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Abstract. The Jetpack framework is Mozilla’s newly-introduced extension de-
velopment technology. Motivated primarily by the need to improve how script-
able extensions (also called addons in Firefox parlance) are developed, the Jet-
pack framework structures addons as a collection of modules. Modules are iso-
lated from each other, and communicate with other modules via cleanly-defined
interfaces. Jetpack also recommends that each module satisfy the principle of
least authority (POLA). The overall goal of the Jetpack framework is to ensure
that the effects of any vulnerabilities are contained within a module. Its modular
structure also facilitates code reuse across addons.

In this paper, we study the extent to which the Jetpack framework achieves its
goals. Specifically, we use static analysis to study capability leaks in Jetpack
modules and addons. We implemented Beacon, a static analysis tool to identify
the leaks and used it to analyze 77 core modules from the Jetpack framework and
another 359 Jetpack addons. In total, Beacon analyzed over 600 Jetpack modules
and detected 12 capability leaks in 4 core modules and another 24 capability leaks
in 7 Jetpack addons. Beacon also detected 10 over-privileged core modules. We
have shared the details with Mozilla who have acknowledged our findings.

1 Introduction

Several modern browsers support an extensible architecture that allows end-users to
enhance and customize the functionality of the browser. Extensions come in a variety
of flavors, such as executable plugins to interpret specific MIME formats (e.g., PDF
readers, ActiveX, Flash players), browser helper objects, and scriptable addons.

Our focus in this paper is on scriptable extensions for the Mozilla Firefox browser.
Such scriptable extensions, also called addons, are written in JavaScript, are widely
available, and have contributed in large part to the popularity of the Firefox browser
and related tools, such as the Thunderbird mail client. As of December 2011, over 7000
addons, supporting a wide variety of functionalities, are available for Firefox via the
Mozilla addons page ﬂ Popular examples of addons for Firefox include GreaseMon-
key [3], which customizes the look and feel of Web pages using user-defined scripts,
Firebug [2], which is a JavaScript code development environment, and NoScript [10],
which is a security addon that aims to prevent the execution of unauthorized third-party
scripts.
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To support rich functionality, the browser exports an API that JavaScript code in
an addon can use to access privileged browser objects and services. On Firefox, this
API is called the XPCOM interface (cross-domain component object model) [26], and
allows JavaScript code in addon to access a wide variety of services, such as the file
system and the network. Access to the XPCOM interface endows JavaScript code in
an addon with capabilities that are normally not available to JavaScript code in a Web
page. For example, JavaScript code in an addon can freely send XMLHt tpRequests to
any Web domain, without being constrained by the same-origin policy. The addon can
also freely access objects stored on the file system, such as the user’s browsing history,
cookie store, or any other files accessible by the browser process.

Unfortunately, the privileges endowed by the XPCOM interface can be misused
by attacks directed against vulnerable extensions. A recent study of over 2400 Firefox
addons [14]] found several addons demonstrating insecure programming practices and
exploitable vulnerabilities. A successful exploit against vulnerable addons gives the
attacker privileges to access the XPCOM interface, via which he can access the rest of
the system.

A key problem that has contributed thus far to vulnerabilities and insecure program-
ming of Firefox addons is the lack of development tools for addon authors. Addon au-
thors have thus far been required to write their code from scratch, directly accessing the
XPCOM interface to perform privileged actions. Such an approach lacks modularity,
and provides too much authority to each addon. An exploitable vulnerability anywhere
in the addon typically exposes the entire XPCOM interface to the attacker.

To address this problem, Mozilla has recently been developing the Jetpack frame-
work [5]], officially known as addon SDK [7]], a new extension development technology
that aims to improve the way addons are developed. It does so using modularity and
by attempting to enforce the principle of least authority (POLA) [27]. A Jetpack addon
consists of a number of modules. Each module explicitly requests the capabilities that it
requires, e.g., access to specific parts of the XPCOM interface, and is isolated from the
other modules at the framework level, i.e., its objects are not visible to other modules in
the Jetpack addon unless they are explicitly exported by the module. The Jetpack frame-
work therefore aims to contain the effects of vulnerabilities within individual modules
by structuring the addon as a set of modules that communicate with each other with
clearly defined interfaces, and by ensuring that each module only requests access to the
XPCOM interfaces that it needs. The design of the Jetpack addon framework also facili-
tates code reuse: Jetpack addon authors can contribute the modules used in their addons
to the community, following which others can use the modules within their own ad-
dons. To bootstrap this process, Mozilla has provided a set of core modules that provide
a library of features that will be useful for a wide variety of addons.

In this paper, we study the extent to which the Jetpack framework achieves its goals.
Specifically, we use static analysis to study capability leaks in Jetpack modules and ad-
dons. A capability leak happens when a module requests access to a specific XPCOM
interface (i.e., a capability), and inadvertently exports a pointer to this interface. Ca-
pability leaks allow other modules to access this XPCOM interface (via the exported
pointer) without explicitly requesting access to the interface, thereby violating modu-
larity. We also use the same static analysis to study violations of POLA, i.e., cases where
a module requests access to an XPCOM interface, but never uses it. A vulnerable mod-



ule that violates POLA can endow an attacker with more privileges than if the module
satisfied POLA.

We applied our analysis to a corpus of over 600 Jetpack modules, which include 77
core modules from Mozilla’s Jetpack addon framework and 359 Jetpack addons. Our
results show that there are 12 capability leak in 4 core modules and another 24 capability
leaks in 7 Jetpack addons. Our analysis also detected 10 core modules violating POLA
by requesting privileged resources that they do not utilize. We have shared the details
with Mozilla who have acknowledged our findings for the core modules.

2 Background and Motivation

The Jetpack framework [5] focuses on easing the extension development process with
an emphasis on modular development, code sharing and security. The framework pro-
vides high-level APIs, allowing addon authors the ease of writing extensions using stan-
dard Web technologies, like JavaScript and CSS. This is in contrast with traditional
extension development, which required developers to be proficient in Mozilla specific
technologies like XUL [12] and XPCOM [26].

A Jetpack addon is a hierarchical collection of JavaScript modules, with each mod-
ule exporting some key functionality. A typical Jetpack addon consists of core modules,
user modules and some glue code. Core modules provide low-level functionality and are
provided by Mozilla itself. User modules are usually authored by the addon developer
or other third-parties who have contributed their code to the community. Glue code ties
up all the modules to provide the expected functionality of the addon. On execution, the
Jetpack runtime loads each component module in a separate sandboxed environment
resulting in namespace separation for code within the modules. Inter-module commu-
nication is facilitated by special JavaScript constructs, exports and require, which
serve as well-defined entry and exit points for the modules. The exports interface en-
ables a module to expose functionality by attaching properties to the exports object.
The require function enables a module to import such exported functionality.

