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ABSTRACT
Modern Web applications combine and use JavaScript-based con-
tent from multiple untrusted sources. Without proper isolation,
such content can compromise the security and privacy of these Web
applications. Prior techniques for isolating untrusted JavaScript
code do so by restricting dangerous constructs and inlining secu-
rity checks into third-party code.

This paper presents a new approach that extends the JavaScript
language to make isolation a language-level primitive. We propose
to extend the language using a new transaction construct that al-
lows a Web application to speculatively execute untrusted code and
isolate its changes. The Web application can then inspect these
speculative actions and commit them only if they comply with the
application’s security policies. We discuss use-cases that can bene-
fit from JavaScript support for transactions, present a formalization
of JavaScript transactions and conclude with implementation con-
siderations.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communications Ap-
plications—Information browsers; D.4.6 [Operating Systems]: Se-
curity and Protection

General Terms
Design, Languages, Security

Keywords
JavaScript, transactions, isolation, confinement

1. INTRODUCTION
Modern Web applications combine and use content from mul-

tiple, untrusted third parties. For example, host Web sites, such
as iGoogle, Facebook or Blogger, include third-party code in the
form of widgets and advertisements. This third-party code con-
sists largely of JavaScript and HTML content that can be embed-
ded easily in Web pages. As a second example, Web applications
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1. function keylogger(e) {
2. document.images[0].src =
3. "http://evil.com/logger?key="+ e.keyCode;
4. }
5. document.body.addEventListener("keyup", keylogger, false);

Figure 1: A JavaScript widget that logs keystrokes.

increasingly use third-party JavaScript libraries to simplify code
development.

We focus on isolating Web applications (especially host Web
sites) from untrusted third-party JavaScript code. One way to achieve
this goal is for Web applications to embed such content within a
<frame> element. However, such isolation is too rigid, and hin-
ders the Web application from easily using features provided by
the third-party JavaScript code, such as libraries. Thus, it is more
common for the Web application to include third-party content us-
ing a <script> element. This approach includes third-party code
into the same browser sandbox as the Web application itself, and
enables the creation of rich Web applications, such as mashups.
However, this approach also exposes the Web application to the
third-party code, which may be malicious, thereby introducing a
security hole. For example, the widget in Figure 1, if included in a
Web application using a <script> element, can snoop key strokes
intended for that application.

Untrusted third-party JavaScript code can potentially be vetted to
reveal malicious content, e.g., using static code analysis, but such
analysis can be defeated by JavaScript constructs, such as eval,
that allow for code generation on the fly. Moreover, the code can
be obfuscated, which further complicates its analysis. Subsetting
and rewriting have recently emerged as popular solutions to address
these problems. Subsetting defines a restricted subset of JavaScript,
one that excludes hard-to-reason constructs such as eval, thereby
making third-party code easier to analyze. This approach has been
popularized in AdSafe [5] and FBJS [6], among others (e.g., [12,
15]). In contrast, rewriting techniques as employed by Caja [15]
and others (e.g., [11, 19, 22]) allow the insertion of inline checks
that constrain the runtime behavior of the code. Caja also defines
and operates on a subset of JavaScript.

In this paper, we propose a new approach to the problem of iso-
lating untrusted JavaScript content in Web applications. We pro-
pose to extend the JavaScript language with a new transaction con-
struct, which can be used to speculatively execute JavaScript code.
In essence, the transaction construct creates a sandbox such that
code executing within the transaction cannot modify data outside
the sandbox unless the transaction is committed. However, code
outside the sandbox can inspect the changes speculatively made by
the transaction. A Web application can isolate third-party code,



1. var z = transaction {
2. function keylogger(e) {
3. document.images[0].src =
4. "http://evil.com/logger?key="+ e.keyCode;
5. }
6. document.body.addEventListener("keyup", keylogger, false);
7. };
8. do { // Introspection block, which encodes security policy
9. if (z.isSuspended()) {
10. if(z.getCause().match("addEventListener"))
11. alert("A script adding an event handler");
12. else
13. performAction(z); // perform requested operation
14. z = z.resume();
15. }
16. } while(z.isSuspended());
17. z.commit();

Figure 2: Isolating the widget in Figure 1.

such as a library or a widget, by enclosing it within a transaction,
and inspect the changes made by this code before committing them.

