e Failure to provide examples/applications that
speak to a broader community: Early work in
partial evaluation often used the “power function”,
“dot product” or similar examples to illustrate a
technique. Since PE concepts are now fairly
well-understood in the PEPM community,
such examples should be avoided in PEPM
submissions

_SUNDAY, JANUS \|<\ 5 zmu sganeze

Rain kee; Ps coming, snow pounds the Sierra — many homes, businesses
will be without el lectricity for days because of storm’s brutality

MORE THAN 50,000
STILL LACK POWER

TnMDﬂHDW

This time,
under-30
voters are
showmg up

P
the roten

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors

AL.ZXTXTXTXTXTXTX1

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors

AL.ZXTXTXTXTXTXTX1)

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors

(Az. ~(power 7 {z)))

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors

run{Az. ~(power 7 {z)))

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors
Type safety
» generate well-typed, well-scoped code: no scope extrusion
» splice open code yet run closed code: keep a-equivalence

run{Az. ~(power 7 {z)))
run{\z. ~(power {(z) 7)) X

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors
Type safety
» generate well-typed, well-scoped code: no scope extrusion
» splice open code yet run closed code: keep a-equivalence

run{Az. ~(power 7 {z)))
run{Az. ~(power 7 {2)))

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors
Type safety
» generate well-typed, well-scoped code: no scope extrusion
» splice open code yet run closed code: keep a-equivalence

run{Az. ~(power 7 {z)))
run{Az. ~(power 7 {true))) X

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors
Type safety
» generate well-typed, well-scoped code: no scope extrusion
» splice open code yet run closed code: keep a-equivalence

run{Az. ~(power 7 {z)))
run{Az. ~(power 7 <true)))

X X

run{z)

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors
Type safety
» generate well-typed, well-scoped code: no scope extrusion
» splice open code yet run closed code: keep a-equivalence

run{Az. ~(power 7 {(z)))
run{Az. ~(power 7 <true)))

X X

run{z)

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors
Type safety
» generate well-typed, well-scoped code: no scope extrusion
» splice open code yet run closed code: keep a-equivalence

run{Az. ~(power 7 {z)))
run{Az. ~(power 7 <true)))

X X

run{z)
run{Az. ~(...rund2) ...))

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors
Type safety
» generate well-typed, well-scoped code: no scope extrusion
» splice open code yet run closed code: keep a-equivalence

run{Az. ~(power 7 {z)))
run{Az. ~(power 7 <true)))
run{z)

X X X

run{Az. ~(...run{z) ...)»

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors
Type safety
» generate well-typed, well-scoped code: no scope extrusion
» splice open code yet run closed code: keep a-equivalence

gensym + binding

~~
run{Az. ~(power 7 {z)))
run{Az. ~(power 7 <true)))
run{z)

run{Az. ~(...run{z) ...))

X X X

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors
Type safety
» generate well-typed, well-scoped code: no scope extrusion
» splice open code yet run closed code: keep a-equivalence

gensym + binding

~~

run{Ay. ~(power 7 <{y)))
run{Az. ~(power 7 <true)))
run{z)

run{Az. ~(...run{z) ...))

X X X

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors
Type safety
» generate well-typed, well-scoped code: no scope extrusion
» splice open code yet run closed code: keep a-equivalence
Mutable state
» let insertion, assert insertion
» count generated operations

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors
Type safety
» generate well-typed, well-scoped code: no scope extrusion
» splice open code yet run closed code: keep a-equivalence
Mutable state and delimited control
» let insertion, assert insertion
» count generated operations
» partial evaluation of sum types and delimited control

Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors
Type safety
» generate well-typed, well-scoped code: no scope extrusion
» splice open code yet run closed code: keep a-equivalence
Mutable state and delimited control
» let insertion, assert insertion
» count generated operations
» partial evaluation of sum types and delimited control

Pick two.
We translate staging away: Simplified MetaOCaml = System F

Closing the stage

From staged code to typed closures

Yukiyoshi Kameyama Oleg Kiselyov Chung-chieh Shan

University of Tsukuba FNMOC Rutgers University
kameyama®@acm.org oleg@pobox.com ccshan@rutgers.edu

PEPM, January 7, 2008

let rec power n z =

ifn=0

then 1

else z x (power (n — 1))
let power7 = Az. (power 7 z)

let rec power n z =

ifn=0

then 1

else 1z x (power (n-1)z)
let power7 = Az. (power7 z)

let rec power n ¢ =

ifn=0

then (1)

else (~c x ~(power (n—1) c))
let power7 = {(Az. ~(power 7 {(z)))

From code to thunks

let rec power n ¢ =

ifn=0

then (1)

else (~c x ~(power (n—1) c))
let power7 = {(Az. ~(power 7 {(z)))

|

let rec power n c =
ifn=0
then A(). 1
else A().c () x power (n-1) c ()
let power7 = A(). Az. power 7 (A(). z) ()

From code to thunks

let rec power n ¢ =

ifn=0

then (1)

else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {z)))

|

let rec power n c =
ifn=0
then A(). 1
else A().c () x power (n-1) c ()
let power7 = A(). Az. power 7 (A(). z) ()

