
Functional unjunparsing

Kenichi Asai (Ochanomizu) Oleg Kiselyov (FNMOC)
Chung-chieh Shan (Rutgers)

http://www.cs.rutgers.edu/~decarlo/stylize.html
http://www.cs.rutgers.edu/~decarlo/stylize.html

2/15

The problem

printf("%d-th character after %c is %c", 5, ’a’, ’f’);

5-th character after a is f

scanf("%d-th character after %c is %c", &i, &c1, &c2);

Number and types of arguments depend on format descriptor.

Do we need dependent types?

Danvy (1998): printf in mere Hindley-Milner.

Today: derive printf and scanf.

specification

implementation

scanf printf

2/15

The problem

printf("%d-th character after %c is %c", 5, ’a’, ’f’);

5-th character after a is f

scanf("%d-th character after %c is %c", &i, &c1, &c2);

Number and types of arguments depend on format descriptor.

Do we need dependent types?

Danvy (1998): printf in mere Hindley-Milner.

Today: derive printf and scanf.

specification

implementation

scanf printf

2/15

The problem

printf("%d-th character after %c is %c", 5, ’a’, ’f’);

5-th character after a is f

scanf("%d-th character after %c is %c", &i, &c1, &c2);

Number and types of arguments depend on format descriptor.

Do we need dependent types?

Danvy (1998): printf in mere Hindley-Milner.

Today: derive printf and scanf.

specification

implementation

scanf printf

2/15

The problem

printf("%d-th character after %c is %c", 5, ’a’, ’f’);

5-th character after a is f

scanf("%d-th character after %c is %c", &i, &c1, &c2);

Number and types of arguments depend on format descriptor.

Do we need dependent types?

Danvy (1998): printf in mere Hindley-Milner.

Today: derive printf and scanf. specification

implementation

scanf printf

3/15

What is a spec?

“A specification is a set of sentences in some logical language.
The names of the functions, predicates, and procedures which the
specification is intended to specify appear as nonlogical symbols in
these sentences.”

—“Specifications, models, and implementations
of data abstractions” (Wand 1982)

Our nonlogical symbols: printf, scanf, sequence constructors.

"%d-th character after %c is %c"

consD int (consD (lit " -th character after ")
(consD char (consD (lit " is ") (consD char nilD))))

[int; lit "-th character after ";
char; lit " is "; char]D

3/15

What is a spec?

“A specification is a set of sentences in some logical language.
The names of the functions, predicates, and procedures which the
specification is intended to specify appear as nonlogical symbols in
these sentences.”

—“Specifications, models, and implementations
of data abstractions” (Wand 1982)

Our nonlogical symbols: printf, scanf, sequence constructors.

"%d-th character after %c is %c"

consD int (consD (lit " -th character after ")
(consD char (consD (lit " is ") (consD char nilD))))

[int; lit "-th character after ";
char; lit " is "; char]D

4/15

Specification of printf

printf [int; lit "-th character after ";
char; lit " is "; char]D
5 ’a’ ’f’

= "5-th character after a is f"

4/15

Specification of printf

printf [int; lit "-th character after ";
char; lit " is "; char]D
[5; (); ’a’; (); ’f’]A

= ["5"; "-th character after "; "a"; " is "; "f"]S

4/15

Specification of printf

printf [int; lit "-th character after ";
char; lit " is "; char]D
[5; (); ’a’; (); ’f’]A

= ["5"; "-th character after "; "a"; " is "; "f"]S

printf nilD nilA = nilS

printf (consD (lit str) ds) (consA () xs)
= consS str (printf ds xs)

printf (consD char ds) (consA c xs)
= consS (string_of_char c) (printf ds xs)

printf (consD int ds) (consA i xs)
= consS (string_of_int i) (printf ds xs)

4/15

Specification of printf

printf [int; lit "-th character after ";
char; lit " is "; char]D
[5; (); ’a’; (); ’f’]A

= ["5"; "-th character after "; "a"; " is "; "f"]S

printf nilD nilA = nilS

printf (consD (lit str) ds) (consA () xs)
= consS str (printf ds xs)

printf (consD char ds) (consA c xs)
= consS (string_of_char c) (printf ds xs)

printf (consD int ds) (consA i xs)
= consS (string_of_int i) (printf ds xs)

4/15

Specification of printf

printf [int; lit "-th character after ";
char; lit " is "; char]D
[5; (); ’a’; (); ’f’]A

