Functional Programming

Sexy types in action

Editor: Philip Wadler, University of Edinburgh; wadler@inf.ed.ac.uk

Chung-chieh Shan

Harvard University
Cambridge MA 02138 USA

The Hindley-Milner type system (Hindley 1969; Mil-
ner 1978) and its Damas-Milner inference algorithm
(Damas and Milner 1982) for the A-calculus (Church
1932, 1940) are widely adopted in modern functional pro-
gramming languages like Haskell and ML. The system
delicately balances power and tractability: many poly-
morphic functions can be built, and many safety con-
straints checked, without bogging down compilers in un-
decidability or programmers in verbosity.

As programmers became familiar with the system’s
power, however, they also became frustrated by its lim-
itations. Much recent research thus explores the design
space beyond the Hindley-Milner-Damas system, termed
“sexy types” by Peyton Jones (2003). Two features of-
ten requested and implemented are higher-rank polymor-
phism and existential types. This annotated bibliography
summarizes these features (§1) and motivates them by
enumerating their present-day applications (§2-3).

1 Polymorphic typed A-calculus

A polymorphic value is one that can take multiple types.
We are concerned here with parametric polymorphism
(Strachey 1967), which corresponds to universal quantifi-
cation over types. To start, we review the typing rules for
the polymorphic (or second-order) typed A-calculus, also
known as System F, invented independently by Girard
(1972; Girard et al. 1989) and Reynolds (1974, 1990).

A function is created by discharging an assumption in
the typing environment, and invoked by applying it to a
value of the appropriate argument type.

[x:7]
F:tr-17 E:7

E:7 . FE: 7

—I

—-E (D

Ax:tE:1—>1

Universal quantification is introduced by generalizing the
type of a value, and eliminated by specializing or instan-

tiating a polymorphic type.

——— V1 (a does not escape) (2a)
Aa. E :Ya.t
E :Va. 1
- (2b)
Et:7[1t/a]

In the VI rule above, the type variable a that is quantified
over must not escape—that is, it must not appear free in
an undischarged typing assumption. When a type checker
uses this rule bottom-up to check a universal type, it en-
sures that the side condition on the type variable a holds
by generating a fresh dummy type (termed an eigenvari-
able) and substituting it for a. That is, it a-converts the
bound variable a in VYa. 7.

In the VE rule above, 7’[7/a] denotes the capture-
avoiding substitution of 7 for a in 7’. The result of the
substitution is said to subsume the universally quantified
type Ya. 7.

The term syntax of the polymorphic typed A-calculus
makes both of these rules explicit. For example, the
polymorphic identity function is written as the term
Aa. Ax:a. x. It is given the type Ya.a — a by the fol-
lowing derivation.

[x:a]

—_)I'x
Ax:a.x:a—a

VI
Aa.Ax:a.x:VYa.a — a

Because it is too verbose to mark every introduction and

elimination of a universal quantifier, we would like to

make the rules in (2) implicit in terms, as follows.

4

E:Va.Tt
¥I (a does not escape) ——— VE (3)

E:Va.T E :7'[t/a)

We would also like to omit the argument type 7 in the
function term Ax: 7. E. Unfortunately, this move makes
type checking and type inference undecidable (Wells
1999). To recover decidability while preserving implicit
polymorphism, the Hindley-Milner-Damas type system

Functional Programming

trades off expressive power by restricting the rank of
types to 1. The rank of a type is the maximum number of
function arrows to the left of which a universal quantifier
appears. Formally, the following syntax defines a strati-
fied language of rank-n types 7", where n ranges over the
non-negative integers.

0 u=

7 = Va ! l‘r" — 7

a|T0—>T0

A rank-0 type 7° has no universal quantifier; it is called a
monotype. Hindley, Milner, and Damas’s innovation is to
require monotypes in (1), allow rank-1 types in (3), and
add the “let” construct below for polymorphic assump-
tions (Clément et al. 1986).