The guidelines by Mozilla advise developers to follow the principle of least author-
ity (POLA) [8] when designing modules. This helps in attenuating the capabilities of
modules. The modular architecture of a Jetpack addon coupled with strong isolation
between the modules helps to confine the effects of module execution. This is in sharp
contrast to the traditional extension development model, where monolithic extensions
shared the same namespace and had privileged access to large number of resources via
the XPCOM interface. Prior work [13} |15, 20] has shown that such extensions are
vulnerable to a variety of security threats.

Although not recommended, a Jetpack module may also directly invoke XPCOM
interfaces if the desired functionality is not exported by either the core or user modules.
However, this is dangerous since interaction with XPCOM interfaces provides access to
privileged resources and inexperienced addon authors could inadvertently attach such
capabilities to the exports interface. Importing such modules would make the request-
ing module over-privileged and violate POLA.

Figure|[T]shows the architecture of a simple Jetpack addon which enables the user to
download files from the Web. Each of the dotted boxes in the figure represents a module.
Modules such as file, network, preferences represent the core modules and are provided
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Fig. 1: Structure of a simple Jetpack addon.

by Mozilla. The user-level modules include the helper module, the UI module and third-
party file utilities. As shown in the figure, the helper module and file utilities build on top
of the services exported by the core modules. The UI module directly invokes XPCOM
interfaces to support functionality not provided by core modules, such as user alerts or
dialog boxes. Although such direct invocations are not recommended (as shown by the
dotted line), they are allowed till the Jetpack framework matures and Mozilla develops
core modules for all key services.

Capability leak in a Jetpack addon

Consider the code snippet as shown in Figure [2] which represents the actual code of
the Preferences module from ‘Customizable Shortcuts’ [T]], a popular Jetpack addon
with over 5000 users. This module exports a method getBranch which inadvertently
enables access to the browser’s entire preference tree. If another module imports the
Preferenecs module, it would receive additional capabilities to access and modify the
user’s preferences for all extensions without explicitly requiring access to the user pref-
erences; in effect the importing module becomes over-privileged. Although the Jetpack
framework recommends adherence to POLA, it does not safeguard against developer
mistakes, with the result that unintended capability leaks are frequent.

Let us now examine the code in detail to understand the cause of the capabil-
ity leak. In line 1, the module requests chrome authority to enable it to access any



1) const {Cc, Ci} = require("chrome");

2 let Preferences = {

3) _branches: {},

@ _caches: {},

(5) getBranch: function (name) {

) if (name in this._branches) return this._branches[name];
) let branch = Cc["@mozilla.org/preferences-service;1"]

.getService(Ci.nsIPrefService).getBranch(name);

®) .../* other statements */
©) return this._branches[name] = branch;
(10) }, ... /* other properties */

an };
(12) exports.Preferences = Preferences;

Fig.2: Code snippet of a module from a real-world Jetpack addon which leaks the
capability to access and modify browser preferences.

XPCOM interface. Line 2-11 declare a Preferences object with several properties
(including _branches and getBranch) defined on it. On line 12, the module ex-
ports the Preferences object by attaching it to the exports object. Since the entire
Preferences object is exported, a module which requires this module would have
access to all its properties, including getBranch.

The getBranch method utilizes the chrome privileges acquired in line 1 to first
create an instance of the XPCOM interface nsIPrefService and then invoke the
getBranch method defined on the interface. The getBranch method returns an in-
stance of another XPCOM interface nsIPrefBranch, which provides a handle to ac-
cess and modify user preferences. After the assignment in line 7 is complete, branch
stores an instance of nsIPrefBranch. In line 9, the method returns this privileged
instance to the caller. Thus, the capability to manipulate the preference tree is leaked
through the exports interface of the module.

The capability leak from Preferences module thus makes an importing module
over-privileged, thereby violating POLA. Such a capability leak might even cause inad-
vertent deletion of user preferences. Ideally, the module should have been designed in
a manner to either export access only to its own preference branch, or return primitive
values corresponding to the preferences rather than a reference to the branch.

The module also violates another Jetpack addon design principle, which is to utilize
capabilities of core modules whenever possible and maintain the hierarchical module
structure. The Preferences module accesses and returns a reference to the prefer-
ences XPCOM interface even though the core modules provide equivalent functionality
through the preferences-service module, thereby breaking the expected hierarchi-
cal structure. The absence of any restriction on developers to use core modules only
exacerbates the problem.

Failure to adhere to Jetpack addon guidelines and principles is common in Jetpack
modules, in part due to the absence of functionality in core modules and also because of
the available choices during module design and implementation. Although adherence
to POLA ensures that a module has the minimal set of capabilities required to perform



Entity Sensitive attributes and methods
Bookmarks |nsIRDFDataSource

Chrome Components.classes, Components.interfaces, Components.utils, Components.result
Cookies nsICookieService, nsICookieManager

Document window.gBrowser.contentDocument, window.document

Files nsILocalFile, nsIFile

Passwords nsIPasswordManager, nsIPasswordManagerInternal.
Preferences |nsIPrefService, nsIPrefBranch

Serivces nslIOService, nsIObserverService, nsIPromptService
Streams nslInputStream, nsIFileInputStream
Window nsIWindowMediator, nsTWindow Watcher

XPCOMUtils |nsIModule, generateQI
Table 1: List of some privileged resources and their access interfaces.

its desired functionality, it is hard to implement in practice due to developer mistakes
and refactoring oversights. A capability leak analysis for Jetpack modules would help
to identify modules that violate POLA and restrict any security threat only to the con-
cerned module.

3 Static analysis of Jetpack modules and addons

In this section we describe a static analysis to detect sources of capability generation in
Jetpack modules, flow of capabilities through a module and across the module interface.
The capability leak analysis is an instance of static information flow tracking where
taint is modeled as the capability of accessing sensitive sources. A list of the sensitive
sources considered in our analysis is given in Table |1| These sources are classified as
sensitive as they allow module code to access browser resources and perform privileged
operations, such as access to arbitrary DOM elements, read/write access to the cookie
and password stores, unrestricted access to the local file system and the network, etc.

