MANDARIN CHINESE WH-INDEFINITE SCOPE BY MIXED QUOTATION

CHUNG-CHIEH SHAN · RUTGERS UNIVERSITY · APRIL 8, 2010

1. Systematic type-lifting

The semantic analogue of cartography. Annoyingly, the worst case to generalize to keeps getting worse. Today, 2 worse cases: inverse scope; mixed quote.

A monad is a triple $(\mathbb{M}, \eta, \star)$, where ... (Moggi 1991; Wadler 1992; Shan 2001)

Left identity	$\eta(a)\star q=q(a)$
Right identity	$m\star\eta=m$
Associativity	$(m \star q) \star r = m \star \lambda a. q(a) \star r$

a. possible worlds b. alternative sets c. generalized quantifiers

M is a map from types to types. Roughly, it specifies how to lift types.

(9) $\mathbb{M}\alpha = \langle \underline{s}, \alpha \rangle$ $\mathbb{M}\alpha = \langle \alpha, \underline{t} \rangle$ $\mathbb{M}\alpha = \langle \langle \alpha, \underline{t} \rangle, \underline{t} \rangle$

 η (pronounced 'unit') is a unary function that maps values of type α to values of type $\mathbb{M}\alpha$, for every type α . Roughly, it specifies how to lift ordinary values trivially.

(10) $\eta(a)(w) = a$ $\eta(a) = \{a\}$ $\eta(a)(c) = c(a)$

* (pronounced 'bind') is a binary function that maps values of type $\mathbb{M}\alpha$ and values of type $\langle \alpha, \mathbb{M}\beta \rangle$ to values of type $\mathbb{M}\beta$, for every type α and every type β . Roughly, it specifies how lifted values compose with each other.

(11)
$$(m \star q)(w) = q(m(w))(w)$$
 $m \star q = \bigcup_{a \in m} q(a)$ $(m \star q)(c) = m(\lambda a. q(a)(c))$

Generalize to monads for parsimony and modularity: A type-lifting is like an operating system. Worry about it only rarely: at landing sites and islands.

(12) Bush thinks Cheney loves nobody.

(13) Landing: $s: \langle \langle t, \underline{t} \rangle, \underline{t} \rangle \longrightarrow s(\lambda x, x) : t \longrightarrow \lambda c. c(s(\lambda x, x)) : \langle \langle t, \underline{t} \rangle, \underline{t} \rangle$

In worse cases, operating systems need to be nested (Barker and Shan 2008).

Inverse scope in Chinese is also rare (Huang 1982; Aoun and Li 1993).

(14) meige xuesheng dou mai-le yiben shu every student all bought one book'Every student bought a book.'

2. MANDARIN CHINESE WH-INDEFINITES

- (Li 1992; Lin 1996, 1998, 2002, 2004) Existential force:
- (15) ta méi/bu chi shenme he not eat what'He didn't/doesn't eat anything.'
- (16) ta henshao chi shenme he seldom eat what'He seldom eats anything.'
- (17) ta haoxiang chi-le shenme de-yangzi he seem ate what'It seems he ate something.'
- (18) yaoshi ta chi-le shenme, jiu dei fu qianif he ate what then must pay money'If he ate anything, he must pay.'

Licensed by nonveridical context:

(19) *ta chi-le shenme he ate what 'He ate something.'

(20) *měi-ge/henduo ren dou chi-le shenme every/many person all ate what
'Everyone/many people ate something.'

Scope ambiguity:

- (21) ta haoxiang méi/bu chi shenme de-yangzi he seem not eat what
 'It seems he didn't/doesn't eat something.'
 - It seems ne didn't/doesn't eat sometning.
 - a. * \exists > seem > \neg b. seem > \exists > \neg c. seem > \neg > \exists

- (22) haoxiang yaoshi shei zou, Lisi jiu yie yao zou de-yangzi seem if who leave Lisi then also want leave 'It seems that, if someone leaves, Lisi will also leave.' a. $*\exists > \text{seem} > \text{if}$ b. seem $> \exists > \text{if}$ c. seem $> \text{if} > \exists$
- (23) haoxiang měi-ge/henduo ren dou chi-le shenme de-yangzi seem every/many person all ate what
 'It seems everyone/many people ate something.'
 a. *∃ > seem > ∀/many b. seem > ∃ > ∀/many c. seem > ∀/many > ∃
- (24) yaoshi měi-ge/henduo ren dou chi-le shenme, wo jiu fangxin le if every/many person all ate what I then eased 'If everyone/many people ate something, I will be at ease.' a. $*\exists > if > \forall/many$ b. if $> \exists > \forall/many$ c. if $> \forall/many > \exists$

Account: type-lift multiple times.

