
BRAIDING IN CIRCLES

CHUNG-CHIEH SHAN AND DYLAN THURSTON

We use rope to make circular braids such as this:
This design is the circular analogue of the fishbone hair braid. Thanks to the circularity, we could
make it from a single strand of rope, which is typical. In the first half of our demo, we will teach
everyone to make a simple circular braid from a single strand of rope. We will provide the rope.

We draw crossing diagrams to plan the construction of these braids. For example, the design
above corresponds to the following diagram:

The diagram shows the same strand of rope multiple times. Braiding proceeds from left to right.
The red curve follows how rope is newly laid down at each point in time, whereas black curves keep
track of rope previously laid down, like trailing voices in a musical round.

We built a monadic combinator library in Haskell to describe braid designs in general and pro-
duce these diagrams automatically. Using this library, we can describe and diagram a braid—or
a parameterized family of braids—by listing its crossings in sequence. For example, the simple
circular braid that we will teach corresponds to the following diagram:

This diagram is produced by the code below (using the combinators crossing , advance, and begin):

diagonals = Stack 〈
√

2,
√

2〉 〈
√

2,−
√

2〉
unit = replicateM 11 $ do crossing 2 〈−5,−5〉 diagonals

crossing 1 〈0, 0〉 diagonals
crossing 0 〈5, 5〉 diagonals
advance 〈10, 0〉

main = putStr $ svg $ weave (begin 0 (red Open) >> unit >>
replicateM 3 (begin 0 (paint Open) >> unit)) 4

The circular combinator, which has a rank-2 type, draws the completed circular braid:

main = putStr $ svg $ weave (begin 0 (paint Closed) >> circular unit) 4

In the second half of our demo, we will show off our combinator library and highlight
its use of second-order functions, rank-2 types, and lazy evaluation. For example, the
two-strand design below takes only 20 lines of code to describe.