[x Z'Tl]
E:7' FE 70 @)

Let*
letx=Ein E : 7°

In the polymorphic typed A-calculus, the only (closed)
term of the type Ya. a — a is the identity function.
In general, terms in the polymorphic typed A-calculus
are always parametric, which intuitively means that a
value acts “uniformly” at all types it can take, regardless
of how universally quantified type variables are instanti-
ated. A function that negates booleans while leaving non-
booleans unchanged would not be parametric. This prop-
erty of uniformity, or type abstraction (Reynolds 1983),
is usually formalized by introducing logical relations be-
tween types and guaranteeing that, for example, a func-
tion always maps related arguments to related results.

A semantic model of the polymorphic typed A-calculus
is said to be parametric if all of its values are paramet-
ric, so the only value in the model that has the type
VYa.a — a, for example, is the identity function. In other
words, if f is a function from a to b, and g is a value of
type Ya. a — a, then a parametric model guarantees that
fog = go f. More generally, each polymorphic type
gives rise to a parametricity law, an equation satisfied by
any value expressible as a A-term and any value in a para-
metric model (Reynolds 1983; Wadler 1989, 2004). As
we will see below, useful parametricity laws tend to arise
from higher-rank polymorphism.

2 Higher-rank polymorphism

Extensions to Hindley, Milner, and Damas’s system al-
low higher-rank polymorphism: types with rank higher

than 1. Type inference for rank-2 polymorphism is de-
cidable without any help in the form of additional type
annotations by the programmer, but is too complicated to
be implemented so far (Kfoury and Tiuryn 1992; Kfoury
and Wells 1994). Type inference for arbitrarily higher-
rank polymorphism requires programmer annotations in
order to be decidable. Several such systems have been
proposed and implemented in production compilers such
as the Glasgow Haskell Compiler (Jones 1997; Odersky
and Laufer 1996; Peyton Jones and Shields 2004; Le Bot-
lan and Rémy 2003).

2.1 Algebraic data types

Polymorphic functions can encode recursive data types
(Reynolds 1983; Reynolds and Plotkin 1993; Bohm and
Berarducci 1985). For example, a singly-linked list of
integers is defined in Haskell as

data IntegerList = Nil | Cons Integer IntegerList,

but we can encode this recursive data type as the poly-
morphic function type

IntegerList = V1.1 — (Integer > 1 > 1) — L.

Informally speaking, a list of integers is equivalent to a
parametrically polymorphic function that maps a pair of
list constructors (one for the empty list and one for non-
empty lists) to a list, for any (abstract) list data type.

2.2 Lazy functional state threads

The runST function, for running a stateful computation
in a purely functional language like Haskell (Launchbury
and Peyton Jones 1994, 1995; Moggi and Sabry 2001),
has the rank-2 type

Ya.(¥s. ST s a) — a.

The type variable s is a dummy that identifies the state
thread being run: two operations that are performed
within the same state thread automatically have their s
variables unified by the type checker. The type for runST
thus ensures that state does not leak or interfere with other
stateful computations. The proof of this safety property
uses parametricity at the type Vs. ST s a.

2.3 Generic (polytypic) programming

A type a is a “traversable term” type if any traversal on
the subterms of a can be “lifted” to a traversal on a itself.

Functional Programming

For instance, if we have a traversal on list elements, then
we have a traversal on lists:

map :: Ya. (a — a) — ([a] — [a])

This idea of lifting traversals from subterms to terms
can be combined with a moderate amount of run-time
type-safe casting to achieve a form of generic program-
ming (Limmel and Peyton Jones 2003). The traversable
types a belong to a type class Term, which supports oper-
ations such as

gmapT :: (Nb.Term b = b — b) —

Va.Term a = a — a).

Note that this operation has a rank-2 type: the type vari-
able b is universally quantified over (with a type-class
constraint) to the left of an arrow.

If one wishes to avoid run-time type-casting, then
one would need to manually write—or mechanically
generate—a slightly different traversal function for every
type or type constructor over which generic processing is
desired. For example, just as one would write the map
function above for the list type constructor, one would
write a function of the rank-2 type

Yf.(Ya.(a— a) » (f a—> f a)) — (Fix f — Fix f)
for the type constructor Fix, defined by
data Fix f = Fix (f (Fix f)),

which has the second-order kind (+ — *) — *. In short, it
takes terms of higher-rank types to (generically) operate
on types of higher-order kinds (Hinze 2000b).

