
Lightweight Monadic Regions

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@cs.rutgers.edu

Abstract
We present Haskell libraries that statically ensure the safe use of
resources such as file handles. We statically prevent accessing an
already closed handle or forgetting to close it. The libraries can be
trivially extended to other resources such as database connections
and graphic contexts.

Because file handles and similar resources are scarce, we want
to not just assure their safe use but further deallocate them soon
after they are no longer needed. Relying on Fluet and Morrisett’s
[4] calculus of nested regions, we contribute a novel, improved,
and extended implementation of the calculus in Haskell, with file
handles as resources.

Our library supports region polymorphism and implicit region
subtyping, along with higher-order functions, mutable state, recur-
sion, and run-time exceptions. A program may allocate arbitrarily
many resources and dispose of them in any order, not necessarily
LIFO. Region annotations are part of an expression’s inferred type.
Our new Haskell encoding of monadic regions as monad trans-
formers needs no witness terms. It assures timely deallocation even
when resources have markedly different lifetimes and the identity
of the longest-living resource is determined only dynamically.

For contrast, we also implement a Haskell library for manual
resource management, where deallocation is explicit and safety is
assured by a form of linear types. We implement the linear typing in
Haskell with the help of phantom types and a parameterized monad
to statically track the type-state of resources.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; D.3.3 [Programming Languages]: Language Constructs
and Features—Polymorphism; D.4.2 [Operating Systems]: Stor-
age Management—Allocation/deallocation strategies

General Terms Design, Languages

Keywords monads, parametric polymorphism, regions, resource
management, subtyping, type classes, type systems, effect systems

1. Introduction
The typical program uses various kinds of resources: memory,
file handles, database connections, locks, graphic contexts, device
reservations, and so on. Two goals recur in the management of these
resources: safe access and timely disposal. First, a resource can be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’08, September 25, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-60558-064-7/08/09. . . $5.00

used only after it is allocated and before it is deallocated. Second,
each resource should be deallocated exactly once, soon after it is no
longer needed. This paper presents new ways for a Haskell program
to statically assure these goals.

Heap memory is one important resource, which Haskell systems
manage automatically and admirably. Garbage collection allows a
sound type system to statically assure the safety of memory access,
but makes it hard to predict when a particular piece of memory
that is no longer needed will be deallocated. Memory is generally a
plentiful resource, so timely deallocation is not vital.

The other kinds of resources named above are scarce, so timely
deallocation is integral to their proper management. Such resources
are the topic of this paper. Alas, Haskell itself offers little support
for managing these resources. Finalizers are not a solution, as there
are few guarantees on when they are run, if they are run at all.1

The bulk of this paper demonstrates the use of regions to man-
age these resources. Regions were originally introduced by Tofte
and Talpin [18] for automatic memory management, but can be
used for other kinds of resources. A lexically scoped construct ‘le-
tregion ρ in e’ creates a new region labeled ρ and evaluates the
expression e, which can use the region to hold heap-allocated data.
When e finishes, the region along with all its data is disposed of.
The lifetimes of regions and their data properly nest and reflect the
block structure of the program. As a resource management tech-
nique, regions stand out by not only assuring safe access statically
but also offering predictable deallocation that is timely in many
cases. Region memory management is implemented in MLKit [17]
and Cyclone [5]. Fluet and Morrisett [4] mention a Haskell imple-
mentation of regions that uses subtyping witness terms.

Five main difficulties with regions are

1. to statically ensure that resources allocated in a region cannot
be used outside the region: Tofte and Talpin [18] introduced a
non-trivial effect system for this purpose.

2. to maintain region polymorphism and subtyping: The user of
some resources should not care exactly which regions they
belong to, so long as they can be accessed safely.

3. to keep the notation convenient: The programmer should not
have to provide numerous type and region annotations and
coercions.

4. to allow resource lifetimes that do not nest properly: It should
be possible to deallocate resources not in the reverse order of
their allocation.

1 Simon Marlow said that GHC provides “no guarantee that a final-
izer will be run before your program exits. The only thing you can
be sure of is that it will not run while the ForeignPtr is still reach-
able by the garbage collector.” http://www.haskell.org/pipermail/
haskell-cafe/2007-May/025455.html

5. to allow resource lifetimes that are not known statically: From
several allocated resources, one might be dynamically chosen to
be used for the rest of the computation, and the rest deallocated.

This paper solves all these problems in Haskell, extending Fluet
and Morrisett’s work [4].

For concreteness, we use file handles as the resources in this
paper. An open file handle is created by opening a file, then used
to read and write the file. Closing the handle dissociates it from the
file; once a handle is closed, it must not be used. All opened handles
must be closed, preferably soon after they are no longer needed.

1.1 Motivating example
We use the following motivating example inspired by real life:

1. open two files for reading, one of them a configuration file;

2. read the name of an output file (such as the log file) from the
configuration file;

3. open the output file and zip the contents of both input files into
the output file;

4. close the configuration file;

5. copy the rest, if any, of the other input file to the output file.

The example demonstrates creating and using several file handles
whose lifetimes are not properly nested. It captures the frequent
situation of reading a configuration file, opening files named there,
closing the configuration file, then working with the other files.
Some of those other files, like log files, stay open until the program
ends. We aim to implement this example in a way that statically
ensures that only open file handles are used and all file handles are
closed in a timely manner, even in the face of potential IO failures.

1.2 Our contributions
We develop two libraries of safe handles for file IO. Whereas the
low-level handles provided by standard Haskell can be used un-
safely, our libraries statically guarantee that all accessible safe han-
dles are open. By an accessible handle, we mean a value (perhaps
a variable in scope) that can be passed to an IO operation (such as
reading or writing) without causing a type error. The libraries fur-
ther ensure that all created safe file handles are closed predictably.
We sometimes call safe handles just handles.

Our first library, the library of lightweight monadic regions, is
a novel encoding of the region calculus FRGN [4] in Haskell. Like
other encodings of regions in Haskell, our encoding is inspired
by the ST monad, so it uses phantom types and rank-2 polymor-
phism to label and encapsulate a region’s computations and its open
handles. Unlike other encodings, our encoding maintains region
polymorphism and subtyping without passing and applying witness
terms (coercions). Region subtyping is decided entirely at the type
level and incurs no run-time overhead.

The gist of our solution is to build a family of monads by apply-
ing an ST-like monad transformer repeatedly to the IO monad. This
family represents the nesting of regions. To make region subtyping
implicit, we implement a type-class constraint that checks whether
one monad in the family is an ancestor of (and thus is safe to coerce
to) another. This implementation only compares types for equality,
never inequality, so it is lightweight compared to a previous en-
coding of implicit region subtyping [7]. That encoding describes
region nesting using a type-level list of quantified type variables;
it requires the controversial extension of incoherent instances to
check for membership in the list.

This new library solves all five problems with regions identified
above, including the last problem, that of statically unknown life-
times. The library ensures resource disposal even in the presence of

run-time exception handling. The run-time overhead of the library
is lighter than tracking handle state in standard Haskell IO.

For comparison, we describe another novel approach: safe man-
ual resource management. In this approach, the programmer closes
each handle explicitly, after it is no longer needed. The type system
prevents access to closed handles, using a parameterized monad to
track type-state. This tracking is purely at the type level, so this so-
lution has no run-time overhead. Alas, the number of handles open
at any time must be statically known, and it is unwieldy to recover
from errors given that most IO operations can fail.

1.3 Structure of the paper
Section 2 develops a version of Haskell’s ST monad for file han-
dles rather than memory references. This section presents the bulk
of our library; the subsequent sections add remarkably small ex-
tensions to ensure timely disposal. Section 3 introduces regions for
resource management and implements Fluet and Morrisett’s FRGN

calculus [4] using explicit witness terms of region subtyping, again
for file handles rather than memory references. These introductory
sections motivate the use of implicit region subtyping, resolved at
the type level. This usability improvement gives rise to our final
library of lightweight monadic regions in Section 4.

Section 5 describes an extension to our library that lets us
prolong the lifetime of a dynamically chosen handle by promoting
it to an ancestor region. Section 6 presents an alternative approach:
manual resource management with safety ensured statically by a
type system that tracks type-state. We describe several drawbacks
of that approach, in particular, its apparent incompatibility with the
fact that most IO operations can fail. We then review related work
and conclude.

