
1

Lightweight monadic regions

Oleg Kiselyov (FNMOC)
Chung-chieh Shan (Rutgers� Aarhus)

Haskell Symposium
25 September 2008



2

What?

Goal: Resource management

I No access after close (down with run-time checking)
I Timely disposal (especially for scarce resources)
I Error handling

Accessible
Open Close

Access



3

Motivating example: File handles

2
4
6
7
8
9

input

log
1
3
5

config

1. Open input and config for reading.

2. From config, read the file name log to open for writing.

3. Zip input and config into log.

4. Close config.

5. Copy the rest of input to log.



3

Motivating example: File handles

2
4
6
7
8
9

input

log
1
3
5

config

1. Open input and config for reading.

2. From config, read the file name log to open for writing.

3. Zip input and config into log.

4. Close config.

5. Copy the rest of input to log.



3

Motivating example: File handles

2
4
6
7
8
9

input

log
1
3
5

configlog

1. Open input and config for reading.

2. From config, read the file name log to open for writing.

3. Zip input and config into log.

4. Close config.

5. Copy the rest of input to log.



3

Motivating example: File handles

2
4
6
7
8
9

input

log
1
3
5

config

1
2
3
4
5
6

log

1. Open input and config for reading.

2. From config, read the file name log to open for writing.

3. Zip input and config into log.

4. Close config.

5. Copy the rest of input to log.



3

Motivating example: File handles

2
4
6
7
8
9

input

log
1
3
5

config

1
2
3
4
5
6

log

1. Open input and config for reading.

2. From config, read the file name log to open for writing.

3. Zip input and config into log.

4. Close config.

5. Copy the rest of input to log.



3

Motivating example: File handles

2
4
6
7
8
9

input

log
1
3
5

config

1
2
3
4
5
6
7
8
9

log

1. Open input and config for reading.

2. From config, read the file name log to open for writing.

3. Zip input and config into log.

4. Close config.

5. Copy the rest of input to log.



3

Motivating example: File handles

2
4
6
7
8
9

input

log
1
3
5

config

1
2
3
4
5
6
7
8
9

log

1. Open input and config for reading.

2. From config, read the file name log to open for writing.

3. Zip input and config into log.

4. Close config.

5. Copy the rest of input to log.



4

How?

Goal: Resource management

I No access after close
I Timely disposal
I Error handling

Solution: Nested regions

I Phantom types a la ST
I Monad transformer
I Implicit region subtyping

Impose a syntactic discipline on native capabilities.

Further applications

I Database connections
I OpenGL contexts
I Automatic differentiation

Another approach
Safe manual resource management, using a parameterized monad



4

How?

Goal: Resource management

I No access after close
I Timely disposal
I Error handling

Solution: Nested regions

I Phantom types a la ST
I Monad transformer
I Implicit region subtyping

Impose a syntactic discipline on native capabilities.

Further applications

I Database connections
I OpenGL contexts
I Automatic differentiation

Another approach
Safe manual resource management, using a parameterized monad



5

Outline

I Safe file handles in a single region
Interface
Implementation

Nested regions using explicit witness terms
Interface
Implementation

Nested regions as monad transformers
Interface
Implementation

Manual resource management



6

Leaking handles is dangerous

Encapsulate a file handle for safety?

withFile :: FilePath -> IOMode -> (Handle -> IO a) -> IO a
withFile name mode = bracket (openFile name mode) hClose

withFile name mode act opens a file using openFile
and passes the resulting handle to the computation act.
The handle will be closed on exit from withFile,
whether by normal termination or by raising an exception.

But the type a could be Handle!

withFile "FilePath" ReadMode return >>= hGetLine

Prevent leaking statically, by analogy to state threads.
Then, no need to check dynamically for reading from a closed file.



6

Leaking handles is dangerous

Encapsulate a file handle for safety?

withFile :: FilePath -> IOMode -> (Handle -> IO a) -> IO a
withFile name mode = bracket (openFile name mode) hClose

withFile name mode act opens a file using openFile
and passes the resulting handle to the computation act.
The handle will be closed on exit from withFile,
whether by normal termination or by raising an exception.

