
� Language contexts of limited relevance: Early
work in partial evaluation (PE) was often carried out
in the context of the lambda-calculus because it
served as a clean core language in which basic
techniques could be formalized and reasoned about
in a rigorous way. However, now that basic partial
evaluation techniques are well-understood, PEPM
submissions should aim to present techniques in
the context of commonly-used programming
languages. While papers may present or formalize
a technique in terms of a “clean core language”,
submissions that attempt to handle realistic
language features or convincingly argue that the
proposed techniques can be applied to more
challenging language featuers, may be more highly
valued since they provide a more effective
foundation for transitioning techniques into actual
software development practice. Exceptions to this
general rule might occur if a submission is
attempting to show, e.g., the benefits of
transformation/optimization on representations used
in theorem-proving tools that use extensions of the
lambda-calculus as an underlying representation.

� Failure to provide examples/applications that
speak to a broader community: Early work in
partial evaluation often used the “power function”,
“dot product” or similar examples to illustrate a
technique. Since PE concepts are now fairly
well-understood in the PEPM community,
such examples should be avoided in PEPM
submissions and replaced with examples that could
convey the utility of PE and other program
transformation techniques to a larger audience. Our
aim is to grow the number of people from other
areas that look to PEPM for solutions relevant to
their problems. People from other applications
domains will likely find examples such as those
listed above irrelevant and unconvincing. It’s time
for PE to move beyond the power function.

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

run〈

�x:

>(power 7 〈x〉)〉

x × x × x × x × x × x × x × 1

〉
run〈�x: >(power 7 〈true〉)〉 �

run〈x〉 �

run〈�x: >(: : : run〈x〉 : : :)〉 �

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

run

〈�x:

>(power 7 〈x〉)〉

x × x × x × x × x × x × x × 1〉

run〈�x: >(power 7 〈true〉)〉 �

run〈x〉 �

run〈�x: >(: : : run〈x〉 : : :)〉 �

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

run

〈�x: >(power 7 〈x〉)〉

x × x × x × x × x × x × x × 1〉
run〈�x: >(power 7 〈true〉)〉 �

run〈x〉 �

run〈�x: >(: : : run〈x〉 : : :)〉 �

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

run〈�x: >(power 7 〈x〉)〉

x × x × x × x × x × x × x × 1〉
run〈�x: >(power 7 〈true〉)〉 �

run〈x〉 �

run〈�x: >(: : : run〈x〉 : : :)〉 �

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

run〈�x: >(power 7 〈x〉)〉

x × x × x × x × x × x × x × 1〉

run〈�x: >(power 〈x〉 7)〉 �

run〈x〉 �

run〈�x: >(: : : run〈x〉 : : :)〉 �

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

run〈�x: >(power 7 〈x〉)〉

x × x × x × x × x × x × x × 1〉

run〈�x: >(power 7 〈2〉)〉

�

run〈x〉 �

run〈�x: >(: : : run〈x〉 : : :)〉 �

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

run〈�x: >(power 7 〈x〉)〉

x × x × x × x × x × x × x × 1〉

run〈�x: >(power 7 〈true〉)〉 �

run〈x〉 �

run〈�x: >(: : : run〈x〉 : : :)〉 �

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

run〈�x: >(power 7 〈x〉)〉

x × x × x × x × x × x × x × 1〉

run〈�x: >(power 7 〈true〉)〉 �

run〈x〉 �

run〈�x: >(: : : run〈x〉 : : :)〉 �

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

run〈�x: >(power 7 〈x〉)〉

x × x × x × x × x × x × x × 1〉

run〈�x: >(power 7 〈true〉)〉 �

run〈x〉 �

run〈�x: >(: : : run〈x〉 : : :)〉 �

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

run〈�x: >(power 7 〈x〉)〉

x × x × x × x × x × x × x × 1〉

run〈�x: >(power 7 〈true〉)〉 �

run〈x〉 �

run〈�x: >(: : : run〈2〉 : : :)〉

�

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

run〈�x: >(power 7 〈x〉)〉

x × x × x × x × x × x × x × 1〉

run〈�x: >(power 7 〈true〉)〉 �

run〈x〉 �

run〈�x: >(: : : run〈x〉 : : :)〉 �

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

run〈

gensym + bindingz}|{
�x: >(power 7 〈x〉)〉

x × x × x × x × x × x × x × 1〉

run〈�x: >(power 7 〈true〉)〉 �

run〈x〉 �

run〈�x: >(: : : run〈x〉 : : :)〉 �

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

run〈

gensym + bindingz}|{
�y: >(power 7 〈y〉)〉

y × y × y × y × y × y × y × 1〉

run〈�x: >(power 7 〈true〉)〉 �

run〈x〉 �

run〈�x: >(: : : run〈x〉 : : :)〉 �

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

Mutable state

and delimited control

I let insertion, assert insertion
I count generated operations

I partial evaluation of sum types and delimited control
Pick two.
We translate staging away: Simplified MetaOCaml Ò System F