Our complete code is available at http://okmij.org/ftp/
Computation/resource-aware-prog/.

2. Safe file IO in a single region
We start by drawing inspiration from an analogy between the safety
of file handles and the safety of memory references. First, we want
to access only open file handles, just as we want to access only
references to allocated memory. Second, all open file handles must
be closed, just as all allocated memory must be freed.

Haskell’s ST monad and its STRef values guarantees such mem-
ory safety [11, 14] by using the same type variable s to tag both the
type of memory references (STRef s a) and the type of computa-
tions using these references (ST s b). Not only are ST and STRef
both abstract type constructors, but runST, the function for running
ST computations, has a rank-2 type that universally quantifies over
the type variable s and prevents it from ‘leaking’. (This quantifi-
cation makes s an eigenvariable or a fresh name [13, 15].) Hence,
in a well-typed program, all accessible memory references are to
allocated memory and can be disposed of once the ST computation
ends. As is usual for automatic memory management, this memory
safety depends on there being no way to deallocate memory ex-
plicitly. The ST monad thus satisfies all of our requirements except
timeliness: an allocated STRef persists until the end of the whole
computation.

The untimeliness of deallocation may be tolerable for memory,
but not for file handles because they are scarcer. Nevertheless, the
ST monad offers a good starting point. In the later sections we
extend it to dispose of allocated resources sooner.

2.1 Interface
We provide the monad SIO s, which is analogous to the monad
ST s, and safe handles of type SHandle m labeled by a monad m
(which in this section is always SIO s), which are analogous to
memory references of type STRef s a. For a user of our library,

these types are abstract. The values of these types can only be
manipulated by the following functions:

runSIO :: (forall s. SIO s v) -> IO v
newSHandle :: FilePath -> IOMode ->

SIO s (SHandle (SIO s))

shGetLine :: SHandle (SIO s) -> SIO s String
shPutStrLn :: SHandle (SIO s) -> String -> SIO s ()
shIsEOF :: SHandle (SIO s) -> SIO s Bool

shThrow :: Exception -> SIO s a
shCatch :: SIO s a -> (Exception -> SIO s a) ->

SIO s a
shReport :: String -> SIO s ()

The function newSHandle replaces standard Haskell’s openFile:
it opens the file identified by FilePath for reading, writing, etc., as
specified by IOMode. The function, if successful, returns a safe han-
dle, labeled by the monad of the computation that created the han-
dle. The result type of newSHandle is quite like that of newSTRef;
in particular, the type of the returned SHandle contains the type
parameter s of the SIO monad. Any safe handle that newSHandle
yields is open and associated with the successfully opened file, but
of course newSHandle may fail—perhaps the file does not exist or
the process does not have permission to manipulate the file. In that
case, the function crucially does not yield a safe handle, but instead
throws an Exception describing the problem. The exceptions may
be caught and handled in the SIO s monad using the functions
shCatch and shThrow, which are direct analogues of the Haskell
functions catch and throwIO.

The convenience function shReport prints a progress or de-
bugging message on stderr. The function shGetLine reads a
newline-terminated string from the file associated with a handle;
shPutStrLn writes a newline-terminated string to the file, and
shIsEOF tests if the file has any more data to read. These func-
tions are again direct analogues of the corresponding functions in
Haskell’s System.IO library. They all can throw exceptions.

The function runSIO executes the SIO s computation and re-
turns its result. The rank-2 type of runSIO, along with the type s
threaded throughout the computation and labeling the handles, en-
sures that the result of runIO may not contain safe handles created
in the SIO s computation, nor computations that include such han-
dles. After the computation finishes, since it is no longer possible
to use the handles created in the computation, runSIO may safely
close them all. If the computation raises an uncaught exception,
runSIO will re-raise the exception, again after closing all handles
created in the computation. As with the ST monad, our library does
not export any analogue of hClose. In this section, all handles stay
open until the computation ends, when runSIO closes them.

The functions of our library let us write our motivating example,
§1.1, without the timely disposal of resources. To show that we
do not have to put all IO code in one big function, we divide
the computation into two functions, test3 and test3_internal,
which share the useful combinator till.

till condition iteration = loop where
loop = do b <- condition

if b then return ()
else iteration >> loop

test3 = runSIO (do
h1 <- newSHandle "/tmp/SafeHandles.hs" ReadMode
h3 <- test3_internal h1
till (shIsEOF h1)

(shGetLine h1 >>= shPutStrLn h3)
shReport "test3 done")

test3_internal h1 = do
h2 <- newSHandle "/tmp/ex-file.conf" ReadMode
fname <- shGetLine h2
h3 <- newSHandle fname WriteMode
shPutStrLn h3 fname
till (liftM2 (||) (shIsEOF h2) (shIsEOF h1))

(shGetLine h2 >>= shPutStrLn h3 >>
shGetLine h1 >>= shPutStrLn h3)

shReport "Finished zipping h1 and h2"
return h3

The function test3_internal opens the configuration file, reads
the name of the output file, and opens it to create the handle h3. It
then zips the two input handles h1 and h2 into h3. Finally it returns
the handle h3 it created. Back in test3 we copy the rest of h1
to h3. The type of test3_internal is inferred to be

SHandle (SIO s) -> SIO s (SHandle (SIO s))

as expected: a computation that receives and returns a safe handle.
Executing test3 produces the new file and writes the following

on stderr:

Finished zipping h1 and h2
test3 done
Closing {handle: /tmp/t1}
Closing {handle: /tmp/ex-file.conf}
Closing {handle: /tmp/SafeHandles.hs}

All opened handles are indeed closed, after the end of test3, the
whole computation.

We can ensure even more safety properties of handles. For
example, by annotating each SHandle with an additional phantom
type label RO, WO, or RW, we can prevent writing to a read-only (RO)
handle. This safety property is so easy to guarantee that one would
think it would have been specified in Haskell 98.

2.2 Implementation
We implement this interface in the file SafeHandles1.hs in the
accompanying source code. The file has limited export and hence
constitutes the ‘security kernel’. Only the functions in this file know
and can manipulate the representation of the otherwise opaque SIO
and SHandle. Our implementation internally relies on standard
Haskell IO.

The IO monad with safe handles SIO is implemented as a monad
transformer IORT applied to IO. The monad transformer seems
overkill here, yet it prepares us for the final solution.

newtype IORT s m v =
IORT{ unIORT:: ReaderT (IORef [Handle]) m v }
deriving (Monad)

type SIO s = IORT s IO

To close all handles created in the computation at the end,
we have to maintain the list of all created handles and update it
whenever a new handle is created. Since we use the IO monad
internally, we implement this mutable list as IORef [Handle].
We store a list of Handles rather than SHandles because the
list is never exposed to the user. Although the contents of this
mutable cell changes as handles are opened, the location of the cell
itself does not change. We therefore make this location available
throughout the computation using a reader monad transformer (we
could have used implicit parameters or implicit configurations).

Since our library does file IO, we may be tempted to make the
IORT transformer an instance of MonadIO. That would however let
the programmer inject any IO action into SIO, in particular actions
that open and close low-level handles, and defeat IO safety. Instead,
we define our own version of MonadIO, called RMonadIO, and keep

it unexported. Whereas MonadIO only supports lifting IO actions,
our RMonadIO also supports exception handling.

class Monad m => RMonadIO m where
brace :: m a -> (a -> m b) -> (a -> m c) -> m c
snag :: m a -> (Exception -> m a) -> m a
lIO :: IO a -> m a

instance RMonadIO IO where
brace = ...
snag = ...
lIO = id

The lIO method is same as the liftIO method in Haskell’s
MonadIO class, but the brace and snag methods are new: they
let us clean up after exceptions, generalizing bracket and catch
in the Control.Exception module.

The IO exception raised by various System.IO functions may
include a low-level System.IO.Handle. To make sure the low-
level handle does not escape the SIO computation in an exception,
we define brace and snag to remove the handle from the IO
exception before re-raising it or passing it to the exception handler.