But the type a could be Handle!

withFile "FilePath" ReadMode return >>= hGetLine

Prevent leaking statically, by analogy to state threads.
Then, no need to check dynamically for reading from a closed file.



7

State threads

ST :: * -> * -> *
STRef :: * -> * -> *
instance Monad (ST s)

Allocate
newSTRef :: a -> ST s (STRef s a)

Access
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

Encapsulate
runST :: (∀s. ST s a) -> a

Every cell is implicitly deallocated exactly once, after all access.



7

State threads

ST :: * -> * -> *
STRef :: * -> * -> *
instance Monad (ST s)

Allocate
newSTRef :: a -> ST s (STRef s a)

Access
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

Encapsulate
runST :: (∀s. ST s a) -> a

Every cell is implicitly deallocated exactly once, after all access.



7

State threads

ST :: * -> * -> *
STRef :: * -> * -> *
instance Monad (ST s)

Allocate
newSTRef :: a -> ST s (STRef s a)

Access
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

Encapsulate
runST :: (∀s. ST s a) -> a

Every cell is implicitly deallocated exactly once, after all access.



7

Handle threads

SIO :: * -> * -> *
SHandle :: (* -> *) -> *
instance Monad (SIO s)

Allocate
newSHandle :: FilePath -> IOMode -> SIO s (SHandle (SIO s))

Access
shGetLine :: SHandle (SIO s) -> SIO s String
shPutStrLn :: SHandle (SIO s) -> String -> SIO s ()
shIsEOF :: SHandle (SIO s) -> SIO s Bool

Encapsulate
runSIO :: (∀s. SIO s a) -> IO a

Every handle is implicitly closed exactly once, after all access.



7

Handle threads

SIO :: * -> * -> *
SHandle :: (* -> *) -> *
instance Monad (SIO s)

Allocate
newSHandle :: FilePath -> IOMode -> SIO s (SHandle (SIO s))

Access
shGetLine :: SHandle (SIO s) -> SIO s String
shPutStrLn :: SHandle (SIO s) -> String -> SIO s ()
shIsEOF :: SHandle (SIO s) -> SIO s Bool

Encapsulate
runSIO :: (∀s. SIO s a) -> IO a

Every handle is implicitly closed exactly once, after all access.



7

Handle threads

SIO :: * -> * -> *
SHandle :: (* -> *) -> *
instance Monad (SIO s)

Allocate
newSHandle :: FilePath -> IOMode -> SIO s (SHandle (SIO s))

Access
shGetLine :: SHandle (SIO s) -> SIO s String
shPutStrLn :: SHandle (SIO s) -> String -> SIO s ()
shIsEOF :: SHandle (SIO s) -> SIO s Bool

Encapsulate
runSIO :: (∀s. SIO s a) -> IO a

Every handle is implicitly closed exactly once, after all access.



8

Usage
Simple monadic programming.

test3 = runSIO (do
h1 <- newSHandle "input" ReadMode
h3 <- test3_internal h1
till (shIsEOF h1)

(shGetLine h1 >>= shPutStrLn h3))

2
4
6
7
8
9

input

log
1
3
5

config

1
2
3
4
5
6
7
8
9

log



8

Usage
Simple monadic programming.

test3 = runSIO (do
h1 <- newSHandle "input" ReadMode
h3 <- test3_internal h1
till (shIsEOF h1)

(shGetLine h1 >>= shPutStrLn h3))

2
4
6
7
8
9

input

log
1
3
5

config

1
2
3
4
5
6
7
8
9

log



8

Usage
Simple monadic programming.

test3 = runSIO (do
h1 <- newSHandle "input" ReadMode
h3 <- test3_internal h1
till (shIsEOF h1)

(shGetLine h1 >>= shPutStrLn h3))

2
4
6
7
8
9

input

log
1
3
5

config

1
2
3
4
5
6
7
8
9

log



8

Usage
Simple monadic programming.

test3 = runSIO (do
h1 <- newSHandle "input" ReadMode
h3 <- test3_internal h1
till (shIsEOF h1)