In the context of Jetpack modules, an object acquires capabilities if (a) it directly
accesses any of the sensitive sources (XPCOM interfaces) or (b) aliases capabilities in-
herited by the module via an explicit require call. In our analysis, an object is marked
privileged if it directly acquires capabilities, while it is considered tainted if it transi-
tively acquires the capabilities.

Both privileged and tainted objects propagate the associated capability through dif-
ferent program paths and can potentially leak it through the module’s exports inter-
face. Thus, the exports interface of each module is an information sink. A module can
leak capabilities if it exports:

— direct references to privileged or tainted objects, and/or
— functions that provide references to privileged or tainted objects on invocation or
on construction.

To identify capability leaks through module interfaces, we do a flow- and context-
insensitive call-graph based static analysis of JavaScript in the module code. Our anal-
ysis converts the JavaScript code into the Static Single Assignment (SSA) [19] form
and analyzes each SSA instruction. It then processes these facts to perform capability
leak analysis. The analysis obtains a degree of flow sensitivity by performing a flow
insensitive analysis on an SSA representation of the program.
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Fig. 3: Overall workflow of our analysis.

Our analysis models taint values to flow upwards in an object hierarchy i.e. an ob-
ject is tainted if it itself is tainted or any of its properties are tainted. The key insight is
that properties can be accessed given a reference to the parent object but not vice-versa.
Thus, for the code snippet in Figure[2] _branches in line 9 is tainted because one of its
properties is assigned to branch, which is privileged (line 7). Similarly, Preferences
also gets tainted as one of its children (_branches) is tainted. Since there was no capa-
bility assignment to _caches, it remains untainted.

We have adopted a conservative approach to handle arrays. Since it is statically
impossible to precisely determine the index for every array load, store, or access in-
structions, if any element in the array is tainted then the entire array is marked tainted.
Unlike objects, our analysis models all array properties to be tainted if any of the sib-
lings is tainted.

The analysis is inter-procedural. It models functions call sites, arguments and cap-
tures the appropriate flow of taint across function invocations. Primitive values are not
modeled. Our analysis also does not implement any string analysis. This could affect
capability flows arising from string manipulation and dynamic constructs like eval.
JavaScript containing eval is supported, however the code introduced by eval is not
modeled.

3.1 Stages of the analysis

Our analysis is based upon Datalog and proceeds in three stages. In the first stage,
the analysis pre-processes the addon code to make it amenable to static analysis. The
next stage performs the core analysis on the pre-processed code. The core analysis
generates Datalog facts that represent capability flow in the Jetpack addon code. The
results of core analysis are then processed in the third stage to identify offending flows
in the source code of the Jetpack addon. Figure [3]illustrates a schematic diagram of the
analysis of a Jetpack addon. The components gray are contributions of this work, while
those in white are off-the-shelf tools.
We now describe the various stages of the analysis in detail:



Construct Desugared to Code Desugared Code
Destructuring | property access| var {Cc, Ci} = require("chrome");| var Cc = require("chrome").Cc;
assignment  |and assignment var Ci = require("chrome").Ci;
let "’ var let foo = 5; var foo = §5;
const var const SIZE = 100 var SIZE = 100
lambda Function Function f(x) x * x f(x) { return x * x; }

Table 2: Pre-processed JavaScript constructs and their desugared forms.” We desugar
all forms of let i.e. statement, expression and definition.

3.1.1 Pre-processing: Our core analysis (as will be described in [Section 3.1.2) is
based on call-graph construction. The pre-processing stage process the module code to

facilitate construction of a complete call-graph for the module.

Since functions are first-class objects in JavaScript and can be properties of other
objects, it is possible that such functions are never invoked within the module. Further,
if these functions are exported by the module, they could be invoked by the module
requesting them. A call-graph generated for such a module would be incomplete since
it would not reflect invocations for all the functions. Therefore, we append the module
code with additional JavaScript code which would enable the call-graph generator to
invoke all functions and generate the complete call-graph for the module. To do so, we
consider all functions and properties (including JavaScript getters and setter) reachable
from the module’s exports interface and append appropriate JavaScript statements for
their invocation.

We do not append function objects defined in event handling or callback code be-
cause the Jetpack runtime freezes the exports interface when the module has finished
loading. This restricts all event handlers from attaching or modifying exports inter-
face. However, the loader does not perform deep freeze of the exports object making
it possible to modify any property reachable from the interface. Beacon may therefore
have false negatives. We plan to extend Beacon to analyze all event handlers.

The pre-processing stage is also required to make the Jetpack addon code amenable
for static analysis. To do so, we desugar some of the JavaScript constructs into simpler
forms. For example, ‘destructuring assignment’ is a popular JavaScript construct that
mirrors the construction of array and object literals. In essence it only represents syntac-
tic sugar to extract data from arrays or objects. As part of pre-processing, we desugar it
and convert it to statements involving simple property access and assignment. For other
constructs like let and const, we change them to var statements while keeping the
semantics unchanged. Table [2]lists set of the pre-processed constructs along with their
desugared forms.

The pre-processing stage also includes code re-writing to simplify statements in-
volving Mozilla specific XPCOM [26] interfaces, which indicate creation or access of
privileged resources. To do so, we replace all such XPCOM instances by stubs indi-
cating function calls. For example, the statement in line 7 of Figure [2]is re-written as
shown below:

let branch = Cc["@mozilla.org/preferences-service;1"] — let branch = MozPrefService()
.getService(Ci.nsIPrefService).getBranch(name); .getBranch(name) ;



Entity Type Capability

exports Object prefBranch
exports.Preferences Object prefBranch
exports.Preferences. _branches Object prefBranch

exports.Preferences.getBranch Function prefBranch
Table 3: Summary of preferences module showing the capability leak.

We also create summaries to indicate capabilities accessible from the stub methods.
This summary is fed to the analysis engine to enable it to accurately model the flow of
capabilities when handling code that accesses properties on the stub method. For exam-
ple, the module summary of MozPrefService would have one entry for getBranch
which returns the capability PrefBranch.

3.1.2 Core analysis: For the purpose of statically analyzing the pre-processed
JavaScript code we use an off-the-shelf tool to generate a call-graph in the SSA for-
mat. We then generate appropriate Datalog facts corresponding to statements in the
JavaScript code and apply inference rules for points-to and capability flow analysis.

Our points-to analysis is inspired by the JavaScript points-to analysis introduced
in Gatekeeper [22]. The key distinction is that in our analysis, all program variables
carry taint information as well, thereby performing capability flow analysis together
with points-to analysis. Similar to prior works [22| 30], we adopt a relatively standard
way to represent a program as a database of facts. The set of Datalog relations deployed
for the analysis are summarized in Table 4} Each of these relations is of fixed type
and arity. The relations specify how points-to and taint information are propagated. We
represent heap-allocated objects and functions using the alphabet H, program variables
by V, fields by F, call sites by I, integers by Z and capabilities by P.