It is easy to lift this functionality through the ReaderT and thus
IORT transformers, so that IORT s IO is an instance of RMonadIO.

instance RMonadIO m => RMonadIO (ReaderT r m) where
brace before after during = ReaderT (\r ->
let rr m = runReaderT m r
in brace (rr before) (rr.after) (rr.during))

snag m f = ReaderT (\r ->
runReaderT m r ‘snag‘ \e -> runReaderT (f e) r)

lIO = lift . lIO

instance RMonadIO m => RMonadIO (IORT s m) where
brace before after during = IORT
(brace (unIORT before) (unIORT.after)

(unIORT.during))
snag m f = IORT (unIORT m ‘snag‘ (unIORT . f))
lIO = IORT . lIO

We can now define runSIO to run an SIO action that tracks
open handles dynamically. At the beginning of the action, runSIO
initializes the list of created handles to empty. At the end, even if
an exception was thrown, it tries to close every handle in the list.

runSIO :: (forall s. SIO s v) -> IO v
runSIO m = brace (lIO (newIORef [])) after

(runReaderT (unIORT m))
where after handles =

lIO (readIORef handles >>= mapM_ close)
close h = do

hPutStrLn stderr ("Closing " ++ show h)
catch (hClose h) (\e -> return ())

A safe handle SHandle is a simple wrapper around a low-level
Handle, with the same run-time representation. The sole argument
to the SHandle type constructor is the monad m where the han-
dle belongs. Like the data constructor IORT, the data constructor
SHandle is of course private to the security kernel.

newtype SHandle (m :: * -> *) = SHandle Handle

The implementation of newSHandle shows that it is like
openFile of the Haskell IO library. However, it does extra book-
keeping at run time: adding a new handle to the list of open handles.

newSHandle :: FilePath -> IOMode ->
SIO s (SHandle (SIO s))

newSHandle fname fmode = IORT r’
where r’ = do h <- lIO $ openFile fname fmode

handles <- ask
lIO $ modifyIORef handles (h:)
return (SHandle h)

The other functions, which manipulate existing handles, are
trivial to implement. Only their types (shown above) are interesting.

shGetLine (SHandle h) = lIO (hGetLine h)
shPutStrLn (SHandle h) = lIO . hPutStrLn h
shIsEOF (SHandle h) = lIO (hIsEOF h)

shThrow = lIO . throwIO
shCatch = snag
shReport = lIO . hPutStrLn stderr

2.3 Assessment
Our SIO library in this section statically ensures that all accessible
safe handles are open and that all opened handles are closed exactly
once. As with the ST monad, we achieve this safety even in the
presence of general recursion and run-time exceptions.

Although newSHandle and runSIO incur some run-time over-
head to maintain the list of open handles and to close them, the
other, more frequently used handle-manipulation functions such as
shPutStrLn do not even have to check that the handle is open or
look for it in the list of open handles, because all safe handles are
assured open statically. Thus, safe handles would be faster to use
overall if we implement them not in standard Haskell but using an
optimized low-level IO library that does not store or check whether
a handle is open at run time.

GHC provides a function withFile that combines opening and
closing a file. Its type

FilePath -> IOMode -> (Handle -> IO r) -> IO r

suggests that the newly created handle cannot be accessed once
closed. To the contrary, nothing prevents the user from including
the handle in the result of withFile.

withFile "FilePath" ReadMode return >>= hGetLine

The handle above will be closed by the time hGetLine gets it.
Hence withFile does not satisfy our most important desideratum,
that all accessible handles be open.

On the downside, safe handles are deallocated hardly in a timely
manner. Rather, they are closed only at the very end of the compu-
tation. We turn to nested regions to solve this problem.

3. Nested regions using explicit witness terms
In the rest of this paper, we organize an IO action into regions
whose run-time lifetimes are properly nested, unlike those of han-
dles. Each handle belongs to a region and can be used in that region
or any descendant region. During a region’s lifetime, a handle can
be created in that region even if a younger (descendant) region is
also live. When a region exits, all handles in that region are closed.

For example, we may create a handle h1 in the current region,
then another handle h2 in the parent region, which lasts longer.
When the current region exits, h1 will be closed but not h2. The
handle h2 can be returned as the result of the current region and
used until the parent region exits. Thus, although regions are prop-
erly nested, we can still open and close handles without properly
nested lifetimes by assigning a handle to an ancestor region.

In short, we apply Fluet and Morrisett’s region calculus FRGN

[4] to the case of IO handles. In this section, independently of their
implementation we implement their encoding of region subtyping
in explicit witness terms by slightly changing our code in the
previous section.

3.1 A first attempt with not enough sharing
To dispose of different handles at different times, we may try to
nest SIO computations—that is, run one SIO computation within
another. Just like an SIO computation run using runSIO, the child
SIO computation closes all safe handles it creates when it finishes,
because these handles are encapsulated in the child computation
and never needed by the parent computation. Thus we approach
our ideal that the resources are deallocated soon after they are no
longer needed. To introduce child SIO computations, we add to our
library the following function with a trivial implementation:

newNaiveReg :: (forall s. SIO s v) -> SIO r v
newNaiveReg m = lIO (runSIO m)

As with runSIO, the rank-2 type of newNaiveReg statically pre-
vents handles created in the child computation (whose type con-
tains s) from being used outside of the child computation, so they
can safely be closed once the child computation is finished.

Here is an example using newNaiveReg.

test2’ = runSIO (do
h1 <- newSHandle "fname1" ReadMode
l1 <- shGetLine h1
let op = newSHandle "fname3" ReadMode

res <- newNaiveReg (do
h2 <- newSHandle "fname2" ReadMode
h3 <- op
-- l1 <- shGetLine h1
l2 <- shGetLine h2
l3 <- shGetLine h3
return (l1 ++ l2 ++ l3))

h3 <- op
l3 <- shGetLine h3
return l1)

The main SIO computation opens the safe handle h1 and reads the
line l1 from it. The child computation opens two other handles h2
and h3, reads from them, and combines the result with l1. This
child computation accesses l1 by lexical scope, but it could be as
well defined in a separate function. Either way, the safe handles h2
and h3 of the child computation are freed once res is computed.

Two computations can share values such as l1 and res, even
unexecuted actions such as op to access the same file. However, two
computations may not share any value that includes a safe handle
created within a region or a computation involving that handle. For
example, the child computation may not return h3. Also, although
the handle h1 takes lexical scope over the child computation, it
cannot be used there: uncommenting the line l1 <- shGetLine h1
gives a type error, because the two computations have different
phantom types s and r.

Although we have achieved both handle safety and timely dis-
posal, newNaiveReg fails to express our main example, §1.1. To
show this failure, we consider the three files involved one by one.

1. The configuration file should be closed before the two other
files in the example. Hence, we want to open the configuration
file in a child region.

2. The other input file is used after the configuration file is closed.
Hence, that input file has to be opened in the parent region.
However, the child computation also needs to read from it,
which newNaiveReg prohibits.

3. The output file needs to be opened in the lifetime of the con-
figuration file handle—that is, in the child computation. How-
ever, the parent computation also needs to write to it, which
newNaiveReg again prohibits.

In sum, newNaiveReg is too restrictive because it does not let a
child computation create and access file handles that belong to
parent regions. We proceed to relax this restriction while preserving
the safety invariant that all accessible handles are always open.

3.2 Using a parent region from a child computation
One approach to fixing newNaiveReg is to follow how Launchbury
and Sabry [12] add nesting to runST. In our notation, they redefine
newNaiveReg as follows.

newLSRgn :: (forall s. SIO (r,s) v) -> SIO r v

The tuple of labels (r,s) thus encodes the nesting of the child
region s in the parent region r. A new operation

importSHandle :: SHandle (SIO r) ->
SHandle (SIO (r,s))

lets the child computation access handles in the parent region. Alas,
as extensively discussed by Fluet and Morrisett [4, Section 2], this
solution lacks region polymorphism: within a child computation,
we would like to use (even create) safe handles in any ancestor
region, without nailing down the exact lineage of each handle.

Fluet and Morrisett [4] introduce a solution with region poly-
morphism. The essential idea is to coerce a parent computation,
which may allocate and use handles in the parent region, to a child
computation, which can be composed with actions that allocate and
use handles in the child region. The coercion function is the con-
structive proof (or witness) of region subtyping: every parent-region
computation can serve as a child-region computation. As Fluet and
Morrisett [4, Section 4] put it, “we consider a region to be a subtype
of all the regions that it outlives.”