(25) DP ::= Bush [Bush] : M'Me $(26) (DP \setminus S)/DP ::= seeks \begin{pmatrix} [Seeks]] : M'M \langle e, \langle e, t \rangle \rangle \\ [seeks]] : M'M \langle M'Me, \langle e, t \rangle \rangle \\ [seeks]] : M'M \langle M'Me, \langle e, t \rangle \rangle$ $(27) A ::= A/B B \left\langle \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} A/B \end{bmatrix} \star' \lambda L. \begin{bmatrix} B \end{bmatrix} \star' \lambda R. \eta'(L \star \lambda l. R \star \lambda r. \eta(l(r))) \\ \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} A/B \end{bmatrix} \star' \lambda L. \begin{bmatrix} B \end{bmatrix} \star' \lambda R. \eta'(L \star \lambda l. \eta(l(R))) \\ \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} A/B \end{bmatrix} \star' \lambda L. \begin{bmatrix} B \end{bmatrix} \star' \lambda R. \eta'(L \star \lambda l. \eta(l(R))) \\ \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} B \end{bmatrix} \star' \lambda L. \begin{bmatrix} B \setminus A \end{bmatrix} \star' \lambda R. \eta'(L \star \lambda l. R \star \lambda r. \eta(r(l))) \\ \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} B \end{bmatrix} \star' \lambda L. \begin{bmatrix} B \setminus A \end{bmatrix} \star' \lambda R. \eta'(L \star \lambda l. R \star \lambda r. \eta(r(l))) \\ \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} B \end{bmatrix} \star' \lambda L. \begin{bmatrix} B \setminus A \end{bmatrix} \star' \lambda R. \eta'(L \star \lambda l. R \star \lambda r. \eta(r(l))) \\ \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} B \end{bmatrix} \star' \lambda L. \begin{bmatrix} B \setminus A \end{bmatrix} \star' \lambda R. \eta'(R \star \lambda r. \eta(r(L))) \\ \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} B \setminus A \end{bmatrix} \star' \lambda R. \eta'(R \star \lambda r. \eta(r(E))) \\ \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} B \setminus A \end{bmatrix} \star' \lambda R. \eta'(R \star \lambda r. \eta(r(E))) \end{pmatrix}$

Intuition: weak quantification is fossil. (21b) 'It seems he not-eat something.'

- ordinary scope-taking must use inner (weak) type-lifting;
- wh-indefinites can use outer (strong) type-lifting;
- *haoxiang* 'seem' and *yaoshi* 'if' can be landing sites for outer (and hence also inner) type-lifting.

(Why? Because they introduce hypothetical modal contexts?)

(29) Landing: $s : \langle \langle \langle t, \underline{t} \rangle, \underline{t} \rangle, \underline{t}' \rangle, \underline{t}' \rangle$ $\longrightarrow \lambda C. s(\lambda X. C(X(\lambda x. x))) : \langle \langle t, \underline{t}' \rangle, \underline{t}' \rangle$ $\longrightarrow s(\lambda X. X(\lambda x. x)) : t$ $\longrightarrow \lambda c. c(s(\lambda X. X(\lambda x. x))) : \langle \langle t, \underline{t} \rangle, \underline{t} \rangle$ $\longrightarrow \lambda C. C(\lambda c. c(s(\lambda X. X(\lambda x. x)))) : \langle \langle \langle \langle t, \underline{t} \rangle, \underline{t} \rangle, \underline{t}' \rangle \underline{t}' \rangle$ Thus, sometimes 'intermediate scope' is unavailable:

(30) haoxiang měi-ge/henduo ren dou bu yuanyi gen shei shuohua seem every/many person all not willing with who speak de-yangzi

'It seems everyone/many people are unwilling to speak to someone.' a. $*\exists > \text{seem} > \forall/\text{many} > \neg$ b. seem $> \exists > \forall/\text{many} > \neg$ c. ??seem $> \forall/\text{many} > \exists > \neg$ d. seem $> \forall/\text{many} > \neg > \exists$

(31) haoxiang měi-ge/henduo ren dou henshao gen shei shuohua seem every/many person all seldom with who speak

'It seems everyone/many people seldom speak to someone.'

a. $*\exists > \text{seem} > \forall/\text{many} > \text{seldom}$ b. $\text{seem} > \exists > \forall/\text{many} > \text{seldom}$ c. $*\text{seem} > \forall/\text{many} > \exists > \text{seldom}$ d. $\text{seem} > \forall/\text{many} > \text{seldom} > \exists$

