
A Computational Interpretation of Classical S4 Modal Logic

Chung-chieh Shan∗
Harvard University

(Draft of April 21, 2005)

Plans are programs, and programs are proofs. In particular, multiagent plans are dis-
tributed programs, and distributed programs are modal proofs. Inspired by these slogans, I
present a new proof system for classical S4 modal logic, based most directly on Wadler’s
system for classical propositional logic (2003) and Ghani, de Paiva, and Ritter’s system for
intuitionistic modal logic (1998). The system generalizes to multiple S4-modalities and im-
plications among them, thus modeling multiple agents that share references to proof terms
and perform distributed computations by confluent reductions.

I. INTRODUCTION

“Can you both make it on Tuesday at noon?”, said Alice to
Bob and Carol, trying to schedule a joint meeting among the
three of them. Her question expresses the shared plan below.

• Bob knows if he is available, and announces it.
• Carol knows if she is available, and announces it.
• The logical  of the two boolean values can then be

computed.

One way to formalize this plan is the proof tree below, in
which a formula like A�X means that Alice knows a boolean
value, and a sequent like B�X, C�X → A�X means that, if
Bob and Carol each know a boolean value, then so can Alice.

(1)

�IdR
A�X, A�X → X

�IdR
A�X, A�X → X

And
A�X, A�X → X

�R
A�X, A�X → A�X

A/B�LI
B�X, A�X → A�X

A/C�LI
B�X, C�X → A�X

This proof tree, read from top to bottom, can be interpreted as
follows.

• The �IdR rule says that, if Alice knows a boolean, then
there is one. We apply this rule twice to deduce that, if
Alice knows two booleans, then there are two.

• The And rule says that, for any two booleans, there is a
third boolean that is their logical .

• Consequently, the �R rule says that, if Alice knows two
booleans, then she can compute a third boolean that is
their logical .

• Since Bob and Carol can both speak to Alice, we then
apply two �LI rules in succession, concluding that,
given that Bob knows a boolean and Carol knows a
boolean, Alice can know a boolean as well.

∗Electronic address: ccshan@post.harvard.edu; URL: http://www.eecs.
harvard.edu/∼ccshan

The goal of this paper is to turn modal proofs like (1) into
a distributed program that agents like Alice, Bob, and Carol
can together execute as a plan. This transformation of proofs
into programs takes two steps. First, we decorate each proof
with a program term; for example, as shown in Figure 1, the
proof (1) can be decorated with the program term

(2) db〈c〉ceC • db〈c0〉ce
A
C.(db〈b〉ceB • db〈b0〉ce

A
B.(db〈b0  c0〉ceA • x̄)),

in which

• b denotes Bob’s knowledge of his own availability,
shown as B b : X in the figure;
• c denotes Carol’s knowledge of her own availability,

shown as C c : X in the figure; and
• x̄ denotes the continuation once the plan is completed,

shown as x̄ : A�X in the figure.

Roughly speaking, the Cut operator • combines two terms by
function application, and the body of a function abstraction is
enclosed by a pair of parentheses. Double brackets, such as
those surrounding db〈b0  c0〉ceA, mean to enter a new modal
proof context, and correspond to the �R deduction rule.

Second, we specify term reductions that model program ex-
ecution. Suppose that Bob answers “no” to Alice’s question.
Without waiting for Carol’s response, Alice would be able to
deduce that it is not the case that Bob and Carol can both make
it on Tuesday at noon. To model this deduction, we substitute
 for b in (2), then perform the following sequence of re-
ductions.

(3)

db〈c〉ceC • db〈c0〉ce
A
C.(db〈〉ceB • db〈b0〉ce

A
B.(db〈b0  c0〉ceA • x̄))

⇒ db〈c〉ceC • db〈c0〉ce
A
C.(db〈  c0〉ceA • x̄)

⇒ db〈c〉ceC • db〈c0〉ce
A
C.(db〈〉ceA • x̄)

⇒ db〈〉ceA • x̄

Our reduction rules model distributed computation, because
they are amenable to implementation in the form of an algo-
rithm whose execution is distributed among multiple agents
that communicate with each other.

II. BACKGROUND

The idea of turning proof trees into program terms, and
proof reduction into program execution, is the celebrated

mailto:ccshan@post.harvard.edu
http://www.eecs.harvard.edu/~ccshan
http://www.eecs.harvard.edu/~ccshan

