Entailment above the word level in distributional semantics

Marco Baroni Raffaella Bernardi Chung-chieh Shan

University of Trento University of Trento Ngoc-Quynh Do EM LCT, Free University of Bozen-Bolzano Cornell University, University of Tsukuba

> EACL 25 April 2012

Entailment among composite phrases rather than nouns. (Cheap training data!)

Entailment among logical words rather than content words. (Part of Recognizing Textual Entailment?)

Different entailment relations at different semantic types. (Prediction from formal semantics.)

Entailment among **composite phrases** rather than nouns. (Cheap training data!)

Entailment among logical words rather than content words. (Part of Recognizing Textual Entailment?)

Different entailment relations at different semantic types. (Prediction from formal semantics.)

 $\begin{array}{c|c} AN \models N & \xrightarrow{train} & \xrightarrow{test} & N \models N \\ big cat & cat & & dog & animal \end{array}$

Entailment among **composite phrases** rather than nouns. (Cheap training data!)

Entailment among **logical words** rather than content words. (Part of Recognizing Textual Entailment?)

Different entailment relations at different semantic types. (Prediction from formal semantics.)

Entailment among **composite phrases** rather than nouns. (Cheap training data!)

Entailment among **logical words** rather than content words. (Part of Recognizing Textual Entailment?)

Different entailment relations at different **semantic types**. (Prediction from formal semantics.)

Approaches to semantics

"In order to say what a meaning *is*, we may first ask what a meaning *does*, and then find something that does that." —David Lewis

Approaches to semantics

"In order to say what a meaning *is*, we may first ask what a meaning *does*, and then find something that does that." —David Lewis

Truth, entailment

Every person cried. \models Every professor cried.

A person cried. \nvDash A professor cried.

Formal semantics

Approaches to semantics

"In order to say what a meaning *is*, we may first ask what a meaning *does*, and then find something that does that." —David Lewis

Concepts, similarity

ambulance \sim battleship ambulance \nsim bookstore

For each word *w*, rank contexts *c* by descending $\frac{\Pr(c \mid w)}{\Pr(c)} > 1$.

"pointwise mutual information"

For each word *w*, rank contexts *c* by descending $\frac{\Pr(c \mid w)}{\Pr(c)} > 1$.

"pointwise mutual information"

parentargcount_n arglist_n arglist_j phane_n specity_n qdisc_n carthy_n
parents-to-be_n non-resident_j step-parent_n tc_n ballons_n
eliza_n symptons_n adoptive_j stepparent_n nonresident_j
home-school_n scabrid_n petiolule_n ...

- $\begin{array}{lll} \textbf{professor} & \mbox{william}_n \mbox{ extraordinarius}_n \mbox{ ordinarius}_n \mbox{ francis}_n \mbox{ reid}_n \\ & \mbox{ emeritus}_n \mbox{ emeritus}_j \mbox{ derwent}_n \mbox{ regius}_n \mbox{ laurence}_n \mbox{ edward}_n \\ & \mbox{ carisoprodol}_n \mbox{ adjunct}_j \mbox{ winston}_n \mbox{ privatdozent}_j \mbox{ edward}_j \\ & \mbox{ xanax}_n \mbox{ tenure}_v \mbox{ cialis}_n \mbox{ florence}_n \ \dots \end{array}$

Better: skew divergence (Lee), balAPinc (Kotlerman et al.), ...

Phrases have corpus distributions too!

Ν	cat
AN	white cat
QN	every cat

Phrases have corpus distributions too! But $N \approx AN \not\approx QN$

	Syntactic category							
N	cat	Ν						
AN	white cat	Ν						
QN	every cat	QP						

Phrases have corpus distributions too! But $\mathbf{N}\approx\mathbf{AN}\not\approx\mathbf{QN}$

		Syntactic category	Semantic type
Ν	cat	N	$oldsymbol{e} ightarrow t$
AN	white cat	Ν	$oldsymbol{e} ightarrow t$
QN	every cat	QP	(e ightarrow t) ightarrow t

Phrases have corpus distributions too! But $N \approx AN \not\approx QN$

		Syntactic category	Semantic type
N	cat	Ν	$oldsymbol{e} ightarrow t$
AN	white cat	Ν	$oldsymbol{e} ightarrow t$
AAN	big white cat	Ν	$oldsymbol{e} ightarrow t$
QN	every cat	QP	$(oldsymbol{e} ightarrow t) ightarrow t$
QAN	every big cat	QP	(e ightarrow t) ightarrow t
* AQN	big every cat		
* QQN	some every cat		

Our questions

Entailment among composite phrases rather than nouns?

Entailment among logical words rather than content words?

Different entailment relations at different semantic types?

Our questions

Entailment among composite phrases rather than nouns?

Entailment among logical words rather than content words?

Different entailment relations at different semantic types?

Our questions

Entailment among composite phrases rather than nouns?

Entailment among logical words rather than content words?

Different entailment relations at different semantic types?