From code to thunks

let rec power n ¢ =

ifn=0

then (1)

else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {z)))

U
let rec power n c =
ifn=0
then A(). 1
else A(). ¢ () x power (n—1) ¢ ()
let power?7 = A()- Az. power 7 (A(). z) ()

From code to thunks

let rec power n ¢ =

ifn=0

then (1)

else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {z)))

|

let rec power n c =
ifn=0
then A(). 1
else let v = power (n—1) cin A(). ¢ () x v ()
let power7 = let v = power 7 (A(). z) in A(). Az. v ()

From code to thunks

let rec power n ¢ =

ifn=0

then (1)

else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {(z))>

|

let rec power n c =
ifn=0
then A(). 1
else let v = power (n—1) cin A(). ¢ () x v ()
let power?7 = let v = power 7 (A(). z) in A(). Az. v ()

From code to thunks

let rec power n ¢ =

ifn=0

then (1)

else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {(z))>

|

let rec power n c =

ifn=0

then A().1

else let v =power (n—1)cin A().c()xv ()
let power7 =let v = power 7 (A(). z) in A(). Az.v ()

From code to closures

let rec power n ¢ =

ifn=0

then (1)

else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {z))>

|

let rec power n c =

ifn=0

then A(z).1

else let v = power (n —1) cin A(z).c (z) x v (z)
let power?7 = let v = power 7 (A(z). z) in A(). Az. v (z)

From code to closures

let rec power n ¢ =

ifn=0

then (1)

else (~c x ~(power (n—1) c))
let power7 = {(Az. ~(power 7 {z)))

|

let rec power n c =

ifn=0

then A(z). 1

else let v = power (n—1) cin A(z).c (z) x v (z)
let power?7 = let v = power 7 (A(z). z) in A(). Az. v (z)

From code to closures

let rec power n ¢ =
ifn=0
then (1)
else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {z))>
let power7sum = {\z. \y. ~(power 7 {z + >)>
U

let rec power n c =

ifn=0

then A(z). 1

else let v = power (n—1) cin A(z).c (z) x v (z)
let power?7 = let v = power 7 (A(z). z) in A(). Az. v (z)

From code to closures

let rec power n ¢ =
ifn=0
then (1)
else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {z))>
let power7sum = {Az. \y. ~(power 7 {z + >)>
U

let rec power n c =

ifn=0

then A(z). 1

else let v = power (n—1) cin A(z).c (z) x v (z)
let power?7 = let v = power 7 (A(z). z) in A(). Az. v (z)

From code to closures

let rec power n ¢ =
ifn=0
then (1)
else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {z))>
let power7sum = {Az. \y. ~(power 7 {z + >)>

U
let rec power n c =
ifn=20
then A » . 1

else let v =power (n—-1)cin A7 .¢c r xv 7
let power?7 = let v = power 7 (A(z). z) in A(). Az. v (z)

From code to closures

let rec power n ¢ =
ifn=0
then (1)
else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {z))>
let power7sum = {Az. \y. ~(power 7 {z + >)>

U
let rec power n c =
ifn=20
then A r . 1

else let v =power (n-1)cin A r .c r xv 7
let power?7 = let v = power 7 (A(z). z) in A(). Az. v (z)
let power7sum = let v = power 7 (A(z,y). z +y) in A(). A\z. v (z,v)

From code to closures

let rec power n ¢ =
ifn=0
then (1)
else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {z))>
let power7sum = {Az. \y. ~(power 7 {z + >)>
let eta f = Az, ~(f (2)))

From higher-order code to higher-rank polymorphism

let rec power n ¢ =
ifn=0
then (1)
else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {z))>
let power7sum = {Az. \y. ~(power 7 {z + >)>
let eta f = Az, ~(f (2)))

let rec power’ nc =
ifn=0
then (1)
else if n mod 2 =0
then (let z = ~¢ x ~c in ~(power’ (n +2) (z)))
else (let z = ~c x ~c in ~¢ x ~(power’ ((n—-1) +2) <2))»

From higher-order code to higher-rank polymorphism

let rec power n ¢ =
ifn=0
then (1)
else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {(z))>
let power7sum = {Az. \y. ~(power 7 {z + >)>
let eta f = Az, ~(f (2)))

(A = ..o A

From higher-order code to higher-rank polymorphism

let rec power n ¢ =
ifn=0
then (1)
else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {z))>
let power7sum = {Az. \y. ~(power 7 {z + >)>
let eta f = Az, ~(f (2>))

(A) = ...5 A
(A > (BY = Yr.((...,m) = A) > ((..., 1) = B)

From higher-order code to higher-rank polymorphism

let rec power n ¢ =
ifn=0
then (1)
else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {z))>
let power7sum = {Az. \y. ~(power 7 {z + >)>
let eta f = Az, ~(f (2)))

(A) = ...5 A
(A =5 (BY = VY. ((...,m) > A) > ((...,7) > B)

(CAY 5 (BY) > <C> = VYn. (Vp. ((...,m p) > A)
- ((...,m, p) > B))
(..., m)>C)