Figure 2 illustrates the use of the transaction construct to iso-
late the untrusted widget from Figure 1. This figure shows how
a host application can include the untrusted widget using a trans-
action in lines 1–7.1 The transaction itself is a JavaScript object,
and the host application can apply policies to inspect or commit
the transaction using API calls exported by the transaction object
(e.g., getCause, resume and commit). The policies themselves are
written in JavaScript, as shown in lines 8–16 of this example.

However, there are several challenges that must be overcome to
add transactions to JavaScript. These challenges stem primarily
from the interaction of JavaScript with the browser, such as modifi-
cations to the DOM [1] and AJAX requests (i.e., XMLHttpRequest).
Such interactions often constitute side-effects, i.e., actions that can-
not be undone by aborting a transaction, and call for additional
mechanisms. We propose a novel JavaScript suspend/resume mech-
anism to handle such side-effects. When code running within a
transaction causes control to transfer beyond the purview of the
transaction machinery, e.g., calls document.write, the transaction
suspends. A suspended transaction indicates that an action with
side effects has been requested, which must inspected by the host
Web application’s security policy before being allowed. For exam-
ple, the transaction in Figure 2 suspends when it calls the method
addEventListener on line 6, and transfers control to the introspec-
tion code in lines 8–16, which encodes the security policy. In this
case, the policy allows the third-party code to perform all actions
except adding an event listener. When the transaction completes,
its actions are committed on line 17.

2. MOTIVATING EXAMPLES
This section presents two examples that further illustrate the use

of transactions to isolate third-party code.

2.1 Illustrating JavaScript Suspend/Resume
Consider the code in lines 2–6 of Figure 3. This code opens a

pop-up window with a pre-defined URL pointing to an untrusted
Web site. If this code is part of a widget or a library included by a
Web application, the pop-up could also redirect the parent window
by modifying its location property. Such behavior can turn an
unsuspecting client into the victim of a drive-by download attack.
1The third-party code would typically be included using a script
tag. We support this model as well (see Section 4). However, for
ease of exposition, examples in this paper will inline the third-party
code.

1. var z = transaction {
2. function openPopup(url) {
3. var win = window.open(url, "WindowName",
4. "resizable=yes, scrollbars=yes, status=yes");
5. }
6. openPopup("http://www.untrusted.com");
7. };
8. do { // Introspection block with security policy
9. if (z.isSuspended()) {
10. if((z.getObject() instanceof Window) &&
11. z.getCause().match("open") &&
12. isWhiteListedDomain(z.getArgs()[0])) {
13. performAction(z); // perform requested operation
14. }
15. z = z.resume();
16. }
17. } while (z.isSuspended());
18. z.commit();

Figure 3: Limiting pop-ups with transactions.

Figure 3 shows how the Web application can restrict the behavior
of this code using transactions. When the code within the transac-
tion executes, it in turn calls window.open on line 3. Successful
execution of this call would open the pop-up window. However,
because the code executes within a transaction, the call suspends,
creates a JavaScript object z denoting the suspended transaction,
and transfers control to the code following the transaction (line 8).
This code, called the introspection block, encodes the policy: it ex-
amines why the transaction suspended and reacts accordingly. (The
introspection block appears in a do. . .while loop because a transac-
tion may suspend several times.)

The policy encoded by this introspection block disallows all pop-
ups with URLs not in a whitelist. The function performAction,
which is called on line 13, is supplied by the Web application and
performs the action that caused the transaction to suspend. The
z.resume() call on line 15 resumes the transaction from where it
was suspended. When the transaction completes, control passes to
the introspection block. Because the transaction is no longer sus-
pended, the loop terminates, so the application executes z.commit(),
which commits the changes made by the transaction.

This example illustrates the suspend/resume feature. Code that
either modifies the DOM or sends AJAX requests suspends if ex-
ecuted within a transaction, causing control to transfer to the in-
trospection block, where the policy filters the action. The actual
DOM modification or XMLHttpRequest is performed by the intro-
spection block (in the performAction function) on behalf of the
transaction. This situation is analogous to a user-space process ex-
ecuting a system call to access a device, thereby trapping into the
operating system, which then accesses the device on behalf of the
user-space process.

