
1/8

What are these control hierarchies?

Chung-chieh Shan
Rutgers University

29 May 2011

!� + ?theory practice

1/8

What are these control hierarchies?

Chung-chieh Shan
Rutgers University

29 May 2011

!� + ?logic programming

2/8

�! �

�� (� ! !)! !

CPS

7.2 Dijkstra

Dijkstra’s case against the GOTO statement [37] has been mostly interpreted in the negative,
as the forceful denunciation of a programming sin. It seems to us, though, that his message,
40 years on, can also be understood as an invitation to mindfulness when programming.
Indeed consider a compiler from a structured language (e.g., one with while loops and con-
ditional commands) to an unstructured language (e.g., one with labels and with conditional
and unconditional jumps): on the one hand, this compiler yields programs that use GOTO
statements; on the other hand, as denotations of structured programs, these unstructured
programs only use GOTO statements to implement the control structures of structured pro-
grams. In that light, Dijkstra’s implicit message is not so much that GOTO statements should
be considered harmful, no matter what, than one should be mindful about staying in or
straying from the image of the compiler when programming in the unstructured language:

compiler

structured
programs

unstructured
programs

In fact, finding oneself straying with good reason is a clear indication that a useful control
construct is missing in the source language. For example, C and Pascal programmers con-
done the use of GOTO for error cases because these languages lack an exception mechanism.

Dijkstra’s implicit message applies to at least two situations involving a program trans-
formation and its left inverse:

CPS transformation. When programming in continuation-passing style, one should be mind-
ful of the continuation identifiers and of the parameters of continuations to stay in the
image of the CPS transformation [23, 27]:

CPS transformation

programs in
direct style

programs in
continuation−passing style

Yet programmers use “the extra expressive power of CPS” to stray with good reason:

• for a simple example, not using the current continuation identifier prevents the
computation from continuing and therefore has the effect of aborting it; this effect
can be obtained in direct style by adding an “abort” control operator;

17

Danvy & Millikin
�� (� � (! ! $)! $)� (! ! $)! $

CPS Danvy & Filinski

Logic guides codifying the pattern: Zeilberger
I Decompose positive vs negative expressions/variables

function vs context connectives/constructions

I Decompose !1 ! �=!2 into (� � !1) . !2

�=!1 ! �=!2 into ((�! �)� !1) . !2

I Negatives are polymorphic in the answer type;
positives are specific in the answer type?

Make nonsense impossible, common sense easy (reflection)?

2/8

�! �

�� (� ! !)! !

CPS

7.2 Dijkstra

Dijkstra’s case against the GOTO statement [37] has been mostly interpreted in the negative,
as the forceful denunciation of a programming sin. It seems to us, though, that his message,
40 years on, can also be understood as an invitation to mindfulness when programming.
Indeed consider a compiler from a structured language (e.g., one with while loops and con-
ditional commands) to an unstructured language (e.g., one with labels and with conditional
and unconditional jumps): on the one hand, this compiler yields programs that use GOTO
statements; on the other hand, as denotations of structured programs, these unstructured
programs only use GOTO statements to implement the control structures of structured pro-
grams. In that light, Dijkstra’s implicit message is not so much that GOTO statements should
be considered harmful, no matter what, than one should be mindful about staying in or
straying from the image of the compiler when programming in the unstructured language:

compiler

structured
programs

unstructured
programs

In fact, finding oneself straying with good reason is a clear indication that a useful control
construct is missing in the source language. For example, C and Pascal programmers con-
done the use of GOTO for error cases because these languages lack an exception mechanism.

Dijkstra’s implicit message applies to at least two situations involving a program trans-
formation and its left inverse:

CPS transformation. When programming in continuation-passing style, one should be mind-
ful of the continuation identifiers and of the parameters of continuations to stay in the
image of the CPS transformation [23, 27]:

CPS transformation

programs in
direct style

programs in
continuation−passing style

Yet programmers use “the extra expressive power of CPS” to stray with good reason:

• for a simple example, not using the current continuation identifier prevents the
computation from continuing and therefore has the effect of aborting it; this effect
can be obtained in direct style by adding an “abort” control operator;

17

Danvy & Millikin

�� (� � (! ! $)! $)� (! ! $)! $

CPS Danvy & Filinski

Logic guides codifying the pattern: Zeilberger
I Decompose positive vs negative expressions/variables

function vs context connectives/constructions

I Decompose !1 ! �=!2 into (� � !1) . !2

�=!1 ! �=!2 into ((�! �)� !1) . !2

I Negatives are polymorphic in the answer type;
positives are specific in the answer type?