2 Draft of April 21, 2005

�IdR
A b0 : X, A c0 : X B · | b0 : X

�IdR
A b0 : X, A c0 : X B · | c0 : X

And
A b0 : X, A c0 : X B · | b0  c0 : X

�R
A b0 : X, A c0 : X, B b : X, C c : X B x̄ : A�X | db〈b0  c0〉ceA : A�X

RE
A b0 : X, A c0 : X, B b : X, C c : X B db〈b0  c0〉ceA • x̄ C x̄ : A�X

A/B�LI
db〈b0〉ce

A
B.(db〈b0  c0〉ceA • x̄) : B�X | A c0 : X, B b : X, C c : X C x̄ : A�X

��LE
A c0 : X, B b : X, C c : X B db〈b〉ceB • db〈b0〉ce

A
B.(db〈b0  c0〉ceA • x̄) C x̄ : A�X

A/C�LI
db〈c0〉ce

A
C.(db〈b〉ceB • db〈b0〉ce

A
B.(db〈b0  c0〉ceA • x̄)) : C�X | B b : X, C c : X C x̄ : A�X

��LE
B b : X, C c : X B db〈c〉ceC • db〈c0〉ce

A
C.(db〈b〉ceB • db〈b0〉ce

A
B.(db〈b0  c0〉ceA • x̄)) C x̄ : A�X

Figure 1: Decorating each node in the proof tree (1) with a program term

Curry-Howard correspondence. This correspondence treats
propositions in a logic as types in a programming language,
and proofs of these propositions as programs of these types.
For example, Church’s (1932, 1940) λ-calculus is not just a
functional programming language but also a proof system for
intuitionistic propositional logic: The expression

(4) 3 × 4 + 5

is not just a program that computes an integer but also a con-
structive proof that there exists an integer. If I denotes the
proposition that there exists an integer, then this proof uses
three axioms—called 3, 4, and 5—that conclude I, and two
further axioms—called × and +—that conclude I ⊃ I ⊃ I. We
can also read the expression (4) as a plan for computing an in-
teger; as such, the plan makes certain assumptions about the
arithmetic capabilities of the executing agent, named by the
axioms 3, 4, 5, ×, and +.

The Curry-Howard correspondence is relevant to discourse
processing and multiagent planning, because plans can be
viewed as programs (Stone 2005). On one hand, if plans are
programs, then multiagent plans are distributed programs. On
the other hand, if programs are proofs, then distributed pro-
grams are proofs of knowledge and action. One example was
given at the beginning of this paper. Another example is the
following dialog.1 In this dialog, Alice and Bob construct a
shared plan to send a letter.

A
When you have time, write a letter to Carol and
thank her a bit.

B
In your next letter then, could you please give me
her address? I don’t know if I have it here.

A
Okay.

1 This fictional dialog is based on a Mandarin Chinese telephone conversa-
tion in the CallHome corpus (part of ma 0003.txt).

Because Alice and Bob can reason about knowledge states
and preconditions in the future, their plan makes sense even
though Alice never gives Carol’s address to Bob during this
conversation.

To study multiagent plans, then, I develop here the Curry-
Howard correspondence for one particular logic of knowledge
and action, namely classical S4 modal logic. In other words, I
formulate classical S4 so as to treat propositions as types in a
distributed programming language, and proofs of these propo-
sitions as distributed programs of these types. The system
straightforwardly generalizes to multiple S4-modalities and
implications between them.

Though the Curry-Howard correspondence has been stud-
ied extensively for intuitionistic S4 (Bierman and de Paiva
2000; Davies and Pfenning 1996; Goubault-Larrecq 1996;
Martini and Masini 1996; inter alia), it has not been consid-
ered explicitly for classical S4 in the literature. As Matthew
Stone noted in personal communication, the law of the ex-
cluded middle is valid in the real world: Bob is either free or
busy at any given time. Thus plans of knowledge and action
in the real world should be viewed as classical proofs, not intu-
itionistic ones, and it is for the former that the Curry-Howard
correspondence is developed here.

III. A SEQUENT CALCULUS FOR CLASSICAL S4

I start with Wadler’s (2003) dual calculus, a crisp presenta-
tion of the Curry-Howard correspondence for classical propo-
sitional (non-modal) logic, and extend it with a dual pair of
S4-modalities.

Figure 2 shows the syntax and inference rules of a sequent
calculus for classical S4 modal logic. This calculus extends
Gentzen’s sequent calculus for classical propositional logic,
as presented by Wadler (2003), with a pair of dual modalities
� and ^. We write A, B for formulas, each of which can be an
atomic formula X, a conjunction A & B, a disjunction A ∨ B, a
negation ¬A, a necessity �A, or a possibility ^A. Logical im-
plication A ⊃ B can be defined as syntactic sugar for ¬A ∨ B
(in the call-by-name case) or ¬(A & ¬B) (in the call-by-value
case).

ma_0003.txt

Draft of April 21, 2005 3

A, BF X | A & B | A ∨ B | �A | ^A | ¬AFormula
ΓF A1, . . . , AmAntecedent
ΘF B1, . . . , BmSucceedent

Γ→ ΘSequent

Id
A, Γ→ Θ, A

�IdR
Γ, �A→ Θ, A

^IdL
A, Γ→ ^A, Θ

�∆→ ^Φ, A
�R

Γ, �∆→ ^Φ, Θ, �A

A, �∆→ ^Φ
^L

^A, Γ, �∆→ ^Φ, Θ

Γ→ Θ, A Γ→ Θ, B
&R

Γ→ Θ, A & B

A, Γ→ Θ

A & B, Γ→ Θ

B, Γ→ Θ
&L

A & B, Γ→ Θ

Γ→ Θ, A

Γ→ Θ, A ∨ B

Γ→ Θ, B
∨R

Γ→ Θ, A ∨ B

A, Γ→ Θ B, Γ→ Θ
∨L

A ∨ B, Γ→ Θ

A, Γ→ Θ
¬R

Γ→ Θ, ¬A

Γ→ Θ, A
¬L

¬A, Γ→ Θ

Γ→ Θ, A A, Γ→ Θ
Cut

Γ→ Θ

Figure 2: Gentzen’s sequent calculus, extended with dual modalities � and ^

Under the Curry-Howard correspondence, formulas are
equivalent to types:

• Atomic formulas are primitive types.
• Conjunctions are product (record) types.
• Disjunctions are sum (tagged union) types.
• Negations are continuation types.
• Necessities are quotation types, in some sense that the

present work explicates formally.
• Possibilities are, dually, continuation quotation types.
• Logical implications are function types.