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

Mutable state and delimited control
I let insertion, assert insertion
I count generated operations
I partial evaluation of sum types and delimited control

Pick two.
We translate staging away: Simplified MetaOCaml Ò System F

3

Motivation: Typed staging with side effects

Code generation
I partial evaluation
I embedded domain-specific languages
I special-purpose processors

Type safety
I generate well-typed, well-scoped code: no scope extrusion
I splice open code yet run closed code: keep ±-equivalence

Mutable state and delimited control
I let insertion, assert insertion
I count generated operations
I partial evaluation of sum types and delimited control

Pick two.
We translate staging away: Simplified MetaOCaml Ò System F

4

Closing the stage
From staged code to typed closures

Yukiyoshi Kameyama
University of Tsukuba
kameyama@acm.org

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@rutgers.edu

PEPM, January 7, 2008

5

?

6

let rec power n x =
if n = 0
then 1
else x × (power (n � 1) x)

let power7 = �x: (power 7 x)

let power7sum = �x: �y: (power 7 x + y)

6

let rec power n x =
if n = 0
then

〈

1

〉

else

〈>

x ×

>

(power (n � 1) x)

〉

let power7 =

〈

�x:

>

(power 7

〈

x

〉

)

〉
let power7sum =

〈

�x: �y:

>

(power 7

〈

x + y

〉

)

〉

6

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉

let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉

6

From code to thunks

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉

let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉

Ó
let rec power n c =

if n = 0
then �(): 1
else �(): c () × power (n � 1) c ()

let power7 = �(): �x: power 7 (�(): x) ()

let power7sum = �(): �x: power 7 (�(): x + y) ()

6

From code to thunks

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉

let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉

Ó
let rec power n c =

if n = 0
then �(): 1
else �(): c () × power (n � 1) c ()

let power7 = �(): �x: power 7 (�(): x) ()

let power7sum = �(): �x: power 7 (�(): x + y) ()

6

From code to thunks

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉

let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉

Ó
let rec power n c =

if n = 0
then �(): 1
else

let v = power (n � 1) c in

�(): c () × power (n � 1) c ()
let power7 =

let v = power 7 (�(): x) in

�(): �x: power 7 (�(): x) ()

let power7sum =

let v = power 7 (�(): x + y) in

�(): �x: power 7 (�(): x + y) ()

6

From code to thunks

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉

let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉

Ó
let rec power n c =

if n = 0
then �(): 1
else let v = power (n � 1) c in �(): c () × v ()

let power7 = let v = power 7 (�(): x) in �(): �x: v ()

let power7sum = let v = power 7 (�(): x + y) in �(): �x: v ()

6

From code to thunks

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉

let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉

Ó
let rec power n c =

if n = 0
then �(): 1
else let v = power (n � 1) c in �(): c () × v ()

let power7 = let v = power 7 (�(): x) in �(): �x: v ()

let power7sum = let v = power 7 (�(): x + y) in �(): �x: v ()

6

From code to thunks

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉

let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉

Ó
let rec power n c =

if n = 0
then �(

x

): 1
else let v = power (n � 1) c in �(

x

): c (

x

) × v (

x

)
let power7 = let v = power 7 (�(

x

): x) in �(): �x: v (

x

)

let power7sum = let v = power 7 (�(

x

): x + y) in �(): �x: v (

x

)

6

From code to closures

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉

let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉

Ó
let rec power n c =

if n = 0
then �(x): 1
else let v = power (n � 1) c in �(x): c (x) × v (x)

let power7 = let v = power 7 (�(x): x) in �(): �x: v (x)

let power7sum = let v = power 7 (�(x): x + y) in �(): �x: v (x)

