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This paper relates cases of apparent noncompositionality in natural languages to those
in programming languages. It is shaped like an hourglass: I begin in §1 with an approach
to the syntax-semantics interface that helps us build compositional semantic theories. That
approach is to draw an analogy between computational side effects in programming lan-
guages and what I term by analogy linguistic side effects in natural languages.

This connection can benefit computer scientists as well as linguists, but
I focus here on the latter direction of technology transfer. Continuations
have been useful for treating computational side effects. In §2, I intro-
duce a new metalanguage for continuations in semantics.

The metalanguage I introduce is useful for analyzing both pro-
gramming languages and natural languages. For intuition, I
survey the first use in §3, then point out the virtues of this treat-
ment in §4.

Turning to natural language in §5, I describe in detail how this perspec-
tive helped Chris Barker and I study binding and crossover, as well as
wh-questions and superiority. I have also used continuations to study
quantifier and wh-indefinite scope, particularly in Mandarin Chinese, but
there is only room here to sketch these further developments, in §6.

Underlying this work are three themes, to be explicated below:

• uniformity across side effects,
• interaction among side effects, and
• an operational notion of evaluation.

To conclude, I will speculatively elevate these methodological preferences into empirical
claims in §7.

1. S 

Let me begin with Frege’s painfully familiar example (Frege 1891, 1892; Quine 1960).

(1) a. the morning star
b. the evening star
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The semantic problem with these two phrases starts with the pretheoretic intuition that
they “mean” the same thing, namely Venus. Furthermore, we have the intuition that the
“meaning” of a sentence like

(2) Alice saw the morning star

is (or at least includes) whether it is true or false. Perhaps we have all been brainwashed the
same way in our introductory semantics courses. In any case, these pretheoretic intuitions
we have about what phrases mean are at odds with compositionality, because there exist
contexts, involving words like think, under which the morning star and the evening star
are no longer interchangeable: maybe Alice thinks Bill saw the morning star, but Alice
doesn’t think Bill saw the evening star.

In this example, we have some pretheoretic notions of what certain phrases mean, which
turn out to be incompatible with compositionality. In other cases, we are uncertain what
certain phrases should mean at all, for example the king of France (is bald) or most unicorns
(are happy). That’s when we are tempted to concoct technical devices like partial functions
or syntactic movement, so that a larger phrase may have a meaning without each of its
constituent parts also having a meaning.

The same challenge faces programming languages (Søndergaard and Sestoft 1990, 1992).
For example, here are two program phrases (which happen to be in the Python program-
ming language, but most of them look alike anyway).

(3) a. f (2) × f (3)
b. f (3) × f (2)

The first program means to apply the function f to the numbers 2 and 3, then multiply the
results. The second program means to apply the function f to the numbers 3 and 2, then
multiply the results. These two programs intuitively have the same meaning, but as it turns
out, there too are contexts that distinguish between them. For example, suppose that we
define the function f to print out its argument to the terminal before returning it.

(4) def f (x):
print x × 10
return x

Then f (2)× f (3) would print out “20 30” before returning 6, while f (3)× f (2) would print
out “30 20” before also returning 6. We can blame this discrepancy on the presence in
our programming language of a command like “print”. And this is only a mild case: what
denotations, if any, can we assign to program phrases that request input from the user, or
commands like “goto” that jump to a different point in the program to continue executing?

The commonality here between natural and programming language semantics is that
we have some pretheoretic notion of what phrases mean—for example, the expression
f (2) “means” whatever you get when you feed the function f the number 2, and the noun
phrase the morning star “means” Venus—yet two phrases that supposedly mean the same
thing turn out to be distinguished by a troublemaking context involving verbs like think
or commands like “print”. This kind of situation—where, in short, equals cannot be sub-
stituted for equals—is what I take referential opacity to mean (as opposed to referential
transparency, which is when equals can be substituted for equals). A vaguer way to define
referential opacity is that it’s when meaning “depends on context”. Worse than referential
opacity, sometimes we don’t have any pretheoretic notion of meaning. For example, what
does the king of France mean, and what does “goto” mean, anyway?
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These issues, of referential opacity and downright lack of reference, are common to both
programming and natural languages. Programming language researchers call instances of
these issues computational side effects, such as

• output (“print”),
• input (“read”), and
• control (“goto”).

By analogy, I call a natural language phenomenon a linguistic side effect when it involves
either referential opacity or the lack of any pretheoretic notion of meaning to even chal-
lenge compositionality with. Some examples of linguistic side effects are:

• intensionality (think),
• binding (she),
• quantification (most),
• interrogatives (who),
• focus (only), and
• presuppositions (the king of France).

As I said, side effects are a common problem in both natural and programming language
semantics. A way to treat side effects that is very popular in both linguistics and computer
science is type-lifting—in other words, enriching denotations to encompass the additional
aspect of “meaning” under discussion. For example, in order to distinguish denotationally
between the morning star and the evening star, it is standard to intensionalize a natural
language semantics, introducing functions from possible worlds. For another example,
programming language semanticists deal with “print” by lifting denotations from numbers
to number-string pairs, where the string is the terminal output.

Just to be complete, I should acknowledge that lifting denotation types is not the whole
story. Whenever we lift denotations, we also have to lift the composition rules that combine
them. Moreover, we need to specify how to get a truth value at the top level from a semantic
value that is now richer, more complicated.

The type lifting operations used in linguistics and in computer science are very similar.
I mentioned above the standard possible world semantics for intensionality. The same idea
of turning denotations into functions from a fixed set is used to treat the computational side
effect of input in programming languages. A second case where linguistics and computer
science came up with the same type-lifting is Hamblin’s alternative semantics for questions
(1973), which is how nondeterminism in programming languages—commands like “flip a
coin” or “roll a die”—are often analyzed.

A third case of this convergence in type-lifting is quantification (Montague 1974). It is
the focus of the rest of this paper. As linguists, we know how useful generalized quanti-
fiers are, but I want to tell you how computer scientists use them to model programming
languages, then come back after a few sections to apply their perspective to linguistics.

2. A  

To ground the discussion, I now introduce a toy programming language, where every-
thing is a string. The + sign means to concatenate two strings, so the program

(5) “compositional” + “ ” + “semantics”

concatenates the strings “compositional”, a space, and “semantics”. When a computer
executes this program, it first concatenates “compositional” and a space, and then concate-
nates the result with “semantics”. The result is “compositional semantics”. I write this
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computation as a sequence of reductions:

(6) “compositional” + “ ” + “semantics”
⇒ “compositional ” + “semantics”
⇒ “compositional semantics”

Each ⇒ indicates a step, and underlining indicates the subexpression next reduced. So
far everything is pretty straightforward, and it is easy to write down a trivial denotational
semantics for this language, where quotations denote strings, the + sign denotes the string
concatenation function, and so on.