Make nonsense impossible, common sense easy (reflection)?

2/8

�! �

�� (� ! !)! !

CPS

7.2 Dijkstra

Dijkstra’s case against the GOTO statement [37] has been mostly interpreted in the negative,
as the forceful denunciation of a programming sin. It seems to us, though, that his message,
40 years on, can also be understood as an invitation to mindfulness when programming.
Indeed consider a compiler from a structured language (e.g., one with while loops and con-
ditional commands) to an unstructured language (e.g., one with labels and with conditional
and unconditional jumps): on the one hand, this compiler yields programs that use GOTO
statements; on the other hand, as denotations of structured programs, these unstructured
programs only use GOTO statements to implement the control structures of structured pro-
grams. In that light, Dijkstra’s implicit message is not so much that GOTO statements should
be considered harmful, no matter what, than one should be mindful about staying in or
straying from the image of the compiler when programming in the unstructured language:

compiler

structured
programs

unstructured
programs

In fact, finding oneself straying with good reason is a clear indication that a useful control
construct is missing in the source language. For example, C and Pascal programmers con-
done the use of GOTO for error cases because these languages lack an exception mechanism.

Dijkstra’s implicit message applies to at least two situations involving a program trans-
formation and its left inverse:

CPS transformation. When programming in continuation-passing style, one should be mind-
ful of the continuation identifiers and of the parameters of continuations to stay in the
image of the CPS transformation [23, 27]:

CPS transformation

programs in
direct style

programs in
continuation−passing style

Yet programmers use “the extra expressive power of CPS” to stray with good reason:

• for a simple example, not using the current continuation identifier prevents the
computation from continuing and therefore has the effect of aborting it; this effect
can be obtained in direct style by adding an “abort” control operator;

17

Danvy & Millikin
�� (� � (! ! $)! $)� (! ! $)! $

CPS Danvy & Filinski

Logic guides codifying the pattern: Zeilberger
I Decompose positive vs negative expressions/variables

function vs context connectives/constructions

I Decompose !1 ! �=!2 into (� � !1) . !2

�=!1 ! �=!2 into ((�! �)� !1) . !2

I Negatives are polymorphic in the answer type;
positives are specific in the answer type?

Make nonsense impossible, common sense easy (reflection)?

2/8

�! �

�� (� ! !)! !

CPS

7.2 Dijkstra

Dijkstra’s case against the GOTO statement [37] has been mostly interpreted in the negative,
as the forceful denunciation of a programming sin. It seems to us, though, that his message,
40 years on, can also be understood as an invitation to mindfulness when programming.
Indeed consider a compiler from a structured language (e.g., one with while loops and con-
ditional commands) to an unstructured language (e.g., one with labels and with conditional
and unconditional jumps): on the one hand, this compiler yields programs that use GOTO
statements; on the other hand, as denotations of structured programs, these unstructured
programs only use GOTO statements to implement the control structures of structured pro-
grams. In that light, Dijkstra’s implicit message is not so much that GOTO statements should
be considered harmful, no matter what, than one should be mindful about staying in or
straying from the image of the compiler when programming in the unstructured language:

compiler

structured
programs

unstructured
programs

In fact, finding oneself straying with good reason is a clear indication that a useful control
construct is missing in the source language. For example, C and Pascal programmers con-
done the use of GOTO for error cases because these languages lack an exception mechanism.

Dijkstra’s implicit message applies to at least two situations involving a program trans-
formation and its left inverse:

CPS transformation. When programming in continuation-passing style, one should be mind-
ful of the continuation identifiers and of the parameters of continuations to stay in the
image of the CPS transformation [23, 27]:

CPS transformation

programs in
direct style

programs in
continuation−passing style

Yet programmers use “the extra expressive power of CPS” to stray with good reason:

• for a simple example, not using the current continuation identifier prevents the
computation from continuing and therefore has the effect of aborting it; this effect
can be obtained in direct style by adding an “abort” control operator;

17

Danvy & Millikin

�� (� � (! ! $)! $)� (! ! $)! $

CPS Danvy & Filinski

Logic guides codifying the pattern: Zeilberger
I Decompose positive vs negative expressions/variables

function vs context connectives/constructions

I Decompose !1 ! �=!2 into (� � !1) . !2

�=!1 ! �=!2 into ((�! �)� !1) . !2

I Negatives are polymorphic in the answer type;
positives are specific in the answer type?

Make nonsense impossible, common sense easy (reflection)?

3/8

What is the total population of the ten largest capitals in the US?
Answering these types of complex questions compositionally
involves first mapping the questions into logical forms (semantic
parsing).