We implement Fluet and Morrisett’s solution by adding one type
and one function to the interface of our SIO library.

newtype SubRegion r s =
SubRegion (forall v. SIO r v -> SIO s v)

newRgn :: (forall s. SubRegion r s -> SIO s v) ->
SIO r v

A value of the type SubRegion r s witnesses that the region la-
beled r is an ancestor of the region labeled s. The witness is con-
structive in that it lets us coerce any computation of type SIO r v
into a computation of type SIO s v. These witnesses can easily be
composed as functions, so r may not be the immediate parent of s,
just an ancestor or s. The witness is polymorphic in the type v of
the value produced by the computation. Although GHC’s “Liber-
alised type synonyms” extension lets us define SubRegion not as
a newtype but as a type synonym, we keep newtype to emphasize
the polymorphism and to avoid having to specify the types of these
witnesses explicitly.

As the types of newRgn and newNaiveReg show, the new func-
tion newRgn is like newNaiveReg in that it lets a parent compu-
tation include a child computation, but newRgn provides a subtyp-
ing witness to the child computation so that it can use and create
handles in the parent region. (Our newRgn is Fluet and Morrisett’s
letRGN, and our runSIO is their runRGN [4, Figure 1].)

Using newRgn, we can finally express our main example.

test3 = runSIO (do
h1 <- newSHandle "/tmp/SafeHandles.hs" ReadMode
h3 <- newRgn (test3_internal h1)
till (shIsEOF h1)

(shGetLine h1 >>= shPutStrLn h3)
shReport "test3 done")

test3_internal h1 (SubRegion liftSIO) = do
h2 <- newSHandle "/tmp/ex-file.conf" ReadMode
fname <- shGetLine h2
h3 <- liftSIO (newSHandle fname WriteMode)
liftSIO (shPutStrLn h3 fname)
till (liftM2 (||) (shIsEOF h2)

(liftSIO (shIsEOF h1)))
(shGetLine h2 >>= liftSIO . shPutStrLn h3 >>
liftSIO (shGetLine h1 >>= shPutStrLn h3))

shReport "Finished zipping h1 and h2"
return h3

The code is almost same as in §2, except test3_internal runs
in a child region and receives as its second argument a subtyping
witness liftSIO from the parent region. This crucial difference
can be seen in the stderr transcript of running this code:

Finished zipping h1 and h2
Closing {handle: /tmp/ex-file.conf}
test3 done
Closing {handle: /tmp/t1}
Closing {handle: /tmp/SafeHandles.hs}

Unlike in §2, the configuration file h2 is closed as soon as it is
no longer needed (that is, when its user test3_internal ends).
When the whole test3 ends, only the two other safe handles have
to be closed.

The child computation test3_internal uses the coercion
function liftSIO extensively to access the handles h1 and h3
in the parent region. It also uses liftSIO to coerce the action of
opening the output file, newSHandle fname WriteMode, so as
to create the safe handle in the parent region and label its type
with the parent monad. Hence, the output file handle is not closed
when test3_internal finishes and can be returned as the result
of test3_internal.

The inferred type for test3_internal is

SHandle (SIO t) -> SubRegion t s ->
SIO s (SHandle (SIO t))

Compared to the type of test3_internal in §2, this type shows
region polymorphism: the input and the output handles need only
belong to a parent region.

3.3 Implementation
We implement this extended interface in the accompanying source
file SafeHandlesFM.hs. Little differs from §2.2: the definitions of
IORT, SIO, SHandle, and RMonadIO all remain the same, along
with all operations on safe handles such as shPutStrLn. Even
newSHandle and runSIO do not need to change. The key lies in
the implementation of the only new function, newRgn:

newRgn :: (forall s. SubRegion r s -> SIO s v) ->
SIO r v

newRgn body =
IORT (do env_outer <- ask

let witness (IORT m) =
lIO (runReaderT m env_outer)

lIO (runSIO (body (SubRegion witness))))

The last line above is newNaiveReg. The rest of the code builds a
subtyping witness so that the child computation may use the parent
region: At the type level, SubRegion r s transfers the capabilities
of the ancestor region r to the descendant region s. At the term
level, the witness passes the mutable cell containing the list of low-
level handles from the parent’s environment to the child, so the
child computation may access the parent region’s run-time state.

3.4 Assessment
We have achieved our goals: we can now close a safe handle well
before the overall computation ends, yet all accessible handles are
still always open.

Just as in §2, our region discipline is compatible with exception
handling, in particular, exceptions when opening files. The follow-
ing code illustrates handling an exception raised in a nested region.

test_copy fname_in fname_out = do
hout <- newSHandle fname_out WriteMode
(do newRgn (\(SubRegion liftSIO) -> do

hin <- newSHandle fname_in ReadMode
till (shIsEOF hin)

(shGetLine hin
>>= liftSIO . shPutStrLn hout))

shReport "Finished copying")
‘shCatch‘ \e -> do
shReport ("Exception caught: " ++ show e)
shPutStrLn hout ("Copying failed: " ++ show e)

This code copies the file at fname_in to fname_out.

> runSIO (test_copy "/etc/motd" "/tmp/t1")
Closing {handle: /etc/motd}
Finished copying
Closing {handle: /tmp/t1}

If the file at fname_in cannot be opened, then the input handle hin
is not created. Instead, an error message is written to fname_out.

> runSIO (test_copy "/non-existent" "/tmp/t1")
Exception caught: /non-existent: openFile:

does not exist (No such file or directory)
Closing {handle: /tmp/t1}

As these transcripts confirm, all open handles (and nothing else)
are closed at the end, whether an exception was raised or not.

One may remark that our SIO library still lacks an explicit close
operation. Indeed, for a resource-management technique to be auto-
matic and safe, the user cannot be allowed to deallocate resources
explicitly. With regions, the lack of an explicit close operation is
not a principled drawback! The user may create arbitrarily many
regions—even one region per handle—and can raise an exception
to forcefully and predictably end a region and close its handles.

On the downside, we see from test3_internal that using
nested regions requires applying many coercions. It is easy to forget
to apply liftSIO, which would identify t and s in the inferred type
of test3_internal and make the function region-monomorphic.
The error will be reported at a different place, when we try to use a
region-monomorphic test3_internal in test3.

A related drawback is that witnesses must be passed explicitly,
which becomes annoying when many handles are in use and we
want to maintain region polymorphism. For example, suppose we
write a function that copies a line from one handle to another.

test4 h1 h2 = do line <- shGetLine h1
shPutStrLn h2 line

The inferred type

SHandle (SIO s) -> SHandle (SIO s) -> IORT s IO ()

is region-monomorphic: both input handles must belong to the
region of the computation. To maintain full region polymorphism,
we have to add two witness arguments to the function and apply
them without mixing them up.

test43 h1 h2 (SubRegion liftSIO1)
(SubRegion liftSIO2) = do

line <- liftSIO1 $ shGetLine h1
liftSIO2 $ shPutStrLn h2 line

The new inferred type below allows the two input handles to belong
to any parent region of the current computation.

SHandle (SIO t1) -> SHandle (SIO t2) ->
SubRegion t1 s -> SubRegion t2 s -> SIO s ()

To remove the burden of dealing with witnesses explicitly, we
want the type system to generate and pass witnesses automatically.
Fluet and Morrisett [4] already anticipated this desire and how we
fulfill it, by treating SubRegion as an abstract type constructor.

4. Nested regions as monad transformers
The desired implicit subtyping among regions is reminiscent of the
implicit subtyping among effects that denotes monad morphisms
[2]. Indeed, we can treat a SubRegion witness as a monad mor-
phism, and a call to newRgn as reifying an effectful computation.
That is, for one region to spawn another is for a monad transformer
to apply to the parent region’s computation monad.

Monads and monad transformers are poster-child applications
of Haskell’s type-class overloading mechanism. By treating, in this
section, each new region as an application of a monad transformer,
we use type classes to resolve region subtyping as well.

4.1 Interface
We generalize the SIO monad to a family of SIO monads. Each
monad in the family is the result of applying zero or more monad
transformers of the form IORT s, where s is a phantom type, to the
IO monad. Each instance of the transformer has its own label s. For
example, a monadic action of type IORT s (IORT r IO) Int
computes an Int using a current region represented by the type s
and a parent region represented by the type r. The monad SIO s is
still a synonym for IORT s IO and belongs to the family.

We thus arrive at our library of lightweight monadic regions, the
SIO library. Fig. 1 gives the full interface. It includes operations
on IORef cells, used in §4.3 to demonstrate handle safety in the
presence of mutable state, and shDup, to be explained in §5.