Now I add two features to this programming language, due to Danvy and Filinski (1989,
1990, 1992), with roots in work by Felleisen (1987, 1988) and others. These features may
seem weird at first, but bear with me for the moment. The shift command is written ξ f . e,
where f is a variable name and e is an expression. The symbol ξ in a shift-expression plays
the same role as λ does in a function expression: it opens the scope of a variable-binding
construct. When ξ f . e is reduced, it first sets aside its context as f . For example, in the
program

(7) “compositional ” + (ξ f . “directly ” + f (“semantics”)),

the context of the shift-expression is

(8) “compositional ” +—,

where the blank — indicates the location of the shift-expression itself. This context is
bound to the variable f within the body e. Furthermore, the body e (in this example,
“directly ” + f (“semantics”)) becomes the new current expression to be evaluated. Hence
the following reduction sequence. (Ignore the square brackets for now; we shall come to
them momentarily.)

(9) “compositional ” + (ξ f . “directly ” + f (“semantics”))
⇒ “directly ” +

(
λx.
[
“compositional ” + x

])
(“semantics”)

⇒ “directly ” +
[
“compositional ” + “semantics”

]
⇒ “directly ” +

[
“compositional semantics”

]
⇒ “directly ” + “compositional semantics”
⇒ “directly compositional semantics”

The result of the very first reduction is the body of the shift-expression, with f replaced by
λx.
[
“compositional ” + x

]
, which is a function that represents the context (8).

The second feature to add to this programming language is reset. A reset is notated by
a pair of square brackets, like those in (9). Resets delimit the extent to which an enclosed
shift can grab its surrounding context. For example, in the program

(10) “really ” +
[
“compositional ” + (ξ f . “directly ” + f (“semantics”))

]
,

the shift can only grab its surrounding context as far as (and excluding) the closest enclos-
ing square brackets, which shield “really ” from being captured. Hence “really ” stays at
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the beginning of the program throughout the reduction sequence.

(11) “really ” +
[
“compositional ” + (ξ f . “directly ” + f (“semantics”))

]
⇒ “really ” +

[
“directly ” + (λx.

[
“compositional ” + x

]
)(“semantics”)

]
⇒ “really ” +

[
“directly ” +

[
“compositional ” + “semantics”

]]
⇒ “really ” +

[
“directly ” +

[
“compositional semantics”

]]
⇒ “really ” +

[
“directly ” + “compositional semantics”

]
⇒ “really ” +

[
“directly compositional semantics”

]
⇒ “really ” + “directly compositional semantics”
⇒ “really directly compositional semantics”

We can imagine that every program is implicitly surrounded by a reset, so in the absence
of any explicit bracketing, shift grabs all of its surrounding context.

As a technical detail (Shan 2004), when shift grabs a context and stores it in a bound
variable, the stored context is bracketed by reset. That’s why the context (8) corresponds
to the function λx.

[
“compositional ” + x

]
, not just λx. (“compositional ” + x).

Another technical detail: If you are used to working with the pure λ-calculus, you might
have the habit of looking for whatever subexpression can be reduced by λ-conversion and
reducing it right away. It used to be that different reduction orders always give the same
final result, but that is no longer so in the presence of shift and reset. Instead, we need to
replace that habit with a systematic recursive traversal that turns each subexpression (like
concatenation) into a value (like a string) before moving on.1 In particular, no reduction
is allowed in the body of a λ-abstraction. Moreover, λ-conversion can take place only if
the argument is an (irreducible) value. In computer science parlance, this programming
language passes parameters by value, or is call-by-value. Call-by-value is not the only pa-
rameter-passing convention, but it is the most popular one among programming languages,
and the only one for which shift and reset have been defined and studied.

3. E   

Shift and reset, like “goto”, are known as control operators in computer science. Unlike
“goto”, shift and reset are control operators that manipulate delimited contexts,2 which
means that the context grabbed by shift is made available to the program in the form of
a function (Felleisen 1987, 1988). Shift and reset are interesting to computer scientists
because many computational side effects can be encoded with them, in other words treated
as syntactic sugar for them (Filinski 1994, 1996, 1999). I give four examples below.

3.1. Abort. A popular feature of programming languages is to be able to abort a compu-
tation in the middle of its execution (to “throw an exception”). To model such a feature,
we might want an “abort” command, such that

(12) “directly ” + abort(“compositional”) + “ semantics”

evaluates to just “compositional”. To achieve this, we can treat abort as simply a special
case of shift, where the shifted context f is never used.

(13) abort = λx. ξ f . x

1Or better, use Kameyama and Hasegawa’s (2003) axiomatization of shift and reset. Their equations are sound
and complete with respect to observational equivalence under reductions by the systematic recursive traversal
described here.

2Delimited contexts are also known as composable, partial, functional, or truncated contexts.
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Substituting (13) into (12) gives the following reduction sequence, as desired.

(14) “directly ” + (λx. ξ f . x)(“compositional”) + “ semantics”
⇒ “directly ” + (ξ f . “compositional”) + “ semantics”
⇒ “compositional”

3.2. Random. Another popular feature, which I alluded to above, is nondeterminism. We
want the program

(15) random(“direct”)(“indirect”) + “ly”

to evaluate to a set containing two strings, “directly” and “indirectly”. We can treat random
as another special case of shift, as long as we turn the overall expression into a singleton
set (hence the outermost pair of braces in (17)).

random = λx. λy. ξ f . f (x) ∪ f (y)(16) {
(λx. λy. ξ f . f (x) ∪ f (y))(“direct”)(“indirect”) + “ly”

}
⇒
{
(λy. ξ f . f (“direct”) ∪ f (y))(“indirect”) + “ly”

}
⇒
{
ξ f . f (“direct”) ∪ f (“indirect”) + “ly”

}
⇒
(
λx.
[
{x + “ly”}

])
(“direct”) ∪

(
λx.
[
{x + “ly”}

])
(“indirect”)

⇒
[
{“direct” + “ly”}

]
∪
(
λx.
[
{x + “ly”}

])
(“indirect”)

⇒
[
{“directly”}

]
∪
(
λx.
[
{x + “ly”}

])
(“indirect”)

⇒ {“directly”} ∪
(
λx.
[
{x + “ly”}

])
(“indirect”)

⇒ {“directly”} ∪
[
{“indirect” + “ly”}

]
⇒ {“directly”} ∪

[
{“indirectly”}

]
⇒ {“directly”} ∪ {“indirectly”}
⇒ {“directly”, “indirectly”}

(17)

The two computational side effects discussed so far, abort and random, are encoded by
shift expressions whose bodies use the captured context f either never (for abort) or twice
(for random). By contrast, the computational and linguistic side effects considered below
are encoded by shift expressions that use the captured context exactly once.

