Pure, Declarative, and Constructive
Arithmetic Relations

(Declarative Pearl)*

Oleg Kiselyov!', William E. Byrd?, Daniel P. Friedman?, and
Chung-chieh Shan?

! FNMOC oleg@pobox.com
2 Indiana University {webyrd,dfried}@cs.indiana.edu
3 Rutgers University ccshan@cs.rutgers.edu

Abstract. We present decidable logic programs for addition, multipli-
cation, division with remainder, exponentiation, and logarithm with re-
mainder over the unbounded domain of natural numbers. Our predicates
represent relations without mode restrictions or annotations. They are
fully decidable under the common, DFS-like, SLD resolution strategy
of Prolog or under an interleaving refinement of DFS. We prove that
the evaluation of our arithmetic goals always terminates, given argu-
ments that share no logic variables. Further, the (possibly infinite) set of
solutions for a goal denotes exactly the corresponding mathematical re-
lation. (For SLD without interleaving, and for some infinite solution sets,
only half of the relation’s domain may be covered.) We define predicates
to handle unary (for illustration) and binary representations of natural
numbers, and prove termination and completeness of these predicates.
Our predicates are written in pure Prolog, without cut (!), var/1, or
other non-logical operators. The purity and minimalism of our approach
allows us to declare arithmetic in other logic systems, such as Haskell
type classes.

1 Introduction

Logic programming is said to be programming with relations, but arithmetic is
often dealt with in a non-relational, restricted way. For example, Prolog’s built-
in is/2 predicate for evaluating arithmetic expressions does not allow free (un-
bound) logic variables in the expressions. Whereas the goal Z is 6*7 succeeds,
binding 42 to Z, the related goal 42 is X*Y is considered erroneous because
its multiplicands ‘are not sufficiently instantiated.” Multiplication is not treated
as a ternary relation between multiplicands and the product because of mode
restrictions on the first two arguments. Constraint logic programming (CLP)
overcomes this drawback to some extent [1]; for example, disjunctive Datalog [2]
treats arithmetic relationally. Indeed, relational handling of arithmetic was one of
the motivations for CLP. Unfortunately, this flexibility has a price: CLP restricts

* We thank Ronald Garcia and the anonymous reviewers for many helpful comments.

the arithmetic domain to be finite and changes the evaluation mode of the logic
programming system away from Kowalski’s ‘predicate as function’ model [3].

We present fully relational arithmetic on the unbounded domain of binary
natural numbers for conventional (SLD [4], or SLD with interleaving [5]) logic
programming systems. We define predicates for addition, multiplication, divi-
sion with remainder, and logarithm with remainder. These predicates express
the remaining arithmetic operations, including subtraction and exponentiation.
These so-called base predicates have no mode restrictions or annotations on
their arguments, and are implemented in a pure logic system without cut (!),
the var/1 predicate, or negation. Furthermore, each base predicate terminates
under SLD evaluation (and re-evaluation, upon backtracking), provided that the
predicate’s arguments share no logic variables. The stream of answers produced
by (re-)evaluating each arithmetic predicate under SLD with interleaving [5] cov-
ers exactly the corresponding mathematical relation; under SLD resolution and
some infinite domains, only half of the relation is covered.

In particular, we define the following decidable predicates:

add/3 such that add(X,Y,Z) can be used to add two numbers X and Y to
get Z, to subtract X or Y from Z, to decompose Z into summands, or to
compare two naturals. For example, we can determine that the triple (1,2, 3)
is in the ternary addition relation* by evaluating either the goal add(1, 2, 3)®
or the goal add(X,Y,Z2),X = 1,Y = 2, Z = 3. By evaluating add(X, 3, 2)
we determine, also in finite time, that the addition relation does not include
any triple (n,3,2).

mul/3 such that mul(X,Y, Z) can be used, inter alia, to multiply X and Y, to
factor Z, or to generate a stream of triples related by multiplication.

div/4 such that div(N, M, Q, R) succeeds if and only if N = M -Q + R <
M - (Q + 1).% For instance, the goal div(1,0,_,.) to relate the divisor zero
to a non-zero dividend fails instantly, without trying to enumerate all nat-
ural numbers. The goal div(5, M,1,_) finds all numbers M that divide 5,
perhaps unevenly, with a quotient of 1. The answers are 5, 4, and 3. Finally,
div(5,M,7,.) fails in finite time rather than diverging.

log/4 such that log(N, B, Q, R) succeeds if and only if N = B¢ + R < B9+L.
We can use log/4 to perform exponentiation, find logarithms, and find n-th
roots.

We prove that these base predicates are decidable and that the arithmetic re-
lations over natural numbers form their universal model (see the faithfulness
property introduced in §2).

4 We mean a relation that relates triples of numbers (z,y,z) so that x +y = z.

5 3 means the representation of the binary numeral 3, which in Prolog is encoded as
[1,1] (§3).