The suspend/resume feature also extends to nested transactions
in a natural way. Consider a situation where a hosting Web applica-
tion includes code from adagency.com. In turn, this code may itself
include code from an untrusted fourth-party, ad-delegate.com, and
so on. In this case, the hosting Web application can use an outer
transaction to isolate code from adagency.com, which in turn can
use an inner transaction to isolate code from ad-delegate.com. If
ad-delegate.com attempts to issue an AJAX request (or modify
the DOM), the inner transaction suspends, and “traps” into the in-
trospection code provided by adagency.com. If this code chooses
to execute the AJAX request on behalf of ad-delegate.com’s code,
the request traps to the outer introspection block, which in turn ap-
plies its own security policy to the AJAX request. In effect, the
AJAX request executes successfully only if it is allowed by the se-
curity policies at each level of nesting.



1. <button id="Search" onclick="doSearch()">
2. <script>
3. var z = transaction {
4. // includes code from adnetwork.com/insert-ad.js
5. // which can modify the global variable ’searchUrl’
6. };
7. do { // Introspection block with security policy
8. var ws = z.getWriteSet();
9. if (!ws.checkMembership(window, "searchUrl"))
10. if (z.isSuspended()) performAction(z);
11. else z.commit();
12. if (z.isSuspended()) z = z.resume();
13. } while(z.isSuspended());
14. var doSearch = function() {
15. var searchBox = document.nodes.SearchBox.value;
16. var searchStr = searchUrl + searchBox;
17. document.location.assign(searchStr);
18. } </script>

Figure 4: A snippet of JavaScript code adapted from
www.wsj.com. The policy examines the transaction’s write set
before committing it.

The ability to suspend and resume transactions can also be used
to prioritize requests made by third-party code. Modern Web ap-
plications extensively use AJAX requests to fetch both code and
data over the network. When a hosting Web application includes
third-party code in the form of a widget or an advertisement, the
latter’s AJAX requests are queued along with the host’s requests.
However, the host application may wish to remain responsive under
network latency and bandwidth constraints, and may wish to issue
its own AJAX requests before third parties’. The host application
can easily prioritize requests in this way by executing third-party
code in a transaction, where AJAX requests suspend the transac-
tion. The host’s introspection policy can then wait until the host
has no AJAX request pending, and only then issue the third-party
request and resume the transaction. A similar policy can also be
used to abort slow to load because their AJAX requests take too
long to complete.

2.2 Illustrating Transaction Read/Write Sets
Figure 4 shows a code snippet from www.wsj.com (adapted from [4]).

This snippet includes code from an advertiser (adnetwork.com/
insert-ad.js). The code defines a search form with a button,
which executes the doSearch function when clicked. In turn, the
execution of this function causes a redirection to a URL obtained
by concatenating the query obtained from the search form with
searchUrl. However, a study by Google [18] showed that first-tier
advertising agencies (such as adnetwork) could delegate to other
agencies, which in turn could result in the execution of code that re-
defines the global searchUrl variable. If the code in insert-ad.js
executes within a <script> tag in the same browser sandbox as the
code from www.wsj.com, then redefining searchUrl can result in the
user being redirected to a malicious website.

Figure 4 shows how transactions can be used to contain the ef-
fects of the code included from adnetwork.com. The introspection
block checks whether the transaction tried to modify the sensitive
searchUrl variable, and performs actions on behalf of the transac-
tion only if searchUrl has not been modified (line 10). Changes
made within the transaction are committed to memory only if the
untrusted code completes execution without modifying the searchUrl
variable (line 11). To support the enforcement of such policies,
JavaScript transactions maintain read/write sets, which track the
set of memory locations accessed/modified by the transaction. The
read/write sets are exposed at the language level by an API (e.g.,

z.getWriteSet), thereby allowing security policies to inspect their
contents (e.g., checkMembership).

The Web application can also use read/write sets to inspect whether
the untrusted code attempted to tamper with the state of the transac-
tion itself. For example, the untrusted code could attempt to evade
the security policies enforced by the Web application by redefining
methods of the transaction, such as getWriteSet or getReadSet.
However, note that any attempts to redefine such methods will them-
selves be speculative, and be recorded in the read/write sets. The
Web application can inspect the read/write sets to detect such at-
tempts and reject code that tries to subvert its security policies.

2.3 Benefits
An approach that allows Web applications to use transactions

to confine untrusted third-party code offers several benefits, as de-
scribed below.