3.3. Input. A third important feature of programming languages, which I also mentioned
above, is input. We want the program

(18) input + “ semantics”

to evaluate to the function that appends the word “semantics” to every string. We can write
input in terms of shift as well. It is just ξ f . f .

input = ξ f . f(19)

(ξ f . f ) + “ semantics” ⇒ λx. [x + “ semantics”](20)

3.4. Output. We can treat output in the same framework as input. We want the program

(21) output(“semantics”) + “ ” + input

to evaluate to “semantics semantics”, where the second word “semantics” is fed to the
input-expression to the right by the output-expression to the left. Once again, output can
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be written in terms of shift.3

output = λx. ξ f . f (x)(x)(22) (
λx. ξ f . f (x)(x)

)
(“semantics”) + “ ” + (ξ f . f )

⇒
(
ξ f . f (“semantics”)(“semantics”)

)
+ “ ” + (ξ f . f )

⇒
(
λy.
[
y + “ ” + (ξ f . f )

])
(“semantics”)(“semantics”)

⇒
[
“semantics” + “ ” + (ξ f . f )

]
(“semantics”)

⇒
[
“semantics ” + (ξ f . f )

]
(“semantics”)

⇒
[
λz. [“semantics ” + z]

]
(“semantics”)

⇒
(
λz. [“semantics ” + z]

)
(“semantics”)

⇒
[
“semantics ” + “semantics”

]
⇒ [“semantics semantics”]
⇒ “semantics semantics”

(23)

You may be able to see where I am going: output is like the creation of a discourse referent,
and input is like a pronoun to be bound. Indeed, that is what relates shift and reset to
dynamic semantics, not to mention crossover in binding and superiority in wh-questions.
However, before I move back to linguistics, let me point out three crucial virtues of shift
and reset.

4. T     

The first virtue of shift and reset is that there is a perfectly compositional denotational
semantics for them.

So far I have described shift and reset in terms of how they are evaluated, which gives
them a very operational—or, in linguistic terms, derivational—feel. But thanks to this
denotational semantics, we can treat this programming language with shift and reset as just
another metalanguage for writing down model-theoretic denotations: good old functions
and sets and so on in the simply typed λ-calculus. The only theoretical commitment that
is required of us before we can use shift and reset in our semantic theories is that there are
modes of semantic combination other than pure function application (like Montague’s use
of variables (1974) and Hamblin’s of alternatives (1973)). Not even type-shifting is needed
if you don’t like that. I won’t go into details about this denotational semantics here, but
it is based on continuations, which generalize generalized quantifiers (Barker 2002; Shan
2002). Thus even computer scientists with nothing to do with natural language still care
about generalized quantifiers, though many of them have never heard of the term.

The translation from a metalanguage with shift and reset to one without is called the
continuation-passing-style (CPS) transform.4 The type system of the CPS transform’s tar-
get language serves as a refined type system for the source language with shift and reset.
For example, the expressions for input and output in (19) and (22) above may look like
they have the types e and 〈e, e〉, respectively, but they translate to λ-terms with the types

〈〈 e , α〉, 〈e, α〉〉(24)

3This encoding of input and output forces invocations of input and output to match one-to-one. For applica-
tions such as sloppy identity in verb-phrase ellipsis, this requirement may not be desirable. If so, we can instead
define input = ξ f . ξx. f (x)(x) and apply the function λv. λx. v at the top level of all programs. This way, each
output can feed zero or more inputs.

4As Danvy and Filinski (1990) point out, the translation for shift and reset should technically be called the
continuation-composing-style transform instead.
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and

〈〈 〈e, 〈〈 e , 〈e, γ〉〉, γ〉 〉 , β〉, β〉,(25)

respectively. Here α, β, and γ are type variables that can be instantiated with any type. The
boxed portions in the types above are vestiges of the pre-refinement types e and 〈e, e〉.

The second virtue of shift and reset is that they connect our desire for a denotational
semantics that specifies what each phrase means to our intuitive understanding of what
happens when a computer executes a program or when a person processes a sentence.

For example, in the Python example (3) at the beginning of this paper, it is intuitive that
if f (2) is evaluated before f (3), then 2 is printed before 3, and vice versa. This notion of
evaluation order is preserved in our treatment of output in terms of shift and reset. That is,
we can take “print” to be shorthand for a shift expression, such that, if the shift expression
for “print 2” is evaluated before that for “print 3”, then 2 is printed before 3, and vice versa.

Similarly, recall from §3 that the program (21), repeated below, produces the result
“semantics semantics”.

(21) output(“semantics”) + “ ” + input

For the input above to successfully consume the output, the shift-expression for output
must be reduced (evaluated) before that for input. In particular, if we stipulate that evalua-
tion takes place from left to right, then the “flipped” program

(26) input + “ ” + output(“semantics”)

won’t work:

(27) (ξ f . f ) + “ ” +
(
λx. ξ f . f (x)(x)

)
(“semantics”)

⇒ λx.
[
x + “ ” +

(
λx. ξ f . f (x)(x)

)
(“semantics”)

]
Evaluation stops after one reduction, resulting in a function that waits for an input x—
an input that the yet-to-be-evaluated output of “semantics” fails to provide. Even if we
provide some input (say “syntax”) “by hand”, evaluation still halts at an attempt to apply a
string as a function to another string:

(28)
(
λx.
[
x + “ ” +

(
λx. ξ f . f (x)(x)

)
(“semantics”)

])
(“syntax”)

⇒
[
“syntax” + “ ” +

(
λx. ξ f . f (x)(x)

)
(“semantics”)

]
⇒
[
“syntax ” +

(
λx. ξ f . f (x)(x)

)
(“semantics”)

]
⇒
[
“syntax ” + (ξ f . f (“semantics”)(“semantics”))

]
⇒
[(
λx.
[
“syntax ” + x

])
(“semantics”)(“semantics”)

]
⇒
[ [

“syntax ” + “semantics”
]
(“semantics”)

]
⇒
[[

“syntax semantics”
]
(“semantics”)

]
⇒
[
“syntax semantics”(“semantics”)

]
⇒ type error!