6

From code to closures

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉

let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉

Ó
let rec power n c =

if n = 0
then �(x): 1
else let v = power (n � 1) c in �(x): c (x) × v (x)

let power7 = let v = power 7 (�(x): x) in �(): �x: v (x)

let power7sum = let v = power 7 (�(x): x + y) in �(): �x: v (x)

6

From code to closures

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉
let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉

Ó
let rec power n c =

if n = 0
then �(x): 1
else let v = power (n � 1) c in �(x): c (x) × v (x)

let power7 = let v = power 7 (�(x): x) in �(): �x: v (x)

let power7sum = let v = power 7 (�(x;y): x + y) in �(): �x: v (x; y)

6

From code to closures

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉
let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉

Ó
let rec power n c =

if n = 0
then �(x): 1
else let v = power (n � 1) c in �(x): c (x) × v (x)

let power7 = let v = power 7 (�(x): x) in �(): �x: v (x)

let power7sum = let v = power 7 (�(x;y): x + y) in �(): �x: v (x; y)

6

From code to closures

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉
let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉

Ó
let rec power n c =

if n = 0
then � r : 1
else let v = power (n � 1) c in � r : c r × v r

let power7 = let v = power 7 (�(x): x) in �(): �x: v (x)

let power7sum = let v = power 7 (�(x;y): x + y) in �(): �x: v (x; y)

6

From code to closures

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉
let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉

Ó
let rec power n c =

if n = 0
then � r : 1
else let v = power (n � 1) c in � r : c r × v r

let power7 = let v = power 7 (�(x): x) in �(): �x: v (x)
let power7sum = let v = power 7 (�(x;y): x + y) in �(): �x: v (x; y)

6

From code to closures

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉
let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉
let eta f = 〈�x: >(f 〈x〉)〉

〈A〉 Ò : : :� A

〈A〉� 〈B〉 Ò ��: ((: : : ; �)� A)� ((: : : ; �)�B)

(〈A〉� 〈B〉)� 〈C〉 Ò ��:
�
��: ((: : : ; �; �)� A)

� ((: : : ; �; �)�B)
�

� ((: : : ; �)� C)

6

From higher-order code to higher-rank polymorphism

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉
let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉
let eta f = 〈�x: >(f 〈x〉)〉

let rec power0 n c =
if n = 0
then 〈1〉
else if n mod 2 = 0

then 〈let z = >c × >c in >(power0 (n ÷ 2) 〈z〉)〉
else 〈let z = >c × >c in >c × >(power0 ((n � 1) ÷ 2) 〈z〉)〉

〈A〉 Ò : : :� A

〈A〉� 〈B〉 Ò ��: ((: : : ; �)� A)� ((: : : ; �)�B)

(〈A〉� 〈B〉)� 〈C〉 Ò ��:
�
��: ((: : : ; �; �)� A)

� ((: : : ; �; �)�B)
�

� ((: : : ; �)� C)

6

From higher-order code to higher-rank polymorphism

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉
let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉
let eta f = 〈�x: >(f 〈x〉)〉

〈A〉 Ò : : :� A

〈A〉� 〈B〉 Ò ��: ((: : : ; �)� A)� ((: : : ; �)�B)

(〈A〉� 〈B〉)� 〈C〉 Ò ��:
�
��: ((: : : ; �; �)� A)

� ((: : : ; �; �)�B)
�

� ((: : : ; �)� C)

6

From higher-order code to higher-rank polymorphism

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉
let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉
let eta f = 〈�x: >(f 〈x〉)〉

〈A〉 Ò : : :� A

〈A〉� 〈B〉 Ò ��: ((: : : ; �)� A)� ((: : : ; �)�B)

(〈A〉� 〈B〉)� 〈C〉 Ò ��:
�
��: ((: : : ; �; �)� A)

� ((: : : ; �; �)�B)
�

� ((: : : ; �)� C)

6

From higher-order code to higher-rank polymorphism

let rec power n c =
if n = 0
then 〈1〉
else 〈>c × >(power (n � 1) c)〉

let power7 = 〈�x: >(power 7 〈x〉)〉
let power7sum = 〈�x: �y: >(power 7 〈x + y〉)〉
let eta f = 〈�x: >(f 〈x〉)〉

〈A〉 Ò : : :� A

〈A〉� 〈B〉 Ò ��: ((: : : ; �)� A)� ((: : : ; �)�B)

(〈A〉� 〈B〉)� 〈C〉 Ò ��:
�
��: ((: : : ; �; �)� A)