(shGetLine h1 >>= shPutStrLn h3))

till condition iteration = loop where
loop = do b <- condition

if b then return ()
else iteration >> loop



8

Usage
Simple monadic programming.

test3 = runSIO (do
h1 <- newSHandle "input" ReadMode
h3 <- test3_internal h1
till (shIsEOF h1)

(shGetLine h1 >>= shPutStrLn h3))

2
4
6
7
8
9

input

log
1
3
5

config

1
2
3
4
5
6
7
8
9

log



8

Usage
Simple monadic programming.

test3 = runSIO (do
h1 <- newSHandle "input" ReadMode
h3 <- test3_internal h1
till (shIsEOF h1)

(shGetLine h1 >>= shPutStrLn h3))

test3_internal h1 = do
h2 <- newSHandle "config" ReadMode
fname <- shGetLine h2
h3 <- newSHandle fname WriteMode
shPutStrLn h3 fname
till (liftM2 (||) (shIsEOF h2) (shIsEOF h1))

(shGetLine h2 >>= shPutStrLn h3 >>
shGetLine h1 >>= shPutStrLn h3)

return h3



8

Usage
Simple monadic programming.

test3 = runSIO (do
h1 <- newSHandle "input" ReadMode
h3 <- test3_internal h1
till (shIsEOF h1)

(shGetLine h1 >>= shPutStrLn h3))

input

config

log



9

Error handling

Every operation can throw an exception, especially newSHandle.

shThrow :: Exception -> SIO s a
shCatch :: SIO s a -> (Exception -> SIO s a) -> SIO s a

Sanitize Exception to remove any unsafe (low-level) Handle.
Re-throw Exception if uncaught in runSIO.



10

Implementation

Apply the reader monad transformer to IO, for runSIO and
newSHandle to keep a list of open handles in an IORef cell.

newtype SHandle = SHandle Handle
newtype IORT s m a = IORT (IORef [Handle] -> m a)
type SIO s = IORT s IO



10

Implementation

Apply the reader monad transformer to IO, for runSIO and
newSHandle to keep a list of open handles in an IORef cell.

newtype SHandle = SHandle Handle
newtype IORT s m a = IORT (IORef [Handle] -> m a)
type SIO s = IORT s IO

Run-time overhead when opening files, not accessing them.



10

Implementation

Apply the reader monad transformer to IO, for runSIO and
newSHandle to keep a list of open handles in an IORef cell.

newtype SHandle = SHandle Handle
newtype IORT s m a = IORT (IORef [Handle] -> m a)
type SIO s = IORT s IO

Plumbing: a monad class for IO and exception handling

class Monad m => RMonadIO m where
brace :: m a -> (a -> m b) -> (a -> m c) -> m c
snag :: m a -> (Exception -> m a) -> m a
lIO :: IO a -> m a

instance RMonadIO IO where ... -- Sanitize exceptions
instance RMonadIO m => RMonadIO (IORT s m) where ...

Unexported names constitute the security kernel



10

Implementation

Apply the reader monad transformer to IO, for runSIO and
newSHandle to keep a list of open handles in an IORef cell.

newtype SHandle = SHandle Handle
newtype IORT s m a = IORT (IORef [Handle] -> m a)
type SIO s = IORT s IO

Plumbing: a monad class for IO and exception handling

class Monad m => RMonadIO m where
brace :: m a -> (a -> m b) -> (a -> m c) -> m c
snag :: m a -> (Exception -> m a) -> m a
lIO :: IO a -> m a

instance RMonadIO IO where ... -- Sanitize exceptions
instance RMonadIO m => RMonadIO (IORT s m) where ...