Since we wish to execute only safe IO computations in the SIO
family, IORT s is not an instance of the MonadTrans or MonadIO
classes, to prevent lifting of arbitrary IO computations. We use our
own class RMonadIO (defined in §2.2) as the kind predicate of the
SIO family. The class RMonadIO is not exported from the library
and hence closed to instances added by the user.2

Another important type-level predicate is MonadRaise, also a
closed type-class. The constraint MonadRaise m1 m2 holds when
m2 is the result of applying zero or more monad transformers
IORT s to m1. In other words, MonadRaise m1 m2 holds if m1
is an ancestor of m2 in the SIO family. Thus, the multiparameter
type-class MonadRaise m1 m2 controls implicit region subtyping.

To create a new region, the library exports a function newRgn.
The rank-2 type of newRgn shows that we prepend a new label s to
the monad of the parent region m to make the monad of the child
region. No explicit subtyping witness is passed.

The type of newSHandle allows creating a handle in any monad
of the SIO family except IO, that is, in a ‘safe’ monad only. As
before, the handle is labeled with the monad in which it is created.

The remaining operations are the same as before, but with more
general types. Operations such as shThrow work not just in the
SIO monad but in the whole family of SIO monads. Operations on
handles such as shGetLine also work in any member m2 of the SIO
family, as long as m2 descends from the monad m1 where the handle
was created. So, the computation shGetLine h can be executed in
any descendant of the monad that created the handle h. In particular,

2 To let the user write signatures of functions using the SIO library, we
should export a synonym of RMonadIO. The original RMonadIO remains
closed. We introduced this method of defining closed classes before [10].

type IORT s m v -- opaque
type SIO s v = IORT s IO
type SHandle m -- opaque

runSIO :: (forall s. SIO s v) -> IO v
newRgn :: RMonadIO m =>

(forall s. IORT s m v) -> m v
liftSIO :: Monad m => IORT r m a ->

IORT s (IORT r m) a

newSHandle :: RMonadIO m => FilePath -> IOMode ->
IORT s m (SHandle (IORT s m))

shGetLine :: (MonadRaise m1 m2, RMonadIO m2) =>
SHandle m1 -> m2 String

shPutStrLn :: (MonadRaise m1 m2, RMonadIO m2) =>
SHandle m1 -> String -> m2 ()

shIsEOF :: (MonadRaise m1 m2, RMonadIO m2) =>
SHandle m1 -> m2 Bool

shThrow :: RMonadIO m => Exception -> m a
shCatch :: RMonadIO m => m a ->

(Exception -> m a) -> m a
shReport :: RMonadIO m => String -> m ()

sNewIORef :: RMonadIO m => a -> m (IORef a)
sReadIORef :: RMonadIO m => IORef a -> m a
sWriteIORef :: RMonadIO m => IORef a -> a -> m ()

shDup :: RMonadIO m =>
SHandle (IORT s (IORT r m)) ->
IORT s (IORT r m) (SHandle (IORT r m))

Figure 1. The interface of the final SIO library

because the IO monad cannot create any safe handle and is not a
descendant of any other monad, it cannot execute shGetLine h.

To perform an action in the parent region such as creating a
safe handle, the library exports the function liftSIO. The type of
liftSIO is like SubRegion r s in §3.2. Whereas liftSIO only
witnesses immediate parenthood among regions, a SubRegion
value can witness any ancestry. This difference is not a big deal
because liftSIO can be iterated to reach any ancestor. A more sub-
stantial difference between the liftSIO function and SubRegion
values is that we need not pass liftSIO around to maintain region
polymorphism, because all operations on existing handles, such as
shGetLine, are already region-polymorphic. Rather, liftSIO is
typically used only when creating a handle, to specify the ancestor
region to which the new handle should belong.3

To show the concision of implicit subtyping that this interface
affords, we rewrite our running example test3. We show only
test3_internal below, as the code for the main function test3
remains unchanged from §3.2.

test3_internal h1 = do
h2 <- newSHandle "/tmp/ex-file.conf" ReadMode
fname <- shGetLine h2
h3 <- liftSIO (newSHandle fname WriteMode)
shPutStrLn h3 fname
till (liftM2 (||) (shIsEOF h2) (shIsEOF h1))

(shGetLine h2 >>= shPutStrLn h3 >>
shGetLine h1 >>= shPutStrLn h3)

shReport "Finished zipping h1 and h2"
return h3

3 In rare cases, we have to apply liftSIO to maintain region polymorphism
even when we are only operating on existing handles from parent regions.
See the end of SafeHandlesTest.hs.

We use liftSIO only once, to create a new handle in a region
other than the current one. All other uses of handles (be they from
the same or ancestor regions) require no liftSIO. The handles of
ancestor regions can be used just as they are. The extra argument
to test3_internal is gone: witnesses for region subtyping are
managed by the type checker.

The inferred type of test3_internal is region-polymorphic:

(RMonadIO m, MonadRaise m1 (IORT s (IORT r m))) =>
SHandle m1 ->
IORT s (IORT r m) (SHandle (IORT r m))

The type says that test3_internal must be executed in a region
with a parent. The function receives a handle from some ancestor
region and returns a handle in the parent region. That is indeed the
most general type for test3_internal.

We achieve region polymorphism more directly than in §3.4.
Now the function to copy a line from one safe handle to another

test4 h1 h2 = do
line <- shGetLine h1
shPutStrLn h2 line

has the inferred type

(MonadRaise m1 t, RMonadIO t, MonadRaise m11 t) =>
SHandle m1 -> SHandle m11 -> t ()

The type literally says that test4 is an SIO computation whose
arguments are two handles that must be open throughout the com-
putation. The handles may belong to the same region or different
ones. The regions may be the current region or its ancestors. The in-
ferred type is thus region-polymorphic and the most general. Unlike
test43 in §3.4, we no longer need to pass extra witness arguments
or apply liftSIO.

4.2 Implementation
We implement the final version of our SIO library in the accom-
panying source file SafeHandles.hs. This version is only slightly
different from the two previous versions. In particular, the represen-
tation of IORT and SIO remains the same. The main change from §3
at the term level is to replace SubRegion with liftSIO.

liftSIO = IORT . lift

All the handle operations, from newSHandle to shReport includ-
ing shGetLine and shCatch, can be implemented exactly as in
§2 and §3, just with more general types. Even runSIO remains the
same. Better, newRgn is now simply runSIO with a more general
type! Conversely, runSIO is just the specialization of newRgn to
the case where the monad m is IO.

The only major addition of SafeHandles.hs is at the type
level: implementing MonadRaise. A simple but approximate way
to implement MonadRaise is to add the following instances.

instance Monad m =>
MonadRaise m m

instance Monad m =>
MonadRaise m (IORT s1 m)

instance Monad m =>
MonadRaise m (IORT s2 (IORT s1 m))

instance Monad m =>
MonadRaise m (IORT s3 (IORT s2 (IORT s1 m)))

This incomplete approximation does not require functional depen-
dencies or more controversial extensions. We can still nest an ar-
bitrary number of regions using newRgn, as well as create and use
handles in an arbitrary ancestor region using liftSIO. The incom-
pleteness only limits implicit region subtyping to three levels deep,
so it does not matter much in practice, yet it is quite unsatisfying.

In full generality, the constraint MonadRaise m1 m2 should
hold whenever m2 is the result of applying IORT s to m1 any num-
ber of times (informally, whenever m1 is a ‘suffix’ of m2). This gen-
eral specification can be implemented directly and inductively—if
we admit functional dependencies, overlapping instances, and un-
decidable instances.

instance Monad m => MonadRaise m m
instance (Monad m2, TypeCast2 m2 (IORT s m2’),

MonadRaise m1 m2’)
=> MonadRaise m1 m2

While short, the implementation is not trivial at all. It relies on the
type-improvement constraint TypeCast2 to delay unifying m2 with
IORT s m2’. The TypeCast2 class is a variant for kind *->* of
the TypeCast class. These powerful constraints are discussed in
more detail elsewhere [8]; in particular, TypeCast and its cousin
TypeEq are used to implement heterogeneous collections [9].

class TypeCast2 (a::*->*) (b::*->*) | a -> b
, b -> a

class TypeCast2’ t (a::*->*) (b::*->*) | t a -> b
, t b -> a

class TypeCast2’’ t (a::*->*) (b::*->*) | t a -> b
, t b -> a

instance TypeCast2’ () a b => TypeCast2 a b
instance TypeCast2’’ t a b => TypeCast2’ t a b
instance TypeCast2’’ () a a

One may worry that the type-class trickery like TypeCast2
may make inferred types and error messages hard to understand.
That has not been the case. The inferred types clearly represent
region subtyping by MonadRaise constraints, as illustrated by
test3_internal and test4 in the previous section. Some type
error messages may seem unhelpful: leaking a handle from its re-
gion produces an error message about an inferred type being less
polymorphic than expected (see §4.3 for discussion). Such error
messages are also emitted when leaking an STRef in the ordinary
ST monad, so they should be familiar to Haskell programmers.