• Ability to enforce powerful security policies. Web applica-
tions can leverage transactions to confine untrusted JavaScript
code using expressive security policies. For instance, a Web
application can inspect the history of data accesses made by
a transaction (using its read/write sets) before allowing un-
trusted code to execute any suspended DOM modifications
or AJAX requests. The Web application could also enforce
policies that express isolation of independent widgets, e.g., it
could ensure that two independent transactions do not share
any common heap locations. It could do so by suspending
both transactions and inspecting their read/write sets.

• No restrictions on third-party code. Unlike techniques that
use language subsetting to define “safe” subsets of JavaScript
(e.g., FBJS, AdSafe and Caja), transactions do not place re-
strictions on third-party code. Thus, third-party developers
are at liberty to include constructs such as eval, this and
with that are typically excluded by language subsetting tech-
niques.

• No modifications to third-party code. A Web application
can use transactions to speculatively execute unmodified third-
party JavaScript code and confine its actions. While such
confinement may also be implemented using rewriting tech-
niques (e.g., as done in Caja [15], BrowserSheild [19] and
CoreScript [22], among others), prior work shows that de-
signing a rewriter for a complex language such as JavaScript
is an error-prone undertaking [15]. Transactions allow third-
party JavaScript to be confined without resorting to the use
of code rewriters.

3. A LAMBDA CALCULUS WITH TRANS-
ACTIONS

To explain concisely and formally how transactions underpin the
motivating examples above, we present a call-by-value lambda cal-
culus with transactions and specify its operational semantics [7].
The essential idea is to use the evaluation context to delimit trans-
actions and isolate them from external resources [9].

3.1 Formalization
The syntax of our core language is defined by the grammar in

Figure 5. A value V is a special case of an expression M. Here we
assume integer constants n (for illustration), an infinite supply of
heap locations `, and lexically scoped variables x.

adnetwork.com/insert-ad.js
adnetwork.com/insert-ad.js


Expressions M ::= n | ` | x | λx.M | M+M | MM | RW{M}
| commit M | introspect M(x.M)(x.M)
| new M | read M | write MM
| suspend M | resume MM

Values V ::= n | ` | λx.M
| RW{V} | RW{C[suspend V]}

Contexts C ::= � | C+M | V+C | CM | VC
| commit C | introspect C(x.M)(x.M)
| new C | read C | write CM | write VC
| suspend C | resume CM | resume VC

Metacontexts D ::= � | D[RW{C}]

Figure 5: Syntax of our core language.

A read/write set RW consists of the read set R and the write
set W. Whereas R is a relation between locations and values,2 W is
a partial function from locations to values. For example, suppose
that the global heap comprises three locations `1, `2, `3, contain-
ing 10, 20, 30 respectively. The global write set is then {`1 7→ 10,
`2 7→ 20, `3 7→ 30}. Suppose now a transaction reads 10 from `1,
writes 25 to `2, reads 30 from `3, writes 35 to `3, reads the new
value 25 back from `2, and initializes a new location `4 to 45. Then,
the global write set stays the same, but the read set of the transac-
tion changes from the empty set to {`1 7→ 10, `3 7→ 30}, and the
write set of the transaction changes from the empty set to {`2 7→ 25,
`3 7→ 35, `4 7→ 45}.3 Read/write sets thus subsume mutable state.

A context C is a special case of an expression in which a subex-
pression next to be evaluated is replaced by a hole �. Roughly
speaking, whereas a read/write set represents the heap state of an
ongoing transaction (akin to the contents of private pages in the ad-
dress space of a thread), a context represents the control state of
an ongoing transaction (akin to the sequence of activation frames
on the execution stack of a thread). Whereas many operational se-
mantics (including Maffeis et al.’s for JavaScript [10]) leave control
state implicit in contextual or congruence rules, we make it explicit
so as to specify how transactions suspend. We write C[M] for the
expression obtained by replacing the hole in C with M. For exam-
ple, if C = �0 then C[λx. x] = (λx. x)0.

A transaction expression RW{M} is formed by delimiting an (un-
trusted) expression M with a read/write set RW (initially empty).
This formation is similar to how, in a typical language with excep-
tion handling, a try-expression is formed by delimiting an expres-
sion with a handler. The delimiter is akin to the boundary between
a user process and an OS kernel. In particular, if the expression M
is actually a value V , then the transaction is finished; if M has the
form C[suspend V], then the transaction is suspended. These are
the two cases of transaction expressions that are values.