Sequents are of the form

(5) A1, . . . , Am → B1, . . . , Bn,

or simply Γ→ Θ, where the antecedent Γ and the succedentΘ
are each an unordered bag of formulas, of assumptions and
conclusions, respectively. The intended interpretation of a se-
quent is that the conjunction of the antecedent formulas to
the left entail the disjunction of the succedent formulas to the
right; in other words, if every assumption holds, then some
conclusion holds.

It may help intuition to note that the usual structural rules
of Exchange, Thinning, and Contraction are admissible:

• Because the formulas on each side of a sequent are an
unordered bag, Exchange is admissible.
• Because the Id rule allows for extra formulas on either

side of the sequent, Thinning is admissible.
• Because assumptions and conclusions are duplicated in

the &R, ∨L, and Cut rules, Contraction is admissible.

To support the modalities � and ^, we extend Gentzen’s
system with four new deduction rules.

• The �R and ^L rules are modality introduction rules.
These two rules embody the 4 axiom (frame transitivity)
for S4. They are identical to the νR and πL rules in
Fitting’s (1983) sequent calculus for S4 (page 90).

• The �IdR and ^IdL rules deduce A from �A and ^A
from A. These two rules implement the T axiom (frame
reflexivity) for S4. They are analogous, but not identi-
cal, to Fitting’s νL and πR rules for modality elimina-
tion. Indeed, Figure 3 shows how to derive the latter
rules (renamed �L and ^R for consistency) from �IdR
and ^IdL, together with Cut.

One of the most pleasing aspects of Gentzen’s sequent cal-
culus is that it is dual to itself under the mapping that switches

4 Draft of April 21, 2005

A, Γ, �A→ Θ
�L

Γ, �A→ Θ
≡

�IdR
Γ, �A→ Θ, A A, Γ, �A→ Θ

Cut
Γ, �A→ Θ

Γ→ ^A, Θ, A
^R

Γ→ ^A, Θ
≡

Γ→ ^A, Θ, A
^IdL

A, Γ→ ^A, Θ
Cut

Γ→ ^A, Θ

Figure 3: Derived rules for modality elimination

conjunction with disjunction, and antecedent with succedent,
while leaving negation intact. This duality, explored at length
in Wadler’s paper, is extended here to one between � and ^.

IV. THE MODAL DUAL CALCULUS

The modal dual calculus, shown in Figure 4, decorates the
S4 sequent calculus presented above with proof terms. This
term calculus extends Wadler’s system by dividing each side
of a sequent into two zones: An antecedent in a sequent is now
of the form

(6) A1, . . . , Am ; B1, . . . , Bn,

or simply Γ ; ∆, where the formulas before the semicolon con-
stitute the classical zone, and the formulas after the semicolon
constitute the modal zone. Dually, an succedent in a sequent
is now of the form

(7) C1, . . . ,Ck ; D1, . . . ,Dl,

or simply Φ ; Θ, where—mirroring horizontally—the formu-
las before the semicolon constitute the modal zone, and the for-
mulas after the semicolon constitute the classical zone. Note
that, just like the comma, the semicolon is part of the struc-
tural punctuation of the antecedent rather than a logical con-
nective.

The intended interpretation of the modal zones is for the
modal assumptions B1, . . . , Bn to be implicitly boxed, and the
modal conclusions C1, . . . ,Ck to be implicitly diamonded. By
structurally distinguishing modal formulas from classical ones
in the environment of a sequent, this system achieves such
desirable proof-theoretic properties as a modal substitution
lemma. This dual-zone approach to modal proofs has been
successfully applied to other modal and linear logics (Barber
1996; Ghani et al. 1998; Girard 1993; Schellinx 1996; Wadler
1993, 1994); the calculus here is most directly based on Ghani
et al.’s (1998) Dual Intuitionistic Modal Logic.

As is usual for the proofs-as-programs approach, each as-
sumption in a sequent is labeled with a variable. Less usual is
the use, inherited from Wadler’s dual calculus, of covariables
to label each conclusion in a sequent. Different (co)variables
are used to label formulas in each zone:

• classical variables x, y, z;
• modal variables a, b, c;

• modal covariables ā, b̄, c̄; and
• classical covariables x̄, ȳ, z̄.

A different Id deduction rule is used for (co)variables of each
sort: respectively IdR, �IdR, ^IdL, and IdL. Using these Id
rules and the Cut rule, many useful structural rules can be
derived in this calculus, including those shown in Figure 5.
Two of those rules, RE and ��LE, are used in the opening
example in Figure 1 on page 2.

Decorating the modality introduction rules �R and ^L are
the term constructor db〈 〉ce and the coterm constructor 〈[]〉, respec-
tively.