2.4 Converting between monads

Yakeley (2003) mentions an application of higher-rank
functions that is similar in shape to the above approaches
to generic programming: converting between data types
that are parameterized over a monad (and thus have
higher-order kind). Suppose that we are writing an in-
terpreter for an impure programming language, and have
defined a type of values as follows.

data Value m = Str String
| Num Double
| Fun ([Value m] — m (Value m))
| Cmd ([Value m] — m ().

Here m is the monad in which impure computations take
place. If we need to move from one monad m, to another
monad m;, then we need a function to map Value m,
to Value my. Such a function would have the following
rank-2 (and higher-order polymorphic) type:

VYmy . ¥my.(Va.my a = my a) — (Value my — Value m,).

The coproducts technique of monad combination (Liith
and Ghani 2002) can also be viewed as a type of second-
order kind whose values are manipulated by functions
of higher rank. Given two well-behaved monads m;
and my, their coproduct Plus m; m, is a new monad,
where the type constructor Plus has the second-order kind
(* = %) = (¥ > %) = (* — *). Accompanying the type
constructor Plus is a term combinator coprod, which has
the rank-2 type

VYmy. Ymy. ¥Yn. (Monad my, Monad m,, Monad n) =
Ma.mya—->na)— Na.mya—>na) —

(Ya. Plus my mp a — n a).

2.5 Deforestation

Define the list-producing function build by
build g = g (:) [I,
and give it the rank-2 type
Ya.(¥b.(a = b — b) > b — b) — [a].
Also, define the list-consuming function reduce by

reduce [k z = z,

reduce (a : as) k z = k a (reduce as k z).

(This is a variant of the standard foldr function.) Then
reduce o build is equal to the identity function in a para-
metric model. This law can be used as a rewriting rule in
the left-to-right direction to eliminate intermediate trees
in an optimizing functional compiler, in other words, to
deforest (Gill et al. 1993).

One way to understand the type of build above is to
see b as an abstract data type that, in the body of each
“builder” argument g passed to build, supports only the
two operations cons :: a — b — b and nil :: b. This en-
capsulation, enforced by build’s rank-2 type, then guaran-
tees by parametricity that reduce o build can be deforested
away. This idea of locally providing data constructors and
enforcing their abstractness using higher-rank types can
be extended to eliminate intermediate data structures like
repeated list concatenations (Voigtlinder 2002).

Functional Programming

2.6 Data type invariants

When the same type constructor is applied to multiple,
distinct types in the same data type definition, as the
monad argument m is applied to both Value m and () in the
definition of Value above, processing the resulting data
type often calls for rank-2 polymorphism.

The Haskell type system’s flexibility in allowing the
same type constructor to be applied to multiple types can
be used to enforce an impressive variety of invariants on
data types (Hinze 2001). For example (Okasaki 1999),
if v is a functor (of kind * — *) that maps a scalar type
to a (fixed-length) vector type, then the type Square v a,
defined by

data Square v a = Square (v (v a)),

is a matrix comprised of scalars of type a—and a square
one at that. In order to look up an entry in such a square
matrix, we can implement a function of the type

(Vb.v b — Int - b) — Square v a — Int — Int — a,

which has rank 2 because the first argument to the func-
tion is a vector-indexing function that is applied at the
type b = a as well as the type b = v a.

For another example (Bird and Paterson 1999), A-terms
can be represented, and required in the static type system
to be closed (that is, to have no free variable), by the type

data Term v = Var v

| App (Term v) (Term v)

l Lam (Term (Maybe v)).
This type is said to be nested, or non-regular, because the
constructor 7erm being defined is applied to not (just) v
but (also) Maybe v. To process A-terms represented thus,
it is useful to define a generalized fold function gfold,
analogous to the reduce function defined above for lists.