The refined type system mentioned above flags this problem as a type error in (26).
The shift-reset metalanguage thus provides a link between our operational impulses and

our denotational desires. Specifically, continuations provide a denotational foundation for
the operational notion of evaluation order. There are other denotational foundations, such
as Moggi’s computational metalanguage (1991), that are less concrete than continuations.

The third virtue of shift and reset is that we don’t just know how to treat many com-
putational side effects in terms of shift and reset, in other words how to translate abort,
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random, input, output, etc. into shift and reset. There turns out to be a systematic proce-
dure for implementing any computational side effect in terms of shift and reset, under a
certain technical definition of what a computational side effect is. The technical details are
in Filinski’s doctoral dissertation (1996), but you don’t need to read it to get the hang of
the procedure. For instance, when treating nondeterminism in §3.2 above, the top-level ex-
pression in (17) needs to be a singleton set, which can be thought of as the trivial amount
of nondeterminism. That is a step prescribed by Filinski’s systematic procedure: at the
top level, always put the trivial amount of whatever computational side effect you want to
encode.

Because shift and reset are so broadly applicable, they allow computer scientists to treat
multiple computational side effects in a uniform framework, and linguists to treat multi-
ple linguistic side effects in a uniform framework. Instead of lifting our semantics once,
and differently, for each of intensionality and variable binding and tense and questions
and focus and quantification and indefinites and conventional implicature—just think of
how complicated the denotation of John can get before all these are taken into account,
with or without dynamic type-shifting—we need only specify a single lifting of types and
denotations, to which everything can be reduced. Or so I hope.

5. E   

Having expressed the hope to treat all linguistic side effects in a uniform framework, I
will now get cranking.

5.1. Quantification. First on the agenda is in-situ quantification.

(29) Alice loves everyone’s mother.

We want the program

(30) alice\(love/(everyone\mother))

(forward and backward slashes denote forward and backward function application) to eval-
uate to ∀x. love(mother(x))(alice). The standard denotation of everyone, as given by Mon-
tague (1974), can be translated into our λ-calculus enriched with shift and reset.

(31) everyone = ξ f .∀x. f (x).

This definition enables the reduction sequence

(32) alice\(love/((ξ f .∀x. f (x))\mother))
⇒ ∀x.

(
λy.
[
alice\(love/(y\mother))

])
(x)

⇒ ∀x.
[
alice\(love/(x\mother))

]
⇒ ∀x. [love(mother(x))(alice)]
⇒ ∀x. love(mother(x))(alice),

as desired.
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If you think of shift from the reduction (or operational) point of view, you might be
reminded of covert movement and predicate abstraction. For example, the reduction se-
quence above may be depicted as the following tree.

(33)
sss

ss KKK
KK

ξ λ

sss
KKKKKK

Alice
sss

KKKKKK

loves
sss KKK

everyone’s

NN

mother

This is a fine intuition to have as a first approximation, but it is only an approximation.
To reiterate, shift and reset are simply notation for denotations in a directly compositional
semantics based on continuations. One difference that this compositional nature makes is
that constituents containing everyone, like everyone’s mother and loves everyone’s mother,
are every bit as quantificational as everyone is.5 There is no reason other than tradition to
draw (32) as (33) rather than either of the following pictures.

xx
xx

x
FF

FF
F

ξ λ

xx
xx

FF
FF

FF
F

Alice
xx

xx
FF

FF
FF

F

loves
xx

xx FF
FF

QQ

everyone’s mother

xx
xx

x
FF

FF
F

ξ λ

xx
xx

FF
FF

FF
F

Alice
xx

xx
FF

FF
FF

F

QQ

loves
xx

xx FF
FF

everyone’s mother

(34)

If X is a noun phrase that incurs side effects, then X’s mother incurs side effects as well.6

This fact will be useful when we treat pied-piping in §5.4 below.

5.2. Binding. As I alluded to above, binding in natural language can be decomposed into
output (the creation of discourse referents) and input (the evaluation of a pronoun). This
analogy to output and input in programming languages (§3.3–4) is the basic idea behind
the continuation-based analysis of binding and crossover by Chris Barker and I (Shan and
Barker 2004). To take one example, the sentence

(35) Everyone’si father loves heri mother

performs output at everyone and input at her. We would like the corresponding program

(36) (output(everyone)\father)\(love/(input\mother))

5This property is shared by other compositional treatments of in-situ quantification, such as Cooper storage
(1983), Keller storage (1988), and Moortgat’s type constructor q (1988, 1995, 1996).

6A special case of this statement is that, if X contains a pronoun yet to be bound, then so does X’s mother, as
in Jacobson’s variable-free semantics for binding (1999, 2000).
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to evaluate to ∀x. love(mother(x))(father(x)). Luckily, it already does, given the definitions
in (19), (22), and (31):

(37) (output(everyone)\father)\(love/(input\mother))
⇒ ∀x.

(
λy.
[
(output(y)\father)\(love/(input\mother))

])
(x)

⇒ ∀x.
[
(output(x)\father)\(love/(input\mother))

]
⇒ ∀x.

[
((ξ f . f (x)(x))\father)\(love/(input\mother))

]
⇒ ∀x.

[(
λy.
[
(y\father)\(love/(input\mother))

])
(x)(x)

]
⇒ ∀x.

[ [
(x\father)\(love/(input\mother))

]
(x)
]

⇒ ∀x.
[[
λy.
[
(x\father)\(love/(y\mother))

]]
(x)
]

⇒ ∀x.
[(
λy.
[
(x\father)\(love/(y\mother))

])
(x)
]

⇒ ∀x.
[ [

(x\father)\(love/(x\mother))
]]

⇒ ∀x.
[
[love(mother(x))(father(x))]

]
⇒ ∀x. [love(mother(x))(father(x))]
⇒ ∀x. love(mother(x))(father(x))

Just as our treatment of quantification accounts for quantifiers buried in noun phrases like
any other quantifier, this treatment of binding deals with what Büring (2001) calls binding
out of DP right away. In the sentence above, everyone, buried inside everyone’s father, can
still bind her.