Just as with Wadler’s dual calculus, the modal dual calculus
would not be confluent if it were equipped with the general
Cut elimination reduction rule that is obvious. Two derivatives
of the calculus exist that are confluent: a call-by-value version
and a call-by-name version. Typing and reduction rules for
the call-by-value modal dual calculus are presented in Figures
6 and 8; those for the call-by-name version are presented in
Figures 7 and 9.

To achieve confluence and extensional βη-equality, classi-
cal assumptions in the call-by-value calculus are restricted to
atomic and possibility (^) types only. Meanwhile, the recur-
sive definition of coterms is modified to use a single syntactic
form for coabstraction: an unordered bag of patterns vi paired
with statements S i, notated

(8) v1.(S 1) 8 · · · 8 vm.(S m).

By definition (see the top part of Figure 6), all patterns vi are in
η-long normal form; for instance, the only valid pattern (up to
α-conversion) for the type X & Y , where X and Y are atomic,
is 〈x, y〉. A (well-typed) coterm of the above form, when cut
against a value term V of the same type, is guaranteed to con-
tain exactly one branch vi.(S i) whose pattern part vi matches V .
Depending on the (type of the) pattern, the coabstraction may
bind zero or more classical assumptions, modal assumptions,
and classical conclusions simultaneously. Thus, as shown in
parts of Figure 6, the typing rules &L, ∨L, ¬L, and �LI, which
are coterm constructors, are derived rather than primitive in
the call-by-value version of the calculus.

As for the call-by-name version of the modal dual calculus,
confluence and extensional βη-equality are achieved dually.
Classical conclusions are restricted to atomic and necessity
(�) types only. Meanwhile, the recursive definition of terms
is modified to use a single syntactic form for abstraction: an

Draft of April 21, 2005 5

A, BF X | A & B | A ∨ B | �A | ^A | ¬AType

M,N F x | a | db〈M〉ce | 〈M,N〉 | 〈M〉inl | 〈N〉inr | [K]not | (S).x̄ | (S).〈[ā]〉Term
K, LF x̄ | ā | 〈[K]〉 | [K, L] | fst[K] | snd[L] | not〈M〉 | x.(S) | db〈a〉ce.(S)Coterm

S F M • KStatement

ΓF x1 : A1, . . . , xm : AmClassical antecedent
∆F a1 : A1, . . . , am : AmModal antecedent

ΦF b̄1 : B1, . . . , b̄m : BmModal succeedent
ΘF ȳ1 : B1, . . . , ȳm : BmClassical succeedent

Γ ; ∆ B Φ ; Θ | M : ARight sequent
K : A | Γ ; ∆ C Φ ; ΘLeft sequent
Γ ; ∆ B S C Φ ; ΘCenter sequent