= ["5"; "-th character after "; "a"; " is "; "f"]S

printf nilD nilA = nilS

printf (consD d ds) (consA x xs)
= consS (d x) (printf ds xs)

lit str () = str
char c = string_of_char c
int i = string_of_int i

5/15

The Interpreter Recipe

1. Look at a piece of data.

2. Decide what kind of data it represents.

3. Extract the components of the datum and do the right thing
with them.

6/15

Specification of scanf

scanf [int; lit "-th character after ";
char; lit " is "; char]D
"5-th character after a is f"

= fun f -> f 5 ’a’ ’f’

6/15

Specification of scanf

scanf [int; lit "-th character after ";
char; lit " is "; char]D
["5"; "-th character after "; "a"; " is "; "f"]S

= [5; (); ’a’; (); ’f’]A

6/15

Specification of scanf

scanf [int; lit "-th character after ";
char; lit " is "; char]D
["5"; "-th character after "; "a"; " is "; "f"]S

= [5; (); ’a’; (); ’f’]A

scanf nilD nilS = nilA

scanf (consD (lit str) ds) (consS s ss)
= consA (assert (str = s)) (scanf ds ss)

scanf (consD char ds) (consS s ss)
= consA (char_of_string s) (scanf ds ss)

scanf (consD int ds) (consS s ss)
= consA (int_of_string s) (scanf ds ss)

6/15

Specification of scanf

scanf [int; lit "-th character after ";
char; lit " is "; char]D
["5"; "-th character after "; "a"; " is "; "f"]S

= [5; (); ’a’; (); ’f’]A

scanf nilD nilS = nilA

scanf (consD (lit str) ds) (consS s ss)
= consA (assert (str = s)) (scanf ds ss)

scanf (consD char ds) (consS s ss)
= consA (char_of_string s) (scanf ds ss)

scanf (consD int ds) (consS s ss)
= consA (int_of_string s) (scanf ds ss)

6/15

Specification of scanf

scanf [int; lit "-th character after ";
char; lit " is "; char]D
["5"; "-th character after "; "a"; " is "; "f"]S

= [5; (); ’a’; (); ’f’]A

scanf nilD nilS = nilA

scanf (consD d ds) (consS s ss)
= consS (d s) (scanf ds ss)

lit str s = assert (str = s)
char s = char_of_string s
int s = int_of_string s

7/15

Specification of printf and scanf

printf nilD nilA = nilS

printf (consD d ds) (consA x xs)
= consS (d x) (printf ds xs)

scanf nilD nilS = nilA

scanf (consD d ds) (consS s ss)
= consS (d s) (scanf ds ss)

Both just zipWith id!

specification

implementation

scanf printf

8/15

On to implementation

Recurring idea:
fuse format descriptors with their contexts of use.
(inline; specialize)

“By considering continuations, local transformation strategies can
take advantage of global knowledge.”

—“Continuation-based program transformation strategies”
(Wand 1980)

specification

implementation

scanf printf

9/15

Uniform implementation: deforesting format descriptors

Both printf and scanf are just zipWith id.

printf nilD nilA = nilS
printf (consD d ds) (consA x xs)
= consS (d x) (printf ds xs)

It’s a compositional interpreter—matching definition of a fold:

fold z g nil = z
fold z g (cons x xs) = g x (fold z g xs)

Hence, printf is a fold:

printf = fold z g where

z nilA = nilS
g d ds (consA x xs) = consS (d x) (ds xs)

Choose tuple representation. Same with scanf.

9/15

Uniform implementation: deforesting format descriptors

Both printf and scanf are just zipWith id.

printf nilD nilA = nilS
printf (consD d ds) (consA x xs)
= consS (d x) (printf ds xs)

It’s a compositional interpreter—matching definition of a fold:

fold z g nil = z
fold z g (cons x xs) = g x (fold z g xs)

Hence, printf is a fold:

printf = fold z g where

z nilA = nilS
g d ds (consA x xs) = consS (d x) (ds xs)

Choose tuple representation. Same with scanf.

9/15

Uniform implementation: deforesting format descriptors

Both printf and scanf are just zipWith id.

printf nilD nilA = nilS
printf (consD d ds) (consA x xs)
= consS (d x) (printf ds xs)

It’s a compositional interpreter—matching definition of a fold:

fold z g nil = z
fold z g (cons x xs) = g x (fold z g xs)

Hence, printf is a fold, and the descriptor can be deforested:

printf = id

nilD nilA = nilS
consD d ds (consA x xs) = consS (d x) (ds xs)

Choose tuple representation. Same with scanf.

9/15

Uniform implementation: deforesting format descriptors

Both printf and scanf are just zipWith id.

printf nilD nilA = nilS
printf (consD d ds) (consA x xs)
= consS (d x) (printf ds xs)

It’s a compositional interpreter—matching definition of a fold:

fold z g nil = z
fold z g (cons x xs) = g x (fold z g xs)

Hence, printf is a fold, and the descriptor can be deforested:

printf = id

nilD () = ()
consD d ds (x, xs) = (d x, ds xs)

Choose tuple representation.