In order to be defined, the gfold function must have a
rank-2 type like

VYn.¥b. Va.a »> na) - Ya.na—->na—-na)—>
(Ya.n (Maybe a) —» na) — Term b — n b.

Here the type variable n quantifies universally over any
type constructor of kind * — .

3 Existential types

Existential types are type variables quantified over by an
existential quantifier. For example, the type

da. (a — Int, Int — a)

is inhabited by values such as

(id, id) for a = Int,
(succ, succ) for a = Int,
(ord, chr) for a = Char,

(const 5, const True) for a = Bool,

and so on. Because an existentially quantified type vari-
able can be instantiated by any type when an existentially
typed value is constructed, the consumer of such a value
has no information about the type except what is speci-
fied under the scope of the existential quantification. For
example, given a value of the above type, the only valid
operations on the opaque type a are to map Ints to and
from a. Existential types are thus a natural way to encode
and enforce abstraction boundaries in the type system.

To be more concrete, an existentially typed value like
those above are produced using a rule like

E :[7/a]lt
(', Ey:3a.7): Ja. T

known as packing or J-introduction. An existentially
typed value is consumed using a rule like

1, 5)

[x:7]

E:Jat E:7 (6)
JE* (a does not escape),
let{a,xy=EinE : 7

known as unpacking or 3-elimination. For a to not escape
in the above rule is for it to not appear free in 7’ or an
undischarged typing assumption.

Existential types can be expressed in terms of higher-
rank polymorphism. This reduction proceeds in two
steps. First, a function that consumes an existentially
typed value, say of type (da. 7) — 7’ where T may men-
tion a, is equivalent to a function that is polymorphic
in its input type, in other words of type Va. (r — 7).
This equivalence can be understood computationally: if a
function can operate on the type 7 without knowing what
type a is, then the function must be able to operate on
any type a, and vice versa. The same equivalence can
also be understood logically, as one between the formu-
las (3x. P(x)) = Q and Yx. (P(x) — Q).

The second step of the reduction is a continuation-pass-
ing-style transform: in a parametric model, any type o is
equivalent to the type Vb. (0 — b) — b. (To convert
from o, map v to Ab. Ak:0 — b. kv; to convert to o,
map mto m o id.) If we let o be Ja. T and 7’ be b, then
we get the equivalence

Ja.r = V¥b.(Fa.t) - b) > b = ¥Yb.(Va.(t - b)) - b.

Functional Programming

Via this translation, programs that use existential types
can be transformed to use higher-rank polymorphism in-
stead, and compilers that handle higher-rank polymor-
phism can be extended to handle existential types as well.

Given this translation, we will not distinguish in the
sequel between applications of existential types and “ex-
istential applications” of higher-rank polymorphism. In-
deed, lazy functional state threads, an application of
higher-rank types from §2.2, can be achieved with exis-
tential types too.

3.1 Abstract data types

Existential types can be used as a poor man’s module
facility, encapsulating an abstract data type along with
an access interface comprised of operations on the type
(Mitchell and Plotkin 1988). For example, an abstract
data type for queues, say of the element type Task, might
be expressed as the type

Ja. (a,a — Task — a,a — Maybe (Task, a)).

The three elements of the tuple are, respectively: the
empty queue; a function to append a 7ask to a queue; and
a function to remove a Task from the front of a queue,
if any. Because the queue type a is existentially quan-
tified over, implementation details such as the internal
representation of queues are hidden from clients. Mul-
tiple implementations of the same abstract data type—in
other words, multiple values of the same existential type
above—can be introduced and used in the same program;
the type system prevents queues from one implementa-
tion from being operated on by another.

3.2 Object orientation

In the terminology of object-oriented programming, to
encapsulate an object is to combine its state and behav-
ior into one unit whose internal composition is protected
from external prying. For example, a one-dimensional
point might be encapsulated as the type

da. (a,a — Double,a — Double — a).

Here the type a represents the state of the point, and
Double is the type of the point’s coordinate. The three
elements of the tuple are, respectively: the current state
of the point, a function to query the point for its coordi-
nate, and a function to move the point. The latter two
elements of the tuple are methods operating on the point;

as such, they are defined once for each point class rather
than each point object.