Unexported names constitute the security kernel



11

Outline

Safe file handles in a single region
Interface
Implementation

I Nested regions using explicit witness terms
Interface
Implementation

Nested regions as monad transformers
Interface
Implementation

Manual resource management



12

Motivating example: File handles

2
4
6
7
8
9

input

log
1
3
5

config

1
2
3
4
5
6

log

1. Open input and config for reading.

2. From config, read the file name log to open for writing.

3. Zip input and config into log.

4. Close config.

5. Copy the rest of input to log.



13

Nested regions

I To close config early, open it in a child region.
I To use input and log while config is open, let a child

computation use parent regions (Launchbury and Sabry).
I To make a child computation polymorphic in its parent regions,

pass witnesses for region subtyping (Fluet and Morrisett).

input

config

log



13

Nested regions

I To close config early, open it in a child region.
I To use input and log while config is open, let a child

computation use parent regions (Launchbury and Sabry).
I To make a child computation polymorphic in its parent regions,

pass witnesses for region subtyping (Fluet and Morrisett).

input

config

log

newRgn :: (∀s. SIO s a) -> SIO r a
newRgn m = lIO (runSIO m)



13

Nested regions

I To close config early, open it in a child region.
I To use input and log while config is open, let a child

computation use parent regions (Launchbury and Sabry).
I To make a child computation polymorphic in its parent regions,

pass witnesses for region subtyping (Fluet and Morrisett).

input

config

log

newRgn :: (∀s. SIO (r,s) a) -> SIO r a
importSHandle :: SHandle (SIO r) -> SHandle (SIO (r,s))



13

Nested regions

I To close config early, open it in a child region.
I To use input and log while config is open, let a child

computation use parent regions (Launchbury and Sabry).
I To make a child computation polymorphic in its parent regions,

pass witnesses for region subtyping (Fluet and Morrisett).

input

config

log

newRgn :: (∀s. SubRegion r s -> SIO s a) -> SIO r a
type SubRegion r s = ∀a. SIO r a -> SIO s a



14

Usage

test3 = runSIO (do
h1 <- newSHandle "input" ReadMode
h3 <- newRgn (test3_internal h1)
till (shIsEOF h1)

(shGetLine h1 >>= shPutStrLn h3))

test3_internal h1 liftSIO = do
h2 <- newSHandle "config" ReadMode
fname <- shGetLine h2
h3 <- liftSIO (newSHandle fname WriteMode)
liftSIO (shPutStrLn h3 fname)
till (liftM2 (||) (shIsEOF h2)

(liftSIO (shIsEOF h1)))
(shGetLine h2 >>= liftSIO . shPutStrLn h3 >>
liftSIO (shGetLine h1 >>= shPutStrLn h3))

return h3



14

Usage

test3 = runSIO (do
h1 <- newSHandle "input" ReadMode
h3 <- newRgn (test3_internal h1)
till (shIsEOF h1)

(shGetLine h1 >>= shPutStrLn h3))

test3_internal h1 liftSIO = do
h2 <- newSHandle "config" ReadMode
fname <- shGetLine h2
h3 <- liftSIO (newSHandle fname WriteMode)
liftSIO (shPutStrLn h3 fname)
till (liftM2 (||) (shIsEOF h2)

(liftSIO (shIsEOF h1)))
(shGetLine h2 >>= liftSIO . shPutStrLn h3 >>
liftSIO (shGetLine h1 >>= shPutStrLn h3))

return h3



14

Usage

test3 = runSIO (do
h1 <- newSHandle "input" ReadMode
h3 <- newRgn (test3_internal h1)
till (shIsEOF h1)

(shGetLine h1 >>= shPutStrLn h3))

test3_internal h1 liftSIO = do
h2 <- newSHandle "config" ReadMode
fname <- shGetLine h2
h3 <- liftSIO (newSHandle fname WriteMode)
liftSIO (shPutStrLn h3 fname)
till (liftM2 (||) (shIsEOF h2)

(liftSIO (shIsEOF h1)))
(shGetLine h2 >>= liftSIO . shPutStrLn h3 >>
liftSIO (shGetLine h1 >>= shPutStrLn h3))

return h3



14

Usage

Haskell infers region polymorphism for test3 internal:

test3_internal :: SHandle (SIO t) -> SubRegion t s ->
SIO s (SHandle (SIO t))

Still, explicit witnesses are annoying and error-prone to juggle.

test3_internal h1 liftSIO = do
h2 <- newSHandle "config" ReadMode
fname <- shGetLine h2
h3 <- liftSIO (newSHandle fname WriteMode)
liftSIO (shPutStrLn h3 fname)
till (liftM2 (||) (shIsEOF h2)