Same with scanf.

9/15

Uniform implementation: deforesting format descriptors

Both printf and scanf are just zipWith id.

printf nilD nilA = nilS
printf (consD d ds) (consA x xs)
= consS (d x) (printf ds xs)

It’s a compositional interpreter—matching definition of a fold:

fold z g nil = z
fold z g (cons x xs) = g x (fold z g xs)

Hence, printf is a fold, and the descriptor can be deforested:

printf = id scanf = id

nilD () = ()
consD d ds (x, xs) = (d x, ds xs)

Choose tuple representation. Same with scanf.

10/15

Not quite the standard scanf

We have:

scanf [int; lit "-th character after "; char; lit " is "; char]D
("5", ("-th character after ", ("a", (" is ", ("f", ())))))

= (5, ((), (’a’, ((), (’f’, ())))))

We want:

scanf [int; lit "-th character after "; char; lit " is "; char]D
"5-th character after a is f"

= fun f -> f 5 ’a’ ’f’

Fix: fuse primitive descriptors with consD. specification

implementation

scanf printf

11/15

On to the standard scanf

nilD () = nilA
consD d ds (s,ss) = consA (d s) (ds ss)

Fuse each primitive descriptor with consD.

lit str s = assert (str = s)
char s = char_of_string s
int s = int_of_string s

Primitive descriptors can consume and produce different amounts.

11/15

On to the standard scanf

nilD () = nilA
consD d = d

Fuse each primitive descriptor with consD.

lit str ds (s,ss) = consA (assert (str = s)) (ds ss)
char ds (s,ss) = consA (char_of_string s) (ds ss)
int ds (s,ss) = consA (int_of_string s) (ds ss)

Primitive descriptors can consume and produce different amounts.

11/15

On to the standard scanf

nilD () = nilA
consD d = d

Fuse each primitive descriptor with consD.

lit str ds (s,ss) = consA (assert (str = s)) (ds ss)
char ds (s,ss) = consA (char_of_string s) (ds ss)
int ds (s,ss) = consA (int_of_string s) (ds ss)

Primitive descriptors can consume and produce different amounts.

char ds inp
= if String.length inp > 0
then consA (inp.[0])

(ds (String.sub inp 1 (String.length inp - 1)))
else failwith "scanf char"

11/15

On to the standard scanf

nilD () = nilA
consD d = d

Fuse each primitive descriptor with consD.

lit str ds (s,ss) = consA (assert (str = s)) (ds ss)
char ds (s,ss) = consA (char_of_string s) (ds ss)
int ds (s,ss) = consA (int_of_string s) (ds ss)

Primitive descriptors can consume and produce different amounts.

char ds inp
= if String.length inp > 0
then consA (inp.[0])

(ds (String.sub inp 1 (String.length inp - 1)))
else failwith "scanf char"

11/15

On to the standard scanf

nilD () = nilA
consD d = d

Fuse each primitive descriptor with consD.

lit str ds (s,ss) = consA (assert (str = s)) (ds ss)
char ds (s,ss) = consA (char_of_string s) (ds ss)
int ds (s,ss) = consA (int_of_string s) (ds ss)

Primitive descriptors can consume and produce different amounts.

lit str ds inp
= if String.length str <= String.length inp &&

str = String.sub inp 0 (String.length str)
then ds (String.sub inp (String.length str)

(String.length inp - String.length str))
else failwith "scanf lit"

11/15

On to the standard scanf

nilD () = nilA
consD d = d

Fuse each primitive descriptor with consD.

lit str ds (s,ss) = consA (assert (str = s)) (ds ss)
char ds (s,ss) = consA (char_of_string s) (ds ss)
int ds (s,ss) = consA (int_of_string s) (ds ss)

Primitive descriptors can consume and produce different amounts.

lit str ds inp
= if String.length str <= String.length inp &&

str = String.sub inp 0 (String.length str)
then ds (String.sub inp (String.length str)

(String.length inp - String.length str))
else failwith "scanf lit"

11/15

On to the standard scanf

nilD "" = nilA
consD d = d

Fuse each primitive descriptor with consD.

lit str ds (s,ss) = consA (assert (str = s)) (ds ss)
char ds (s,ss) = consA (char_of_string s) (ds ss)
int ds (s,ss) = consA (int_of_string s) (ds ss)

Primitive descriptors can consume and produce different amounts.

Finally, Church-encode parsing results.

let nilA = fun f -> f
let consA x xs = fun f -> xs (f x)

Done!