In our core language, the only way to suspend a transaction is to
evaluate the expression suspend V inside it. The value V here can
be observed outside the transaction. We can think of suspend V as
making an explicit system call with the argument V . In contrast, for
transactions to provide secure isolation in JavaScript, every action
with a side effect not recorded in the read/write set must implicitly
suspend the current transaction, if any. This goal can be achieved
by changing the JavaScript implementation (e.g., bytecode inter-
2R is a relation, not necessarily a partial function. It may relate one
location to multiple values if, while the transaction is suspended,
the location is mutated outside, and the transaction reads both the
old value before suspending and the new value after resuming.
3The read set of the transaction does not include `2 7→ 25 because
reading data previously written by the same transaction, being of
no concern outside the transaction, is not recorded in the read set.

D[n1 + n2] { D[n]
where n is the sum of n1 and n2

D[(λx.M)V] { D[(x 7→ V)M]
D[RW{C[commit R′W ′{M}]}] { D[RW ′′{C[0]}]
where W ′′ = Write(W,W ′)

D[introspect (RW{M}) (x1.M1) (x2.M2)]{ D[(xi 7→ V)Mi]
where M = V and i = 1 or M = C[suspend V] and i = 2

D[RW{C[new V]}] { D[RW ′{C[`]}]
where ` is fresh and W ′ = Write(W, {` 7→ V})

D[RW{C[read `]}] { D[R′W{C[V]}]
where V = W(`) and R′ = R if W(`) is defined,

V = Read(D, `) and R′ = R ∪ {` 7→ V} otherwise
D[RW{C[write `V]}] { D[RW ′{C[V]}]
where W ′ = Write(W, {` 7→ V})

D[resume (RW{C[suspend V]}) V ′] { D[RW{C[V ′]}]

Figure 6: The transition relation{.

preter) rather than any JavaScript code. The actions that should
implicitly suspend include I/O operations and calls to DOM meth-
ods such as document.write. It is then up to the code outside the
transaction to filter the actions defensively.

A metacontext D is a sequence of pairs of read/write sets RW
and contexts C, which are the heap states and control states of a
sequence of nested ongoing transactions. A metacontext is also
an expression in which a subexpression next to be evaluated is re-
placed by a hole �.

We define two functions to help manipulate read/write sets. The
partial function Read maps a metacontext and a location to a value,
by looking up the location in the metacontext’s read/write sets:

Read(D[RW{C}], `) =

W(`) if W(`) is defined,
Read(D, `) otherwise.

The function Write combines two write sets W and W ′ into one,
preferring entries in W ′ over those in W:

Write(W,W ′)(`) =

W ′(`) if W ′(`) is defined,
W(`) otherwise.

Finally, in Figure 6, we define a (small-step) transition relation
{ between machine states. A machine state is just a transaction
expression RW{M}; thus, we treat the entire machine as execut-
ing a top-level transaction (whose read set does not matter). In the
transitions, we write (x 7→ V)M to denote the (capture-avoiding)
substitution of V for x in M. The transition relation so defined is
patently deterministic modulo the renaming of locations and vari-
ables. We denote the transitive closure of{ by{+.

The introspect facility defined here is very simple: it only lets a
policy observe whether a transaction is finished or suspended (cor-
reponding to isSuspended in Figures 2–4), and with what value
(getCause, getObject, and getArgs in Figures 2 and 3). In our
proposed implementation, transaction objects provide more infor-
mation about their read/write sets, so a policy can check if they
contain a given location (using getWriteSet and checkMembership
in Figure 3) or enumerate their contents. This information can be
used, for example, to see if the transaction has read any sensitive
information, e.g., cookies, that should not be leaked, or made any
changes, e.g., to global variables, that should not be committed.

More broadly speaking, the model of locations and variables in
our lambda calculus is much simpler than JavaScript’s, which in-



volves, for example, looking up variables along scope chains and
properties along prototype chains. These complications can be
modeled without any fundamental difficulty—either using the Read
and Write functions defined above, or by writing a JavaScript inter-
preter in our lambda calculus.

3.2 Examples
To illustrate the transition relation, we present some small exam-

ple programs. For clarity, we write var x = M1; M2 to abbreviate
the expression (λx.M2)M1. To express loops (which typical poli-
cies are), we also write function f (x) M to abbreviate the value

λx. (λy. var f = λx. yyx; λx.M)(λy. var f = λx. yyx; λx.M)x.