5 This equation implies that div/4 fails when M is 0. Hence mul/3 is not reducible to
div/4. Besides, the former is simpler and is part of the implementation of the latter.

1.1 Challenges

We require the predicates to be both effective and efficient. First, the evaluation
of base arithmetic goals must terminate. Put differently, it must be effectively
computable whether a tuple of naturals is included in or excluded from a base
arithmetic relation (addition, multiplication, division with remainder, and loga-
rithm with remainder). Further, these computations must finish without taking
an exponential amount of time or space with respect to the ‘search depth’ (corre-
sponding, in the case of binary numbers, to the logarithm of the largest number
appearing in the computation). In other words, we wish to maintain the effi-
ciency of depth-first search (DFS) (or DFS with interleaving [5, 6]) of the and-or
tree expressing the solution space of our base goals.

The main challenge in defining our predicates is that the domains of natural
numbers, and of arithmetic relations in general, are infinite—enumerating them
is not an option. The incompleteness of DFS (used in SLD resolution) imme-
diately presents a problem. For example, assuming that gen/1 is a predicate
that generates all (ground) natural numbers in sequence, one may be tempted
to implement mul/3 (separating the generation and testing for clarity) as

mul(X,Y,Z) :- gen(A), X=A, gen(B), Y=B, gen(C), Z=C, C is AxB.

In addition to its obvious inefficiency, this implementation” often diverges under
DFS. For example, evaluating mul(X,Y, 1) instantiates A and B to 0 and C to 1,
causing the goal C is Ax*B to fail; after backtracking into gen(B), mul/3 keeps
forever instantiating B to larger and larger positive numbers, each time resulting
in failure of the goal 1 is O*B.

One may attempt to fix this problem by using a complete search strategy,
such as breadth-first search (BFS) or iteratively-deepening DFS. Even ignoring
efficiency concerns, this implementation of mul/3 is still unacceptable: a complete
search strategy will find a solution if it exists, but if no solution exists the search
will continue forever. For example, although BF'S finds the instantiation of Y that
satisfies mul(1,Y,2), the goal mul(2,Y,1) still diverges. Thus we must devise a
termination criterion for mul/3.

Devising a termination criterion may seem easy. For example, when searching
for X and Y that satisfy the goal mul(X,Y,5), we only need to examine X and
Y values up to 5—since the search space is finite, the evaluation of the goal
certainly terminates. The problem arises when determining whether the third
argument in a specific use of mul/3 is instantiated to a ground numeral. This
task is trivial if we use the ‘impure’ non-logical features provided by Prolog’s
reflection facilities, such as the infamous var/1 predicate. Even if var/1 were
absent from Prolog, it could be emulated using cuts and negation. We disavow
such tools—we aim to implement our predicates in a pure subset of Prolog,
without cuts, reflection, or any way to distinguish a logic variable. This aim for
purity is a challenge that in return makes our approach most elucidating and
extensible.

" BraBel, Fischer, and Huch [7] describe the drawbacks of this residuation-based ap-
proach in functional logic programming.

The final challenge is that the binary representation of a number may not
be structurally part of that of its successor. For example, the binary numeral
111 (in decimal, 7) is not structurally part of its successor 1000. This lack of
structural inclusion prevents straightforward structural recursion.

1.2 Termination and Solvability

These challenges make the arithmetic predicates tricky to code. It is not obvious
that the resulting predicates have the claimed properties, in particular, that
they terminate in all modes. We therefore devote much of the paper to proofs.
A typical termination theorem we prove assures that evaluating or re-evaluating
add(X,Y, Z) terminates, provided that the terms initially associated with XY,
and Z share no logic variables. Successive re-evaluations of this goal recursively
enumerate the stream of unique triples (X,Y, Z) of potentially non-ground terms
whose denotation (§2.2) is the domain { (u,v,w) € X xY xZ : u+v = w }. Thus,
membership and non-membership are computable for base arithmetic relations.

We guarantee termination only for stand-alone base arithmetic goals but
not their conjunctions (see §2.1). This non-compositionality is expected, since
conjunctions of arithmetic goals can express Diophantine equations; were such
conjunctions guaranteed to terminate, we would be able to solve Hilbert’s 10th
problem, which is undecidable [8]. We also do not guarantee termination if the
goal’s arguments share variables. Such a goal can be expressed by conjoining a
sharing-free base goal and equalities.

We proceed as follows. In §2 we define addition and multiplication predicates
for a unary representation of natural numbers. We introduce solution sets, §2.1,
to carefully establish termination for these predicates, laying a foundation for
our analysis of binary predicates. In §3 we introduce our representation of bi-
nary numerals, and in §4 and §5 we define predicates for binary addition and
subtraction, and multiplication, respectively. In §6 we briefly describe our pred-
icates for binary division, exponentiation, and logarithm. For lack of space, we
relegate our pure Prolog implementation of exponentiation, logarithm, and non-
interleaving binary multiplication to the accompanying source code,® along with
additional proofs, tests, examples, and discussion. We review related work in §7,
and conclude in §8. The full version of this paper? includes appendices outlining
proofs of the properties of solution sets. We have also implemented declarative
arithmetic as Haskell type-level relations (type classes) [9].