The reduction sequence above involves three shifts, and so can be approximately de-
picted by a tree that invokes covert movement and predicate abstraction three times:

(38)
sss

ss KKK
KK

ξ λ

sss
ss KKK

KK

ξ λ

sss
ss KKK

KK

ξ λ

ssssssssssss

KKKKKKKKKKKK

sss
s KKK

sss
KKKKKK

output

DD

father loves
sss

s KKK

her

VV

mother
everyone’s

HH

On this view, the binder and the pronoun both raise covertly, such that the landing site
of the binder immediately c-commands the landing site of the pronoun. Among the three
constituents moved, the linear order of base positions from left to right corresponds to
the hierarchical order of landing sites from high to low. Such tucking-in (Richards 1997)
approximates our stipulation in §4 that expressions be evaluated from left to right. Because
output(everyone) contains everyone, there is no linear precedence to speak of between
these two constituents. Rather, everyone is an argument to output, so the call-by-value
evaluation discipline specified in §2 requires that everyone be raised first, followed by the
remnant output(—), in an instance of inverse linking (May 1977) and remnant movement
(den Besten and Webelhuth 1990; inter alia).
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Despite these similarities between shift and movement, I hope all these arrows do not
obscure the fact that the shift-reset metalanguage is not just a technical implementation
of movement and LF. For example, to the extent (45) below can be described in move-
ment terms, it is crucial that reconstruction can take place both before and after Move
and Merge, as dictated by the lexical items involved. More complex configurations are
possible, especially in cases of ellipsis.

In any case, defaulting to left-to-right evaluation rules out crossover. The unacceptabil-
ity of

(39) Heri father loves everyone’si mother

is predicted, because the program

(40) (input\father)\(love/(output(everyone)\mother))

evaluates input before output, and so gets stuck as (27) on page 8 does. This correct
prediction manifests as a type mismatch in the refined type system mentioned in §4. Or,
roughly speaking in movement terms, to prohibit crossover is to require crossing rather
than nested movement (Shan and Barker 2002).

5.3. Evaluation order and thunks. All this talk of left-to-right evaluation and linear or-
der may leave you suspecting that Chris and I predict simply that the binder has to occur
to the left of the pronoun. That better not be the case, because of fronted wh-phrases in
sentences like the following.

(41) a. Whose present for himi did every boyi see?
b. *Which boyi does hisi mother like?

In (41a) is an instance of acceptable cataphora; in (41b) is an instance of unacceptable
anaphora.

Fortunately, left-to-right evaluation does not entail that every binder must be pronounced
before any pronoun it binds. More generally, evaluation order only affects binary opera-
tors like “+” (string concatenation), “\” (backward function application), and “/” (forward
function application). Left-to-right evaluation does not mean that one subexpression is
evaluated before another whenever the former appears to the left of the latter. To the con-
trary, call-by-value parameter passing dictates, for instance, that function arguments be
fully evaluated before λ-conversion.

For example, in the computer program (42), the command to print “sitional” appears
before the command to print “compo”. Yet, when the program runs, it prints “composi-
tional”, not “sitionalcompo”.

(42) def f (): print “sitional”
def g(): print “compo”
g()
f ()

Merely defining f to be a function that prints “sitional” does not print “sitional”. Merely
that the program contains “sitional” before “compo” does not entail that it prints “sitional”
before “compo”.

In general, the side effects of a piece of code is incurred when it is executed (zero or
more times), not where it appears literally in the program text (once). The time of execution
can differ from the location of definition, because a program can pass around functions with
side effects, like f and g, without invoking them. Hence left-to-right evaluation does not
mean that side effects all happen in the order in which they are mentioned in the program.
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All it means is that, for an operator like “+”, where in principle either branch can be
evaluated first, we break the symmetry and evaluate the left branch first.

At this point, it is convenient to introduce a new type into our λ-calculus. The new
type is the singleton type—a set with only one element in it; it doesn’t matter which. The
singleton can be thought of as a 0-tuple, just as an ordered pair is a 2-tuple. I write this new
type as “()”. I also write the unique element of this type as “()”. Thus the unique function
from the singleton type to the singleton type is λ(). (); in fact, there is a unique function
from any type to the singleton type, namely λx. (). The singleton type is also known as the
unit or terminal type in computer science.

In the standard λ-calculus, the singleton type is not useful. For example, a function
from () to e is equivalent to just an individual. More generally, the types 〈(), α〉 and α are
always equivalent: every time you see a function whose domain is the singleton type, you
may as well strip off that function layer without losing any information.

In the presence of side effects, however, things get more interesting. A function from ()
to e is no longer necessarily just a function that always returns the same individual; it could
be a function that first triggers some side effects (like producing some output or consuming
some input), then returns an individual—maybe not even the same one each time! The
singleton is just a dummy argument to build a function—an excuse to defer side effects
for later, as in (42). Such a function, whose domain is the singleton type, is called a thunk
(Hatcliff and Danvy 1997; Ingerman 1961).7

5.4. Wh-questions; topicalization. Back to linguistics: How do thunks help us under-
stand the following interactions of quantificational binding with wh-questions and topical-
ization?

(43) a. [Whose present for himi] did every boyi see?
b. *[Which boyi] does hisi mother like?

(44) a. [Alice’s present for himi], every boyi saw.
b. *[Every boyi], hisi mother likes.

Fronted phrases, like the bracketed parts of (43–44), may be thought to obligatorily
reconstruct to the gap location. The following tree for (43a) indicates this approximate

7Etymology: The word “thunk” is “the past tense of ‘think’ at two in the morning” (Raymond et al. 2003).
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understanding by arrows on both ends of the outermost curve.

(45)
ssssss

KKKKKK

sss
ss KKK

KK

ξ λ

sss
ss KKK

KK

ξ λ

sss
ss KKK

KK

ξ λ

ssssssssss
KKKKKK

ssss
KKKKKK

output

II

saw OO

LL

sss
KKKKKK

HH

ssss KKK
K whose

sss
s

KKKKKK

every boy present
sss

s KKK
K

for him

SS

First, the quantifier every boy raises; second, the remnant output tucks in; third, the wh-
phrase whose present for him reconstructs; finally, the pronoun him tucks in further.

As one might expect, the crucial piece of this puzzle is how to analyze filler-gap de-
pendencies. We introduce into our grammar a silent element, which I follow tradition in
notating as — and pronouncing as “trace”. The trace denotes the following. It should be
reminiscent of input in (19).

(46) — = ξ f . λg. f (g())

The best way to understand this denotation is to watch it in action. We can now generate
a gapped clause like Alice loves —.

(47) alice\(love/—)
⇒ λg.

[(
λx. alice\(love/x)

)(
g()
)]

The denotation comes out to be a λ-abstraction of type 〈〈(), e〉, t〉, in that we need to feed it
a thunked individual (in other words, a value of type 〈(), e〉) in order to recover a saturated
proposition. For example, for a sentence like Bob, Alice loves, we feed it the thunked
individual that simply returns Bob with no side effect.