Heterogeneous values of existential type can be stored
in lists and other data structures (Laufer 1996). Further-
more, given a type system that supports subtyping—as
with type class constraints in Haskell (Wadler and Blott
1989; Hall et al. 1996), or extensible records in some
Haskell extensions (Gaster and Jones 1996; Jones and
Peyton Jones 1999)—we can create functions that are
polymorphic in the object-oriented sense, that is, func-
tions that can act on objects of different concrete imple-
mentation types as long as they support certain required
interfaces. Finally, we can implement a variety of in-
heritance mechanisms in terms of higher-order kinds and
higher-rank types, hence displaying the essential differ-
ences among these mechanisms (Pierce and Turner 1994).

When an existential type is used to encapsulate an ab-
stract data type as described in §3.1, a value of the type
is deconstructed as soon as the consumer gets its hands
on the value. This deconstruction pattern—in which an
existentially typed value is opened up only once, at the
top level of a program unit—is an idiom that corresponds
to importing a module. By contrast, the encoding of ob-
ject orientation in terms of existential types described in
this section uses a dual deconstruction pattern in which
an existentially typed value is opened up every time it is
accessed, at the leaves of program expressions.

3.3 Programs from algebraic specifications

Programs written in a functional style are often derived
from specifications of abstract data types. A specifica-
tion explains how values are constructed, mutated, and
observed. Because (purely) functional programming lan-
guages support equational reasoning, a functional imple-
mentation of an abstract data type can often be derived
from, and optimized based on, a set of algebraic laws that
together determine the observable behavior of the type
(Hughes 1995).

A monad m, for example, supports two ways to con-
struct values of type m a: either from a value of type a,
or from a value of type m b and a value of type b — m a.

unit::a - ma

bind :mb— (b-o>ma)>ma

A simple implementation of a monad, then, is an alge-
braic data type in which unit and bind are simply data

Functional Programming

constructors.

data M a = Unit a
unit = Unit

bind = Bind

Jb. Bind (M b) (b — M a)

The data type M defined above naturally involves exis-
tential quantification over the type variable b. This imple-
mentation of a monad is of course not an optimized one,
but similar principles (and algebraic calculations) lead to
optimized implementations of monads for nondetermin-
ism and backtracking (Hinze 2000a; Claessen 2002).

3.4 Data type invariants

To check code that consumes an existential type da. T
using the JE rule in (6), the type checker treats a as an
eigenvariable, just as when checking code that produces
a universal type. That is, it generates a fresh dummy type
and substitutes it for a. The dummy type is not allowed
to leak out beyond the scope of the existential elimina-
tion construct, so the consumer can only use a in ways
provided for in 7.

Fresh dummy type symbols can be used to enforce data
type invariants at compile time. When these dummy types
are used only at compile time and correspond to no run-
time data, they are called phantom types. One use of
phantom types that we have already seen is non-interfer-
ence checking on lazy functional state threads, described
in the first section. Another use is to make sure that code
operating on red-black trees preserves invariants on sub-
tree depth (Kahrs 2001). There, the dummy symbol is
generated by existential quantification rather than rank-2
polymorphism, and represents not a stateful computation
thread but the root of a binary tree.

3.5 Containing static type-checking

As shown by the applications above, skillful use of sexy
types can often turn what is usually regarded as a run-
time invariant into a compile-time check. To implement
such checks is to reify dynamic properties of values as
refined distinctions between types. These distinctions in
turn increase the degree of heterogeneity among types in
the program.

For example, to ensure that a database front-end pro-
gram generates only well-typed queries for the back-end,
Yakeley (2003) uses static types to distinguish between
relational table columns containing integers, strings, and

dates. With such a distinction in place, a homogeneous
list of type [Column] can no longer store a list of table
columns, because each column may contain a different
type of data, and Column Integer cannot be placed in the
same list as Column String. What can be placed in the
same list are values of the type Ja. Column a. Thus the
Haskell code that generates SQL code can take as input a
list of type [Any Column], where Any is defined by

data Any f = da. Any (f a),

and is a type constructor of kind (* — *) — *. Similarly,
Yakeley’s Scheme interpreter in Haskell uses existential
quantification to abstract over the number of mutually re-
cursive values defined in a letrec binding form.