Unlike prior works [13} 22] which perform whole program analysis, our analysis
focuses on modular JavaScript code, such as Jetpack modules. Analysis of individual
modules requires that capabilities of each module be appropriately seeded based on
which other modules it imports. Since invoking functions from an imported module is
akin to using library or foreign functions, we model such functionality as a summary of
each module. Thus, a comprehensive analysis of a particular module requires that the
summary of each of the imported modules be fed to the analysis engine.

Our analysis focuses primarily on detecting capability flows, thus our summaries
only reflect capability leaks possible through the module’s exports interface, A mod-
ule’s summary typically contains information about the properties of the exports in-
terface, their types and taint values reflecting the capabilities associated with the object.
Table 3] shows the summary for the code module shown in Figure 2]

Our module summaries simply list the capabilities exported by specific properties
exported by a module. In JavaScript, functions can also be exported. However, our
summaries are currently not parameterized by the arguments to such functions, which
may lead to false negatives in our analysis.

Once summaries for all the imported modules are available, the analysis engine con-
structs a call graph along with the control-flow graphs for each method in the module to
be analyzed. These control-flow graphs consist of several basic blocks which comprise



Relations for points-to analysis

ptsTo(V, H) represents a points-to relation for a variable
Heap mapping heapPtsTo(H;, F, Hy) represents points-to relation for heap objects
prototypeOf(H,, H,) record object prototype

assign(Vy, V) represents variable assignments

Object manipulation store(Vy, F, V2) represents field store for an object
load(Vy, V2, F) represents field load from an object
calls(l, H) represents call site I invoking method M

Function manipulation formal(H, Z, V) represents formal argument of method M
methodRet(H, V) represents return value of a method
actual(l, Z, V) represents actual parameter of a call site
callRet(l, V) represents return value for a call site

Relations for capability flow analysis

isPrivileged(H, P) indicates heap object H is privileged with type P
Capability flow isTainted(H, P) indicates heap object H is tainted with type P

idIsPrivileged(V, P) indicates variable V is privileged with type P

idIsTainted(V, P) indicates variable V is tainted with type P

Table 4: Datalog relations used in our static analysis.

of SSA statements. The analysis engine traverses each of these statements and produces
Datalog facts capturing its semantics, as illustrated in Table[5] It also generates heap al-
location mappings for the objects and functions, denoted by hy,.g. During this phase,
several Datalog facts corresponding to the relations shown in Table [ are generated.
The analysis engine then applies the Datalog inference rules presented in Table [6| over
the initial set of facts to keep track of aliases and the flow of capability through the
JavaScript code.

3.1.3 Post-processing: The combination of initial set of Datalog facts and facts gen-
erated after the application of inference rules abstract the behavior of the Jetpack mod-
ule under analysis. These facts provide information regarding capability flows for the
module being analyzed. The post-processing stage links this information back to the
source code, identifying possible locations in the source code where capabilities were
generated and the properties of the exports interface through which they were exter-
nalized. This processed information is also utilized for generating a summary for the
analyzed module.

3.2 Capability flow: A concrete example

We now demonstrate how the analysis detects capability flows from the exports in-
terface of Jetpack addon modules. Figure [ represents a pre-processed module and the
initial set of points-to facts generated by the analysis.

The pre-processed module indicates the use of capabilities within the module by the
stub function MozPrefService. The ptsTo relations represent object allocations in the
heap for each object or function declaration. The analysis engine generates a call-graph



Statement

Example Code

Generated Facts

ASSIGNMENT Vi =Vy assign(vy, va)
RETURN return v callRet(v)
OBJECT LITERAL v={} ptsTO(V, h fresn)
STORE vif=wv, store(vy, f, v2)
LOAD vy = Vz.f |Oad(V], Vo, f)
FUNCTION v = function(vy, v, ..., V) ptsTo(V, Nresn)
DECLARATION heapPtsTo(h ez, prototype, pyresn)
for z € 1...n, generate formal(h g, Z, V)
methodRet(hfyegn, V)
OBJECT v =new vo(Vy, V2, ..., V) ptsTo(v, Nresn)
CONSTRUCTION prototypeOf(h s.q1, d) :- ptsTo(Vo, Nyerhoa),
heapPtsTo(Nuermoa, Prototype, d)
for z € 1...n, generate actual(i, z, v.)
callRet(i, v)
FUNCTION CALL V= Vn(V,]l,-v, Vi, V2, oy V,,) ptSTO(V, hfrﬂh)

for z € 1...n, this, generate actual(i, z, v.)

callRet(i, v)

Table 5: Datalog facts generated for each JavaScript statement.

Basic rules

ptsTo(Vy, H)

ptsTo(V2, Hy)

:- ptsTo(V2, H), assign(V, V)

:- load(V2, Vi, F), ptsTo(Vy, H;), heapPtsTo(H,, F, H,)

heapPtsTo(H,, F, H,) :- store(Vy, F, V»), ptsTo(Vy, Hy), ptsTo(V2, H)
Call graph
calls(l, H) :- actual(l, 0, V), ptsTo(V, H)

Inter-procedural assignments

assign(Vy, V)
assign(Va, Vi)

:- calls(l, H), formal(H, Z, V,), actual(l, Z, V»)
:- calls(l, H), methodRet(H, V), callRet(l, V2)

Prototype handling

heapPtsTo(H,, F, H,) :- prototypeOf(H,, H), heapPtsTo(H, F, H,).

prototypeOf(O, H)

:- heapPtsTo(M, prototype, P), heapPtsTo(M, prototype, H),

prototypeOf(O, P)

Taint propagation

isTainted(H;, P)
isTainted(H;, P)

idlsTainted(V, P)
idlsTainted(V, P)

:- heapPtsTo(H,, F, H,), isPrivileged(H., P)

:- heapPtsTo(H;, F, H,), isTainted(H,, P)

:- ptsTo(V, H), isPrivileged(H, P), not(idIsPrivileged(V, P))
:- ptsTo(V, H), isTainted(H, P)

Table 6: Datalog inference rules for points-to analysis.