(48) (λ(). bob)\
(
λg.
[(
λx. alice\(love/x)

)(
g()
)])

⇒
[(
λx. alice\(love/x)

)(
(λ(). bob)()

)]
⇒
[(
λx. alice\(love/x)

)
(bob)

]
⇒
[
alice\(love/bob)

]
⇒ [love(bob)(alice)]
⇒ love(bob)(alice)

One way to think of the trace, as defined here, is as follows. Shift and reset are a con-
crete implementation of covert movement, but our system has no direct correlate of overt
movement. Roughly speaking, our trace encodes overt movement using covert movement:
instead of overtly raising some phrase, we raise a silent phrase, the trace. The overt mate-
rial is base-generated, so to speak, right next to the landing site of this movement. Because
the trace is silent, it makes no empirical difference whether it raises covertly or overtly;
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our account of fronting claims the denotational equivalent of the trace’s moving covertly.
Cinque (1990) and Postal (1998) have made similar proposals for overt movement, at least
for topicalization.

(49)
sss

s
KKKKKK

λ()
sss

ss KKK
KK

ξ λ

Bob
sss

KKKKKK

Alice
sss

KKKKKK

likes —

SS

In the trivial example (48), the only side effect is the shift by the trace. There is no
binding, no quantification, and no wh-question. There are a variety of ways in which life
can become more exciting. First of all, note that we now have a unified analysis of raised
and in-situ wh-phrases. Suppose that we analyze a wh-phrase like who as simply input.

(50) who = ξ f . f

Then, we can not only treat in-situ-wh questions like (51), as shown in (52)—

(51) Alice saw who?

(52) alice\(see/who) ⇒ λx. [alice\(see/x)]

—but also treat raised-wh questions like (53), by thunking the wh-phrase and using it in
conjunction with the trace:

(53) Who did Alice see?

(54) (λ().who)\
[
alice\(see/—)

]
⇒ (λ().who)\

[
λg.
[(
λx. alice\(see/x)

)(
g()
)]]

⇒ (λ().who)\
(
λg.
[(
λx. alice\(see/x)

)(
g()
)])

⇒
[(
λx. alice\(see/x)

)(
(λ().who)()

)]
⇒
[(
λx. alice\(see/x)

)
(who)

]
⇒
[
λy.
[(
λx. alice\(see/x)

)
(y)
]]

⇒ λy.
[(
λx. alice\(see/x)

)
(y)
]

The last line is equivalent to the desired question denotation λy. see(y)(alice), as can be
seen by applying it to bob and continuing reducing. Note that who is evaluated right after
the trace is, and no earlier.

Recall from §5.1 that everyone’s mother is as genuinely quantificational as everyone
alone. Similarly, whose mother in this treatment of wh-questions is as genuinely interrog-
ative as who alone. Therefore, raised wh-phrases can pied-pipe surrounding material: To
generate the sentence

(55) Whose mother did Alice see?
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we can place whose mother together in a fronted thunk:

(56) (λ().who\mother)\
[
alice\(see/—)

]
⇒ (λ().who\mother)\

[
λg.
[(
λx. alice\(see/x)

)(
g()
)]]

⇒ (λ().who\mother)\
(
λg.
[(
λx. alice\(see/x)

)(
g()
)])

⇒
[(
λx. alice\(see/x)

)(
(λ().who\mother)()

)]
⇒
[(
λx. alice\(see/x)

)
(who\mother)

]
⇒
[
λy.
[(
λx. alice\(see/x)

)
(y\mother)

]]
⇒ λy.

[(
λx. alice\(see/x)

)
(y\mother)

]
The last line is equivalent to the desired question denotation λy. see

(
mother(y)

)
(alice), as

can be seen by applying it to bob and continuing reducing. Note that whose mother is
evaluated right after the trace is, and no earlier.

5.5. Binding in wh-questions. Another way to make life with the trace more exciting is
to put output or input in the fronted phrase. In other words, let us consider when a raised
wh-phrase can bind a pronoun or contain a pronoun to be bound. For simplicity, I assume
that who in (57) is a raised wh-phrase.

(57) Whoi — saw hisi mother?

(58)
(
λ(). output(who)

)
\
[
—\(see/(input\mother))

]
⇒
(
λ(). output(who)

)
\
[
λg.
[(
λx. x\(see/(input\mother))

)(
g()
)]]

⇒
(
λ(). output(who)

)
\
(
λg.
[(
λx. x\(see/(input\mother))

)(
g()
)])

⇒
[(
λx. x\(see/(input\mother))

)(
(λ(). output(who))()

)]
⇒
[(
λx. x\(see/(input\mother))

)(
output(who)

)]
⇒
[
λy.
[(
λx. x\(see/(input\mother))

)(
output(y)

)]]
⇒ λy.

[(
λx. x\(see/(input\mother))

)(
output(y)

)]
The last line is equivalent to the desired question denotation λy. see

(
mother(y)

)
(y), as can

be seen by applying it to bob and continuing reducing. Note that output(who) is evaluated
when the trace is, which is before input is evaluated because the trace occurs before his.
Binding thus succeeds.

By contrast, binding fails if the trace occurs after the pronoun. This happens in (43b)
above and (59) below.

(59) *Whoi did hisi mother see —?

(60)
(
λ(). output(who)

)
\
[
(input\mother)\(see/—)

]
⇒
(
λ(). output(who)

)
\
[
λx.
[
(x\mother)\(see/—)

]]
⇒
(
λ(). output(who)

)
\
(
λx.
[
(x\mother)\(see/—)

])
After two reduction steps, we see a type mismatch: the variable x needs to be an individual
(of type e) in order to be passed to mother, but λ(). output(who) is a thunked individual (of
type 〈(), e〉). Binding thus fails as desired, just as in (27).

Furthermore, combining left-to-right evaluation with thunking makes correct predic-
tions not just when the wh-phrase itself tries to bind, but also when a sub-phrase of the
wh-phrase tries to bind.

(61) a. Whosei friend’s j neighbork did Alice think — saw hisi/ j/k mother?
b. Whosei friend’s j neighbork did Alice think his*i/*j/*k mother saw —?

Chris and I call these cases “pied-binding”.
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5.6. Superiority. We have just seen how raised wh-phrases interact with binding. Raised
wh-phrases also interact with in-situ wh-phrases, under the rubric of superiority. The basic
pattern of superiority is shown by the contrast between (62) and (63).

(62) Who — saw who?
(63) *Who did who see —?

Our theory turns out to already predict these judgments. The difference between these
examples is again due to evaluation order.

In the acceptable question (62), the trace is evaluated before the in-situ who. The trace
makes the gapped clause — saw who call for a thunked individual that is the filler phrase,
a need nicely fulfilled by the fronted who.