IdR
x : A, Γ ; ∆ B Φ ; Θ | x : A

IdL
x̄ : A | Γ ; ∆ C Φ ; Θ, x̄ : A

�IdR
Γ ; ∆, a : A B Φ ; Θ | a : A

^IdL
ā : A | Γ ; ∆ C ā : A, Φ ; Θ

· ; ∆ B Φ ; · | M : A
�R

Γ ; ∆ B Φ ; Θ | db〈M〉ce : �A

K : A | · ; ∆ C Φ ; ·
^L

〈[K]〉 : ^A | Γ ; ∆ C Φ ; Θ

Γ ; ∆ B Φ ; Θ | M : A Γ ; ∆ B Φ ; Θ | N : B
&R

Γ ; ∆ B Φ ; Θ | 〈M,N〉 : A & B

K : A | Γ ; ∆ C Φ ; Θ

fst[K] : A & B | Γ ; ∆ C Φ ; Θ

L : B | Γ ; ∆ C Φ ; Θ
&L

snd[L] : A & B | Γ ; ∆ C Φ ; Θ

Γ ; ∆ B Φ ; Θ | M : A

Γ ; ∆ B Φ ; Θ | 〈M〉inl : A ∨ B

Γ ; ∆ B Φ ; Θ | N : B
∨R

Γ ; ∆ B Φ ; Θ | 〈N〉inr : A ∨ B

K : A | Γ ; ∆ C Φ ; Θ L : B | Γ ; ∆ C Φ ; Θ
∨L

[K, L] : A ∨ B | Γ ; ∆ C Φ ; Θ

K : A | Γ ; ∆ C Φ ; Θ
¬R

Γ ; ∆ B Φ ; Θ | [K]not : ¬A

Γ ; ∆ B Φ ; Θ | M : A
¬L

not〈M〉 : ¬A | Γ ; ∆ C Φ ; Θ

Γ ; ∆ B S C Φ ; Θ, x̄ : A
RI

Γ ; ∆ B Φ ; Θ | (S).x̄ : A

x : A, Γ ; ∆ B S C Φ ; Θ
LI

x.(S) : A | Γ ; ∆ C Φ ; Θ

Γ ; ∆ B S C ā : A, Φ ; Θ
^RI

Γ ; ∆ B Φ ; Θ | (S).〈[ā]〉 : ^A

Γ ; ∆, a : A B S C Φ ; Θ
�LI

db〈a〉ce.(S) : �A | Γ ; ∆ C Φ ; Θ

Γ ; ∆ B Φ ; Θ | M : A K : A | Γ ; ∆ C Φ ; Θ
Cut

Γ ; ∆ B M • K C Φ ; Θ

Figure 4: Wadler’s dual calculus, extended with dual modalities � and ^

6 Draft of April 21, 2005

Id
x : A, Γ ; ∆ B x • x̄ C Φ ; Θ, x̄ : A ≡

IdR
x : A, Γ ; ∆ B Φ ; Θ, x̄ : A | x : A

IdL
x̄ : A | x : A, Γ ; ∆ C Φ ; Θ, x̄ : A

Cut
x : A, Γ ; ∆ B x • x̄ C Φ ; Θ, x̄ : A

�Id
Γ ; ∆, a : A B a • x̄ C Φ ; Θ, x̄ : A ≡

�IdR
Γ ; ∆, a : A B Φ ; Θ, x̄ : A | a : A

IdL
x̄ : A | Γ ; ∆, a : A C Φ ; Θ, x̄ : A

Cut
Γ ; ∆, a : A B a • x̄ C Φ ; Θ, x̄ : A

^Id
x : A, Γ ; ∆ B x • ā C ā : A, Φ ; Θ ≡

IdR
x : A, Γ ; ∆ B ā : A, Φ ; Θ | x : A

^IdL
ā : A | x : A, Γ ; ∆ C ā : A, Φ ; Θ

Cut
x : A, Γ ; ∆ B x • ā C ā : A, Φ ; Θ

�^Id
Γ ; ∆, a : A B a • ā C ā : A, Φ ; Θ ≡

�IdR
Γ ; ∆, a : A B ā : A, Φ ; Θ | a : A

^IdL
ā : A | Γ ; ∆, a : A C ā : A, Φ ; Θ

Cut
Γ ; ∆, a : A B a • ā C ā : A, Φ ; Θ

Γ ; ∆ B Φ ; Θ, x̄ : A | M : A
RE

Γ ; ∆ B M • x̄ C Φ ; Θ, x̄ : A
≡
Γ ; ∆ B Φ ; Θ, x̄ : A | M : A

IdL
x̄ : A | Γ ; ∆ C Φ ; Θ, x̄ : A

Cut
Γ ; ∆ B M • x̄ C Φ ; Θ, x̄ : A

Γ ; ∆ B ā : A, Φ ; Θ | M : A
^RE

Γ ; ∆ B M • ā C ā : A, Φ ; Θ
≡
Γ ; ∆ B ā : A, Φ ; Θ | M : A

^IdL
ā : A | Γ ; ∆ C ā : A, Φ ; Θ

Cut
Γ ; ∆ B M • ā C ā : A, Φ ; Θ

Γ ; ∆ B ā : A, Φ ; Θ | M : ^A
^^RE

Γ ; ∆ B M • 〈[ā]〉 C ā : A, Φ ; Θ
≡ Γ ; ∆ B ā : A, Φ ; Θ | M : ^A

^IdL
ā : A | Γ ; ∆ C ā : A, Φ ; Θ

^L
〈[ā]〉 : ^A | Γ ; ∆ C ā : A, Φ ; Θ

Cut
Γ ; ∆ B M • 〈[ā]〉 C ā : A, Φ ; Θ

K : A | x : A, Γ ; ∆ C Φ ; Θ
LE

x : A, Γ ; ∆ B x • K C Φ ; Θ
≡

IdR
x : A, Γ ; ∆ B Φ ; Θ | x : A K : A | x : A, Γ ; ∆ C Φ ; Θ

Cut
x : A, Γ ; ∆ B x • K C Φ ; Θ

K : A | Γ ; ∆, a : A C Φ ; Θ
�LE

Γ ; ∆, a : A B a • K C Φ ; Θ
≡

�IdR
Γ ; ∆, a : A B Φ ; Θ | a : A K : A | Γ ; ∆, a : A C Φ ; Θ

Cut
Γ ; ∆, a : A B a • K C Φ ; Θ

K : �A | Γ ; ∆, a : A C Φ ; Θ
��LE

Γ ; ∆, a : A B db〈a〉ce • K C Φ ; Θ
≡

�IdR
Γ ; ∆, a : A B Φ ; Θ | a : A

�R
Γ ; ∆, a : A B Φ ; Θ | db〈a〉ce : �A K : �A | Γ ; ∆, a : A C Φ ; Θ

Cut
Γ ; ∆, a : A B M • 〈[ā]〉 C Φ ; Θ

Figure 5: Derived structural rules

Draft of April 21, 2005 7

A′, B′ F X | ^APrime types
v,wF x | db〈a〉ce | [x̄]not | 〈v,w〉 | 〈v〉inl | 〈w〉inrPatterns
K, LF x̄ | ā | 〈[K]〉 | M1.(S 1) 8 · · · 8 Mm.(S m)Call-by-value coterm
Γ′ F x1 : A′1, . . . , xm : A′mCall-by-value classical antecedent

Γ′ ; ∆ B Φ ; Θ | M : ACall-by-value right sequent
K : A | Γ′ ; ∆ C Φ ; ΘCall-by-value left sequent
Γ′ ; ∆ B S C Φ ; ΘCall-by-value center sequent