4.3 Is handle safety truly guaranteed?
Our overall safety property is that all accessible handles are open,
which means that the type system must never let a handle or any
computation involving it be accessible (‘leak’) beyond its region’s
lifetime. For example, test3_internal should be allowed to re-
turn to test3 the handle h3, but not h2 because h2 belongs to the
child region. To this end, the type system assigns to h2 the type
SHandle (IORT s (IORT r m)). This type includes the eigen-
variable s, which cannot escape the scope of forall in the type of
newRgn. Thus, if we replace return h3 in test3_internal by
return h2, we get the type error

Inferred type is less polymorphic than expected
Quantified type variable ‘s’ escapes

In the first argument of ‘newRgn’,
In a ’do’ expression:

h3 <- newRgn (test3_internal h1)

This message adequately describes the error and pinpoints its
location. In contrast, although the handle h3 is also created in
test3_internal, that newSHandle operation actually occurs in
the parent region (thanks to liftSIO), so the type of h3 only
mentions the monad IORT r m. The type r is quantified in the
type of runSIO, called by test3. Thus, h3 may escape from
test3_internal but not test3.

Instead of leaking a handle, we may try to leak a computation
involving the handle:

do ac <- newRgn (do
h2 <- newSHandle "fname2" ReadMode
return (shGetLine h2))

ac

This code is unsafe because newRgn closes the handle h2 when
the child computation exits. Executing the action ac outside of
newRgn would attempt to read from an already closed handle.
Fortunately, this code raises a type error. The handle h2 has the
type SHandle (IORT s m), where s is quantified in the type of
newRgn. The computation shGetLine h2 therefore has the type

(MonadRaise (IORT s m) m2, RMonadIO m2) =>
m2 String

Since do-bindings are monomorphic, the type checker must re-
solve the two constraints above to infer a type for ac. Since m2
is unknown, constraint resolution fails and yields a type error. In-
deed, every way to instantiate m2 that satisfies the suffix constraint
MonadRaise (IORT s m) m2 mentions s, but the type of ac,
which contains m2, cannot mention s because ac takes scope be-
yond s. It does not help to existentially quantify over s in the type
of ac, because the type error would just shift to where ac is used.

We can try to defeat safety in many other ways. We may
try to store the handle h2 or a computation involving h2 in a
IORef mutable cell allocated outside newRgn (see testref in
SafeHandlesTest.hs). But the type of h2 includes the eigen-
variable s, and the type of a computation involving h2 contains
either an unresolved MonadRaise constraint or the same s. Storing
the handle or computation in the cell raises one of the type errors
already described.

This variety of attempts, albeit unsuccessful, makes one wish
for formal assurances. That is the subject of current work. Most
promising is relating our library to Fluet and Morrisett’s calculus
FRGN [4]. The calculus seems a good fit since it supports first-class
polymorphism, monads, and assignments—and has been proven
type-sound [4, Theorem 1]. We need to add basic IO operations
and monad transformers, then relate our MonadRaise to their
witnessRGN. A more direct approach may be to follow Moggi
and Sabry [14, Section 1, “Methodology and techniques”]. They
instrument a structural operational semantics for a higher-order λ -
calculus to check for region safety and dangling references, then
establish type safety for the instrumented semantics.

5. Extension: prolonging the life of a handle
Our running example demonstrated deallocating resources in an
arbitrary order, not necessarily the reverse order of their allocation.
Nevertheless, the order of deallocation is known when the resources
are allocated. In fact, we know to close the output file last and
the configuration file first, before even running the example. In
practice, the lifetimes of handles may be known only after they are
created. This uncertainty is illustrated by the following example
due to Matthew Fluet:

1. open a configuration file;
2. read the names of two log files from the configuration file;
3. open the two log files and read a dated entry from each;
4. close the configuration file and the newer log file;
5. continue processing the older log file;
6. close the older log file.

Here, one of the two log files is used longer than the other, but we
do not know which until we open both. Because the lifetimes of the
handles are not statically known, it may seem that we cannot use
regions to timely close the configuration file and the newer log file.

We can solve this problem while maintaining the static guaran-
tees of the regions, by introducing the function shDup in Fig. 1.

The function is akin to POSIX’s dup2 function: it copies a handle
to produce an alias that, as the type indicates, belongs to the parent
region of the handle. We end up with two handles that access the
same file (and share the same offset). The file stays open until (and
only until) all of its handles are disposed of.

Using shDup, we write our new example as follows:

test5 = runSIO (do
h <- newRgn (test5_internal "/tmp/ex-file2.conf")
l <- shGetLine h
shReport ("Continue with the older file: " ++ l)
shReport "test5 done")

test5_internal conf_fname = do
hc <- newSHandle conf_fname ReadMode
fname1 <- shGetLine hc
fname2 <- shGetLine hc
h1 <- newSHandle fname1 ReadMode
h2 <- newSHandle fname2 ReadMode
l1 <- shGetLine h1
l2 <- shGetLine h2
let (fname_old,h_old) | l1 < l2 = (fname2,h2)

| otherwise = (fname1,h1)
shReport ("Older log file: " ++ fname_old)
shDup h_old -- prolong the life of that handle

The guard l1 < l2 chooses at run time which of the two handles
needs further processing. We duplicate that handle and return the
copy to the main function test5. Since the copy is assigned to
the parent region, returning it is safe and well-typed (whereas we
may return neither h1 nor h2, as they are assigned to the child
region). We cannot tell statically which of the two handles, h1
or h2 will be duplicated and returned. When test5_internal
finishes with its region, all three handles opened there will be
closed. However, since one of h1 or h2 has been duplicated, the
closing will only decrement a reference count but not close the file.
The main function test5 receives a handle in its region for the
unclosed file. When test5 finishes, the file will be closed for real.
The transcript of running test5 confirms our description.

The implementation of shDup does not use dup2 or other sys-
tem calls. We merely need to add a reference count to our tracking
of handles assigned to regions. We introduce a data type

data HandleR = HandleR Handle (IORef Integer)

to associate a reference count with a low-level handle. It is easy to
write the internal functions

new_hr :: Handle -> IO HandleR
close_hr :: HandleR -> IO ()
eq_hr :: Handle -> HandleR -> Bool

to create a HandleR with the initial reference count 1; to decrement
the reference count and close the handle when the count goes to 0;
and to compare a Handle against a HandleR for equality. We
modify the representation of IORT so it maintains a mutable list of
HandleRs rather than Handles. Likewise, we modify the function
newRgn to invoke close_hr instead of hClose, and newSHandle
to invoke new_hr. The new function shDup is most interesting:

shDup (SHandle h) = IORT (do
handles <- ask >>= lIO . readIORef
let Just hr@(HandleR _ refcount) =

find (eq_hr h) handles
lIO (modifyIORef refcount succ)
lift (IORT (do -- in the parent monad

handles <- ask
lIO (modifyIORef handles (hr:)))

return (SHandle h))

To duplicate a handle, shDup locates the handle among those as-
signed to the current region, increments the reference count, and
adds the handle to the list of handles of the parent region.

It incurs some dynamic overhead to allow duplicating handles:
newSHandle and newRgn have to maintain reference counts, and
shDup also does work at run-time. All these extra computations
are total and raise no errors. Operations on existing handles, such
as shGetLine, are not affected at all! Thus, the overall run-time
impact of adding handle duplication to the library is negligible.