2 Predicates for Unary Arithmetic

We begin with unary numerals. Unary is simpler than binary, since every unary
numeral is structurally part of its successor, so we may use structural recursion.
However, membership and non-membership still need to be decidable for the base
arithmetic predicates, whose domains are infinite however they are represented.

8 http://okmij.org/ftp/Prolog/Arithm/
9 http://okmij.org/ftp/Prolog/Arithm/arithm. pdf

Hence, the unary case already presents our main challenges. The unary case also
lets us introduce and illustrate most of our terminology in this section.

We represent unary numerals as lists of atoms u: [1 denotes zero, [u] denotes
one, [u,u] denotes two, etc.'® Throughout this section we use the shorthand n
to indicate our representation of the number n—that is, the list of u’s of length n.

Although Prolog is not statically typed, we assume an implicit type of ‘unary
numerals’ and an implicit typing of logic variables. For example, the implicit type
of the term [u,u| X] is ‘unary numeral’; the logic variable X has the same type.
The type predicate for unary numerals can be expressed as a generator:

genu([]).
genu([ulX]) :- genu(X).

A term ¢ has the type of ‘unary numeral’ if the goal genu(t) succeeds. When
providing denotations for terms and goals we use the implicit type of a logic
variable to characterize the variable’s domain.

We can add unary numerals with a special case of the append/3 predicate.

add([]1,X,X).
add([ulX]1,Y,[ulz]) :- add(X,Y,Z).

We can use add/3 to add numerals: the goal add(1,2, X) unifies X with 3. We
can also use add/3 for subtraction: both add(X,1,3) and add(1, X, 3) unify X
with 2, and the evaluation of add(X, 3, 1) fails finitely. We can further use add/3
to decompose a number into its summands: for example, add(X,Y, 3) has four
solutions, in which X and Y are unified in turn with 0 and 3, 1 and 2, 2 and
1, and 3 and 0. Finally, passing three distinct uninstantiated logic variables to
add/3 lets us enumerate the domain of addition over the natural numbers. The
evaluation of the query add(X,Y, Z) in Prolog yields an infinite set of solutions:

X =[] Y = _G188 Z = _G188 ;
X = [u] Y = _G188 Z = [ul_G188] ;
X="[u, ul] Y= _G188 Z = [u, ul_G188] ;

and so forth. This stream of solutions represents the infinite addition relation
in two different ways. First, the goal produces an infinite number of solutions;
we can always re-evaluate the goal to get another solution. Second, each solu-
tion represents infinitely many triples, all members of the addition relation. For
example, the second solution compactly represents the infinitely many triples of
naturals (z,y, z) for which z is one and z is the successor of y. Each instantiation
of the free logic variable _G188 to a member of its domain (corresponding to its
implicit type) yields a new triple of naturals that is a member of the addition
relation. We will make extensive use of this compact representation of infinite
domains when proving termination properties of our predicates.

10 We could just as easily use a more common representation z, s(z), s(s(z)), etc. We
chose lists for consistency with our binary representation.

2.1 Solution Sets

To formulate propositions about add/3 and other predicates, we introduce the
notion of solution sets, which accounts for the search strategy used to run a logic
program (unlike other procedural notions of solutions). We use Prolog syntax [4].
We identify a bound logic variable with the term it is bound to, so all variables
are free for us, as for Lloyd [4]. Our goals are all pure (contain no var/1, negation,
or cuts).

We assume an idempotent notion of substitution [10]: a substitution 0 is a
finite map { X; = t; } from logic variables X; to terms ¢; such that no ¢; contains
any X;. We write the application of the substitution 6 to a term ¢ as t6; this
application easily extends to tuples of terms and sets of tuples.

Definition 1 (Conjunction of substitutions). We define the conjunction 6¢
of two substitutions 0 and & by treating them as sets of equations { X; = t; }:
we combine both sets (the result may contain two equations for the same X;)
and use unification to solve the resulting equations [10, §2.2.3]. Our conjunction
of substitutions is thus commutative and associative. Because of the unification
our conjunction is partial: if unification fails we call the original substitutions
contradictory.

We can interpret a goal g as a function from a substitution to a (finite or
infinite) stream of substitutions. Both SLD and SLD-interleaving [5] interpret
(right-associative and non-commutative) disjunction and conjunction by

(91592)(0) = 91(0) @ g2(0),
(91,92)(0) = 91(0) x g2
where the bind operation % is defined recursively by
[I*f=1,

—

[0 6% f=(f0)® @« f).

The difference between SLD and SLD-interleaving is that @ above is defined as
stream concatenation in SLD but stream interleaving in SLD-interleaving.