Pre-processed JavaScript st t Generated Datalog facts

(1) var exports = {}; PtSTO(Vexporiss Nexports)

(2 var Preferences = | PtSTO(Vpreferencess Nereferences)

@3  _branches: {}, PtSTO(V branchess N _branches)
store(Veyeferencess -Oranches, v pranches)-

4  getBranch: function (name) { PtSTO(V branchess N_branches)-
Store(Vpreferences, 9etBranch, Veersranci)

[6) var branch = MozPrefService().getBranch(name); ptsTo(Vranchs NpresBranch)-

6) return this. _branches[name] = branch; store(V_pranchess -» Vbranch)

) }, ... /* other properties */

® };

©) exports.Preferences = Preferences; PtsTO(Vexporrs, Nexports)
store(Vexpors, preferences, Vereserences)

Fig. 4: Example showing the flow of capabilities through the module’s exports inter-
face.

with invocation for all methods reachable from the exports interface to determine
the capabilities flowing out of the module. In the example, the analysis invokes the
exports.Preference.getBranch method. For brevity, we omit the details of the
invocation itself and the associated facts generated for the relevant statements.

The analysis detects capability leaks from the module by determining whether
exports is tainted or not. To do so, it must answer the following Datalog query:

idIsTainted(Vexporss, X)?

where Veyporis is the SSA representation for the exports interface and X is the
capability being exported.

Instead of operating on SSA representations, the analysis transforms the above
Datalog query to operate on heap allocation representation. Thus, the new query to be
resolved is:

iSTainted(hexporfs ’ X) ?

where Ay poris Tepresents heap allocation for veypors-

When the analysis invokes the getBranch method and analyzes line 5, it
reads the summary for MozPrefService. This summary lists getBranch as
method that returns the capability PrefBranch. Thus, the analysis engine al-
locates a heap object (h,.c¢prancn) for nsIPrefBranch and generates the fact:
isPrivileged(h e fpranch, prefBranch). At line 6, Vy4ncn holds the return value of the
function MozPrefService.getBranch(name), and thus Vpuue; POInts to Npyeraranch-
For sake of brevity, we omit the processing of the return statement.

On consulting the Datalog inference rules in Table [ and existing facts, the analy-
sis infers that h,,.c¢pranch 18 stored in the heap allocation object h_p4nches thus tainting
h_pranches- As mentioned earlier in the section, taints propagate upwards in an object hi-
erarchy. Thus the capability PrefBranch flows from h_j,,cpes to the heap allocation of
the parent object, Npreferences and generates the fact: isTainted(hp e ferences, prefBranch).
This in turn generates a similar fact: isTainted(h,.ors, prefBranch). Coupled with the
fact that Vexpors points to the heap allocation ey, the analysis resolves X to be



PrefBranch and determines PrefBranch as the capability flowing out of the module
through the exports.Preferences.getBranch method.

4 Implementation

We realized the analysis described in in a tool named Beacon. Beacon is
built atop WALA [29], an existing static analysis tool, and uses WALA’s capabilities to
convert pre-processed JavaScript code into an SSA-based register-transfer intermediate
representation (IR) and generate appropriate control-flow graph. Beacon analyzes each
IR to generate corresponding Datalog facts, which are processed using the DES Datalog
query engine [16]. The core analysis in Beacon was implemented in about 2.8K lines
of Java code while an additional 700 lines of scripts were required for pre- and post-
processing.

5 Results

We evaluated the effectiveness and accuracy of Beacon in detecting capability leaks by
analyzing the entire set of 359 Jetpack addons and 77 core modules available to us at the
time of writing the paper. In total, Beacon analyzed over 600 modules consisting of over
68K lines of JavaScript code. The performance of Beacon’s static analysis heavily de-
pends on the size of the analyzed module. On average, Beacon takes a couple of minutes
and consumes 200MB per module. For the largest module (tab-browser. js/25KB),
Beacon took 30mins and 243MB of memory. In we present results from
analysis of the capability leaks in core modules and Jetpack addons. In
we study the nature and usage of capabilities in various Jetpack addons. Lastly, in[Sec-|
we report on the use of Beacon to analyze the privileges associated with Jetpack
addons and the core modules to detect over-privileged modules.

Our evaluation methodology involved pre-processing the modules to desugar any
incompatible JavaScript constructs and append additional JavaScript code to ensure
complete code coverage (see for details). Each pre-processed module file
was individually analyzed by Beacon to generate appropriate Datalog facts that were
later processed to extract information about capability leaks. The post-processing also
generated a summary for the module that was utilized for analysis of another modules
which imported it.

5.1 Capability leaks

Beacon detected 12 capability leaks in four core modules and another 24 leaks in seven
Jetpack addons. Most of the detected leaks were subtle and hard to catch through man-
ual code review. This is reinforced by the fact that Beacon managed to detect 12 capa-
bility leaks in production quality code which has undergone numerous code reviews and
has a relatively stable code base. For each of the reported leaks, we manually verified
the results and observed no false positives. We shared the details of our findings with
Mozilla who acknowledged capability leaks in the four core modules. Tables [7] and
summarize the findings.



Core module Capability Leak mechani Essential
tabs/utils T Active tab, browser window and tab container | Function return Yes
window-utils T | Browser window Function return Yes
xhr Reference to the XMLHttpRequest object Property of this object| No
Xpcom Entire XPCOM utility module Exported property No

Table 7: List of capability leaks observed in the core modules. © indicates multiple
reference leaks.

Jetpack add Capability Leak mechani Essential
Bookmarks Deiconizer | Entire XPCOM services module Exported property No
Browser Sign In window, document Return from exported function No
Customizable Shortcut |nsIPrefBranch, nsIAtomService Property of this object No

window Return of function attached to this No
Firefox Share nsIPrefBranch, window Property of this object No
Reference to built-in SQLite database Property of this object No
nsIObserverService Exported property No
nsIScriptableInputStream, nsIBinaryInputStream | Return value of exported function No
nsISocketTransportService, nsISocketTransport |Property of this object No
nslInputStreamPump Property of this object No
Instance of the imported Socket module Property of this object No
Most Recent Tab nsIPrefBranch Property of this object No
window Function return No
Open Web Apps nsIPrefBranch, window Property of this object No
Reference to built-in SQLite database Property of this object No
nsIObserverService Exported property No
Recall Monkey nsIIOService, nsIFaviconService Property of this object No

Table 8: Capability leaks in Jetpack addons.

Capability leaks in core modules: Beacon discovered two kinds of capability leaks
in the core modules. First, capability leaks that occur due to the intended functionality
of the module and must therefore be white-listed. Second, capability leaks that occur
due to exporting direct references to privileged objects. We list two examples which are
representative of the nature of capability leaks in the core modules.