However, sometimes 'intermediate scope' is available:

de-yangzi

- (32) haoxiang yaoshi wo bu chi shenme, ta jiu bu zuo le de-yangzi seem if I not eat what he then not make 'It seems that, if I don't eat something, he will stop cooking (it).' a. $*\exists > \text{seem} > \text{if} > \neg$ b. seem $> \exists > \text{if} > \neg$ c. seem $> \text{if} > \exists > \neg$ d. seem $> \text{if} > \neg > \exists$
- (33) yaoshi ta haoxiang bu chi shenme de-yangzi, (que you bu shuoming if he seem not eat what seem but also not explain shi shenme dongxi ta bu chi), na wo yie zhi neng danxin le be what thing he not eat that I also only can worry 'If he seems to not eat something, (yet doesn't explain what it is that he doesn't eat), then I can only worry.' a. * $\exists > if > seem > \neg$ b. if > $\exists > seem > \neg$ (*)

c. if $> \text{seem} > \exists > \neg$ d. if $> \text{seem} > \neg > \exists$ (*)

(34) wo bu yuanyi shuo yaoshi mĕi-ge ren dou zhichi shei, wo jiu
I not willing say if every person all support who I then zhichi ta support he

'I am unwilling to say that, if everyone supports someone, then I will support that person.'

 $\begin{array}{ll} \text{a.} & \overleftarrow{*\exists} > \neg > \text{if} > \forall & \text{b.} & ??\neg > \exists > \text{if} > \forall \\ \text{c.} & \neg > \text{if} > \exists > \forall & \text{d.} & \overleftarrow{*\neg} > \text{if} > \forall > \exists \\ \end{array}$

It seems *henshao* is a bit stronger than ordinary:

- dou bu yuanyi gen shei shuohua (35)ta haoxiang henshao bu yuanyi gen shei shuohua de-yangzi
he seem seldom not willing with who speakall not willing with who speakhe seem seldom not willing with who speakare unwilling to speak to someone.'
b. seem > $\exists > \forall /many > \neg$ a. * $\exists > seem > seldom > \neg$
c. seem > seldom > $\exists > \neg$ dou bu yuanyi gen shei shuohua de-yangzi
he seem seldom unwilling to speak to someone.'
c. seem > seldom > \neg he seem seldom unwilling to speak to someone.'
a. * $\exists > seem > seldom > \neg$
c. seem > seldom > $\exists > \neg$
 - (36) tamen haoxiang henshao shuo yaoshi shei zou, tamen jiu zou they seem seldom say if who leave they then leave de-yangzi

```
'They seem to seldom say that, if someone leaves, they will also leave.' a. *\exists > \text{seem} > \text{seldom} > \text{if} b. *\text{seem} > \exists > \text{seldom} > \text{if} c. seem > \text{seldom} > \exists > \text{if} d. seem > \text{seldom} > \exists
```

(37) yaoshi nimen henshao ba měi-ben shu dou jiaogei shei baoguan, na if you.pl seldom every book all give who store that jiu bu yong zhe-me da de xiangzi le then not use this-much big box
'If you seldom give every book to someone for storage, then you don't

need a box this big.'

a. $*\exists > if > seldom > \forall$ b. $?if > \exists > seldom > \forall$ c. if > seldom > \exists > \foralld. if > seldom > \forall > \exists

3. MIXED QUOTATION

(Davidson 1979) Mix mention and use—two dimensions (Potts 2007):

- (38) Quine says quotation 'has a certain anomalous feature'.
 - a. (mention) has a certain anomalous feature is used to mean some f.
 - b. (use) Quine says quotation f.
- (39) Bush is proud of his 'eckullectic' reading list.
 - a. (mention) eckullectic is used to mean some f.
 - b. (use) Bush is proud of his f(reading list).
- (40) Cheney's reading list is far more 'eckullectic', not to mention longer.
 - a. (mention) eckullectic is used to mean some f.
 - b. (use) Cheney's reading list is far more f, not to mention longer.

Why *Bush's use*? Anaphora/presupposition resolved in parse (Geurts and Maier 2003). More fossil.

What is using to mean? Utterance subevents (type u), but not hierarchical; possibly hypothetical or generic. Intuition: decoding Gödel numbers; interpreting programs; curating meanings from other minds (elm, Aristotle).

eckullectic reading list

eclectic

eckullectic

4. MIXED QUOTATION WITH QUANTIFIERS

Quantifying over utterance contexts:

(54) a. Every day, I would promise to finish the paper 'tomorrow'. b. Danes and Norwegians eat 'frokost' at different times.

Quantification in the quoting language:

(55) Every boy_i claimed to like 'the gift [a relative of his_i] gave me'.