(64) (λ().who)\
[
—\(see/who)

]
⇒ (λ().who)\

[
λg.
[(
λx. x\(see/who)

)(
g()
)]]

⇒ (λ().who)\
(
λg.
[(
λx. x\(see/who)

)(
g()
)])

⇒
[(
λx. x\(see/who)

)(
(λ().who)()

)]
⇒
[(
λx. x\(see/who)

)
(who)

]
⇒
[
λy.
[(
λx. x\(see/who)

)
(y)
]]

⇒ λy.
[(
λx. x\(see/who)

)
(y)
]

The last line is equivalent to the desired question denotation

(65) λy. λz. see(z)(y),

as can be seen by applying it to alice and bob and continuing reducing.
In the unacceptable question (63), an in-situ who is evaluated first. The in-situ who

makes the gapped clause did who see — call for an unthunked individual that is the answer
to the wh-question, which the fronted who is not—so evaluation gets stuck, as desired.

(66) (λ().who)\
[
who\(see/—)

]
⇒ (λ().who)\

[
λx.
[
x\(see—)

]]
⇒ (λ().who)\

(
λx.
[
x\(see—)

])
One way to understand the problem encountered after two reduction steps above is as a
type mismatch: in-situ who requires an unthunked individual as input, but what the fronted
filler provides is a thunked individual. But even were the raised who not thunked, the
sentence (63) still does not mean (65). Rather, the expression

(67) who\
[
who\(see/—)

]
denotes—reduces to—something incoherent that might be paraphrased “Which x answers
the question ‘who saw —?’?”.

The two examples above show that evaluation order imposes an “intervention effect”
(Beck 1996; Pesetsky 2000) or a “minimal link condition” (Chomsky 1995) between the
filler and the gap in a multiple-wh question.

5.7. Formalization. In the presentation so far, I have mainly used example sentences to
buttress the intuition that linguistic phenomena can be fruitfully treated as computational
side effects. Chris Barker and I have implemented these ideas in a combinatory categorial
grammar that fits on a single page (Shan and Barker 2004), and tested them using a parser
he wrote. We are unaware of any other implemented parser that deals with quantification,
binding, and wh-questions at the same time, while ruling out crossover and superiority.
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One particularly nice thing about having a machine-executable implementation of our
theory is that you can flip a switch—simply enable the right-to-left evaluation rule and
disable the left-to-right evaluation rule—and watch the grammar reverse its predictions
regarding crossover and superiority. This reversal convinced us that left-to-right evaluation
is a viable, unifying explanation for crossover and superiority, and I think an intuitively
appealing one as well.

6. L  -

Throughout the discussion above, I have completely neglected the issue of scope ambi-
guity. As it stands, our grammar generates only one reading for the ambiguous sentence

(68) Someone loves everyone.

The reading that we do predict is surface scope, where someone scopes over everyone. This
prediction is because we stipulate left-to-right evaluation, and quantifiers evaluated earlier
scope wider.

(69) (ξ f .∃x. f (x))\
(
love/(ξ f .∀y. f (y))

)
⇒ ∃x.

(
λz.
[
z\
(
love/(ξ f .∀y. f (y))

)])
(x)

⇒ ∃x.
[
x\
(
love/(ξ f .∀y. f (y))

)]
⇒ ∃x.

[
∀y.
(
λz. [x\(love/z)]

)
(y)
]

⇒ ∃x.
[
∀y.
[
x\(love/y)

]]
⇒ ∃x.

[
∀y.
[
love(y)(x)

]]
⇒ ∃x.

[
∀y. love(y)(x)

]
⇒ ∃x.∀y. love(y)(x)

The shift for someone is evaluated before the shift for everyone, so the former quantifier
dictates the outermost shape of the final result. No matter what evaluation order we specify,
as long as our semantic rules remain deterministic, they will only generate one reading for
the sentence, never both.

To better account for the data, we need to introduce some sort of nondeterminism into
our theory. There are two natural ways to proceed. First, we can allow arbitrary evalua-
tion order, not just left-to-right. This route has been pursued with some success by Barker
(2002) and de Groote (2001), but it contradicts the unified account of crossover and superi-
ority in §5 above. A second way to introduce nondeterminism is to maintain the hypothesis
that natural language expressions are evaluated from left to right, but allow multiple con-
text levels (Barker 2000; Danvy and Filinski 1990) to keep multiple side effects out of each
other’s way. I now explain this second way.

As introduced in §2, shift in our metalanguage only affects up to the closest enclosing
reset. Multiple context levels relax this restriction by placing a subscript on each shift and
reset operator. The effect of an nth-level shift, written ξn f . e where f is a variable name
and e is an expression, is restricted to the closest enclosing mth-level reset, written [m · · · ],
such that m ≤ n. The following reductions illustrate.

“real ” +
[
1“compositional ” + (ξ1 f . “directly ” + f (“semantics”))

]
⇒ · · · ⇒ “real directly compositional semantics”

(70)

“real ” +
[
1“compositional ” + (ξ0 f . “directly ” + f (“semantics”))

]
⇒ · · · ⇒ “directly real compositional semantics”

(71)
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“real ” +
[
0“compositional ” + (ξ1 f . “directly ” + f (“semantics”))

]
⇒ · · · ⇒ “real directly compositional semantics”

(72)

“real ” +
[
0“compositional ” + (ξ0 f . “directly ” + f (“semantics”))

]
⇒ · · · ⇒ “real directly compositional semantics”

(73)

Danvy and Filinski (1990) give a denotational semantics for shift and reset at multiple
context levels, using multiple levels of continuations. Taking advantage of their work, we
let quantifiers manipulate the context at any level, say the nth level.

everyonen = ξn f .∀x. f (x)(74)
someonen = ξn f .∃x. f (x)(75)

In other words, we posit that each occurrence of everyone and someone is ambiguous as to
the level n at which it shifts.

The ambiguity of (68) is now predicted as follows. Suppose that someone shifts at the
mth level and everyone shifts at the nth level.

(76) Someonem loves everyonen.

If m ≤ n, the surface scope reading results. If m > n, the inverse scope reading results.
For example, when m = 1 and n = 0, the inverse scope is computed by the following
reductions.

(77) someone1\(love/everyone0)
⇒ ∃x.

(
λz.
[
1z\(love/everyone0)

])
(x)

⇒ ∃x.
[
1x\(love/everyone0)

]
⇒ ∀y.

(
λz. [0∃x. [1x\(love/z)]]

)
(y)

⇒ ∀y.
[
0∃x.
[
1x\(love/y)

]]
⇒ ∀y.