— window-utils: The core module window-utils as part of its intended functionality
exports utility methods to access and track the browser’s windows. As mentioned in
the Jetpack framework executes each module within a sandbox without
access to the privileged window, document or gBrowser objects. On analyzing
window-utils, Beacon reported several capability leaks for methods and prop-
erties defined on the exports interface that return references to the window and
document objects. Since all of these violations were due to intended functionality
as documented in the Jetpack addon SDK [7], we white-listed the offending leaks
for the window-utils module.

— xpcom: The xpcom module provides functionality to register a user-defined com-
ponent with XPCOM and make it available to all XPCOM clients. This module also
exposes the XPCOMUtils module which offers several utility routines for the com-
ponents loaded by the JavaScript component loader. Due to the privileged nature of
these utility routines, we modeled the XPCOMUtils module as a capability source.
Our analysis of the xpcom module reported a capability leak which we confirmed
manually as the reference to the exported XPCOMUtils module.

Exporting a reference to a privileged interface is inconsistent with the philosophy
of Jetpack. We believe that instead of the reference to the XPCOMUtils module,



separate accessor methods that invoke its functionality should be exported by the
xpcom module. We reported our observation about the xpcom module to Mozilla
and they agree with our suggestion to wrap the functionality of XPCOMUtils with
xpcom accessors to decrease the surface area for vulnerabilities.

Capability leaks in Jetpack addons: Capability leaks discovered by Beacon in the Jet-
pack addons can be classified into four categories. The first category of leaks occurs due
to export of capabilities through direct references of privileged objects or due to func-
tion objects which return capabilities on invocation. The second class of leaks occurs
when a module attaches a capability to an exported function’s this object. The third
class of capability leaks occur if the module utilizes the functionality of a core mod-
ule which itself leaks capabilities, such as window-utils or xpcom. Lastly, we also
observed capability leaks when a Jetpack addon uses third-party modules which them-
selves leak capabilities. We describe two popular Jetpack addons which demonstrate all
four classes of capability leaks.

— Customizable Shortcuts: Customizable Shortcuts is a popular Jetpack addon with
over 5000 users. It enables users to easily create keyboard shortcuts to customize
the Web browser. We analyzed the addon using Beacon and found 3 capability leaks
which cover three out of the four classes of leaks. The first leak results from one
of the modules exposing a method that on invocation returns reference to the entire
preferences tree, instead of the sub-tree specific to the addon. Accessing the entire
preferences tree is not recommended since tree modifications on other branches
could result in inadvertent loss of user data.

The second capability leak occurs in a module which exports a wrapper
method over the window-utils core module. The wrapper invokes functions on
window-utils which return references to the window and document objects.
The last capability leak occurs as a result of the module attaching an instance of
the nsIAtomService XPCOM interface to the exported function’s this object.
Although, the nsTAtomService interface does not provide any security critical
functionality, leaking capabilities implicitly through the this object is a bad pro-
gramming practice.

On manually verifying the leaks, we observed that none of the leaked capabilities
was being used by other modules in the Jetpack addon. This suggests that the mod-
ule author inadvertently exported the capability instead of keeping it local to the
module.

— Firefox share: Firefox share is a Jetpack addon by Mozilla Labs which allows

fast and easy sharing of links from any Web page. This addon has 25 modules with
over 5300 lines of JavaScript code. Several of these modules have been reused from
another Jetpack addon, Open Web Apps, also by Mozilla Labs.
Analyzing Firefox share with Beacon, we discovered 10 diverse capability leaks
ranging from leaking preference trees, the window object, access to a built-in
SQLite database to leaking socket services, which would enable a module to lever-
age benefits equivalent of using raw UDP/TCP sockets. Table [§] enumerates all the
observed violations in Firefox share. On manual verification, we observed that in
each case the leaked capability was never invoked from any another module. This
clearly indicates that the leaks were inadvertent.



We also found that four of the leaks originated in the code modules that were shared
with Open Web Apps. This demonstrates that sharing of over-privileged code mod-
ules exacerbates capability leaks.

5.1.1 Accuracy: Beacon detected a total of 36 capability leaks in over 600 mod-
ules. For each capability leak, we manually validated the results and observed no false
positives. However, Beacon could miss capability flows due to a combination of the
following reasons:

— Dynamic features: Our analysis currently does not handle some of the dynamic
and reflective features available in JavaScript. For example, privilege propagation
through iterators, generators and reflective constructs like arguments.callee are
not modeled. Accurate propagation of privileges for such constructs cannot be
achieved statically alone and requires dynamic analysis [20, 21].

— Unsupported constructs: There are a few constructs in JavaScript for which the
WALA analysis engine throws exceptions, and thus they are not supported by Bea-
con. Such constructs include for. .each, yield and case statement over a vari-
able. We re-wrote all instances of such constructs (by hand) in the Jetpack modules
to make them amenable to analysis. Although hard to quantify, it is possible that
the re-written code may miss some capability flows.

— Unmodeled constructs: There are some constructs which have not been appro-
priately modeled yet in our analysis. These include nested try/catch/throw se-
quences, eval and with. During our experiments, we found no instance of either
eval or with in any of the modules.

Also, our analysis currently does not model DOM function calls, like
setAttribute and property assignments, like innerHTML. Such constructs are
handled similar to normal JavaScript function calls and property assignments and
could affect capability flows.

Although foreign function calls, like those invoked on imported modules, are mod-
eled, the analysis does not consider the taint value of arguments passed to them.
Instead, the analysis determines the taint value of function returns by consulting the
module’s summary. Ignoring taint values of arguments of foreign functions could
also affect the detection of capability flow.

— Latent bugs: Lastly, in-spite of exhaustive testing, it is possible that there are latent
bugs in Beacon or the automated module summary generation which might affect
capability flows.

5.2 Capability use

The Jetpack framework automatically generates a manifest for each Jetpack addon that
provides a dossier about the core modules ‘required’ by the addon, but provides no
information about the XPCOM interfaces invoked by the modules in the addon. As
revealed in a large number of capability leaks originated from the direct
use of XPCOM interfaces. In this section, we analyze the Jetpack addons and determine
the XPCOM-level capabilities associated with them. A concrete understanding of the
capabilities associated with a Jetpack addon is useful to both the end-user and Mozilla
itself.