A special case of using existential quantification to
contain the heterogeneity of static types is to dynami-
cally type and cast arbitrary Haskell values. Haskell’s
type system turns out to be sexy enough to express dy-
namic typing without additional language support (Baars
and Swierstra 2002).

In programs that interact with less predictable aspects
of the real world, it is impossible to guarantee that the
human user will never enter a letter when asked to in-
put a number, that the database client will always send
a well-formed query, that the comma-delimited data file
will always contain the same number of fields on every
line, and so on. In such situations, existential types let
us take advantage of static checking when possible, but
defer to run time if necessary (Kiselyov 2003).

3.6 Dynamic type-class instances

It is often useful to create type class instances dynami-
cally in Haskell, but it is not obvious how. For example, in
order to conduct integer arithmetic modulo 683 and 359,
we might define instances like

instance Integral a = Num (Mod683 a) where . ..

instance Integral a = Num (Mod359 a) where . ..
so that the Haskell expression
100 x 100 + 200 x 200 :: Mod683 Int
computes
mod (mod (100 x 100) 683 + mod (200 x 200) 683) 683.

However, if the moduli to use only become known at run
time (for example in a cryptography server), then we need
to dynamically manufacture values of the existential type

da. Num a = a — Int

Functional Programming

from these moduli. Haskell provides no special language
support for such dynamic (or local-scope) creation of
type-class instances, but it can be achieved by encod-
ing values as types (Thurston 2001; Kiselyov and Shan
2004).

4 Acknowledgements

This article was originally prepared for Norman Ram-
sey’s seminar on advanced functional programming at
Harvard University in the fall of 2003. Thanks to Stefan
Kahrs, Oleg Kiselyov, Gregory Morrisett, Simon L. Pey-
ton Jones, Josef Svenningsson, Janis Voigtldnder, Philip
L. Wadler, Carl Witty, and Ashley Yakeley for respond-
ing to our original query and helpful comments on draft
versions. This work is supported by the United States
National Science Foundation under Grant BCS-0236592.

References

Baars, Arthur 1., and S. Doaitse Swierstra. 2002. Typing dy-
namic typing. In ICFP (2002), 157-166.

Bird, Richard, and Ross Paterson. 1999. de Bruijn notation as
a nested datatype. Journal of Functional Programming 9(1):
77-91.

Bo6hm, Corrado, and Alessandro Berarducci. 1985. Automatic
synthesis of typed A-programs on term algebras. Theoretical
Computer Science 39:135-154.

Church, Alonzo. 1932. A set of postulates for the foundation of
logic. Annals of Mathematics 11.33(2):346-366.

. 1940. A formulation of the simple theory of types.
Journal of Symbolic Logic 5(2):56-68.

Claessen, Koen. 2002. Parallel parsing processes. Submitted
to the Journal of Functional Programming. http://www.
math.chalmers.se/~koen/Papers/parsing-pearl.ps.

Clément, Dominique, Thierry Despeyroux, Gilles Kahn, and
Joélle Despeyroux. 1986. A simple applicative language:
Mini-ML. In Proceedings of the 1986 ACM conference on
Lisp and functional programming, 13-27. New York: ACM
Press.

Damas, Luis, and Robin Milner. 1982. Principal type-schemes
for functional programs. In POPL ’82: Conference record of
the annual ACM symposium on principles of programming
languages, 207-212. New York: ACM Press.

Gaster, Benedict R., and Mark P. Jones. 1996. A polymorphic
type system for extensible records and variants. Tech. Rep.
NOTTCS-TR-96-3, School of Computer Science and Infor-
mation Technology, University of Nottingham.

Gill, Andrew, John Launchbury, and Simon L. Peyton Jones.
1993. A short cut to deforestation. In Functional program-
ming languages and computer architecture: 6th conference,
223-232. New York: ACM Press.

