)c) \rangle
let power7 = \langle \lambda x. \sim (\text{power 7 } \langle x \rangle) \rangle
let power7sum = \langle \lambda x. \lambda y. \sim (\text{power } 7 \langle x + y \rangle) \rangle
                       let rec power n c =
     if n = 0
     then \lambda r 1
     else let v = power(n-1)c in \lambda r \cdot c r \times v r
let power7 = let v = power 7 (\lambda(x). x) in \lambda(). \lambda x. v(x)
let power7sum = let v = power 7 (\lambda(x, y), x + y) in \lambda(), \lambda x, v(x, y)
```

```
let rec power n c =

if n = 0

then \langle 1 \rangle

else \langle -c \times \neg (power (n-1) c) \rangle

let power7 = \langle \lambda x. \neg (power 7 \langle x \rangle) \rangle

let power7sum = \langle \lambda x. \lambda y. \neg (power 7 \langle x + y \rangle) \rangle

let eta f = \langle \lambda x. \neg (f \langle x \rangle) \rangle
```

```
let rec power n c =
      if n = 0
      then \langle 1 \rangle
      else \langle -c \times -(\text{power}(n-1)c) \rangle
let power7 = \langle \lambda x. \sim (\text{power 7 } \langle x \rangle) \rangle
let power7sum = \langle \lambda x. \lambda y. \sim (\text{power } 7 \langle x + y \rangle) \rangle
let eta f = \langle \lambda x. \sim (f \langle x \rangle) \rangle
let rec power' n c =
      if n = 0
      then \langle 1 \rangle
      else if n \mod 2 = 0
               then \langle \text{let } z = \neg c \times \neg c \text{ in } \neg (\text{power}' (n \div 2) \langle z \rangle) \rangle
               else \langle \text{let } z = \neg c \times \neg c \text{ in } \neg c \times \neg (\text{power}' ((n-1) \div 2) \langle z \rangle) \rangle
```

let rec power
$$n c =$$

if $n = 0$
then $\langle 1 \rangle$
else $\langle \sim c \times \sim (\text{power } (n-1) c) \rangle$
let power7 = $\langle \lambda x. \sim (\text{power } 7 \langle x \rangle) \rangle$
let power7sum = $\langle \lambda x. \lambda y. \sim (\text{power } 7 \langle x + y \rangle) \rangle$
let eta $f = \langle \lambda x. \sim (f \langle x \rangle) \rangle$

$$\langle A \rangle \implies \ldots \rightarrow A$$

let rec power
$$n c =$$

if $n = 0$
then $\langle 1 \rangle$
else $\langle \sim c \times \sim (\text{power } (n-1) c) \rangle$
let power7 = $\langle \lambda x. \sim (\text{power } 7 \langle x \rangle) \rangle$
let power7sum = $\langle \lambda x. \lambda y. \sim (\text{power } 7 \langle x + y \rangle) \rangle$
let eta $f = \langle \lambda x. \sim (f \langle x \rangle) \rangle$

$$\langle A \rangle \implies \ldots \rightarrow A \langle A \rangle \rightarrow \langle B \rangle \implies \forall \pi. ((\ldots, \pi) \rightarrow A) \rightarrow ((\ldots, \pi) \rightarrow B)$$

let rec power
$$n c =$$

if $n = 0$
then $\langle 1 \rangle$
else $\langle \sim c \times \sim (\text{power } (n - 1) c) \rangle$
let power7 = $\langle \lambda x. \sim (\text{power } 7 \langle x \rangle) \rangle$
let power7sum = $\langle \lambda x. \lambda y. \sim (\text{power } 7 \langle x + y \rangle) \rangle$
let eta $f = \langle \lambda x. \sim (f \langle x \rangle) \rangle$

$$\langle A \rangle \implies \dots \rightarrow A \langle A \rangle \rightarrow \langle B \rangle \implies \forall \pi. ((\dots, \pi) \rightarrow A) \rightarrow ((\dots, \pi) \rightarrow B) (\langle A \rangle \rightarrow \langle B \rangle) \rightarrow \langle C \rangle \implies \forall \pi. (\forall \rho. ((\dots, \pi, \rho) \rightarrow A) \rightarrow ((\dots, \pi, \rho) \rightarrow B)) \rightarrow ((\dots, \pi) \rightarrow C)$$

Outline

Simplified MetaOCaml ⇒ System F
 Staged code ⇒ Typed closures
 Higher-order functions ⇒ Higher-rank polymorphism
 Extension among environments ⇒ Injection among types
 Scope extrusion ⇒ Type error