(liftSIO (shIsEOF h1)))
(shGetLine h2 >>= liftSIO . shPutStrLn h3 >>
liftSIO (shGetLine h1 >>= shPutStrLn h3))

return h3



15

Implementation

Unchanged from before:

newtype SHandle = SHandle Handle
newtype IORT s m a = IORT (IORef [Handle] -> m a)
type SIO s = IORT s IO

The only new function:

newRgn :: (∀s. SubRegion r s -> SIO s a) -> SIO r a
newRgn body = IORT (\open ->

let witness (IORT m) = lIO (m open)
in runSIO (body witness))

type SubRegion r s = ∀a. SIO r a -> SIO s a



16

Outline

Safe file handles in a single region
Interface
Implementation

Nested regions using explicit witness terms
Interface
Implementation

I Nested regions as monad transformers
Interface
Implementation

Manual resource management



17

Implicit region subtyping

test3_internal :: MonadRaise m (IORT s (IORT r n)) =>
SHandle m -> IORT s (IORT r n) (SHandle (IORT r n))

test3_internal h1 liftSIO = do
h2 <- newSHandle "config" ReadMode
fname <- shGetLine h2
h3 <- liftSIO (newSHandle fname WriteMode)
liftSIO (shPutStrLn h3 fname)
till (liftM2 (||) (shIsEOF h2)

(liftSIO (shIsEOF h1)))
(shGetLine h2 >>= liftSIO . shPutStrLn h3 >>
liftSIO (shGetLine h1 >>= shPutStrLn h3))

return h3

Use liftSIO to create a handle in an ancestor region.



17

Implicit region subtyping

test3_internal :: MonadRaise m (IORT s (IORT r n)) =>
SHandle m -> IORT s (IORT r n) (SHandle (IORT r n))

test3_internal h1 ////////////liftSIO = do
h2 <- newSHandle "config" ReadMode
fname <- shGetLine h2
h3 <- liftSIO (newSHandle fname WriteMode)
////////////liftSIO (shPutStrLn h3 fname)
till (liftM2 (||) (shIsEOF h2)

(////////////liftSIO (shIsEOF h1)))
(shGetLine h2 >>= ///////////liftSIO////. shPutStrLn h3 >>
////////////liftSIO (shGetLine h1 >>= shPutStrLn h3))

return h3

Use liftSIO to create a handle in an ancestor region.



18

Nested regions as monad transformers
A witness for region subtyping is a monad morphism!

type SubRegion r s = ∀a. SIO r a -> SIO s a

Create a child region by applying a monad transformer.
Get a family of SIO monads:

class Monad m => RMonadIO m
instance RMonadIO IO
instance RMonadIO (IORT r IO)
instance RMonadIO (IORT s (IORT r IO))
...

Express region ancestry by a type predicate:

class (RMonadIO m, RMonadIO n) => MonadRaise m n
instance RMonadIO m => MonadRaise m m
instance RMonadIO m => MonadRaise m (IORT s1 m)
instance RMonadIO m => MonadRaise m (IORT s2 (IORT s1 m))
...



18

Nested regions as monad transformers
A witness for region subtyping is a monad morphism!

type SubRegion r s = ∀a. SIO r a -> SIO s a

Create a child region by applying a monad transformer.
Get a family of SIO monads:

class Monad m => RMonadIO m
instance RMonadIO IO
instance RMonadIO m => RMonadIO (IORT s m)

Express region ancestry by a type predicate:

class (RMonadIO m, RMonadIO n) => MonadRaise m n
instance RMonadIO m => MonadRaise m m
instance RMonadIO m => MonadRaise m (IORT s1 m)
instance RMonadIO m => MonadRaise m (IORT s2 (IORT s1 m))
...



18

Nested regions as monad transformers
A witness for region subtyping is a monad morphism!

type SubRegion r s = ∀a. SIO r a -> SIO s a

Create a child region by applying a monad transformer.
Get a family of SIO monads:

class Monad m => RMonadIO m

liftSIO :: Monad m => IORT r m a -> IORT s (IORT r m) a

Express region ancestry by a type predicate:

class (RMonadIO m, RMonadIO n) => MonadRaise m n
instance RMonadIO m => MonadRaise m m
instance RMonadIO m => MonadRaise m (IORT s1 m)
instance RMonadIO m => MonadRaise m (IORT s2 (IORT s1 m))
...