Our semantic space

Our semantic space

Our semantic space

 $\xrightarrow{\mathsf{PMI}} \left(\log \frac{\mathsf{Pr}(c|w)}{\mathsf{Pr}(c)} \right)$


```
WordNet
↓
pope ⊨ leader
cat ⊨ carnivore
⋮ (1385)
```


most frequent ↓ big former ⋮ (300)

most frequent ↓ big former ⋮ (256)

Results at noun type

-

	Р	R	F	Accurac	y (95% C.I.)
SVM _{upper}	88.6	88.6	88.5	88.6	(87.3–89.7)
balAPinc _{AN⊨N}	65.2	87.5	74.7	70.4	(68.7–72.1)
balAPinc _{upper}	64.4	90.0	75.1	70.1	(68.4–71.8)
$SVM_{AN \models N}$	69.3	69.3	69.3	69.3	(67.6–71.0)
$cos(N_1, N_2)$	57.7	57.6	57.5	57.6	(55.8–59.5)
$fq(N_1) {<} fq(N_2)$	52.1	52.1	51.8	53.3	(51.4–55.2)

Holding out QN data

*	all	both	each	either	every	few	many	most	much	ou	severa	some
all							+	+			+	+
both				+			—	-			—	+
each												+
either		_										
every							+					
few	—						_					
many	-				-			-		-	÷	+
most							+					
much												+
no												
several	-				-	—						+
some	-		-		—		-					

Holding out QN data

*	all	both	each	either	every	few	many	most	much	ou	several	some
all							+	+			+	+
both				+			-	-			-	+
each												+
either		_										<i>4</i> ,
every							+				ć	ill.OL
few	—						—				9	
many	-				-			-			+	+
most							+					
much												+
no												
several	-				-	-						+
some	-		-		—		-					

Holding out QN data

Results at quantifier type

	Ρ	R	F	Accurac	y (95% C.I.)
SVM _{pair-out}	76.7	77.0	76.8	78.1	(77.5–78.8)
SVM _{quantifier-out}	70.1	65.3	68.0	71.0	(70.3–71.7)
SVM ^Q _{pair-out}	67.9	69.8	68.9	70.2	(69.5–70.9)
SVM ^Q quantifier-out	53.3	52.9	53.1	56.0	(55.2–56.8)
$cos(QN_1, QN_2)$	52.9	52.3	52.3	53.1	(52.3–53.9)
balAPinc _{AN⊨N}	46.7	5.6	10.0	52.5	(51.7–53.3)
SVM _{AN⊨N}	2.8	42.9	5.2	52.4	(51.7–53.2)
$fq(QN_1) {<} fq(QN_2)$	51.0	47.4	49.1	50.2	(49.4–51.0)
balAPinc _{upper}	47.1	100	64.1	47.2	(46.4–47.9)

Holding out each quantifier

Quantifier	Insta	ances	Co	rrect
	Þ	¥	Þ	¥
each	656	656	649	637 (98%)
every	460	1322	402	1293 (95%)
much	248	0	216	0 (87%)
all	2949	2641	2011	2494 (81%)
several	1731	1509	1302	1267 (79%)
many	3341	4163	2349	3443 (77%)
few	0	461	0	311 (67%)
most	928	832	549	511 (60%)
some	4062	3145	1780	2190 (55%)
no	0	714	0	380 (53%)
both	636	1404	589	303 (44%)
either	63	63	2	41 (34%)
Total	15074	16910	9849	12870 (71%)

Our questions answered

Entailment among composite phrases rather than nouns? Yes.

Entailment among logical words rather than content words? Yes.

Different entailment relations at different semantic types? Yes.

Our questions answered

Entailment among logical words rather than content words? **Yes.** (Part of Recognizing Textual Entailment?) See Practical import

Different entailment relations at different semantic types? **Yes.** (Prediction from formal semantics.)

Our questions answered

Entailment among composite phrases rather than nouns? **Yes.** (Cheap training data!) See Practical import

Entailment among logical words rather than content words? **Yes.** (Part of Recognizing Textual Entailment?) See Practical import

Different entailment relations at different semantic types? **Yes.** (Prediction from formal semantics.)

Ongoing work:

- How does the SVM work?
- Missing experiments?
- How to compose semantic vectors?

Holding out each quantifier pair

Quantifier pair Instances Correct			Quantifier pair Instances Correct		
all = some	1054	1044 (99%)	some ⊭ every	484	481 (99%)
all = several	557	550 (99%)	several ⊭ all	557	553 (99%)
each = some	656	647 (99%)	several ⊭ every	378	375 (99%)
all ⊨ many	873	772 (88%)	some ⊭ all	1054	1043 (99%)
much = some	248	217 (88%)	many ⊭ every	460	452 (98%)
every = many	460	400 (87%)	some ⊭ each	656	640 (98%)
many \models some	951	822 (86%)	few⊭all	157	153 (97%)
all = most	465	393 (85%)	many ⊭ all	873	843 (97%)
several \models some	580	439 (76%)	both ⊭ most	369	347 (94%)
both = some	573	322 (56%)	several ⊭ few	143	134 (94%)
many \models several	594	113 (19%)	both ⊭ many	541	397 (73%)
most = many	463	84 (18%)	many ⊭ most	463	300 (65%)
both = either	63	1 (2%)	either ⊭ both	63	39 (62%)
			many ⊭ no	714	369 (52%)
			some ⊭ many	951	468 (49%)
			few⊭many	161	33 (20%)
			both ⊭ severa	l 431	63 (15%)