Definition 2 (Solution sequence and set). Given a predicate g/n and n
termsty, ..., t, that may contain logic variables, a solution of a goal g(t1,...,tn)
is an n-tuple (ty,...,t)) where each t; instantiates t; after the evaluation of
the goal succeeds using SLD or SLD-interleaving strategy. A solution can be
represented as (t1,...,tn)0 for some substitution 6. A solution sequence is a
sequence of solutions obtained by evaluating and successively re-evaluating a goal.
The sequence is a solution set if no two of its members unify with each other.

A goal that fails has the empty solution set. A goal whose evaluation or re-
evaluation does not terminate does not have a solution sequence. In contrast,
the goal genu(X) does have a solution sequence (which can be infinite) because

its evaluation and re-evaluation always terminates. We assume SLD as the de-
fault solution strategy. If we add the clause add(X, [1,X). as a well-meaning
optimization (X + 0 = X) after the first clause of add/3 above, the solution se-
quence may not necessarily be a solution set: for example, the goal add(X, Y, 0)
will have (0,0,0) in duplicate.

The notion of solution sequence is constructive, ‘proof-theoretic,” to be dis-
tinguished from a model of a logic program: each solution has been actually
derived, in finite time, from the facts and rules at hand using the given solution
strategy. A term in a solution may contain free logic variables. We can prove the
following properties of solution sets (see Appendix A of our full paper).

Proposition 1. If a goal g(t1,...,tn) has a (finite or infinite) solution set
{(t1,...,tn)0; } and & is a substitution that contradicts only finitely many 0;,
then the goal g(t1&, ..., t,€) has a solution set { (t1,...,t,)(0:;€) }, omitting the
elements where 0; and & are contradictory.

The solution set of a conjunction of goals g1 (t11,- - . ,t1,) and ga(ta1, ..., tay)
is (as in a natural database join) the set of tuples { (t11,...,¢1n,t21,-..,t2n) }
after the evaluation of the conjunction has succeeded.

Proposition 2. If the goals g1 and g2 have a finite solution set, then the con-
junction g1, ge has a finite solution set.

This proposition is a corollary of the previous proposition. It does not generally
hold if the solution set of one of the conjuncts is infinite. For example,

mf ([1, [ulY]) :- genu(Y).
mf ([ulX],Y) :- mf([ulX],Y).

The goal mf(X,Y), with the variables X and Y free, has the infinite solution
set {(0,i) : 4 € NT }. However, the (left or right) conjunction of this goal with
X =1 diverges and has no solution set. Similarly, the conjunction of mf(X,Y)
with X = Y has no solution set either. Prop.1 applies to neither conjunction
because the substitutions {X = 1} and {X = Y} both contradict infinitely
many solution-set substitutions (in fact, all of them). The latter conjunction is
equivalent to the goal mf (X, X); such sharing of variables among the arguments
of a goal is lethal to the termination guarantees below (such as Prop.9).

Proposition 3. If a goal g1(t1,...,tn) has a finite solution set { (t1,...,t,)0; }
and the goal g2(t101,...,t,,01) has an infinite solution set { (t161,...,t,,61)&; },
then the conjunction gi,gs has the infinite solution set { (t1,...,tn,th,... 1)

(0:1&5) }-

This proposition describes the incompleteness of SLD: its underlying depth-first
search becomes trapped exploring the leftmost infinite branch of the search tree.
However, using the SLD-interleaving strategy, we can strengthen the proposition:

Proposition 4. If a goal gi(t1,...,t,) has a (finite or infinite) solution set
{(t1,...,tn)0; } and the goal go(t\0;,...,t, 0;) has a non-empty (finite or infi-
nite) solution set { (t10;,...,t,,0;)&; } for each i, then the conjunction g1, g has
the solution set { (t1,...,tn, 81, ..., t0,)(0:&i5) }-

The proof is based on the laws of fair conjunction and disjunction in [5]; details
are given in Appendix B of our full paper. We use analogous properties for
disjunctions of goals.

2.2 Properties of Addition: Solution Sets of Addition

If t is a term and n is a natural number, then we write [u™ |] to mean [u, ..., u]{]
where u, ..., u consists of n occurrences of u.
One can easily prove the following propositions:

Proposition 5. The goal add(X,Y,Z), where X and Y are instantiated to
ground numerals and Z is free, has a singleton solution set unifying Z with
the numeral that is the sum of those corresponding to X and Y.

That is, if the first two arguments of add/3 are instantiated to numerals, the
goal is decidable and has one solution.

Proposition 6. The goal add(X,Y, Z) where Z is instantiated to a ground nu-
meral has a finite solution set.

The proof is an easy induction on the third argument.

Proposition 7. The goal add(X,Y, Z), where X is a ground numeral n and Y
and Z are free, has the singleton solution set { (n, G, [u™ | G]) } where G is a free
logic variable.

The proof is by induction on X. The proposition easily extends to the case where
Y and Z are arbitrary terms, using Prop. 1.

