What are these control hierarchies?

Chung-chieh Shan
Rutgers University

29 May 2011

T

theory - x+7? practice

_/

1/8

What are these control hierarchies?

Chung-chieh Shan
Rutgers University

29 May 2011

T

logic - x+7? programming

_/

1/8

a—p
CPS

ax(f—ow) - w

2/8

a—p
CPS

ax(f-ow)—w

CPs transformation

Danvy & Millikin

programs in programs in
direct style continuation—passing sty

2/8

a—p
CPS

ax(f—ow) - w

Logic guides codifying the pattern: Zeilberger
» Decompose positive vs negative expressions/variables
function vs context connectives/constructions
» Decompose w; — B/ws into (B —o wy) > ws
a/w; — B/wsinto ((a — B) - wy) > ws
» Negatives are polymorphic in the answer type;
positives are specific in the answer type?

Make nonsense impossible, common sense easy (reflection)?
2/8

a—p
§CPS
ax(f—ow) - w
§CPS Danvy & Filinski

ax(fx(w—-w) sw)X(w—w) > w

Make nonsense impossible, common sense easy (reflection)?
2/8

What is the total population of the ten largest capitals in the US?
Answering these types of complex questions compositionally
involves first mapping the questions into logical forms (semantic
parsing).

Liang, Jordan & Klein

3/8

What is the total population of the ten largest capitals in the US?
Answering these types of complex questions compositionally
involves first mapping the questions into logical forms (semantic
parsing).

The filtering function F' rules out improperly-typed trees ...
To further reduce the search space ...

Think of DCS as a higher-level programming language tailored to
natural language, which results in programs which are much
simpler than the logically-equivalent lambda calculus formulae.

Liang, Jordan & Klein

3/8

Alice knows Bob

Alice :: E
Bob : E
know :: E — E — Bool

Alice ¢ (know $ Bob) :: Bool

4/8

Alice knows Bob
Alice :: E
Bob : E
know :: E — E — Bool

Alice ¢ (know $ Bob) :: Bool

——— —know — Bob
. E —- E — Bool E
— Alice $
E E — Bool 2

Bool

4/8

Alice knows everyone

Alice :: E
Bob : E
know :: E — E — Bool

type M a = (a — Bool) — Bool

everyone :: M E
everyone ¢ = all ¢ [Alice, Bob, . .]

Barker, de Groote, ...

4/8

Alice knows everyone

Alice :: E

Bob : E

know :: E — E — Bool

type M a = (a — Bool) — Bool

everyone :: M E
everyone ¢ = all ¢ [Alice, Bob, . .]

— know
] E — E — Bool
— Alice return —— everyone
E M(E — E — Bool) .
return liftM2 ($)
E M(E — Bool) _.
liftM2 (&)
M Bool
($id)
Bool

Barker, de Groote, ...

4/8

Alice knows everyone

Alice :: E
Bob : E
know :: E — E — Bool

type M a = (a — Bool) — Bool

everyone “ME
someone tME
most 2 [E] = ME

Someone knows everyone

4/8

Alice knows everyone

Alice :: E
Bob : E
know :: E — E — Bool

type M a = (a — Bool) — Bool

every 2 [E] - ME
some :: [E] = ME
most 2 [E] = ME
logician : [E]
programmer :: [E]

Someone knows everyone
Most logicians know some programmer

4/8

Alice knows everyone

Alice :: E
Bob : E
know :: E — E — Bool

type M a = (a — Bool) — Bool

every 2 [E] - ME
some :: [E] = ME
most 2 [E] = ME
logician : [E]
programmer :: [E]

from 2 [B] = E — [E]

Someone knows everyone
Most logicians know some programmer
Most logicians know some programmer from Novi Sad

4/8

Inverse scope: Someone knows everyone

— know
E — E — Bool
return everyone
M(E — E — Bool) .
—— someone liftM2 ($)
ME M(E — Bool) _.
lift M2 (&)
M Bool
($id)

Bool

5/8

Inverse scope: Someone knows everyone

— know
E — E — Bool
return everyone
M(E — E — Bool) .
—— someone liftM2 ($)
ME M(E — Bool) _.
lift M2 (&)
M Bool
($id)
Bool
—— know
E—E — Bool
return —— everyone
M(E — E — Bool))
—— someone return ——— liftM return
ME M(M(E — E — Bool)) M(ME))
—— return liftM2(liftM2 ($))
M(ME) M(M(E — Bool)) _.)
liftM2(lift M2 (8))
M(MBool) . .
——— liftM($id)
MBool |
($id)

Bool
5/8

Inverse linking: Combining hierarchies?

some programmer from Novi Sad

some programmer from every city May
———every — cit
B > ME] y
M E
- programmer from
————— some :
[E] - ME MJ[E]

777

ME

6/8

Inverse linking: Combining hierarchies?

some programmer from Novi Sad

some programmer from every city May
———every — cit
B > ME] y
M E
- programmer from
————— some :
[E] - ME MJ[E]
777
ME

Someone knows everyone
Most logicians know some programmer
Most logicians know some programmer from every city

6/8

From in-situ quantification to in-situ let-insertion

Write domain-specific code generators in multilevel languages
Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

i_ ~> lettlz...andtzz...andt3:...in...

7/8

From in-situ quantification to in-situ let-insertion

Write domain-specific code generators in multilevel languages
Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

i_ ~> lettlz...andtzz...andt3:...in...
(Ae : (o).
Ac : {a) — (B).

let £ = e in cz)

(ay = ({ay = LB>) = B

7/8

From in-situ quantification to in-situ let-insertion

Write domain-specific code generators in multilevel languages
Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

i_ ~> lettlz...andtzz...andt3:...in...
(Ae : {a).
Ac: Kay — £B).

let £ = e in cz)

(a) = ({ay = LB>) = B

7/8

From in-situ quantification to in-situ let-insertion

Write domain-specific code generators in multilevel languages
Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

i_ ~> lettlz...andtzz...andt3:...in...
(Ae : Cad™.
Ac : {a) — {B).

let £ = e in cz)

(a) = ({ay = LB>) = B

7/8

From in-situ quantification to in-situ let-insertion

Write domain-specific code generators in multilevel languages
Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

i_ ~> lettlz...andtzz...andt3:...in...

(Ae : Cad™.
Ac 1 Vp. {ad™FP — (B)™F.
let £ = e in cz)

(a) = ({ay = LB>) = B

7/8

From in-situ quantification to in-situ let-insertion

Write domain-specific code generators in multilevel languages
Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

i_ ~> lettlz...andtzz...andt3:...in...

(Ae : Kad™.
Ac 1 Vp. a)™7P — {BYT7F.
let z = e in cz)
Vo, o)™ — (Vp. {ad™ 9P — {BYT9P) — {BY™°

7/8

From in-situ quantification to in-situ let-insertion

Write domain-specific code generators in multilevel languages
Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

i_ ~> lettlz...andtzz...andt3:...in...

(Ae : Kad™.
Ac 1 Vp. a)™7P — {BYT7F.
let z = e in cz)
Vo, o)™ — (Vp. {ad™ 9P — {BYT9P) — {BY™°

Systematic translation, Kameyama, Kiselyov & Shan
but how does it fit CPS?

Want let-insertion at different scopes.
7/8

Summary

Hierarchy 0: composing monad transformers
Hierarchy 1: composing monads (applicative functors)
Hierarchy 2: additional polymorphism at each level

Make nonsense impossible, common sense easy?

8/8