6. Alternative: tracking type-state in a
parameterized monad

A different way to ensure that resources are handled safely is to
use an advanced type system to statically guarantee that manual
resource management is safe. The programmer both allocates and
deallocates resources, and so can deallocate a resource as soon as it
is no longer needed. The type system ensures that a deallocated re-
source is not used, and that all resources are eventually deallocated.
The type system thus tracks type-state, an “extension to the notion
of type” to account for the fact that “the operations that can be per-
formed on a variable depend not only on the type of the variable,
but also upon the state of the variable” [16].

Tracking type-state seems to require quite advanced type (and
effect) systems, in particular, modal or substructural type systems
[3, 6, 19]. None of these advanced type systems are available in
mainstream Haskell. Nevertheless, we can use a parameterized
monad [1, 10] as a poor programmer’s substructural type system
to track type-state in Haskell. All such tracking is done at the type
level and has no run-time overhead. Previously [10], we used a
parameterized monad to enforce protocol constraints by tracking
the number of times an operation is executed such as reading from
a device register. We can treat the use of handles as a protocol too.

6.1 Interface
A parameterized monad is not a monad, and is not predefined in
Haskell (although the upcoming version of GHC will support the
do-notation for it). Its interface can be described as a type class.

class Monadish m where
gret :: a -> m p p a
gbind :: m p q a -> (a -> m q r b) -> m p r b

A parameterized monad m has three type parameters p q a, com-
pared to only a for a real monad. The parameter a is the type of the
value produced by the computation. The types p and q describe the
state when the computation begins and ends. The operations gret
and gbind generalize return (unit) and >>= (bind) for an ordinary
monad. The type of gbind threads the type state from one part of
a computation to the next. For convenience, we define the left-
associative low-precedence infix operator >== as a synonym for
gbind. We also define the infix operator +>>, generalizing >> for
ordinary monads, as vm1 +>> vm2 = gbind vm1 (const vm2).

To track safe handles, we define a parameterized monad TSIO s,
analogous to the single-region safe-IO monad SIO s of §2. We also
introduce a type of safe handles TSHandle s l, labeled with a
phantom type parameter l not present in SHandle m or STRef s.
This label l is a Peano numeral at the type level that uniquely iden-
tifies the safe handle. The type state (tracked with p and q) contains
a list of the labels of the currently open handles. To be more precise,
the type state can be described in pseudo-Haskell by the following
declarations of ‘algebraic data kinds’ and ‘kind synonyms’:

kind TypeState = (LabelCounter, OpenLabels)
kind LabelCounter = Nat0
datakind OpenLabels = N | C Label OpenLabels

kind Label = Nat0
datakind Nat0 = Z | S Nat0

That is, the type state is the counter to generate fresh labels, paired
with the list of open labels. Our interface is as follows.

type TSIO s p q a -- opaque
type TSHandle s l -- opaque
runTSIO :: (forall s. TSIO s (Z,N) (qc,N) a) ->

IO a
tshOpen :: (NewLabel p l p1, AddLabel l p1 q) =>

FilePath -> IOMode ->
TSIO s p q (TSHandle s l)

tshClose :: RemLabel l p q =>
TSHandle s l -> TSIO s p q ()

tshGetLine :: IsMember l p => TSHandle s l ->
TSIO s p p String

tshPutStrLn:: IsMember l p => TSHandle s l ->
String -> TSIO s p p ()

tshIsEOF :: IsMember l p => TSHandle s l ->
TSIO s p p Bool

tshReport :: StateOK p => String -> TSIO s p p ()

The constraint StateOK p above checks that p is a well-formed
type-state. The constraint NewLabel p l p1 is a type-level func-
tion to generate a fresh label l. The other type-level functions
AddLabel l p q, RemLabel l p q, and IsMember l p respec-
tively add, remove, and search for the label in the type state. Open-
ing a safe handle generates a fresh label and adds it to the open
label list of the type state. The label of a closed handle is removed
from the type state, so tshGetLine cannot be invoked on a closed
handle. To run a TSIO computation, the list of active labels in p
and q must be empty (i.e., N), which means that no handle is open
at the beginning and no handle can remain open at the end. We
thus achieve all our goals. All this tracking takes place entirely in
types: unlike Atkey’s typed state [1], our type parameters p and q
are phantom. At run-time, TSIO p q a is identical to IO a and
TSHandle l is just the low-level Handle.

We have successfully implemented this approach (see the code
and tests in multi-handle-io0.hs). In particular, we write our
motivating example, §1.1, as follows.

test3 = runTSIO (
tshOpen "/tmp/SafeHandles.hs" ReadMode >== \h1 ->
test3_internal h1 >== \h3 ->
till (tshIsEOF h1)

(tshGetLine h1 >>= tshPutStrLn h3) >>
tshReport "test3 done" +>>
tshClose h1 +>>
tshClose h3)

test3_internal h1 =
tshOpen "/tmp/ex-file.conf" ReadMode >== \h2 ->
tshGetLine h2 >== \fname ->
tshOpen fname WriteMode >== \h3 ->
tshPutStrLn h3 fname >>
till (liftM2 (||) (tshIsEOF h2) (tshIsEOF h1))

(tshGetLine h2 >>= tshPutStrLn h3 >>
tshGetLine h1 >>= tshPutStrLn h3) >>

tshReport "Finished zipping h1 and h2" +>>
tshClose h2 +>>
gret h3

For any parameterized monad m and any type state p, the type con-
structor m p p is a monad. In particular, TSIO s p p is an in-
stance of Monad, so we can use ordinary monad notation, including
do-notation, for TSIO computations that do not affect the type state.
In particular, the combinator till remains as in §2 above. Copying

from h2 and h1 to h3 neither opens nor closes handles and hence
does not affect the type state. Therefore we write these computa-
tions using ordinary monad functions such as >>=, >>, and liftM2.

6.2 Assessment
The main example implemented with the TSIO library looks quite
similar to the code written with the single-region SIO library of §2,
especially if we overlook the slight difference in monad notations.
Both implementations ensure that only open handles can be ma-
nipulated and all handles are eventually closed. The single-region
SIO library provides these assurances at the cost of dynamically
tracking open handles and denying the programmer the ability to
explicitly close handles. All handles are closed only at the end of
the whole computation. The nested-region SIO libraries of §3 and
§4 improve the timeliness of deallocation. The TSIO library, in con-
trast, stresses manual resource management and does provide the
operation to explicitly close a handle as soon as it is no longer
needed. The library statically tracks the status of safe handles; a
closed handle, although nominally available, cannot be used. For
example, in the test3 code above, omitting any of the tshClose
operations or adding new ones leads to a type error.

Static tracking obviates dynamic tracking: whereas runSIO in
§2–§4 performs non-trivial computations, runTSIO is operationally
the identity function. However, the type-state approach has several
drawbacks, compared with the region approach in §4.

First, the extensive type-class programming required makes the
inferred types large and the error messages poor. The operation to
copy a line from one handle to another

test4 h1 h2 = do line <- tshGetLine h1
tshPutStrLn h2 line

now has the inferred type

(Apply RemL (t1, t3) r, Nat0 t2,
Apply RemL (t4, t3) r1) =>
TSHandle s t1 -> TSHandle s t4 ->
TSIO s (t2, t3) (t2, t3) ()

which says that test4 takes two open handles. Compared to the
type inferred for test4 in §4, the TSIO type is less clear and betrays
the implementation details of the TSIO library. The type inferred for
test3_internal is yet larger, containing 8 type-class constraints.

Second, because each handle is tracked statically and individ-
ually, it is impossible to express (recursive) programs that open a
statically unknown number of handles (for example, zipping to-
gether several input files, whose names and number are given by
the user). The region approach does not have this problem, because
it does not track the number of handles in each region.

Third, it is very hard to handle failures of IO operations.
Whether these failures are managed as exceptions, what looks like
a sequence of IO actions that moves from an initial state to a fi-
nal state may in fact stop at any intermediate step. The resulting
proliferation of control-flow possibilities and the path-insensitivity
of our type-state tracking makes it hopelessly unwieldy to recover
after errors in a TSIO computation, especially when the lifetimes
of resources are not nested. For example, in order to close handles
properly in the following typical code, we need to write four dif-
ferent exception handlers or recovery routines explicitly—one for
each subset of the two files involved.

do h1 <- tshOpen "file1" ReadMode
l1 <- tshGetLine h1
h2 <- tshOpen "file2" WriteMode
tshPutStrLn h2 l1
tshClose h1
tshPutStrLn h2 l1
tshClose h2

7. Related work
Launchbury and Peyton Jones [11] invented the ST monad and pi-
oneered the use of rank-2 polymorphism to encapsulate memory
references and operations on them to a single region. Launchbury
and Sabry [12] generalized this idea to nested regions, but their rep-
resentation of monads indexed by lineage provides limited region
polymorphism. Our solution is cast in terms of file handles rather
than memory references, and provides full region polymorphism.
We also introduce handle duplication as a way to dynamically pro-
long the life of a handle.

