e Failure to provide examples/applications that
speak to a broader community: Early work in
partial evaluation often used the “power function”,
“dot product” or similar examples to illustrate a
technique. Since PE concepts are now fairly
well-understood in the PEPM community,
such examples should be avoided in PEPM
submissions
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Motivation: Typed staging with side effects

Code generation
» partial evaluation
» embedded domain-specific languages
» special-purpose processors
Type safety
» generate well-typed, well-scoped code: no scope extrusion
» splice open code yet run closed code: keep a-equivalence
Mutable state and delimited control
» let insertion, assert insertion
» count generated operations
» partial evaluation of sum types and delimited control

Pick two.
We translate staging away: Simplified MetaOCaml = System F
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From higher-order code to higher-rank polymorphism
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From higher-order code to higher-rank polymorphism

let rec power n ¢ =
ifn=0
then (1)
else (~c x ~(power (n—1) c))
let power7 = {Az. ~(power 7 {z))>
let power7sum = {Az. \y. ~(power 7 {z + > )>
let eta f = Az, ~(f (2)))

(A) = ...5 A
(A =5 (BY = VY. ((...,m) > A) > ((...,7) > B)

(CAY 5 (BY) > <C> = VYn. (Vp. ((...,m p) > A)
- ((...,m, p) > B))
(..., m)>C)



Outline

Simplified MetaOCaml| = System F
Staged code = Typed closures
Higher-order functions = Higher-rank polymorphism
» Extension among environments = Injection among types

Scope extrusion = Type error
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Coercions
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Coercions elaborate environment polymorphism

In our source language
From environment classifiers (Taha, Nielsen, Calcagno, Moggi)

(int)*
to contextual modal type theory (Nanevski, Pfenning, Pientka)?
[Jint  [int]int [int, int] int [int, int, int]int

Our “de Bruijn indices” maintain a-equivalence and avoid the
need for p-polymorphism and negative side conditions.

In our target language

System F lacks environment polymorphism (weakening),
so we roll our own.
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Scope extrusion
How to count multiplications as we generate them?
Use environment may no longer extend creation environment.

int state is safe: the identity coercion is always available.

let count =ref 0
let rec power n c =
ifn=0
then <(1)
else count « lcount + 1;...

(int) state risks scope extrusion and running open code.

let z =ref (1) in
Qy. ~(z <y KM );
lz s Ay

10



Conclusion

Simplified MetaOCaml = System F
Staged code = Typed closures
Higher-order functions = Higher-rank polymorphism
Extension among environments = Injection among types

Scope extrusion = Type error
Small-step operational semantics for source language
(need to show: preserved by translation)

Administrative reductions incur abstraction overhead
(eliminated by true staging) despite specialization
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