12/15

Not quite the standard printf

We have:

printf [int; lit "-th character after "; char; lit " is "; char]D
(5, ((), (’a’, ((), (’f’, ())))))

= ("5", ("-th character after ", ("a", (" is ", ("f", ())))))

We want:

printf [int; lit "-th character after "; char; lit " is "; char]D
5 ’a’ ’f’

= "5-th character after a is f"

Fix: fuse descriptors with consD
(i.e., transform them to CPS).

specification

implementation

scanf printf

13/15

On to the standard printf

Begin by symmetry with scanf:

printf ds = ds nilD = "" consD d = d

Input: nested tuple without (). Output: single string.

lit str ds (xs) = str ^ ds xs
char ds (c,xs) = string_of_char c ^ ds xs
int ds (i,xs) = string_of_int i ^ ds xs

13/15

On to the standard printf

Begin by symmetry with scanf:

printf ds = ds nilD = "" consD d = d

Input: nested tuple without (). Output: single string.

lit str ds (xs) = str ^ ds xs
char ds (c,xs) = string_of_char c ^ ds xs
int ds (i,xs) = string_of_int i ^ ds xs

If only we had = (...................) xs
then we could just curry and eta-reduce.

13/15

On to the standard printf

Begin by symmetry with scanf:

printf ds = ds id nilD k = k "" consD d = d

Input: nested tuple without (). Output: single string.

lit str ds (xs) = str ^ ds xs
char ds (c,xs) = string_of_char c ^ ds xs
int ds (i,xs) = string_of_int i ^ ds xs

Pass continuation to ds.

lit str ds k (xs)
= ds (fun s -> k (str ^ s)) xs

char ds k (c,xs)
= ds (fun s -> k (string_of_char c ^ s)) xs

int ds k (i,xs)
= ds (fun s -> k (string_of_int i ^ s)) xs

13/15

On to the standard printf

Begin by symmetry with scanf:

printf ds = ds id nilD k = k "" consD d = d

Input: nested tuple without (). Output: single string.

lit str ds (xs) = str ^ ds xs
char ds (c,xs) = string_of_char c ^ ds xs
int ds (i,xs) = string_of_int i ^ ds xs

Pass continuation to ds, then curry and eta-reduce.

lit str ds k

(

xs

)

= ds (fun s -> k (str ^ s)) xs
char ds k

(

c

,

xs

)

= ds (fun s -> k (string_of_char c ^ s)) xs
int ds k

(

i

,

xs

)

= ds (fun s -> k (string_of_int i ^ s)) xs

13/15

On to the standard printf

Begin by symmetry with scanf:

printf ds = ds id nilD k = k "" consD d = d

Input: nested tuple without (). Output: single string.

lit str ds (xs) = str ^ ds xs
char ds (c,xs) = string_of_char c ^ ds xs
int ds (i,xs) = string_of_int i ^ ds xs

Pass continuation to ds, then curry and eta-reduce. Done!

lit str ds k

(xs)

= ds (fun s -> k (str ^ s))

xs

char ds k

(

c

,xs)

= ds (fun s -> k (string_of_char c ^ s))

xs

int ds k

(

i

,xs)

= ds (fun s -> k (string_of_int i ^ s))

xs

14/15

Representing control

Continuation-passing style:

printf ds = ds id consD d = d nilD k = k ""

lit str ds k = ds (fun s -> k (str ^ s))
char ds k c = ds (fun s -> k (string_of_char c ^ s))
int ds k i = ds (fun s -> k (string_of_int i ^ s))

A chain of closures builds up.

“The solution is a more abstract view of the domain of continuations.
What we need is an abstract algebra for modeling the rest of a
computation and its operations.”

—“Abstract continuations”
(Felleisen, Wand, Friedman & Duba 1988)

14/15

Representing control

Continuation-passing style:

printf ds = ds id consD d = d nilD k = k ""

lit str ds k = ds (fun s -> k (str ^ s))
char ds k c = ds (fun s -> k (string_of_char c ^ s))
int ds k i = ds (fun s -> k (string_of_int i ^ s))

“Data-structure continuations”:

printf ds = ds "" consD d = d nilD k = k

lit str ds k = ds (k ^ str)
char ds k c = ds (k ^ string_of_char c)
int ds k i = ds (k ^ string_of_int i)

See paper for direct style: consD becomes just ^

A new solution: reset (fun () -> printf [...]D 5 ’a’ ’f’)

15/15

Summary

“Though this be madness, yet there is method in ’t.”
—Hamlet (Shakespeare)

Principles established by Mitch are now clichés.
We use them to derive printf and scanf.

Thanks! To more decades to come.