18

Nested regions as monad transformers
A witness for region subtyping is a monad morphism!

type SubRegion r s = ∀a. SIO r a -> SIO s a

Create a child region by applying a monad transformer.
Get a family of SIO monads:

class Monad m => RMonadIO m

liftSIO :: Monad m => IORT r m a -> IORT s (IORT r m) a

Express region ancestry by a type predicate:

class (RMonadIO m, RMonadIO n) => MonadRaise m n
instance RMonadIO m => MonadRaise m m
instance RMonadIO m => MonadRaise m (IORT s1 m)
instance RMonadIO m => MonadRaise m (IORT s2 (IORT s1 m))
...



18

Nested regions as monad transformers
A witness for region subtyping is a monad morphism!

type SubRegion r s = ∀a. SIO r a -> SIO s a

Create a child region by applying a monad transformer.
Get a family of SIO monads:

class Monad m => RMonadIO m

liftSIO :: Monad m => IORT r m a -> IORT s (IORT r m) a

Express region ancestry by a type predicate:

class (RMonadIO m, RMonadIO n) => MonadRaise m n

shGetLine :: MonadRaise m n => SHandle m -> n String
shPutStrLn :: MonadRaise m n => SHandle m -> String -> n ()
shIsEOF :: MonadRaise m n => SHandle m -> n Bool



18

Region polymorphism

copy :: (MonadRaise m1 n, MonadRaise m2 n)
=> SHandle m1 -> SHandle m2 -> n ()

copy h1 h2 = do line <- shGetLine h1
shPutStrLn h2 line

Express region ancestry by a type predicate:

class (RMonadIO m, RMonadIO n) => MonadRaise m n

shGetLine :: MonadRaise m n => SHandle m -> n String
shPutStrLn :: MonadRaise m n => SHandle m -> String -> n ()
shIsEOF :: MonadRaise m n => SHandle m -> n Bool



18

Region polymorphism

copy :: (MonadRaise m1 n, MonadRaise m2 n)
=> SHandle m1 -> SHandle m2 -> n ()

copy h1 h2 = do line <- shGetLine h1
shPutStrLn h2 line

Express region ancestry by a type predicate:

class (RMonadIO m, RMonadIO n) => MonadRaise m n

shGetLine :: MonadRaise m n => SHandle m -> n String
shPutStrLn :: MonadRaise m n => SHandle m -> String -> n ()
shIsEOF :: MonadRaise m n => SHandle m -> n Bool



19

Implicit region subtyping

test3_internal :: MonadRaise m (IORT s (IORT r n)) =>
SHandle m -> IORT s (IORT r n) (SHandle (IORT r n))

test3_internal h1 ////////////liftSIO = do
h2 <- newSHandle "config" ReadMode
fname <- shGetLine h2
h3 <- liftSIO (newSHandle fname WriteMode)
////////////liftSIO (shPutStrLn h3 fname)
till (liftM2 (||) (shIsEOF h2)

(////////////liftSIO (shIsEOF h1)))
(shGetLine h2 >>= ///////////liftSIO////. shPutStrLn h3 >>
////////////liftSIO (shGetLine h1 >>= shPutStrLn h3))

return h3

Use liftSIO to create a handle in an ancestor region.



19

Implicit region subtyping

test3_internal :: MonadRaise m (IORT s (IORT r n)) =>
SHandle m -> IORT s (IORT r n) (SHandle (IORT r n))

test3_internal h1 ////////////liftSIO = do
h2 <- newSHandle "config" ReadMode
fname <- shGetLine h2
h3 <- liftSIO (newSHandle fname WriteMode)
////////////liftSIO (shPutStrLn h3 fname)
till (liftM2 (||) (shIsEOF h2)

(////////////liftSIO (shIsEOF h1)))
(shGetLine h2 >>= ///////////liftSIO////. shPutStrLn h3 >>
////////////liftSIO (shGetLine h1 >>= shPutStrLn h3))

return h3

Use liftSIO to create a handle in an ancestor region.