XPCOM # Jetpack XPCOM # Jetpack

Interface addons Interface addons
nsIWindowMediator 18 nsIWindowWatcher 4
nsIIOService 10 nsIFaviconService 4
Services 8 AddonManager 3
nsIPrefService 6 nsILocalFile 3
nsIProperties 5 nsIObserverService 3

Table 9: Top 10 XPCOM interfaces used in Jetpack addons.

— Addon reviewers at Mozilla can use capability leak analysis to publish fine-grained
Jetpack addon manifests that accurately lists all its capabilities. This would be help-
ful to end-users in making a well-informed choice when installing an addon. For
example, if a Jetpack addon invokes the nsICookieManager and also has access
to the network, then the end-user can be made aware of the fact that the addon is
capable of reading user cookies from all domains and sending them over the net-
work.

— A capability analysis of existing Jetpack addons would help Mozilla in two ways.
First, the analysis would identify the set of XPCOM interfaces that are most widely
used by developers and for which there do not exist any core modules. This knowl-
edge would help Mozilla in prioritizing the development of core modules. Sec-
ondly, the analysis would help the curators at Mozilla to identify addons that use
XPCOM interfaces for which a core module already exists. The curator can then
suggest the desired modifications to the developer and ensure that all Jetpack ad-
dons conform to the hierarchical model where the developer maximizes the use of
the built-in core modules for the Jetpack addon functionality.

Core # Jetpack Core # Jetpack
module addons module addons
self 243 request 101
tabs 160 chrome 94
widget 157 panel 83
page-mod 126 simple-storage 82
context-menu 117 selection 52

Table 10: Top 10 core modules used in Jetpack addons.

To understand the usage pattern of capabilities in Jetpack addons, we modify Bea-
con to collect two kinds of capability usage characteristics. First, we track all heap
object creations that occur when a Jetpack addon invokes an XPCOM interface. Sec-
ond, we measure the usage of core modules, i.e.,the number of core modules imported
using a require call.

shows the frequency distribution of XPCOM interfaces for the 359 Jetpack
addons which directly invoke atleast one XPCOM interface. We observe that 46 of the
addons directly invoke XPCOM functionalities, with one Jetpack addon (Firefox share
by Mozilla Labs) invoking 14 XPCOM interfaces. Thus over 12% of Jetpack addons
directly use XPCOM to include functionality and features not available in the core
modules. We believe that as the Jetpack framework becomes popular, this number will
increase and along with it the number of modules that leak capabilities.
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Fig. 5: Frequency of XPCOM interfaces used in Jetpack addons.

Tables [9] and [I0] list the top 10 XPCOM interfaces and core modules cur-
rently in use by Jetpack addons. We observe that 5 of the XPCOM interfaces listed
in Table E} namely nsIWindowMediator, nsIPrefService, nsIWindowWatcher,
nsILocalFile and nsIObserverService, are used by addon authors even though
there exist core modules that provide equivalent functionality. For example, the core
module preference-services provides functionality equivalent to the XPCOM in-
terface nsIPrefService. Two of the popular interfaces nsIIOService and Services
provide rich functionality that currently do not have any functionally equivalent core
modules. Although a Jetpack addon author can access these capabilities by requesting
chrome privileges, it increases the privileges associated with the module manifold. The
surface area for vulnerabilities in Jetpack addons would greatly reduce if Mozilla could
provide core modules for privileged, but frequently used XPCOM interfaces.

Careless handling of multiple capabilities in a module could result in capability leak
through the module’s exports interface. To determine if the modules in Jetpack addons
can be split up into better-confined subsets of authority, we used Beacon to detect all
modules which accessed more that one XPCOM interface. We grouped the XPCOM
interfaces by their functionality and identified modules that used XPCOM interfaces
from different categories. If a module uses functionalities from more than one category,
then it is a candidate for isolating the authorities used by the module.

We grouped the XPCOM interfaces into 6 categories — namely Application,
Browser, DOM, I/O, Security and Miscellaneous — each representing distinct classes of
functionalities, All XPCOM interfaces that access application or user preferences, cre-
ate application threads, etc. are categorized under Application. The category Browser
contains interfaces that represent browser neutral functionality like access to timers and
console. DOM provides access to the window and document objects. Services that han-
dle browser permissions and cookies are grouped under Security, while interfaces which



Categories
Jetpack addon Module name | Application | Browser [ DOM|1/O | Security | Misc.

Add-on Builder Helper g:)a(;?strap j v 7 7
Auto Shutdown NG |countdown v v |/ v
Awesome Screenshot |ui v |/
Bookmarks Deiconizer | main v v v |V v v
Browser Sign In sessions v/
Do Not Fool localization v v
Fastest Search main v v |V v

api v v
Firefox Share :s:il:onsumer ; v/ 7

typed-storage 4 4
Image2Icon main 4 v
LepraPanel 2 main v v |V v
Memory Meter main v v v |V v v

api v v
Open Web Apps oauthconsumer v v

typed-storage 4 4
PriceBlink main v v
Read Later Fast main v v

helper v |V
Recall Monkey hain 7 7 77 7 7
Snaporama main v v v |V v v
Springpad main v |/ v
Socat main v v v v
Wsad.it Bookmarks main v v

Table 11: List of Jetpack modules accessing multiple categories of XPCOM interfaces.

require access to the network, file system or storage come under I/O. The remaining in-
terfaces are grouped as Miscellaneous.

We found 26 modules in 19 Jetpack addons, where each module invoked XPCOM
interfaces to obtain capabilities of different nature. Table [TT]lists the findings. We ob-
serve that these modules request a wide variety of authorities, with 4 modules request-
ing access to all 6 categories. We believe that such modules could be split into better-
confined subsets.

5.2.1 Accuracy: We evaluated the accuracy of capability use analysis by comparing
the results against the ground truth. By manually analyzing all the modules, we found 53
Jetpack addons which had direct invocations to XPCOM interfaces. Beacon detected 46
addons with XPCOM capabilities. The remaining 7 addons invoked XPCOM interfaces
from within event handling code (which Beacon does not model — for reasons stated

in[3.1).

5.3 Over-privileged modules

The Jetpack addon documentation outlines several guidelines about best practices for
developing modules. One of them recommends module authors to follow the principle
of least authority (POLA) [8]]. To study how the existing core modules conform to this
guideline, we analyzed all 77 core modules using Beacon. Our analysis revealed 10
over-privileged core modules.



Core module Privilege Severity
file Directory service |Moderate
hidden-frame Timer None
tab-browser Errors None
content/content-proxy | Chrome Critical
content/loader File Moderate
content/worker Chrome Critical
keyboard/utils Chrome Critical
clipboard Errors None
widget Chrome Critical
windows XPCOM, apiUtils | Critical

Table 12: List of core modules violating POLA.