IdR
x : A′, Γ′ ; ∆ B Φ ; Θ | x : A′

IdL
x̄ : A | Γ′ ; ∆ C Φ ; Θ, x̄ : A

�IdR
Γ′ ; ∆, a : A B Φ ; Θ | a : A

^IdL
ā : A | Γ′ ; ∆ C ā : A, Φ ; Θ

· ; ∆ B Φ ; · | M : A
�R

Γ′ ; ∆ B Φ ; Θ | db〈M〉ce : �A

K : A | · ; ∆ C Φ ; ·
^L

〈[K]〉 : ^A | Γ′ ; ∆ C Φ ; Θ

Γ′ ; ∆ B Φ ; Θ | M : A Γ′ ; ∆ B Φ ; Θ | N : B
&R

Γ′ ; ∆ B Φ ; Θ | 〈M,N〉 : A & B

Derived rules for &L:
fst[K] ≡ 〈v1,w1〉.(v1 • K) 8 · · · 8 〈vm,wm〉.(vm • K)
snd[L] ≡ 〈v1,w1〉.(w1 • L) 8 · · · 8 〈vn,wn〉.(wn • L)

Γ′ ; ∆ B Φ ; Θ | M : A

Γ′ ; ∆ B Φ ; Θ | 〈M〉inl : A ∨ B

Γ′ ; ∆ B Φ ; Θ | N : B
∨R

Γ′ ; ∆ B Φ ; Θ | 〈N〉inr : A ∨ B

Derived rule for ∨L:
[K, L] ≡ 〈v1〉inl.(v1 • K) 8 · · · 8 〈vm〉inl.(vm • K)

8 〈w1〉inr.(w1 • L) 8 · · · 8 〈wn〉inr.(wn • L)

K : A | Γ′ ; ∆ C Φ ; Θ
¬R

Γ′ ; ∆ B Φ ; Θ | [K]not : ¬A
Derived rule for ¬L:

not〈M〉 ≡ [x̄]not.(M • x̄)

Γ′ ; ∆ B S C Φ ; Θ, x̄ : A
RI

Γ′ ; ∆ B Φ ; Θ | (S).x̄ : A

Γ′1, Γ
′
2 ; ∆1, ∆2 B S i C Φ ; Θ1, Θ2 for each Γ′2 ; ∆2 B · ; Θ2 | vi : A

LI
v1.(S 1) 8 · · · 8 vm.(S m) : A | Γ′1 ; ∆1 C Φ ; Θ1

Γ′ ; ∆ B S C ā : A, Φ ; Θ
^RI

Γ′ ; ∆ B Φ ; Θ | (S).〈[ā]〉 : ^A
Derived rule for �LI:
db〈a〉ce.(S) ≡ db〈a〉ce.(S)

Γ′ ; ∆ B Φ ; Θ | M : A K : A | Γ′ ; ∆ C Φ ; Θ
Cut

Γ′ ; ∆ B M • K C Φ ; Θ

Figure 6: Call-by-value calculus

8 Draft of April 21, 2005

A8, B8 F X | �ACoprime types
p, qF x̄ | 〈[ā]〉 | not〈x〉 | [p, q] | fst[p] | snd[q]Copatterns

M,N F x | a | db〈M〉ce | (S 1).K1 8 · · · 8 (S m).KmCall-by-name term
Θ8 F ȳ1 : B81, . . . , ȳm : B8mCall-by-name classical succeedent

Γ ; ∆ B Φ ; Θ8 | M : ACall-by-name right sequent
K : A | Γ ; ∆ C Φ ; Θ8Call-by-name left sequent
Γ ; ∆ B S C Φ ; Θ8Call-by-name center sequent

IdR
x : A, Γ ; ∆ B Φ ; Θ8 | x : A

IdL
x̄ : A8 | Γ ; ∆ C Φ ; Θ8, x̄ : A8

�IdR
Γ ; ∆, a : A B Φ ; Θ8 | a : A

^IdL
ā : A | Γ ; ∆ C ā : A, Φ ; Θ8

· ; ∆ B Φ ; · | M : A
�R

Γ ; ∆ B Φ ; Θ8 | db〈M〉ce : �A

K : A | · ; ∆ C Φ ; ·
^L

〈[K]〉 : ^A | Γ ; ∆ C Φ ; Θ8

Derived rule for &R:
〈M,N〉 ≡ (M • p1).fst[p1] 8 · · · 8 (M • pm).fst[pm]

8 (N • q1).snd[q1] 8 · · · 8 (N • qn).snd[qn]

K : A | Γ ; ∆ C Φ ; Θ8

fst[K] : A & B | Γ ; ∆ C Φ ; Θ8
L : B | Γ ; ∆ C Φ ; Θ8

&L
snd[L] : A & B | Γ ; ∆ C Φ ; Θ8

Derived rules for ∨R:
〈M〉inl ≡ (M • p1).[p1, q1] 8 · · · 8 (M • pm).[pm, qm]
〈N〉inr ≡ (N • q1).[p1, q1] 8 · · · 8 (N • qn).[pn, qn]