The latter abbreviation has the crucial fixpoint property, that is,

D[(function f (x) M)V]
{+ D[( f 7→ function f (x) M)(x 7→ V)M].

Take for example the policy P1, defined as the value

function p(t) introspect t (r. r) (a. p(resume t (a + 1))).

Ignoring the use of resume for the moment, suppose we apply this
policy to the trivial transaction {}{}{3+4} (that is, the expression 3+4
delimited by an empty read set and an empty write set). This trans-
action immediately finishes with the result 7, which is observed by
the policy due to (r. r):

{}{}{P1({}{}{3 + 4})}
{ {}{}{P1({}{}{7})}
{+ {}{}{introspect ({}{}{7})

(r. r)
(a. P1(resume t (a + 1)))}

{ {}{}{7}

Suppose that ` is a location shared between the host application
and the contained transaction. Even if the transaction reads and
writes ` in the course of its computation, as long as the policy does
not commit the transaction—which P1 does not—the changes will
not be reflected in the global write set. For example, the transaction
below increments the content of ` and returns the result.

{}{}{var x = new 1; P1({}{}{write x (read x + 1)})}
{ {}{` 7→ 1}{var x = `; P1({}{}{write x (read x + 1)})}
{ {}{` 7→ 1}{P1({}{}{write ` (read ` + 1)})}
{ {}{` 7→ 1}{P1({` 7→ 1}{}{write ` (1 + 1)})}
{ {}{` 7→ 1}{P1({` 7→ 1}{}{write ` 2})}
{ {}{` 7→ 1}{P1({` 7→ 1}{` 7→ 2}{2})}
{+ {}{` 7→ 1}{introspect ({` 7→ 1}{` 7→ 2}{2})

(r. r)
(a. P1(resume t (a + 1)))}

{ {}{` 7→ 1}{2}

The finished transaction has the read set {` 7→ 1} and the write
set {` 7→ 2}. They are discarded by introspect in the policy, even
though the result 2 of the transaction, computed using them, is re-
tained.

The same read/write sets track even locations created and used
solely within the transaction. For example, we can move the vari-
able x into the transaction above and obtain the same result 2:

{}{}{P1({}{}{var x = new 1; write x (read x + 1)})}
{ {}{}{P1({}{` 7→ 1}{var x = `; write x (read x + 1)})}
{+ {}{}{P1({}{` 7→ 2}{2})}
{+ {}{}{2}

Although we do not model garbage collection here (so the write-set
entry ` 7→ 2 above persists until the transaction finishes), read/write

sets should be subject to garbage collection. In other words, they
should refer to locations only weakly.

To allow the transaction’s write set to take global effect, the pol-
icy must commit the transaction explicitly, as in the following pol-
icy P2.

function p(t) introspect t
(r. var z = commit t; r)
(a. p(resume t (a + 1)))

(The variable z above is just to receive the dummy result 0 returned
by commit.) Applying P2 to the same transaction modifies ` glob-
ally to 2:

{}{}{var x = new 1; P2({}{}{write x (read x + 1)})}
{+ {}{` 7→ 1}{introspect ({` 7→ 1}{` 7→ 2}{2})

(r. var z = commit
({` 7→ 1}{` 7→ 2}{2});

r)
(a. P2(resume t (a + 1)))}

{ {}{` 7→ 1}{var z = commit({` 7→ 1}{` 7→ 2}{2}); 2}
{ {}{` 7→ 2}{var z = 0; 2}
{ {}{` 7→ 2}{2}

Hence, we have no rollback operation—to roll back a transaction is
simply to never commit it.

Finally, we illustrate the use of suspend and resume using the
transaction

T = var z = write ` (suspend (read `));
write ` (suspend (read `)).

Twice in a row, this transaction sends the content of ` to the host
as a request and puts the host’s response back into `. The policies
P1 and P2 above implement an integer incrementation service, so
applying P1 or P2 to T increments the content of ` twice in a row:

{}{` 7→ 1}{P1({}{}{T })}
{+ {}{` 7→ 1}{introspect T ′ (r. r) (a. P1(resume T ′ (a+1)))}
{ {}{` 7→ 1}{P1(resume T ′ (1 + 1))}
{ {}{` 7→ 1}{P1(resume T ′ 2)}
{ {}{` 7→ 1}{P1({` 7→ 1}{}{var z = write ` 2;

write ` (suspend (read `))})}
{+ {}{` 7→ 1}{P1({` 7→ 1}{` 7→ 2}{write ` 3})}
{+ {}{` 7→ 1}{3}

where T ′ is short for {` 7→ 1}{}{var z = write ` (suspend 1);
write ` (suspend (read `))}.