20

Implementation

Only changes:

1. newRgn is just runSIO with a more general type.

2. liftSIO = IORT . const



21

Express region ancestry by a type predicate

{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE OverlappingInstances #-}

class (RMonadIO m, RMonadIO n) => MonadRaise m n

instance RMonadIO m => MonadRaise m m
instance RMonadIO m => MonadRaise m (IORT s1 m)
instance RMonadIO m => MonadRaise m (IORT s2 (IORT s1 m))
...



21

Express region ancestry by a type predicate

{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE OverlappingInstances #-}

class (RMonadIO m, RMonadIO n) => MonadRaise m n

instance RMonadIO m => MonadRaise m m
instance (RMonadIO n, TypeCast2 n (IORT s n’),

MonadRaise m n’)
=> MonadRaise m n

class TypeCast2 (a::*->*) (b::*->*) | a -> b, b -> a
class TypeCast2’ t (a::*->*) (b::*->*) | t a -> b, t b -> a
class TypeCast2’’ t (a::*->*) (b::*->*) | t a -> b, t b -> a
instance TypeCast2’ () a b => TypeCast2 a b
instance TypeCast2’’ t a b => TypeCast2’ t a b
instance TypeCast2’’ () a a



22

Recap

I Encapsulate resource access in regions
I Nest computation by monad transformers (Filinski)
I Practical tradeoff between implicit subtyping and inference

The struggle for timely disposal continues:
When opening a file, we may not yet know when to close it.

shDup :: RMonadIO m =>
SHandle (IORT s (IORT r m)) ->
IORT s (IORT r m) (SHandle (IORT r m))



22

Recap

I Encapsulate resource access in regions
I Nest computation by monad transformers (Filinski)
I Practical tradeoff between implicit subtyping and inference

The struggle for timely disposal continues:
When opening a file, we may not yet know when to close it.

shDup :: RMonadIO m =>
SHandle (IORT s (IORT r m)) ->
IORT s (IORT r m) (SHandle (IORT r m))



23

Outline

Safe file handles in a single region
Interface
Implementation

Nested regions using explicit witness terms
Interface
Implementation

Nested regions as monad transformers
Interface
Implementation

I Manual resource management



24

Type-state
Explicit close eases timely disposal, but how to ensure safety?

Track open files exactly and statically in a parameterized monad.

class Monadish m where
gret :: a -> m p p a
gbind :: m p q a -> (a -> m q r b) -> m p r b

test3_internal h1 =
tshOpen "config" ReadMode >== \h2 ->
tshGetLine h2 >== \fname ->
tshOpen fname WriteMode >== \h3 ->
tshPutStrLn h3 fname >>
till (liftM2 (||) (tshIsEOF h2) (tshIsEOF h1))

(tshGetLine h2 >>= tshPutStrLn h3 >>
tshGetLine h1 >>= tshPutStrLn h3) >>

tshClose h2 +>>
gret h3



24

Type-state
Explicit close eases timely disposal, but how to ensure safety?

Track open files exactly and statically in a parameterized monad.

class Monadish m where
gret :: a -> m p p a
gbind :: m p q a -> (a -> m q r b) -> m p r b

test3_internal h1 =
tshOpen "config" ReadMode >== \h2 ->
tshGetLine h2 >== \fname ->
tshOpen fname WriteMode >== \h3 ->
tshPutStrLn h3 fname >>
till (liftM2 (||) (tshIsEOF h2) (tshIsEOF h1))

(tshGetLine h2 >>= tshPutStrLn h3 >>
tshGetLine h1 >>= tshPutStrLn h3) >>

tshClose h2 +>>
gret h3



24

Type-state
Explicit close eases timely disposal, but how to ensure safety?