� ((: : : ; �; �)�B)
�

� ((: : : ; �)� C)

7

Outline

Simplified MetaOCaml Ò System F

Staged code Ò Typed closures

Higher-order functions Ò Higher-rank polymorphism

I Extension among environments Ò Injection among types

Scope extrusion Ò Type error

8

Coercions

c = 〈x〉
Ó

power0 n

Ó

� �

�c:�r: :::cr×cr :::

x �

�(x): x �c:�(x;r): :: :c(x;r)×c(x;r) :: :

x; z1 �

�(x;z1): x �c:�(x;z1;r): : ::c(x;z1;r)×c(x;z1;r) :: :

x; z1; z2 �

�(x;z1;z2): x �c:�(x;z1;z2;r): : ::c(x;z1;z2;r)×c(x;z1;z2;r):: :

E
xtend

E
xtend

E
xtend

let rec power0 n c =
if n = 0
then 〈1〉
else if n mod 2 = 0

then 〈let z = >c × >c in >(power0 (n ÷ 2) 〈z〉)〉
else 〈let z = >c × >c in >c × >(power0 ((n � 1) ÷ 2) 〈z〉)〉

8

Coercions

c = 〈x〉
Ó

power0 n

Ó

� �

�c:�r: :::cr×cr :::

x � �(x): x

�c:�(x;r): :: :c(x;r)×c(x;r) :: :

x; z1 �

�(x;z1): x �c:�(x;z1;r): : ::c(x;z1;r)×c(x;z1;r) :: :

x; z1; z2 �

�(x;z1;z2): x �c:�(x;z1;z2;r): : ::c(x;z1;z2;r)×c(x;z1;z2;r):: :

E
xtend

E
xtend

E
xtend

let rec power0 n c =
if n = 0
then 〈1〉
else if n mod 2 = 0

then 〈let z = >c × >c in >(power0 (n ÷ 2) 〈z〉)〉
else 〈let z = >c × >c in >c × >(power0 ((n � 1) ÷ 2) 〈z〉)〉

8

Coercions

c = 〈x〉
Ó

power0 n

Ó

� �

�c:�r: :::cr×cr :::

x � �(x): x

�c:�(x;r): :: :c(x;r)×c(x;r) :: :

x; z1 � �(x;z1): x

�c:�(x;z1;r): : ::c(x;z1;r)×c(x;z1;r) :: :

x; z1; z2 � �(x;z1;z2): x

�c:�(x;z1;z2;r): : ::c(x;z1;z2;r)×c(x;z1;z2;r):: :

E
xtend

E
xtend

E
xtend

C
oerce

C
oerce

let rec power0 n c =
if n = 0
then 〈1〉
else if n mod 2 = 0

then 〈let z = >c × >c in >(power0 (n ÷ 2) 〈z〉)〉
else 〈let z = >c × >c in >c × >(power0 ((n � 1) ÷ 2) 〈z〉)〉

8

Coercions

c = 〈x〉
Ó

power0 n

Ó
� � �c:�r: :::cr×cr :::

x � �(x): x

�c:�(x;r): :: :c(x;r)×c(x;r) :: :

x; z1 � �(x;z1): x

�c:�(x;z1;r): : ::c(x;z1;r)×c(x;z1;r) :: :

x; z1; z2 � �(x;z1;z2): x

�c:�(x;z1;z2;r): : ::c(x;z1;z2;r)×c(x;z1;z2;r):: :

E
xtend

E
xtend

E
xtend

C
oerce

C
oerce

let rec power0 n c =
if n = 0
then 〈1〉
else if n mod 2 = 0

then 〈let z = >c × >c in >(power0 (n ÷ 2) 〈z〉)〉
else 〈let z = >c × >c in >c × >(power0 ((n � 1) ÷ 2) 〈z〉)〉

8

Coercions

c = 〈x〉
Ó

power0 n

Ó
� � �c:�r: :::cr×cr :::

x � �(x): x �c:�(x;r): :: :c(x;r)×c(x;r) :: :

x; z1 � �(x;z1): x �c:�(x;z1;r): : ::c(x;z1;r)×c(x;z1;r) :: :

x; z1; z2 � �(x;z1;z2): x �c:�(x;z1;z2;r): : ::c(x;z1;z2;r)×c(x;z1;z2;r):: :