The filtering function F rules out improperly-typed trees . . .
To further reduce the search space . . .

Think of DCS as a higher-level programming language tailored to
natural language, which results in programs which are much
simpler than the logically-equivalent lambda calculus formulae.

Liang, Jordan & Klein

3/8

What is the total population of the ten largest capitals in the US?
Answering these types of complex questions compositionally
involves first mapping the questions into logical forms (semantic
parsing).

The filtering function F rules out improperly-typed trees . . .
To further reduce the search space . . .

Think of DCS as a higher-level programming language tailored to
natural language, which results in programs which are much
simpler than the logically-equivalent lambda calculus formulae.

Liang, Jordan & Klein

4/8

Alice knows Bob

Alice :: E
Bob :: E
know :: E! E! Bool

Alice $(know $ Bob) :: Bool

Alice
E

know
E! E! Bool

Bob
E

$
E! Bool

$
Bool

4/8

Alice knows Bob

Alice :: E
Bob :: E
know :: E! E! Bool

Alice $(know $ Bob) :: Bool

Alice
E

know
E! E! Bool

Bob
E

$
E! Bool

$
Bool

4/8

Alice knows everyone

Alice :: E
Bob :: E
know :: E! E! Bool

type M� = (�! Bool)! Bool

everyone :: ME
everyone c = all c [Alice;Bob; : :]

Alice
E

return
ME

know
E! E! Bool

return
M(E! E! Bool)

everyone
ME

liftM2 ($)
M(E! Bool)

liftM2 ($)
MBool

($ id)
Bool

Barker, de Groote, . . .

4/8

Alice knows everyone

Alice :: E
Bob :: E
know :: E! E! Bool

type M� = (�! Bool)! Bool

everyone :: ME
everyone c = all c [Alice;Bob; : :]

Alice
E

return
ME

know
E! E! Bool

return
M(E! E! Bool)

everyone
ME

liftM2 ($)
M(E! Bool)

liftM2 ($)
MBool

($ id)
Bool

Barker, de Groote, . . .

4/8

Alice knows everyone

Alice :: E
Bob :: E
know :: E! E! Bool

type M� = (�! Bool)! Bool

every

everyone :: ME

:: [E]!ME
some

someone :: ME

:: [E]!ME

most :: [E]!ME

logician :: [E]
programmer :: [E]
from :: [E]! E! [E]

Someone knows everyone

Most logicians know some programmer
Most logicians know some programmer from Novi Sad

4/8

Alice knows everyone

Alice :: E
Bob :: E
know :: E! E! Bool

type M� = (�! Bool)! Bool

every

everyone :: ME

:: [E]!ME
some

someone :: ME

:: [E]!ME
most :: [E]!ME
logician :: [E]
programmer :: [E]

from :: [E]! E! [E]

Someone knows everyone
Most logicians know some programmer

Most logicians know some programmer from Novi Sad

4/8

Alice knows everyone

Alice :: E
Bob :: E
know :: E! E! Bool

type M� = (�! Bool)! Bool

every

everyone :: ME

:: [E]!ME
some

someone :: ME

:: [E]!ME
most :: [E]!ME
logician :: [E]
programmer :: [E]
from :: [E]! E! [E]

Someone knows everyone
Most logicians know some programmer
Most logicians know some programmer from Novi Sad

5/8

Inverse scope: Someone knows everyone

someone
ME

know
E! E! Bool

return
M(E! E! Bool)

everyone
ME

liftM2 ($)
M(E! Bool)

liftM2 ($)
MBool

($ id)
Bool

someone
ME

return
M(ME)

know
E!E!Bool

return
M(E!E!Bool)

return
M(M(E!E!Bool))

everyone
ME

liftM return
M(ME)

liftM2(liftM2($))
M(M(E!Bool))

liftM2(liftM2($))
M(MBool)

liftM($id)
MBool

($ id)
Bool

5/8

Inverse scope: Someone knows everyone

someone
ME

know
E! E! Bool

return
M(E! E! Bool)

everyone
ME

liftM2 ($)
M(E! Bool)

liftM2 ($)
MBool

($ id)
Bool

someone
ME

return
M(ME)

know
E!E!Bool

return
M(E!E!Bool)

return
M(M(E!E!Bool))

everyone
ME

liftM return
M(ME)

liftM2(liftM2($))
M(M(E!Bool))

liftM2(liftM2($))
M(MBool)

liftM($id)
MBool

($ id)
Bool

6/8

Inverse linking: Combining hierarchies?

some programmer from Novi Sad
some programmer from every city May

some
[E]!ME

every
[E]!ME

city
[E]

$
ME
�
�
�
programmer from

M[E]
???