Girard, Jean-Yves. 1972. Interprétation fonctionnelle et élim-
ination des coupures dans 1’arithmétique d’ordre supérieur.
These de doctorat d’état, Université Paris VII.

Girard, Jean-Yves, Paul Taylor, and Yves Lafont. 1989. Proofs
and types. Cambridge: Cambridge University Press.

Hall, Cordelia V., Kevin Hammond, Simon L. Peyton Jones, and
Philip L. Wadler. 1996. Type classes in Haskell. ACM Trans-
actions on Programming Languages and Systems 18(2):109—
138.

Hindley, J. Roger. 1969. The principal type-scheme of an object
in combinatory logic. Transactions of the American Mathe-
matical Society 146:29-60.

Hinze, Ralf. 2000a. Deriving backtracking monad transform-
ers. In ICFP ’00: Proceedings of the ACM international
conference on functional programming, vol. 35(9) of ACM
SIGPLAN Notices, 186—-197. New York: ACM Press.

.2000b. A new approach to generic functional program-
ming. In POPL ’00: Conference record of the annual ACM
symposium on principles of programming languages, 119—
132. New York: ACM Press.

.2001. Manufacturing datatypes. Journal of Functional
Programming 11(5):493-524.

Hughes, John. 1995. The design of a pretty-printing library. In
Advanced functional programming: st international spring
school on advanced functional programming techniques, ed.
Johan Jeuring and Erik Meijer, 53-96. Lecture Notes in
Computer Science 925, Berlin: Springer-Verlag.

ICFP. 2002. ICFP ’02: Proceedings of the ACM international
conference on functional programming. New York: ACM
Press.

Jones, Mark P. 1997. First-class polymorphism with type infer-
ence. In POPL '97: Conference record of the annual ACM
symposium on principles of programming languages, 483—
496. New York: ACM Press.

Jones, Mark P., and Simon L. Peyton Jones. 1999. Lightweight
extensible records for Haskell. In Proceedings of the 1999
Haskell workshop, ed. Erik Meijer. Tech. Rep. UU-CS-1999-
28, Department of Computer Science, Utrecht University.

Kahrs, Stefan. 2001. Red-black trees with types. Journal of
Functional Programming 11(4):425-432.

Kfoury, Assaf J., and Jerzy Tiuryn. 1992. Type reconstruction
in finite rank fragments of the second-order A-calculus. In-
formation and Computation 98(2):228-257.

Kfoury, Assaf J., and Joe B. Wells. 1994. A direct algorithm
for type inference in the rank-2 fragment of the second-order
A-calculus. In Proceedings of the 1994 ACM conference

Functional Programming

on Lisp and functional programming, 196-207. New York:
ACM Press.

Kiselyov, Oleg. 2003. Polymorphic stanamically balanced AVL
trees. http://okmij.org/ftp/Haskell/types.html.

Kiselyov, Oleg, and Chung-chieh Shan. 2004. Implicit
configuration—or, type classes reflect the value of types.
http://www.eecs.harvard.edu/~ccshan/prepose/.

Lammel, Ralf, and Simon L. Peyton Jones. 2003. Scrap your
boilerplate: A practical design pattern for generic program-
ming. In Proceedings of the 2003 ACM SIGPLAN interna-
tional workshop on types in languages design and implemen-
tation, 26-37. New York: ACM Press.

Laufer, Konstantin. 1996. Type classes with existential types.
Journal of Functional Programming 6(3):485-517.

Launchbury, John, and Simon L. Peyton Jones. 1994. Lazy
functional state threads. In PLDI '94: Proceedings of the
ACM conference on programming language design and im-
plementation, vol. 29(6) of ACM SIGPLAN Notices, 24-35.
New York: ACM Press.

. 1995. State in Haskell. Lisp and Symbolic Computation
8(4):293-341.

Le Botlan, Didier, and Didier Rémy. 2003. MLF: Raising ML
to the power of System F. In ICFP ’03: Proceedings of the
ACM international conference on functional programming,
27-38. New York: ACM Press.