Proposition 8. The goal add(X,Y, Z), where the arguments are distinct free
logic variables, has an infinite solution set { (n, G, [u"|G]) : n € N} where G is
a free logic variable. In each solution, X is unified to a ground numeral.

The proof is by induction on X and soundness of SLD resolution.

Definition 3 (Denotation of arithmetic solutions). The denotation [-] of
an arithmetic term or solution set is defined as follows.

[n] = {n}
[t]={neN:n>m}
where t is the non-ground term [u™ | X|
where X is a free logic variable of the type of unary numerals

[[(th . 7tn)]] = Htlﬂ X - X [[tn]]
[S] = Usesls] for a solution set S (whose elements are all disjoint)
The previous propositions along with Prop. 1 let us prove:

Proposition 9. The goal add(X,Y, Z) where the arguments have no shared logic
variables has a solution set with X always unified to a ground numeral. The
denotation of the solution set is { (u,v,w) € [X] x [Y] x[Z] :u+v=w}.

The proof simply invokes Prop. 6 or Prop. 7 if Z or X is ground. If neither Z nor
X is ground, then the arguments of the goal, since they share no logic variables,
contradict only finitely many solutions in the set of Prop. 8, so we invoke Prop. 1.
The proposition states that the predicate add/3 is fully decidable: for any
arguments sharing no free variables, the predicate decides if the denotation of
these arguments is in the domain of addition or not. Furthermore, for any subset
of the domain of addition of the form { (u,v,w) € [X] X [Y] % [Z] : u+v=w},
there is a goal with exactly this denotation. We call such a predicate faithful.

2.3 Multiplication

Multiplication of unary numbers may seem as trivial as addition. (We will be
developing several versions of multiplication, so we label the mul predicates with
a numeric version suffix to distinguish them.)

mull([],_, [1).
mull([ulX],Y,Z2) :- mull(X,Y,Z1), add(Z1,Y,Z).

This predicate directly encodes the inductive definition of multiplication: 0.z =
0, (x+1)-y = x-y+y. Indeed, the goal mu11(3, 2, X) has the singleton solution set
with X unified with 6. However, the goal mul1(X, 2, 6) diverges after producing
the first solution, the goal mul1(X,2,5) diverges without producing anything,
and mul1(X,Y, 6) overflows the stack after producing three solutions.

The problem is left-recursion in the second clause: the goal mull(X,2,7)
with free X and Z requires evaluating mul1(X’, 2, Z’) again with free X’ and Z’.
Reordering goals in the body of the second clause eliminates left-recursion:

mul2([1,_,[1).
mul2([ulX],Y,Z) :- add(Z1,Y,Z), mul2(X,Y,Z1).

Now mul2(X,2,6) has a singleton solution set and mul2(X,2,5) fails finitely.

However, whereas before mul1(3, 2, X') had a singleton solution set (with X = 6),

this version mul2 diverges after the first solution, so the goal has no solution set.
Interestingly, simply swapping the arguments to add/3 fixes the problems.

mul3([],_, [1).
mul3([ulX],Y,Z) :- add(Y,Z1,Z), mul3(X,Y,Z1).

Now mul3(X,2,6) and mul3(3,2,X) both have singleton solution sets, and
mul3(X,2,5) fails finitely. The reason is important. Evaluating mul2(3,2, Z)
requires evaluating add(Z1, 2, Z) whereas evaluating mul3(3, 2, Z) requires eval-
uating add(2, Z;, Z). Although both addition goals denote the same relation, the
former has the infinite solution set { (0,2, 2),(1,2,3),(2,2,4),...} whereas the
latter has the singleton solution set {(2,G, [u,u|G])} (Prop.7). That makes all
the difference, as we prove below.

However, mul3 is not perfect. Evaluating mul3(X,Y, 6) overflows the stack,
because it requires evaluating add(Y, Z1,6), which gives Z; = 6,Y = 0 as one
solution. This solution causes a recursive call mul3(X’, Y, 6), same as the original

call. Thus we must treat zero multiplicands separately, taking care to avoid
overlapping solutions so that the solution sequence remains a solution set.

mul([1,_,[1).
mul ([ul_1,01,01).
mul ([ulX], [ulY],Z) :- add([ulY],Z1,Z), mul(X, [ulY],Z1).

This pattern of fixing one problem only to see another problem emerge is quite
common, which is why we need proofs.

Proposition 10. The goal mul(X,Y,Z), where X and Y are instantiated to
ground numerals and Z is free, has the singleton solution set that unifies Z with
the numeral that is the product of the numerals for X and Y.

The proof is an induction on X using Prop. 2 and Prop. 7.

Proposition 11. The goal mul(X,Y, Z), where Z is instantiated to a ground
numeral, has a finite solution set.

The proof depends on Prop.2 and Prop. 6: each solution of add([u|Y], Z1, Z))
instantiates Z; to a ground numeral smaller than the numeral for Z.