let rec power' n c =if n = 0then $\langle 1 \rangle$ else if $n \mod 2 = 0$ then $\langle \text{let } z = \sim c \times \sim c \text{ in } \sim (\text{power'} (n \div e^{-1}))$ else $\langle \text{let } z = \sim c \times \sim c \text{ in } \sim c \times \sim (\text{power'})$

	$\langle int \rangle$	$\langle \mathrm{int} \rangle \rightarrow \langle \mathrm{int} \rangle$
	\downarrow	\Downarrow
•	\vdash () \rightarrow int	$\forall \pi.((\pi) \rightarrow \operatorname{int}) \rightarrow ((\pi) \rightarrow \operatorname{int})$
Extend	Coerce	Coerce
\boldsymbol{x}	$\vdash (\text{int}) \to \text{int}$	$\forall \pi. ((\operatorname{int}, \pi) \rightarrow \operatorname{int}) \rightarrow ((\operatorname{int}, \pi) \rightarrow \operatorname{int})$
Extend	Coerce	Coerce
x, z_1	$\vdash (\mathrm{int},\mathrm{int}) \to \mathrm{int} \forall$	$\pi.((\operatorname{int},\operatorname{int},\pi) \to \operatorname{int}) \to ((\operatorname{int},\operatorname{int},\pi) \to \operatorname{int})$
Extend	Coerce	Coerce
x, z_1, z_2	$\vdash (\text{int}, \text{int}, \text{int}) \rightarrow \text{int}$	$orall \pi.((ext{int,int,int,}\pi) o ext{int}) \ o ((ext{int,int,int,}\pi) o ext{int})$

Coercions elaborate environment polymorphism

In our source language From environment classifiers (Taha, Nielsen, Calcagno, Moggi)

 $\langle \mathrm{int} \rangle^{\alpha}$

to contextual modal type theory (Nanevski, Pfenning, Pientka)?

 $[] ext{ int } [x: ext{int}] ext{ int } [x: ext{int}, z_1: ext{int}] ext{ int } [x: ext{int}, z_1: ext{int}, z_2: ext{int}] ext{ int }$

Coercions elaborate environment polymorphism

In our source language From environment classifiers (Taha, Nielsen, Calcagno, Moggi)

 $\langle \mathrm{int} \rangle^{\alpha}$

to contextual modal type theory (Nanevski, Pfenning, Pientka)?

[] int [int] int [int, int] int [int, int, int] int

Our "de Bruijn indices" maintain α -equivalence and avoid the need for ρ -polymorphism and negative side conditions.

Coercions elaborate environment polymorphism

In our source language From environment classifiers (Taha, Nielsen, Calcagno, Moggi)

 $\langle \mathrm{int} \rangle^{\alpha}$

to contextual modal type theory (Nanevski, Pfenning, Pientka)?

[] int [int] int [int, int] int [int, int, int] int

Our "de Bruijn indices" maintain α -equivalence and avoid the need for ρ -polymorphism and negative side conditions.

In our target language

System F lacks environment polymorphism (weakening), so we roll our own.

Scope extrusion

How to count multiplications as we generate them?

Scope extrusion

How to count multiplications as we generate them?

let count = ref 0 let rec power n c =if n = 0then $\langle 1 \rangle$ else count \leftarrow !count + 1;...

Scope extrusion

How to count multiplications as we generate them?

Use environment may no longer extend creation environment.

int state is safe: the identity coercion is always available.

```
let count = ref 0

let rec power n c =

if n = 0

then \langle 1 \rangle

else count \leftarrow !count + 1;...
```

 $\langle int \rangle$ state risks scope extrusion and running open code.

$$\begin{array}{l} \operatorname{let} x = \operatorname{ref} \langle 1 \rangle \text{ in} \\ \langle \lambda y. \sim & (x \leftarrow \langle y \rangle; \langle () \rangle) \rangle; \\ \underline{!x} & \longrightarrow & \langle y \rangle \end{array}$$

Conclusion

```
Simplified MetaOCamI \Rightarrow System F
Staged code \Rightarrow Typed closures
Higher-order functions \Rightarrow Higher-rank polymorphism
Extension among environments \Rightarrow Injection among types
Scope extrusion \Rightarrow Type error
```

Small-step operational semantics for source language (need to show: preserved by translation)

Administrative reductions incur abstraction overhead (eliminated by true staging) despite specialization