K : A | Γ ; ∆ C Φ ; Θ8 L : B | Γ ; ∆ C Φ ; Θ8
∨L

[K, L] : A ∨ B | Γ ; ∆ C Φ ; Θ8

Derived rule for ¬R:
[K]not ≡ (x • K).not〈x〉

Γ ; ∆ B Φ ; Θ8 | M : A
¬L

not〈M〉 : ¬A | Γ ; ∆ C Φ ; Θ8

Γ1, Γ2 ; ∆ B S i C Φ1, Φ2 ; Θ81, Θ
8
2 for each pi : A | Γ2 ; · C Φ2 ; Θ82 RI

Γ1 ; ∆ B Φ1 ; Θ81 | (S 1).p1 8 · · · 8 (S m).pm : A

x : A, Γ ; ∆ B S C Φ ; Θ8
LI

x.(S) : A | Γ ; ∆ C Φ ; Θ8

Derived rule for ^RI:
(S).〈[ā]〉 ≡ (S).〈[ā]〉

Γ ; ∆, a : A B S C Φ ; Θ8
�LI

db〈a〉ce.(S) : �A | Γ ; ∆ C Φ ; Θ8

Γ ; ∆ B Φ ; Θ8 | M : A K : A | Γ ; ∆ C Φ ; Θ8
Cut

Γ ; ∆ B M • K C Φ ; Θ8

Figure 7: Call-by-name calculus

Draft of April 21, 2005 9

V ,W F x | db〈M〉ce | 〈V,W〉 | 〈V〉inl | 〈W〉inr | [K]not | (S).〈[ā]〉Values
E F 〈{ },M〉 | 〈V, { }〉 | 〈{ }〉inl | 〈{ }〉inrTerm context

S {db〈M〉ce/db〈a〉ce} ≡ S {M/a}
S {[K]not/[x̄]not} ≡ S {K/x̄}
S {〈V,W〉/〈v,w〉} ≡ S {V/v}{W/w}
S {〈V〉inl/〈v〉inl} ≡ S {V/v}

S {〈W〉inr/〈w〉inr} ≡ S {W/w}

Pattern substitution

(βL)v V • v.(S) 8 · · · ⇒v S {V/v} if the substitution S {V/v} is defined (above)
(ηL)v v1.(v1 • K) 8 · · · 8 vm.(vm • K) ⇒v K if no variable in any vi appears free in K

(βR)v (S).x̄ • K ⇒v S {K/x̄}
(ηR)v (M • x̄).x̄ ⇒v M if x̄ does not appear free in M

(βR^)v (S).〈[ā]〉 • 〈[K]〉 ⇒v S {K/ā}
(ηR^)v (M • 〈[ā]〉).〈[ā]〉 ⇒v M if ā does not appear free in M

(ςL)v E{M} ⇒v (M • v1.(E{v1} • ȳ) 8 · · · 8 vm.(E{vm} • ȳ)).ȳ if M is not a value

Figure 8: Call-by-value reductions

P,QF x̄ | 〈[K]〉 | [V,W] | fst[V] | snd[W] | not〈M〉 | db〈a〉ce.(S)Covalues
GF [{ },K] | [P, { }] | fst[{ }] | snd[{ }]Coterm context

S {〈[K]〉/〈[ā]〉} ≡ S {K/ā}
S {not〈M〉/not〈x〉} ≡ S {M/x}

S {[P,Q]/〈p, q〉} ≡ S {P/p}{Q/q}
S {fst[P]/fst[p]} ≡ S {P/p}

S {snd[Q]/snd[q]} ≡ S {Q/q}

Copattern substitution

(βL)n M • x.(S) ⇒n S {M/x}
(ηL)n x.(x • K) ⇒n K if x does not appear free in K

(βR)n (S).p 8 · · · • P ⇒n S {P/p} if the substitution S {P/p} is defined (above)
(ηR)n (M • p1K).p1 8 · · · 8 (M • pm).pm ⇒n M if no covariable in any pi appears free in M

(βL�)n db〈M〉ce • db〈a〉ce.(S) ⇒n S {M/a}
(ηL�)n db〈a〉ce.(db〈a〉ce • K) ⇒n K if a does not appear free in K

(ςL)n G{K} ⇒n y.((y •G{p1}).p1 8 · · · 8 (y •G{pm}).pm • K) if K is not a covalue

Figure 9: Call-by-name reductions

10 Draft of April 21, 2005

unordered bag of copatterns pi in η-long normal form, paired
with statements S i. See Figure 7 for details.

The modifications to Wadler’s dual calculus outlined in
the previous two paragraphs are needed to ensure confluence
and extensional βη-equality, but not related to the addition of
modality. This technique of expanding (co)patterns in bind-
ing constructs to η-long normal form seems equivalent to the
way Ghani (1995) obtains βη-equality for a λ-calculus with
coproducts.

It is straightforward to generalize these calculi to multiple
S4-modalities that are situated with respect to each other in a
partially ordered set of implications. In addition to the ^RI
and �LI typing rules shown in these figures, various commu-
nication rules may be added to such multiple-S4 calculi to
model whether a direct channel is present from one agent to an-
other. It is such communication rules as A/B�LI and A/C�LI
that enable us to model Alice’s scheduling plan in Figure 1.

V. RELATED AND FUTURE WORK

Basic meta-theoretic properties like confluence and exten-
sional βη-equality are designed for but remain to be proven.