4. IMPLEMENTATION CONSIDERATIONS
In this section, we outline some practical problems that must be

addressed in a browser-based implementation of JavaScript trans-
actions.

4.1 Modifying the <script> Tag
The code snippets used earlier in the paper showed how inline

scripts could be isolated using transactions, i.e., the JavaScript code
to be isolated was available in its entirety, and could be included
within the transaction construct. However, third-party scripts are
often included using a <script> tag whose src attribute specifies
the URL from which the code must be fetched. For example, the
code on lines 4 and 5 in Figure 4 would be fetched using <script
src="adnetwork.com/insert-ad.js">. In such cases, the browser
fetches the script code from the URL and executes it as soon as
the code has been fetched over the network. Since the <script>
tag is HTML code, it cannot directly be placed within a JavaScript
transaction.



var corefunc = getFunctionBody(core.toString());
var morefunc = getFunctionBody(more.toString());
var calfunc = getFunctionBody(calendar.toString());
var e = eval; // indirect eval
var z = transaction {
e(corefunc); e(morefunc); e(calfunc);

}; // Introspection code goes here.

Figure 7: Ensuring script execution in the global scope.

To ensure that code fetched using a <script> tag executes within
a transaction, we propose to add a new txfunc attribute to the
<script> tag. The idea is to convert the fetched script into a JavaScript
function object, and then execute this function within a JavaScript
transaction. For the example in Figure 4, the code would be fetched
as <script src="adnetwork.com/insert-ad.js" txfunc="adcode">,
which will encapsulate the code from insert-ad.js within a func-
tion adcode. The function adcode can then be invoked within a
JavaScript transaction.

While seemingly straightforward, the above modification to the
<script> tag introduces an additional complication. When a script
is included in a Web application using a <script> tag, the JavaScript
code in the script executes in the scope defined by the Web ap-
plication, i.e., the global scope. However, the modification to the
<script> tag described above causes the fetched code to execute
in the scope of the function specified in the txfunc attribute. This
problem becomes apparent when scripts are included using multi-
ple <script> tags, and each script defines/modifies variables that
are used by others. For example, consider the code snippet shown
below, which uses two files from the Mootools library [2] and a
third calendar script that uses functions defined by this library. The
functions and variables defined in each of these <script> tags would
be defined in the corresponding functions defined in the txfunc
tags, and would not be visible in the global scope, thereby breaking
functionality.

<script src="mootools-1.2.4-core.js" txfunc="core"></script>
<script src="mootools-1.2.4.2-more.js" txfunc="more"></script>
<script src="calendar-v1.0.1.js" txfunc="calendar"></script>

This problem can be solved by first extracting the code of each of
the txfunc functions and executing them in the global scope within
the transaction. Figure 7 illustrates the code to achieve this. The
getFunctionBody function extracts the code of the function, which
is then executed using an indirect eval within the transaction. The
use of an indirect eval is crucial—the ECMAScript standard spec-
ifies that indirect evals are executed in the global scope. However,
note that any changes to the global scope made within the transac-
tion will only appear in its write set unless the transaction commits.

4.2 Executing Event Handlers in Transactions
Event handlers are callbacks that execute when specific events,

such as mouse clicks, happen. JavaScript code enclosed in a trans-
action may define event handlers that are added to the global scope
when the transaction commits. Because these event handlers are
defined by the (potentially untrusted) JavaScript code, their execu-
tion must be subject to the same security policy as the transaction.
However, an event handler can also execute after the transaction
that defined it has completed execution. The original execution
context of the transaction that defined it may no longer be available
when the event handler is triggered.

To ensure that the execution of an event handler is monitored us-
ing the same security policy of the transaction that defines it, we

create a wrapper around the event handler. The goal of the wrap-
per is to execute the handler within a transaction, and associate the
same security policy with that transaction. That is, suppose that a
transaction defines an onClick handler named clickhand. In the
introspection block of this transaction, we include code that does
the following: (1) create a function tx_clickhand, which wraps
clickhand in a transaction; (2) associate the same introspection
block with tx_clickhand; and (3) register tx_clickhand as the
onClick handler. Therefore, tx_clickhand is triggered when the
onClick event happens, which in turn ensures that the execution of
the event handling code is subject to the same security policy as the
transaction that defined it.