Inverse scope arises from quotation by *haoxiang* 'seem' and *yaoshi* 'if':

(56) 'Every student bought [a book]'.

```
\forall < E
```

(21b) ta haoxiang' méi/bu chi [shenme] 'de-yangzi eat what he seem not seem $> \exists > \neg$

- (22b) haoxiang' yaoshi [shei] zou, Lisi jiu yie yao zou 'de-yangzi who leave Lisi then also want leave seem if seem $> \exists > if$
- (23b) haoxiang' měi-ge/henduo ren dou chi-le [shenme] 'de-yangzi every/many person all ate what seem seem $> \exists > \forall/many$
- (24b) vaoshi' měi-ge/henduo ren dou chi-le [shenme] ' wo jiu fangxin le Huang, Cheng-Teh James. 1982. Logical relations in Chinese and the theperson all ate what I then eased if everv/manv if $> \exists > \forall/manv$
- (32b) haoxiang' yaoshi wo bu chi [shenme], ta jiu bu zuo le 'de-yangzi seem if I not eat what he then not make seem $> \exists > if > \neg$
- (32c) haoxiang yaoshi' wo bu chi [shenme] ' ta jiu bu zuo le de-yangzi I not eat what he then not make if seem seem > if > \exists > \neg

5. Modular type-lifting

Opacity: type-check each monad separately from each other and the general monadic semantics.

Compositionality: lift types repeatedly, each time possibly by a different monad.

Dynamic semantics: simulate pragmatics.

Acknowledgments

Thanks to Mark Baker, Chris Barker, Ivano Caponigro, Sam Cumming, David Dowty, Gabriel Greenberg, Jane Grimshaw, C.-T. James Huang, Pauline Jacobson, Michael Johnson, Makoto Kanazawa, Ezra Keshet, Oleg Kiselvov, Dan Lassiter, Eli Bohmer Lebow, Ernie Lepore, Jo-wang Lin, Emar Maier, Mats Rooth, Ken Safir, Roger Schwarzschild, Stuart Shieber, Matthew Stone, Kaihsu Tai, Chris Tancredi, Audrey Tang, Dylan Thurston, Radboud University Nijmegen, Rutgers University linguistics, SALT XIX at the Ohio State University, and Århus University. This work is supported by the National Science Foundation under Grant IRI-9712068.

References

- Aoun, Joseph, and Yen-hui Audrey Li. 1993. Syntax of scope. Cambridge: MIT Press.
- Barker, Chris, and Chung-chieh Shan. 2008. Donkey anaphora is in-scope binding. Semantics and Pragmatics 1(1):1-46.
- Davidson, Donald. 1979. Quotation. Theory and Decision 11(1):27-40.
- Geurts, Bart, and Emar Maier. 2003. Quotation in context. In Hybrid quotations, ed. Philippe de Brabanter, vol. 17(1) of Belgian Journal of Linquistics, 109–128. Amsterdam: John Benjamins.
- ory of grammar. Ph.D. thesis, Department of Linguistics and Philosophy, Massachusetts Institute of Technology.
- Kaplan, David. 1989. Demonstratives: An essay on the semantics, logic, metaphysics, and epistemology of demonstratives and other indexicals. In Themes from Kaplan, ed. Joseph Almog, John Perry, and Howard Wettstein, chap. 17, 481–563. New York: Oxford University Press.
- Li, Yen-hui Audrey. 1992. Indefinite wh in Mandarin Chinese. Journal of East Asian Linguistics 1(2):125–155.

Lin, Jo-wang. 1996. Polarity licensing and wh-phrase quantification in Chinese. Ph.D. thesis, Department of Linguistics, University of Massachusetts.

-. 1998. On existential polarity wh-phrases in Chinese. Journal of East Asian Linguistics 7(3):219–255.

——. 2002. Choice functions and scope of existential polarity whphrases in Mandarin Chinese. Presented at GLOW in Asia 2002; http://semanticsarchive.net/Archive/2IyYjJkY/.

- 2004. Choice functions and scope of existential polarity wh-phrases in Mandarin Chinese. Linguistics and Philosophy 27:451-491.
- Moggi, Eugenio. 1991. Notions of computation and monads. Information and Computation 93(1):55-92.

- Potts, Christopher. 2007. The dimensions of quotation. In *Direct compositionality*, ed. Chris Barker and Pauline Jacobson, 405–431. New York: Oxford University Press.
- Shan, Chung-chieh. 2001. Monads for natural language semantics. In *Proceedings of the ESSLLI-2001 student session*, ed. Kristina Striegnitz, 285–298.

Helsinki: 13th European Summer School in Logic, Language and Information.

Wadler, Philip L. 1992. The essence of functional programming. In POPL '92: Conference record of the annual ACM symposium on principles of programming languages, 1–14. New York: ACM Press.