Liith, Christoph, and Neil Ghani. 2002. Composing monads
using coproducts. In ICFP (2002), 133-144.

Milner, Robin. 1978. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sciences 17:
348-375.

Mitchell, John C., and Gordon D. Plotkin. 1988. Abstract types
have existential type. ACM Transactions on Programming
Languages and Systems 10(3):470-502.

Moggi, Eugenio, and Amr Sabry. 2001. Monadic encapsulation
of effects: A revised approach (extended version). Journal of
Functional Programming 11(6):591-627.

Odersky, Martin, and Konstantin Léufer. 1996. Putting type
annotations to work. In POPL ’96: Conference record of
the annual ACM symposium on principles of programming
languages, 54-67. New York: ACM Press.

Okasaki, Chris. 1999. From fast exponentiation to square matri-
ces: An adventure in types. In ICFP ’99: Proceedings of the
ACM international conference on functional programming,
vol. 34(9) of ACM SIGPLAN Notices, 28-35. New York:
ACM Press.

Peyton Jones, Simon L. 2003. Wearing the hair shirt: A retro-
spective on Haskell. Invited talk at POPL 2003.

Peyton Jones, Simon L., and Mark B. Shields. 2004. Practi-
cal type inference for arbitrary-rank types. Submitted to the
Journal of Functional Programming. http://research.
microsoft.com/~simonpj/papers/putting/.

Pierce, Benjamin C., and David N. Turner. 1994. Simple
type-theoretic foundations for object-oriented programming.
Journal of Functional Programming 4(2):207-247.

Reynolds, John C. 1974. Towards a theory of type structure. In
Programming symposium: Proceedings, colloque sur la pro-
grammation, ed. Bernard Robinet, 408-425. Lecture Notes
in Computer Science 19, Berlin: Springer-Verlag.

. 1983. Types, abstraction and parametric polymor-
phism. In Information processing 83: Proceedings of the
IFIP 9th world computer congress, ed. R. E. A. Mason, 513—
523. Amsterdam: Elsevier Science.

. 1990. Introduction to part II, polymorphic lambda cal-
culus. In Logical foundations of functional programming:
Proceedings of the Year of Programming Institute, ed. Gérard
Huet, 77-86. Boston: Addison-Wesley.

Reynolds, John C., and Gordon D. Plotkin. 1993. On functors
expressible in the polymorphic typed lambda calculus. Infor-
mation and Computation 105(1):1-29.

Strachey, Christopher. 1967. Fundamental concepts in program-
ming languages. Lecture notes for the International Summer
School in Computer Programming. Also as Higher-Order
and Symbolic Computation 13(1-2):11-49, 2000.

Thurston, Dylan. 2001. Modular arithmetic. Messages to
the Haskell mailing list; http://www.haskell.org/
pipermail/haskell-cafe/2001-August/002132.html;
http://www.haskell.org/pipermail /haskell-cafe/
2001-August/002133.html.

Voigtldnder, Janis. 2002. Concatenate, reverse and map vanish
for free. In ICFP (2002), 14-25.

Wadler, Philip L. 1989. Theorems for free! In FPCA ’89:
4th international conference on functional programming lan-
guages and computer architecture, 347-359. New York:
ACM Press.

. 2004. The Girard-Reynolds isomorphism (sec-
ond edition). http://homepages.inf.ed.ac.uk/wadler/
papers/gr2/gr2.pdf.

Wadler, Philip L., and Stephen Blott. 1989. How to make ad-hoc
polymorphism less ad hoc. In POPL ’89: Conference record

of the annual ACM symposium on principles of programming
languages, 60-76. New York: ACM Press.

Wells, Joe B. 1999. Typability and type checking in System F
are equivalent and undecidable. Annals of Pure and Applied
Logic 98(1-3):111-156.

Yakeley, Ashley. 2003. Where are higher-rank and ex-
istential types used? Message to the Haskell
mailing list; http://haskell.org/pipermail/haskell/
2003-September/012670.html.

Chung-chieh Shan is a computer science PhD candidate
studying computational linguistics at Harvard University.