5. RELATED WORK
We are not aware of prior work on JavaScript transactions. Our

discussion of related work focuses on the use of transactions for se-
curity/reliability and on recent work on restricting untrusted JavaScript
code.

5.1 Restricting Untrusted JavaScript Code
Several recent research projects and commercial efforts have in-

vestigated techniques to restrict the execution of untrusted JavaScript
code. Notable commercial efforts include ADSafe [5], FBJS [6]
and Caja [15], which define subsets of JavaScript that are eas-
ier to reason about using static analysis. The work of Maffeis et
al. [10, 12, 13] formalizes and presents a security analysis of such
language subsetting techniques. Other research projects, includ-
ing BrowserShield [19], CoreScript [22], and the works of Phung
et al. [16] and Maffeis et al. [11], propose to rewrite untrusted
JavaScript code to insert runtime checks and wrappers that restrict
the behavior of the code.

As discussed in Section 1, we propose an alternative approach—
that of extending the language with transactions. Since our ap-
proach provides isolation by extending JavaScript, rather than sub-
setting or rewriting, it supports the execution of unmodified JavaScript
and does not place any restrictions on the constructs that third-party
code can use.

Our work is most closely related to ConScript [14], which pro-
poses an aspect-oriented approach to restrict the execution of un-
trusted JavaScript code. Like our work, ConScript also enhances
the JavaScript language and supporting HTML tags (e.g., <script>)
to specify policies that govern the execution of third-party code.
However, unlike our work, which specifies policies at the granu-
larity of data accesses, e.g., using the transactions read/write sets,
ConScript’s policies are specified at the granularity of functions,
which serve as pointcuts. A second difference is that our work
proposes speculative execution of JavaScript, whereas ConScript
inlines policy checks with the execution of the code that it mon-
itors. Further research is needed to determine whether these two
techniques compare in their ability to enforce security policies on
untrusted code execution.

5.2 Using Transactions for Security
Transactions and speculative execution mechanisms have previ-

ously been used to improve software security and reliability (e.g., [3,
17, 20]). However, the work most closely related to ours is the one
by Sun et al. [21] on one-way isolation. This work describes a
sandboxing mechanism that allows isolated execution of untrusted
code. As in our work, code within the sandbox cannot modify the
state of code outside, but the reverse is possible. However, their
work focused on implementing such a sandbox at the granularity
of OS-level artifacts, such as processes and files. In contrast, this
paper discussed a similar approach but applied it to the problem of



isolating JavaScript code. Accordingly, their work is realized by
making changes to the OS, whereas ours requires changes to the
JavaScript interpreter.

6. SUMMARY AND FUTURE WORK
This paper argued that Web applications can better confine un-

trusted third-party code if the JavaScript language is extended with
support for transactions. Such support would allow Web applica-
tions to speculatively execute unmodified third-party code, observe
their actions, and only allow those that conform to site-specific se-
curity policies. This paper developed the basic constructs of such
a language extension and presented a semantics of JavaScript with
transactions. We plan several avenues of future work to extend the
ideas reported in this paper, including:

• Implementation and Evaluation. We are currently in the
process of extending Firefox with support for JavaScript trans-
actions. Our prototype implementation extends the JavaScript
interpreter with support for transactions. We plan to test
our prototype with several real-world JavaScript benchmarks
evaluate: (a) the ease with which it allows rich security poli-
cies to be enforced; (b) the performance overhead of using
transactions for isolation

• Security Analysis. Prior work has shown the subtleties in-
volved in confining JavaScript code, in particular, in defining
safe language subsets [12]. While the use of transactions
intuitively bypasses such subtleties by providing language-
level support for speculative execution, we plan to conduct
a formal security analysis of the extended language. To do
so, we plan to leverage Guha et al.’s work on λJS [8], a core
calculus that models most of the features of JavaScript. Guha
et al. have defined the semantics of λJS and released an in-
terpreter that implements it. We plan to extend the semantics
and implementation of λJS with transactions, and use it as a
starting point for our security analysis.
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