Proposition 12. The goal mul(X,Y, Z), where Y is instantiated to a positive
ground numeral n and X and Z are free, has the solution set { (i,n,i-n): 14 €
N}. IfY is O, the solution set is finite: {(0,0,0), ([u| X],0,0) }.

The proof is by induction on Y and Prop. 7.

Proposition 13. Under the SLD-interleaving strategy, the goal mul(X,Y,Z),
where the arguments share no logic variables, has a solution set that denotes
{(w,v,w) e [X]x Y] x[Z2]) :v-v=w}.

The proof depends on Props. 9, 12 and 4. Thus under SLD with interleaving, our
mul/3 predicate is faithful to the multiplication relation on naturals.

Without interleaving, the goal mul(X,Y, Z) has the solution set {(0,G,0),
([u]G'],0,0),(1,1,1),(2,1,2),(3,1,3),...}. The denotation of this solution set
obviously does not cover the entire multiplication relation: the second argument
gets ‘stuck’ on 1. Under SLD, then, our predicate mul covers only an infinitesimal
part of the domain of multiplication. We can do better: we define a predicate
semimul that has the same termination properties as mul but covers half of the
domain of multiplication, namely Y < X, whichever arguments are instantiated.

We first define the predicate less/2, corresponding to the less-than relation.

less([1,[_I_1).
less([ulX], [ulY]) :- less(X,Y).

The semimul/3 predicate is then as follows.

semimul ([1,_,[1).

semimul ([ul_J1,01,0).

semimul ([ulX], [ulY],Z) :- less(X,Z), less(Y,[ulX]),
mul ([ulX], [ulY]l,Z).

Proposition 14. The goal semimul(X,Y, Z), where the arguments are free logic
variables, has a solution set that denotes { (u,v,w) € N> :v <wu, u-v=w}.

The proof depends on the goal less(X, Z), which asserts the trivial inequality
< (x+1)-(y+1) for all ,y € N. With free X and Z, the goal less(X, Z) has
an infinite solution set whose solutions each instantiate X to a ground numeral.
The goal less(Y,[u] X]) then has a finite solution set that grounds Y as well.
The last goal has thus a singleton solution set, by Prop. 10.

These attempts to define decidable multiplication even for the seemingly
trivial unary case show the difficulties that become more pronounced as we
move to binary arithmetic. We rely on a finite representation of infinite domains,
precise instantiatedness analysis, and reasoning about SLD using search trees.

3 Binary Numerals

We represent numerals as lists of binary digits in little-endian order (least signif-
icant bit first), with zero represented as the empty list. A zero bit is denoted by
o (lower-case ‘oh’) and a one bit is denoted by 1 (lower-case ‘el’)—to distinguish
a number from its representation. For example, the terms [1, [1], [0,1], [1,1],
[0,0,1] represent O through 4. The last bit of a positive numeral must be 1.
Our code below takes special care to maintain this well-formedness condition. It
is trivial to convert between this and Prolog’s native representations of integers.

We often use the auxiliary one-clause predicates zero/1, pos/1, and gtl/1:

zero([]1).
posCI_I_1).
gtl(l_,_1_1).

The goal zero(N) succeeds if N is zero. The goal pos(N) succeeds if N is
positive. The goal gt1(N) succeeds if N is at least two.
The predicate genb/1 below expresses the implicit type of binary numerals.

genb([1).
genb([1]X]) :- genb(X).
genb([o|X]) :- pos(X), genb(X).

The presence of pos(X) in the last clause ensures that the last bit of a positive
numeral is 1. The code below contains similar guarding occurrences of pos/1.
Recall that one challenge of binary arithmetic is that a numeral is not struc-
turally part of its successor. However, such a notion of inclusion exists (with the
attendant induction principle) if we consider the ‘length’ of a binary number, i.e.,
the number of bits in its binary representation. More precisely, the length ||n||
of a numeral n is [logon| 4+ 1 if n > 0, and 0 if n = 0. We define lessl/2 by

less1([1,[_1_1).
less1([_IX],[_1Y]) :- lessl(X,Y).

It has the meaning and form of the unary less in §2.3—and the same termination
properties—but compares the length of binary numbers rather their magnitude.

4 Addition and Subtraction

Our treatment of addition is inspired by hardware full-adders and multi-bit
adders, as found in a digital computer’s arithmetic logic unit [11]. A one-bit full-
adder fulll_adder(Ciy, A, B, S, Cout) relates two input bits A, B and the incom-
ing carry bit Cj, with the sum bit S and the outgoing carry bit Cyyt, according to
the equation Cj,+A+B = S4+2C,yt- In Prolog, we define fulll_adder/5 by enu-
merating eight facts: fulll_adder(o,0,0,0,0)., fulll_adder(o,1l,0,1,0).,
etc. The multi-bit adder fulln_adder(Ciy, A, B, S) relates the incoming carry
bit Ci, (either o or 1), two binary numbers A, B, and their sum S, according
to the equation Ci, + A+ B = S. It is defined by recursively combining one-bit
adders as in a ripple-carry adder of digital logic, only in our case, the summands’
bitwidths need not be the same or limited.