Jia and Walker (2003, 2004) model distributed computa-

tion using modal logic, by treating intuitionistic modal proofs
as distributed programs. Their modality models spatial con-
nectivity among network locations. By contrast, this paper
uses a classical S4 modality that models epistemic possibility
among knowledge states. They give an operational semantics
that makes network communication explicit: transitions take
place locally at individual places on the network, rather than
globally by rewriting an entire proof term as done here. Such
an operational semantics would be useful for the logic in this
paper as well: a proof of a modal formula like A�X may cor-
respond to a name (or a remote pointer) in a process calculus.

The need to model spatial connectivity alongside epistemic
possibility (not to mention actions and time) calls for con-
structive modal logics with Kripke semantics that uniformly
accommodate multiple modalities with different axioms. Con-
structive formulations of labeled deduction and of hybrid logic
(Braüner and de Paiva 2003) appear promising in this regard.

Acknowledgments

Thanks to Balder ten Cate, Barbara Grosz, Stuart Shieber,
Matthew Stone, and Philip Wadler. This work is supported by
National Science Foundation Grant IRI-9712068.

Barber, Andrew. 1996. Dual intuitionistic linear logic. Tech. Rep.
ECS-LFCS-96-347, Laboratory for Foundations of Computer Sci-
ence, Department of Computer Science, University of Edinburgh.

Bierman, Gavin M., and Valeria C. V. de Paiva. 2000. On an intu-
itionistic modal logic. Studia Logica 65(3):383–416.

Braüner, Torben, and Valeria C. V. de Paiva. 2003. Intuitionistic
hybrid logic. Submitted to Journal of Applied Logic.

Church, Alonzo. 1932. A set of postulates for the foundation of logic.
Annals of Mathematics II.33(2):346–366.

———. 1940. A formulation of the simple theory of types. Journal
of Symbolic Logic 5(2):56–68.

Davies, Rowan, and Frank Pfenning. 1996. A modal analysis of
staged computation. In POPL ’96: Conference record of the an-
nual ACM symposium on principles of programming languages,
258–270. New York: ACM Press.

Fitting, Melvin Chris. 1983. Proof methods for modal and intuition-
istic logics. Dordrecht: Reidel.

Ghani, Neil. 1995. βη-equality for coproducts. In TLCA ’95: Pro-
ceedings of the 2nd international conference on typed lambda
calculi and applications, ed. Mariangiola Dezani-Ciancaglini and
Gordon D. Plotkin, 171–185. Lecture Notes in Computer Science
902, Berlin: Springer-Verlag.

Ghani, Neil, Valeria C. V. de Paiva, and Eike Ritter. 1998. Ex-
plicit substitutions for constructive necessity. In Proceedings
of ICALP’98: 25th international colloquium on automata, lan-
guages, and programming, ed. Kim Guldstrand Larsen, Sven
Skyum, and Glynn Winskel, 743–754. Lecture Notes in Computer
Science 1443, Berlin: Springer-Verlag.

Girard, Jean-Yves. 1993. On the unity of logic. Annals of Pure and
Applied Logic 59(3):201–217.

Goubault-Larrecq, Jean. 1996. On computational interpretations of
the modal logic S4: I. cut elimination. Interner Bericht 1996-35,
Institut für Logik, Komplexität und Deduktionssysteme, Univer-
sität Karlsruhe.

Jia, Limin, and David Walker. 2003. Modal proofs as distributed pro-
grams. Tech. Rep. TR-671-03, Department of Computer Science,
Princeton University.

———. 2004. Modal proofs as distributed programs (extended ab-
stract). In Programming languages and systems: Proceedings
of ESOP 2004, 13th European symposium on programming, ed.
David A. Schmidt, 219–233. Lecture Notes in Computer Science
2986, Berlin: Springer-Verlag.

Martini, Simone, and Andrea Masini. 1996. A computational inter-
pretation of modal proofs. In Wansing (1996), chap. 12, 213–241.

Schellinx, Harold. 1996. A linear approach to modal proof theory. In
Wansing (1996), chap. 3, 33–43.

Stone, Matthew. 2005. Communicative intentions and conversational
processes in human-human and human-computer dialogue. In
Approaches to studying world-situated language use: Bridging
the language-as-product and language-as-action traditions, ed.
John C. Trueswell and Michael K. Tanenhaus, chap. 2, 39–69.
Cambridge: MIT Press.

Wadler, Philip L. 1993. A taste of linear logic. In Mathematical
foundations of computer science: 18th international symposium,
ed. Andrzej M. Borzyszkowski and Stefan Sokolowski, 185–210.
Lecture Notes in Computer Science 711, Berlin: Springer-Verlag.

———. 1994. A syntax for linear logic. In Mathematical foun-
dations of programming semantics: 9th international conference
(1993), ed. Stephen D. Brookes, Michael G. Main, Austin Melton,
Michael W. Mislove, and David A. Schmidt, 513–529. Lecture
Notes in Computer Science 802, Berlin: Springer-Verlag.

———. 2003. Call-by-value is dual to call-by-name. In ICFP ’03:
Proceedings of the ACM international conference on functional
programming. New York: ACM Press.

Wansing, Heinrich, ed. 1996. Proof theory of modal logic. Dordrecht:
Kluwer.

	Introduction
	Background
	A sequent calculus for classical S4
	The modal dual calculus
	Related and future work
	Acknowledgments
	References