Track open files exactly and statically in a parameterized monad.

class Monadish m where
gret :: a -> m p p a
gbind :: m p q a -> (a -> m q r b) -> m p r b

test3_internal h1 =
tshOpen "config" ReadMode >== \h2 ->
tshGetLine h2 >== \fname ->
tshOpen fname WriteMode >== \h3 ->
tshPutStrLn h3 fname >>
till (liftM2 (||) (tshIsEOF h2) (tshIsEOF h1))

(tshGetLine h2 >>= tshPutStrLn h3 >>
tshGetLine h1 >>= tshPutStrLn h3) >>

tshClose h2 +>>
gret h3



24

Type-state
Explicit close eases timely disposal, but how to ensure safety?

Track open files exactly and statically in a parameterized monad.

class Monadish m where
gret :: a -> m p p a
gbind :: m p q a -> (a -> m q r b) -> m p r b

test3_internal h1 =
tshOpen "config" ReadMode >== \h2 ->
tshGetLine h2 >== \fname ->
tshOpen fname WriteMode >== \h3 ->
tshPutStrLn h3 fname >>
till (liftM2 (||) (tshIsEOF h2) (tshIsEOF h1))

(tshGetLine h2 >>= tshPutStrLn h3 >>
tshGetLine h1 >>= tshPutStrLn h3) >>

tshClose h2 +>>
gret h3



24

Type-state
test3_internal
:: TSHandle s Z -> TSIO s

(S Z, C Z N)
(S (S (S Z)), C (S (S Z)) (C Z N))
(TSHandle s (S (S Z)))

test3_internal h1 =
tshOpen "config" ReadMode >== \h2 ->
tshGetLine h2 >== \fname ->
tshOpen fname WriteMode >== \h3 ->
tshPutStrLn h3 fname >>
till (liftM2 (||) (tshIsEOF h2) (tshIsEOF h1))

(tshGetLine h2 >>= tshPutStrLn h3 >>
tshGetLine h1 >>= tshPutStrLn h3) >>

tshClose h2 +>>
gret h3



24

Type-state
test3_internal
:: TSHandle s 0 -> TSIO s

(1, [0])
(3, [2,0])
(TSHandle s 2)

test3_internal h1 =
tshOpen "config" ReadMode >== \h2 ->
tshGetLine h2 >== \fname ->
tshOpen fname WriteMode >== \h3 ->
tshPutStrLn h3 fname >>
till (liftM2 (||) (tshIsEOF h2) (tshIsEOF h1))

(tshGetLine h2 >>= tshPutStrLn h3 >>
tshGetLine h1 >>= tshPutStrLn h3) >>

tshClose h2 +>>
gret h3



24

Type-state
test3_internal
:: (Apply (Closure RemL bf2) (t, C (S t) (C t u)) r3,

EQN t (S t) bf2,
Apply (Closure RemL bf1) (S t, C (S t) (C t u)) r2,
EQN t t bf1,
Apply (Closure RemL bf) (t2, C (S t) (C t u)) r1,
EQN t2 (S t) bf,
Apply (Closure RemL bf1) (t, C t u) r,
Nat0 t) =>

TSHandle a t2 -> TSIO a
(t, u)
(S (S t), r3)
(TSHandle a (S t))

test3_internal h1 =
tshOpen "config" ReadMode >== \h2 ->
tshGetLine h2 >== \fname ->
tshOpen fname WriteMode >== \h3 ->
tshPutStrLn h3 fname >>
till (liftM2 (||) (tshIsEOF h2) (tshIsEOF h1))

(tshGetLine h2 >>= tshPutStrLn h3 >>
tshGetLine h1 >>= tshPutStrLn h3) >>

tshClose h2 +>>
gret h3



25

Assessment

Pros:
I Explicit, timely disposal
I No list of open handles at run time

Cons:
I Type-class tomfoolery
I Handle count must be statically known
I Unwieldy error handling



26

Conclusion

Two ways to manage multiple scarce resources (file handles, . . . )
I Monadic regions (automatic; struggle for timeliness)
I Type-state tracking (manual; struggle for safety)

Static guarantees
I No access after closing
I Predictable, flexible, timely disposal

Compatible with
I Error handling
I General recursion
I Higher-order computations
I Mutable state


	Safe file handles in a single region
	Interface
	Implementation

	Nested regions using explicit witness terms
	Interface
	Implementation

	Nested regions as monad transformers
	Interface
	Implementation

	Manual resource management