fulln_adder(o,A,[],A).

fulln_adder(o, [],B,B) :- pos(B).

fulln_adder(1,A,[],R) :- fulln_adder(o,A,[1],R).
fulln_adder(1,[],B,R) :- pos(B), fulln_adder(o,[1],B,R).

fulln_adder(Cin, [1],[1],R) :- R = [R1,R2],
fulll_adder(Cin,1,1,R1,R2).

fulln_adder(Cin, [1], [BBIBR], [RBIRR]) :- pos(BR), pos(RR),
fulll_adder(Cin,1,BB,RB,Cout),
fulln_adder(Cout, [],BR,RR).

fulln_adder(Cin,A, [1],R) :- gtl(A), gtl(R),
fulln_adder(Cin, [1],A,R).

fulln_adder (Cin, [AB|AR], [BBIBR], [RBIRR]) :-
pos(AR), pos(BR), pos(RR),
fulll_adder(Cin, AB,BB,RB,Cout),
fulln_adder (Cout,AR,BR,RR).

The first four clauses above deal with the cases of a summand being zero. The
next three clauses handle the cases of a summand being one. The last clause adds
numbers at least two bits wide. We take care to keep clauses from overlapping, so
the solution sequence of a fulln_adder goal is a solution set. The splitting of the
cases and the many occurrences of pos/1 are necessary to keep all numerals in
a solution ‘well-typed’: If logic variables in a solution are instantiated according
to their implicit types, we never see a list whose last element unifies with o.
This multi-bit adder expresses binary addition, subtraction, and ordering:

add(A,B,C) :- fulln_adder(o,A,B,C).
sub(A,B,C) :- add(B,C,A).
less(A,B) :- pos(X), add(A,X,B).

Our predicate add/3 for binary numerals satisfies Prop.5 (by induction on
4Cin + 3A + B) and Prop. 6. However, due to carry propagation (clauses 4 and 6
of fulln_adder), Prop. 7 and Prop. 8 no longer accurately describe the solution

sets of binary add: the goal add(X,Y, Z), with either X or Y ground and the
other arguments being distinct free variables, has an infinite solution set.

Prop. 9 holds (without X being always ground) only in the case of SLD with
interleaving; for SLD, we can develop a binary addition predicate that covers half
of the domain of addition, as in §2.3. The proofs begin by unrolling the recursion
in clauses 3, 4, and 7 of fulln_adder (splitting cases for clauses 3 and 4), so
that fulln_adder invokes itself recursively only for shorter arguments.

5 Multiplication

Binary multiplication may seem an obvious generalization of unary multiplica-
tion. The most complex case is to multiply an odd number by a positive one,
(2N +1)M =2(NM)+ M, because it involves addition. One may think that the
approach in mul in §2.3 will work here. Alas, binary addition does not satisfy
Prop. 7, so we must turn to a much less obvious solution.

mul ([1,M,[]1).
mul(N, [1,[]) :- pos(N).
mul ([1],M,M) :- pos(M).
mul([o|NR],M, [0o|PR]) :- pos(M), pos(NR), pos(PR), mul(NR,M,PR).
mul ([1|NR],M,P) :- pos(M), pos(NR), gtl(P),
lessl13(P1,P, [1INR],M),
mul (NR,M,P1), add([o|P1],M,P).

This solution relies on a seemingly contrived predicate lessl3:

less13([1,[_1_],_,.).
less13([_IP1R],[_IPR],[],[_IMR]) :- lessl13(Pi1R,PR,[],MR).
less13([_|P1R], [_IPR], [_INR],M) :- lessl3(P1R,PR,NR,M).

The goal less13(Py, P, N, M) relates four numerals such that || P;|| < min(]|P]|,
IN] 4+ ||M]|| + 1). As long as the arguments of the goal, however instantiated,
share no logic variables, the goal has a solution set. In any solution, P; is a
numeral whose bits may be free but whose length is fixed. We call such numerals
L-instantiated. Moreover, whenever Py, P, or both N and M are L-instantiated,
the solution set is finite.

In the code for binary mul above, less13 occurs in a clause that is selected
when multiplying an odd number 2N +1 (where N > 0) by a positive number M
to yield P. Under these conditions, clearly [log, N M | is less than both |log, P
and [logy(2N + 1)| + [log, M| + 2, so the constraint imposed by lessl3 does
not affect the declarative meaning of mul. The guarantee of less13 mentioned
above lets us prove Prop. 10 and Prop. 11 for binary multiplication. For Prop. 11,
lessl3 ensures that P; is L-instantiated, so we can use induction to prove that
mul(N, M, P) with an L-instantiated P has a finite solution set.

The important role of 1lessl3 can be informally explained as follows. Given
the goal mul(X,Y, Z), when X and Y are instantiated but Z is free, or when Z
is instantiated but X and Y are free, the search space is finite even though the

free variables can be instantiated an infinite number of ways: the length of the
product limits the lengths of the multiplicands, and vice versa. The predicate
lessl3 enforces these limits, even though our code cannot distinguish these two
cases by determining which arguments are instantiated.