Outline

Simplified MetaOCaml| = System F
Staged code = Typed closures
Higher-order functions = Higher-rank polymorphism
» Extension among environments = Injection among types

Scope extrusion = Type error

Coercions

m
x
@
>
o
z F
m
x
g
o let rec power’ nc =
z,21 F ifn=0
o then <1)
§ else if n mod 2=10
a then (let z = ~¢ x ~c in ~(power’ (n =
z,21,22 F else (let z = ~¢ x ~c in ~c x ~(power’

8

Coercions

puaix3

pualx3

T

8
™N

pualxg

T,21,22 |’

c=<{z)

let rec power’ nc =
ifn=0
then (1)
else if nmod 2=0
then (let z = ~¢ x ~c in ~(power’ (n =
else (let z = ~¢ x ~c in ~c x ~(power’

8

Coercions

c=<{z)

puaix3

pualx3
801800

Az, z

8
N
-
0
-
\._/
8

pualx3
801800

T,21,20 F Az, 21,22). ¢

let rec power’ nc =
ifn=0
then (1)
else if nmod 2=0
then (let z = ~¢ x ~c in ~(power’ (n =
else (let z = ~¢ x ~c in ~c x ~(power’

8

Coercions

c=<{z)

puaix3

pualx3
801800

Az, z

8
N
-
0
-
\._/
8

pualx3
801800

T,21,20 F Az, 21,22). ¢

power’ n
U

AC.AT....CTXCT...

let rec power’ nc =
ifn=0
then (1)
else if nmod 2=0
then (let z = ~¢ x ~c in ~(power’ (n =
else (let z = ~¢ x ~c in ~c x ~(power’

8

Coercions

c=<{z) power’ n
U U
F AC.A7....crxer...
m O
x o
@ @
3 ®
T FooXz).z A Az,r)....c(z,r)xc(z,7)...
m o o
x o o
@ @ @
3 8 &
z,21 FooX(z,21) 2 Ac. A(z,z1,7)....c(z,21,7) xc(z,21,7). ..
m @) o
x o o
@ @ @
3 8 &

z,21,22 F Az,21,22). ¢ Ac. A(z,21,22,7)....¢(T,21,22,7) x (T, 21,22,7)...

Coercions

int) (int) — (int)
U U
F () —>int V7. ((7r) —int)—((7) —int)
m o O
x o o
@ e e
a 8 ®
T F (int) —int V. ((int,) —int)—((int,7) —int)
m o O
x o o
@ @ @
3 8 ®
z,2; | (int,int) —int V. ((int,int,7)—int)—((int,int,7) —int)
m @) O
x o o
o) @ @
3 3 @
z,21,22 | (int,int,int) — int V7. ((int,int,int, 7) —int)

— ((int,int,int,7) —int)

Coercions

{int) (int) — (int)
F Indexed by source type

m (identity for int)

X

0]

>

o
z F

m Induced by the extension

5 from the environment of creation

3 to the environment of use
z,21 |_

Q‘I

§ We translate terms by induction on

a typing derivations, yet the translation
z,21,20 F is compositional in some senses.

Coercions elaborate environment polymorphism

In our source language
From environment classifiers (Taha, Nielsen, Calcagno, Moggi)

(int)*
to contextual modal type theory (Nanevski, Pfenning, Pientka)?

[Jint [z:int]int [z:int, z;:int]int [z :int, 2; :int, 25 :int]int

Coercions elaborate environment polymorphism

In our source language
From environment classifiers (Taha, Nielsen, Calcagno, Moggi)

(int)*
to contextual modal type theory (Nanevski, Pfenning, Pientka)?
[Jint [int]int [int, int] int [int, int, int]int

Our “de Bruijn indices” maintain a-equivalence and avoid the
need for p-polymorphism and negative side conditions.

Coercions elaborate environment polymorphism

In our source language
From environment classifiers (Taha, Nielsen, Calcagno, Moggi)

(int)*
to contextual modal type theory (Nanevski, Pfenning, Pientka)?
[Jint [int]int [int, int] int [int, int, int]int

Our “de Bruijn indices” maintain a-equivalence and avoid the
need for p-polymorphism and negative side conditions.

In our target language

System F lacks environment polymorphism (weakening),
so we roll our own.

Scope extrusion

How to count multiplications as we generate them?

10

Scope extrusion

How to count multiplications as we generate them?

let count =ref 0
let rec power n c =
ifn=0
then <(1)
else count « lcount + 1;...

10

Scope extrusion
How to count multiplications as we generate them?
Use environment may no longer extend creation environment.

int state is safe: the identity coercion is always available.

let count =ref 0
let rec power n c =
ifn=0
then <(1)
else count « lcount + 1;...

(int) state risks scope extrusion and running open code.

let z =ref (1) in
Qy. ~(z <y KM);
lz s Ay

10

Conclusion

Simplified MetaOCaml = System F
Staged code = Typed closures
Higher-order functions = Higher-rank polymorphism
Extension among environments = Injection among types

Scope extrusion = Type error
Small-step operational semantics for source language
(need to show: preserved by translation)

Administrative reductions incur abstraction overhead
(eliminated by true staging) despite specialization

11