[
0∃x.
[
1love(y)(x)

]]
⇒ ∀y.

[
0∃x. love(y)(x)

]
⇒ ∀y.∃x. love(y)(x)

This analysis of inverse scope may be reminiscent of accounts that posit a hierarchy of
functional projections at the clausal boundary. We can think of each context level as a
functional projection, which attracts quantifiers destined for that level or any inner level.

(78) 0P
kkkk SSSS

ξ0 λ

1P
llll RRRR

ξ1 λ

ssss
KKKKKK

someone1

WW

ssss KKKK

loves everyone0

PP

The same hierarchy of context levels allows in-situ wh-phrases to take scope ambiguously
(Baker 1968).

(79) Who remembers where we bought what?
a. Alice remembers where we bought the vase.
b. Alice remembers where we bought what.
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7. C

To sum up, let me use the linguistic analyses in this paper as a poster child for the
broader agenda that I set out at the beginning—that is, to relate computational and lin-
guistic side effects. I certainly don’t think that Chris Barker and I have now completely
uncovered the mysteries of crossover and superiority, but to the extent that our approach
is successful, it epitomizes three goals on my agenda, namely uniformity, interaction, and
evaluation.

7.1. Uniformity. All linguistic side effects can be treated under the same framework. In
this paper, that framework is the metalanguage of shift and reset. When we added to our
grammar lexical items for quantification, binding, wh-questions, and so on, all we did was
that—adding lexical items. We did not have to revise our composition rules or re-lift our
semantic types. From the analogy between linguistic and computational side effects, we
can derive intuition for how to treat all of the settings in natural language where referential
transparency seems to be at stake.

Of course, even though I just used the word “can”, there is always the possibility that the
pieces may not all fall into place by themselves as we work on our grand uniform theory
of linguistic side effects. They probably won’t—at least not so easily. For now, I can only
make a methodological observation: isn’t it curious how we developed this nice semantic
theory by working with not just the pure λ-calculus but also shift and reset? You can also
further speculate that this curiosity tells us about how human language works.

Some readers may complain that shift and reset can treat so many linguistic side effects
only because they are so powerful—too powerful to yield any insight or constraint on nat-
ural language. But as I emphasized in §4, shift and reset are just metalinguistic shorthand
for continuations, which are a generalization of good old generalized quantifiers. Shift and
reset, and their link to computational side effects, tell us how to fully exploit the power that
already comes with generalized quantifiers, without further complicating the basic machin-
ery of syntax and semantics with possible worlds for intensionality, variables for binding,
alternatives for focus, undefinedness for presupposition, and so on.

7.2. Interaction. Because all our analyses are phrased in terms of the same framework,
there is at least a shred of hope that, if we just bang some lexical items that deal with
quantification against some other items that deal with binding, we would get an harmonious
analysis of quantification and binding. In the cases surveyed in this paper, this shred of
hope did work out, though there were technical details that needed to be dealt with, which
for me was made easier by the connection to computational side effects.

By the way, the picture is not entirely rosy on the programming-language side either.
The engineering ideal would be for the issues of multiple, interacting computational side
effects to be solved to the extent where you can just throw together any number of arbi-
trary side effects and get a working programming language by stirring the mix. That would
make it much easier for people to design new programming languages as well as under-
stand existing ones, but there are unresolved technical difficulties. Who knows—perhaps
these technical difficulties in programming language engineering correspond to empirical
generalizations or constraints in natural languages, however skilled speakers of natural
languages and users of programming language may be at getting around them.

7.3. Evaluation. One thing that I found helpful as I studied programming language se-
mantics is how it relates denotational and operational models of meaning, as I mentioned
earlier in §4. When a computer scientists says that some program expression denotes some
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value, there is no philosophical commitment being made as to what the “true meanings” of
programs are. A lot of insight and understanding can often be gained by spelling out two
semantics for the same language and proving them equivalent. For example, one semantics
might be denotational in that it assigns a semantic value to each expression, and another
might be operational in that it specifies reductions on terms that correspond to how the
program might be executed by a computer. These are both valid viewpoints.

In the linguistics I just presented, there are three places where a link between denota-
tional and operational semantics helps us formulate a theory that gives insight and makes
correct predictions.

(1) The shift-reset metalanguage. It is often easier for me to understand what’s going
on by looking at a shift-reset expression instead of a gazillion λs in the pure λ-
calculus.

(2) Left-to-right evaluation. Once we take a naïve processing explanation and couch it
in terms of denotations (with the help of continuation semantics), we can explain
cases (such as those in §5.5) where the empirical data is the exact opposite of what
would be predicted by the naïve left-to-right account.

(3) Thunking. We used thunking to analyze overt wh-fronting in §5.4: it corresponds
to delayed evaluation, which postpones the side effects incurred by a program
expression.

Of course, the insight that linguistic expressions are like program instructions is already
present in dynamic semantics (Groenendijk and Stokhof 1991; Heim 1982; Kamp 1981;
see also Moschovakis 1993). Dynamic semantics has been applied to a variety of natu-
ral-language phenomena, such as basic crossover and verb-phrase ellipsis (van Eijck and
Francez 1995; Gardent 1991; Hardt 1999). However, dynamic semantics alone does not
account for interactions among binding, quantification, and wh-questions. The work de-
scribed here enables dynamic semantics to compose meanings at the intrasentential level,
and generalizes it to side effects other than binding, existential quantification, and presup-
position.

It might be strange for me to speak of semantics that are not denotational, especially
since the topic of this workshop, “direct compositionality”, pretty much presupposes that
a semantic theory is one that assigns denotations to phrases. But denotations don’t have
to be sets, and composition doesn’t have to be function application. For example, I find it
promising that game semantics is taking hold in both programming language semantics and
natural language semantics (Abramsky and McCusker 1997; inter alia). In linguistics, a lot
of questions are being asked about the proper line, if any, to draw between semantics and
pragmatics, or between semantics and syntax. In computer science, as it turned out, even
something as innocent-looking as the pure λ-calculus can be decomposed and analyzed
fruitfully as a model of computation by interaction. These are bona fide semantics, even
though they are not model-theoretic in the original Montagovian sense, but closer to a
proof-theoretic ideal.

7.4. Farewell. So, there you have it: uniformity, interaction, and evaluation. These are
what I think we can achieve and clarify in our theory of linguistic side effects in natural
languages, by drawing an analogy with computational side effects in programming lan-
guages. I hope that I have given you some concrete examples of this approach, in the form
of proposed theories that are, I think, improvements over their predecessors (and I mean
“predecessors” in terms of both time and intellectual heritage).
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