E
xtend

E
xtend

E
xtend

C
oerce

C
oerce

C
oerce

C
oerce

C
oerce

8

Coercions

〈int〉
Ó

〈int〉� 〈int〉
Ó

� � ()� int ��:((�)� int)�((�)� int)

x � (int)� int ��:((int;�)� int)�((int;�)� int)

x; z1 � (int; int)� int ��:((int;int;�)� int)�((int;int;�)� int)

x; z1; z2 � (int; int; int)� int ��:((int;int;int;�)� int)
�((int;int;int;�)� int)

E
xtend

E
xtend

E
xtend

C
oerce

C
oerce

C
oerce

C
oerce

C
oerce

C
oerce

8

Coercions

〈int〉

Ó

〈int〉� 〈int〉

Ó

� �

()� int ��:((�)� int)�((�)� int)

x �

(int)� int ��:((int;�)� int)�((int;�)� int)

x; z1 �

(int; int)� int ��:((int;int;�)� int)�((int;int;�)� int)

x; z1; z2 �

(int; int; int)� int ��:((int;int;int;�)� int)
�((int;int;int;�)� int)

E
xtend

E
xtend

E
xtend

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>;

Indexed by source type
(identity for int)

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

Induced by the extension
from the environment of creation
to the environment of use

We translate terms by induction on
typing derivations, yet the translation

is compositional in some senses.

9

Coercions elaborate environment polymorphism

In our source language
From environment classifiers (Taha, Nielsen, Calcagno, Moggi)

〈int〉�

to contextual modal type theory (Nanevski, Pfenning, Pientka)?

[] int [x : int] int [x : int; z1 : int] int [x : int; z1 : int; z2 : int] int

Our “de Bruijn indices” maintain ±-equivalence and avoid the
need for Á-polymorphism and negative side conditions.

In our target language
System F lacks environment polymorphism (weakening),
so we roll our own.

9

Coercions elaborate environment polymorphism

In our source language
From environment classifiers (Taha, Nielsen, Calcagno, Moggi)

〈int〉�

to contextual modal type theory (Nanevski, Pfenning, Pientka)?

[] int [int] int [int; int] int [int; int; int] int

Our “de Bruijn indices” maintain ±-equivalence and avoid the
need for Á-polymorphism and negative side conditions.

In our target language
System F lacks environment polymorphism (weakening),
so we roll our own.

9

Coercions elaborate environment polymorphism

In our source language
From environment classifiers (Taha, Nielsen, Calcagno, Moggi)

〈int〉�

to contextual modal type theory (Nanevski, Pfenning, Pientka)?

[] int [int] int [int; int] int [int; int; int] int

Our “de Bruijn indices” maintain ±-equivalence and avoid the
need for Á-polymorphism and negative side conditions.

In our target language
System F lacks environment polymorphism (weakening),
so we roll our own.

10

Scope extrusion
How to count multiplications as we generate them?

Use environment may no longer extend creation environment.

int state is safe: the identity coercion is always available.

let count = ref 0
let rec power n c =

if n = 0
then 〈1〉
else count� !count + 1; : : :

〈int〉 state risks scope extrusion and running open code.

let x = ref 〈1〉 in
〈�y: >(x� 〈y〉; 〈()〉)〉;
!x 〈y〉

10

Scope extrusion
How to count multiplications as we generate them?

Use environment may no longer extend creation environment.

int state is safe: the identity coercion is always available.

let count = ref 0
let rec power n c =

if n = 0
then 〈1〉
else count� !count + 1; : : :

〈int〉 state risks scope extrusion and running open code.

let x = ref 〈1〉 in
〈�y: >(x� 〈y〉; 〈()〉)〉;
!x 〈y〉

10

Scope extrusion
How to count multiplications as we generate them?

Use environment may no longer extend creation environment.

int state is safe: the identity coercion is always available.

let count = ref 0
let rec power n c =

if n = 0
then 〈1〉
else count� !count + 1; : : :

〈int〉 state risks scope extrusion and running open code.

let x = ref 〈1〉 in
〈�y: >(x� 〈y〉; 〈()〉)〉;
!x 〈y〉

11

Conclusion

Simplified MetaOCaml Ò System F

Staged code Ò Typed closures

Higher-order functions Ò Higher-rank polymorphism

Extension among environments Ò Injection among types

Scope extrusion Ò Type error

Small-step operational semantics for source language
(need to show: preserved by translation)

Administrative reductions incur abstraction overhead
(eliminated by true staging) despite specialization