Table[12]lists the core modules and the nature of the unused privilege. We observe
11 instances of additional privileges which are requested but never utilized in the mod-
ule code. We also see that 5 of the core modules request critical capabilities like chrome
and XPCOM but never use it. Two modules request file and directory-service capa-
bilities, which give them privileges to navigate through and read/write to the file system,
while the remaining three modules import harmless capabilities which are never used.
We contacted Mozilla and notified them about the over-privileged core modules, which
they acknowledged as refactoring oversights [6].

5.3.1 Accuracy: To measure the accuracy of false positives in detection of over-
privileged modules, we manually validated the Beacon’s results for all 77 core mod-
ules. Beacon generated a total of 18 warnings for all core modules, out of which 11
were true positives, while the remaining 7 were false positives. On verifying the 7 in-
stances of false positives, we observed that the over-privileged objects were defined in
the module’s global scope but were used within event handling code. As mentioned in
Beacon does not analyze event handling code, thereby causing false posi-
tives.

6 Related Work

Recently, there has been much interest in the analysis of browser extensions for security.
To our knowledge, this paper is the first to analyze the Jetpack addon framework.

Sabre [20] and Djeric and Goel [21] both present dynamic information-flow track-
ing system to detect insecure flow patterns in JavaScript extensions. While the goal of
these systems is to detect extensions that can leak sensitive browser data, Beacon in-
stead aims to detect poor software engineering practices in Jetpack modules and addons
that can potentially lead to such situations. Moreover, Beacon employs static analy-
sis, which makes it better suited to proactively prevent unwanted information flows in
browser extensions.

VEX [13}[14] also implements static analysis of JavaScript to study vulnerabilities
in extensions. It implements a flow- and context-sensitive analysis that was applied to
over 2400 Firefox addons to detect unsafe programming practices. In VEX, vulnera-
bilities are specified as bad flow patterns; the analysis attempts to verify the absence



of these patterns in addons. While VEX was originally applied to traditional Firefox
addons, it can also be applied to Jetpack modules to detect bad programming patterns.
Beacon’s analysis goes further to detect capability leaks that may violate modularity,
and violations of POLA, which VEX cannot. Unlike VEX, Beacon employs flow- and
context-insensitive analysis of JavaScript. Despite the use of lower-precision analysis,
Beacon is able to find real vulnerabilities in Jetpack modules and addons.

IBEX [24] provides tools for extension curators to detect policy violating JavaScript
extensions. However, IBEX is a framework for specifying fine-grained access control
policies guarding the behavior of monolithic browser extensions, while Beacon per-
forms information-flow for modular JavaScript extensions and is designed to detect
modules that violate POLA or leak capabilities across module interface. IBEX also re-
quires extensions to first be written in a dependently-typed language (to make them
amenable to verification), following which they are translated to JavaScript. In contrast,
Beacon works directly with Jetpack extensions written in JavaScript.

More generally, there has been much recent work on static analysis of JavaScript
code executing on Web pages. Beacon borrows and builds upon the techniques intro-
duced in these papers (discussed below), but applies them to the analysis of the Jetpack
framework.

The core analysis of Beacon is most similar to that of Gatekeeper [22]. While Gate-
keeper was originally applied to study the security of small JavaScript-based widgets,
we applied Beacon to study capability leaks in Jetpack addon. Actarus [23]] is another
static analysis based system that studies insecure flows in JavaScript Web applications.
Its set of sources and sinks are thus based on rules targeting specific vulnerabilities. For
example, the DOM property innerHTML or the method document .write is a sink be-
cause they facilitate code injection attacks. Beacon in comparison targets Jetpack addon,
which have well defined sources (require and XPCOM) and sinks (exports) for each
module. ENCAP [28] is related to Beacon in the domain of identifying capability leaks
via static analysis. Like Beacon, ENCAP implements a flow- and context-insensitive
static analysis of JavaScript, but Beacon differs in both its implementation and applica-
tion domain. ENCAP uses static analysis to detect API circumvention, where as Beacon
detects capability flows in modular JavaScript code.

Chugh et al.present staged information flow [18]], an analysis infrastructure for
JavaScript code. The goal of their original analysis was to detect insecure flows in
JavaScript Web applications. However, they developed a novel phased analysis that
would allow new code generated in previous phases to be analyzed. Beacon can possi-
bly use these techniques to analyze dynamic constructs, such as eval and with.

Although not directly related to the analysis of the Jetpack framework, Google
Chrome’s extension architecture also encourages a modular design [[15]]. Its extensions
consist of a scriptable part, and a native part, and each extension is required to specify
its resource requirements upfront in a manifest. The contents of the manifest are then
enforced by the browser, thereby limiting the effect of any exploits against the exten-
sion. However, recent works have shown that this model may be insufficient to ensure
the security of Chrome extensions [[17, [25]].



7 Conclusions

In this paper, we described Beacon, a system for capability flow analysis of JavaScript
modules. Beacon uses static analysis to detect flow of capabilities through the module’s
exports interface. The techniques used by Beacon are generic, and can detect capa-
bility leaks in any modular JavaScript code base, e.g., node.js [9], Harmony modules
[4], SproutCore [L1]. However, our focus was on browser addons implemented using
Jetpack. Beacon cannot directly be applied to non-modular addons.

We implemented Beacon and used it to analyze 77 core modules from Mozilla’s
Jetpack framework and another 359 Jetpack addons. In total, Beacon analyzed over
600 Jetpack modules and detected 12 capability leaks in 4 core modules and another
24 capability leaks in 7 Jetpack addons. Beacon also detected 10 over-privileged core
modules. We have shared the details with Mozilla who have acknowledged our findings
for the core modules.

In conclusion, the Jetpack framework attempts to improve how scriptable extensions
for the Mozilla Firefox browser are developed. Although it provides guidelines for de-
veloping modular addons and recommends POLA, it does not enforce these guidelines.
Our evaluation of the Jetpack framework suggests that even heavily-tested core modules
may contain capability leaks. The use of a tool such as Beacon during addon develop-
ment can help prevent such leaks.

The overall security of the Jetpack framework can further be improved by dynami-
cally enforcing permissions requested in extension manifests and by deep freezing the
exports object. Dynamic enforcement of manifests will ensure that addons are not
able to access any resources that they have not explicitly requested. Deep freezing the
exports object will prevent any capability leak through event handlers. We are inves-
tigating other design recommendations in current work.
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