ME

Someone knows everyone
Most logicians know some programmer
Most logicians know some programmer from every city

6/8

Inverse linking: Combining hierarchies?

some programmer from Novi Sad
some programmer from every city May

some
[E]!ME

every
[E]!ME

city
[E]

$
ME
�
�
�
programmer from

M[E]
???

ME

Someone knows everyone
Most logicians know some programmer
Most logicians know some programmer from every city

7/8

From in-situ quantification to in-situ let-insertion
Write domain-specific code generators in multilevel languages

Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

� � �+ � � � { let t1 = � � � and t2 = � � � and t3 = � � � in � � �

(�e : 〈�〉:
�c : 〈�〉! 〈�〉:
let x = e in cx)

: 〈�〉! (〈�〉! 〈�〉)! 〈�〉

Systematic translation, Kameyama, Kiselyov & Shan
but how does it fit CPS?
Want let-insertion at different scopes.

7/8

From in-situ quantification to in-situ let-insertion
Write domain-specific code generators in multilevel languages

Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

� � �+ � � � { let t1 = � � � and t2 = � � � and t3 = � � � in � � �

(�e : 〈�〉:
�c : 〈�〉! 〈�〉:
let x = e in cx)

: 〈�〉! (〈�〉! 〈�〉)! 〈�〉

Systematic translation, Kameyama, Kiselyov & Shan
but how does it fit CPS?
Want let-insertion at different scopes.

7/8

From in-situ quantification to in-situ let-insertion
Write domain-specific code generators in multilevel languages

Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

� � �+ � � � { let t1 = � � � and t2 = � � � and t3 = � � � in � � �

(�e : 〈�〉:
�c : 〈�〉! 〈�〉:
let x = e in cx)

: 〈�〉! (〈�〉! 〈�〉)! 〈�〉

Systematic translation, Kameyama, Kiselyov & Shan
but how does it fit CPS?
Want let-insertion at different scopes.

7/8

From in-situ quantification to in-situ let-insertion
Write domain-specific code generators in multilevel languages

Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

� � �+ � � � { let t1 = � � � and t2 = � � � and t3 = � � � in � � �

(�e : 〈�〉�:
�c : 〈�〉! 〈�〉:
let x = e in cx)

: 〈�〉! (〈�〉! 〈�〉)! 〈�〉

Systematic translation, Kameyama, Kiselyov & Shan
but how does it fit CPS?
Want let-insertion at different scopes.

7/8

From in-situ quantification to in-situ let-insertion
Write domain-specific code generators in multilevel languages

Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

� � �+ � � � { let t1 = � � � and t2 = � � � and t3 = � � � in � � �

(�e : 〈�〉�:
�c : 8�: 〈�〉�;� ! 〈�〉�;�:
let x = e in cx)

: 〈�〉! (〈�〉! 〈�〉)! 〈�〉

Systematic translation, Kameyama, Kiselyov & Shan
but how does it fit CPS?
Want let-insertion at different scopes.

7/8

From in-situ quantification to in-situ let-insertion
Write domain-specific code generators in multilevel languages

Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

� � �+ � � � { let t1 = � � � and t2 = � � � and t3 = � � � in � � �

(�e : 〈�〉�;�:
�c : 8�: 〈�〉�;�;� ! 〈�〉�;�;�:
let x = e in cx)

: 8�: 〈�〉�;�! (8�: 〈�〉�;�;�!〈�〉�;�;�)!〈�〉�;�

Systematic translation, Kameyama, Kiselyov & Shan
but how does it fit CPS?
Want let-insertion at different scopes.

7/8

From in-situ quantification to in-situ let-insertion
Write domain-specific code generators in multilevel languages

Nielson & Nielson, Taha

Continuations for code generation, especially let-insertion
Danvy & Filinski, Bondorf, Lawall & Danvy

� � �+ � � � { let t1 = � � � and t2 = � � � and t3 = � � � in � � �

(�e : 〈�〉�;�:
�c : 8�: 〈�〉�;�;� ! 〈�〉�;�;�:
let x = e in cx)

: 8�: 〈�〉�;�! (8�: 〈�〉�;�;�!〈�〉�;�;�)!〈�〉�;�

Systematic translation, Kameyama, Kiselyov & Shan
but how does it fit CPS?
Want let-insertion at different scopes.

8/8

Summary

Hierarchy 0: composing monad transformers
Hierarchy 1: composing monads (applicative functors)
Hierarchy 2: additional polymorphism at each level

Make nonsense impossible, common sense easy?