Tofte and Talpin [18] invented regions for memory management
and introduced a type-and-effect system to ensure safe access, that
is, never dereferencing a dangling pointer. Like them, we support
creating arbitrarily many regions and allocating resources in any
live region, be it the current region or one of its ancestors. Like
them, we label the type of an allocated resource with the region
holding it. A computation that allocates or accesses resources bears
effect annotations in its type, which specify the labels of regions
needed to execute the computation safely. Our annotations are type-
class constraints, which require no extension to Haskell and can be
inferred. Also like Tofte and Talpin, we support region polymor-
phism: a computation may be polymorphic over the regions it uses.

Cyclone [5] and Fluet and Morrisett’s monadic regions [4] ex-
tend the region calculus with region subtyping: a resource allocated
in an older region is available as if it were located in any younger
region. Our library in §4 can be regarded as another implementation
of monadic regions, taking advantage of the type system to manage
implicit evidence for region subtyping automatically. Handle dupli-
cation, described in §5, is a new extension of monadic regions.

One difference between regions of heap data and regions of
file handles is that some heap data, such as pairs, may contain
components that are themselves on a heap. Thus we need to track
not only the lifetimes of containers but also of their components.
Our region library can easily be extended for resources that contain
other resources. Unlike implementations of monadic regions such
as Fluet and Morrisett’s and ours, Tofte and Talpin [18]’s effect
system allows manipulating a value that contains dangling pointers,
as long as the pointers are never dereferenced.

The safety guarantees of our approach rely on type eigenvari-
ables, which are fresh names. Reasoning with fresh names is no-
toriously complex [13, 15]. We avoid many difficulties because we
only ever assert to the type checker that two types are the same
(must unify), never that two types are different (must not unify).

We review work related to type-state in §6 above.

8. Conclusions
We describe and implement two new ways to manage resources
such as file handles in Haskell: monadic regions (with implicit sub-
typing) and type-state tracking. All of our libraries provide previ-
ously unavailable static guarantees, namely that a resource is used
only when it is still allocated, and that all allocated resources are
deallocated. Neither approach limits the number of resources or
the order of their deallocation. We support general recursion (lim-
ited for type-state tracking), higher-order computations, and muta-
ble state. Our work applies as is to other kinds of resources, such as
database connections and device reservations. It seems compatible
with Haskell′ as well. Our ongoing work is to try our approaches in
larger projects (e.g., the portable SQL multi-database access library
Takusen or web application servers) to test scalability.

Type-state tracking and monadic regions offer different trade-
offs between static and dynamic resource management.

• On one hand, type-state tracking is most precise and imposes
no run-time overhead, because it is fully static and manual. We

use a parameterized monad to make this form of linear typing
available in Haskell today.

• On the other hand, monadic regions are much more concise,
can express more computations, and impose negligible run-time
overhead (less than that of the existing Haskell IO library). Our
implementations of monadic regions provide region polymor-
phism and region subtyping, with clear inferred types and no
need for any type annotations. Our final implementation, based
on monad transformers with implicit subtyping, is especially
convenient to use because it frees the programmer from pro-
ducing or passing any subtyping evidence and minimizes the
notational overhead of regions.

In both approaches, deallocation is predictable, as well as timely
to an extent depending on what the program does and how the
programmer structures it. In particular, the new ability to duplicate
handles across monadic regions allows the lifetime of handles to
be controlled more dynamically. The type-state tracking approach,
due to its intricate implementation, large inferred types, and poor
error messages, remains merely a tantalizing proof of concept. We
hope that type-level computations in GHC or other Haskell-like
languages will make type-state tracking practical.

Throughout this work, we use monadic style to convert control-
flow problems to data-flow ones, in particular to assign expressive
types to effectful computations and reason with them. Writing
programs thus in A-normal form is ungainly compared to the pure
functional style of clausal definitions and pattern matching, so ‘lazy
IO’ is deplorably popular despite its unsoundness. It would be more
gainly to transfer our approach to an impure language like OCaml,
but there we need an effect system in lieu of the monadic types. We
thus need a language with an effect system.

Acknowledgments
We thank Greg Morrisett and Matthew Fluet for helpful discus-
sions. Matthew Fluet suggested the example implemented in §5.

References
[1] Atkey, Robert. 2006. Parameterised notions of computation.

In MSFP 2006: Workshop on mathematically structured func-
tional programming, ed. Conor McBride and Tarmo Uustalu.
Electronic Workshops in Computing, British Computer Soci-
ety.

[2] Filinski, Andrzej. 1999. Representing layered monads. In
POPL ’99: Conference record of the annual ACM sympo-
sium on principles of programming languages, 175–188. New
York: ACM Press.

[3] Fluet, Matthew, Greg Morrisett, and Amal J. Ahmed. 2006.
Linear regions are all you need. In ESOP, 7–21.

[4] Fluet, Matthew, and J. Gregory Morrisett. 2004. Monadic re-
gions. In ICFP ’04: Proceedings of the ACM international
conference on functional programming. New York: ACM
Press.

[5] Grossman, Dan, Greg Morrisett, Trevor Jim, Michael Hicks,
Yanling Wang, and James Cheney. Region-based memory
management in Cyclone. In PLDI, 282–293.

[6] Igarashi, Atsushi, and Naoki Kobayashi. 2002. Resource
usage analysis. In POPL, 331–342. New York: ACM Press.

[7] Kiselyov, Oleg. 2004. Heavy-weight implementation
of region calculus. http://okmij.org/ftp/Haskell/
regions.html#heavy-weight.

[8] ———. 2007. Type improvement constraint, local functional
dependencies, and a type-level typecase. http://okmij.
org/ftp/Haskell/typecast.html.

[9] Kiselyov, Oleg, Ralf Lämmel, and Keean Schupke. 2004.
Strongly typed heterogeneous collections. In Proc. ACM SIG-
PLAN workshop on Haskell, 96–107.

[10] Kiselyov, Oleg, and Chung-chieh Shan. 2007. Lightweight
static resources: Sexy types for embedded and systems pro-
gramming. In Draft proceedings of TFP 2007: 6th symposium
on trends in functional programming, ed. Marco T. Morazán
and Henrik Nilsson. Tech. Rep. TR-SHU-CS-2007-04-1, De-
partment of Mathematics and Computer Science, Seton Hall
University.

[11] Launchbury, John, and Simon L. Peyton Jones. 1995. State in
Haskell. Lisp and Symbolic Computation 8(4):293–341.

[12] Launchbury, John, and Amr Sabry. 1997. Monadic State:
Axiomatization and Type Safety. In ICFP, 227–238.

[13] Miller, Dale, and Alwen Tiu. 2005. A proof theory for generic
judgments. ACM Trans. Comput. Log. 6(4):749–783.

[14] Moggi, Eugenio, and Amr Sabry. 2001. Monadic encapsula-
tion of effects: A revised approach (extended version). Jour-
nal of Functional Programming 11(6):591–627.

[15] Pitts, Andrew M. 2003. Nominal logic, a first order theory of
names and binding. Inf. Comput. 186(2):165–193.

[16] Strom, Robert E., and Daniel M. Yellin. 1993. Extending
typestate checking using conditional liveness analysis. IEEE
Transactions on Software Engineering 19(5):478–485.

[17] Tofte, Mads, Lars Birkedal, Martin Elsman, Niels Hallenberg,
Tommy Højfeld Olesen, and Peter Sestoft. 2006. Program-
ming with regions in the MLKit (revised for version 4.3.0).
Tech. Rep., IT University of Copenhagen, Denmark.

[18] Tofte, Mads, and Jean-Pierre Talpin. 1997. Region-based
memory management. Inf. Comput. 132(2):109–176.

[19] Walker, David, Karl Crary, and J. Gregory Morrisett. 2000.
Typed memory management via static capabilities. ACM
Trans. Program. Lang. Syst. 22(4):701–771.