The mul predicate also satisfies Prop. 13 (the proof again relies on the proper-
ties of 1essl3). As in the unary case, using SLD without interleaving, we cannot
cover the whole domain of natural multiplication—but we can cover half of it.
The technique is essentially the same as explained for unary multiplication.

6 Division, Exponentiation, and Logarithm

Our predicate for division with remainder div(N, M, @, R) relates four natural
numbers such that N =M -Q + R < M - (Q + 1). The implementation is quite
complex so as to finitely fail as often as possible: for example, not only when the
divisor M is zero, but also in the case div([o|X],[0,1],@,[1]) with free X and
@, as no even number divided by 2 gives the remainder 1. Our algorithm is akin
to long division as taught in elementary school, only done right-to-left. At each
step, we determine at least one bit of the quotient in finite time.

First, we handle the easy case when the divisor M is bigger than the divi-
dend N,so Q =0and N = R.

div(N,M,[]J,R) :- N =R, less(N,M).

Otherwise, @ must be positive. The second easy case is when N is at least M
and has the same length as M.

div(N,M, [1],R) :- samel(N,M), add(R,M,N), less(R,M).

This code relies on the auxiliary predicate samel, which holds if its two argu-
ments are binary numerals with the same number of digits.

samel ([]1,[]). samel ([_IX],[_|Y]) :- samel(X,Y).

The main case of division is when NV has more digits than M. The key is to
represent N = M -Q+ R < M - (Q + 1) as the conjunction of the two relations

2R = MQy+ R — N, and N1 =MQ: + Ry
where
N = 21Ny + Ny, Q =2"1Q1 + Qo, I=|R],

and Ny and Q)2 are at most [+ 1 long. Given [, then, we can decide the first
relation. Because 0 < Ry < M, we can invoke div(Ny, M, @1, Ry) recursively to
decide the second relation. That gives us a convenient induction principle: either
Ny is zero and so Q1 and M@y + R — N5 are both zero, or N; is positive and
shorter than IV. These two cases correspond to the disjunction below.

div(N,M,Q,R) :- lessl(M,N), less(R,M), pos(Q),
split(N,R,N1,N2), split(Q,R,Q1,Q2),
(
N1 =[],
Q1L = 0,
sub(N2,R,Q2M) ,
mul (Q2,M,Q2M)

pos(N1),
mul (Q2,M,Q2M) ,
add (Q2M,R,Q2MR) ,
sub(Q2MR,N2,RR) ,
split (RR,R,R1,[]),
div(N1,M,Q1,R1)

).

The calls to lessl/2 and less/2 at the beginning of this code ensure that M and
then R are both L-instantiated. The code also relies on the predicate split/4 to
‘split” a binary numeral at a given length: The goal split(N, R, Ny, N3) holds
if N = 2!"1N; + Ny where [= ||R|| and Ny < 2/+1. The goal should be invoked
only when R is L-instantiated, which is the case in the div code above. The goal
has a finite solution set, in which N is L-instantiated in every solution.

split([], -, [, .

split([o,BIN], [1, [BINI, [1).

split([1IN], 1, w, [1n.

split([o,BIN], [_IR], N1, [1) :- split([BIN],R,N1,[]).
split([1IN], [_IR], N1, [1D) :- split(N,R,N1,[1).

split([BIN], [_IR], N1, [BIN2]) :- pos(N2), split(N,R,N1,N2).

Our predicate log(N, B, Q, R) relates four numbers such that N = B9 +
R < B9t so it implements exponentiation, logarithm, and n-th root. Our
implementation uses an upper bound on R, namely RB < N (B — 1), and upper
and lower bounds on @, namely (||B|| —1)Q < | N|| and ||N| -1 < [|B|(Q+1).
These bounds constrain the search just as less13 does for binary multiplication
in §5. Because the base-2 case is so simple, we treat it separately.

7 Related Work

We first presented arithmetic predicates over binary natural numbers (including
division and logarithm) in a book [12]. The book used miniKanren [13], which
like its big sister Kanren [6] is an embedding of logic programming in Scheme.
That presentation had no detailed explanations, proofs, or formal analysis, which
is the focus of this paper.

Braflel, Fischer, and Huch’s paper [7] appears to be the only previous descrip-
tion of declarative arithmetic. It is a practical paper couched in the programming

language Curry. It argues for declaring numbers and their operations in the lan-
guage itself, rather than using external numeric data types and operations. It
also uses a little-endian binary encoding of natural numbers (later extended to
signed integers). Our encodings differ, however, in that our representation of
natural numbers includes zero.

Whereas our implementation of arithmetic uses a pure logic programming
language, Braflel, Fischer, and Huch use a non-strict functional-logic program-
ming language. Therefore, our implementations use wildly different strategies
and are not directly comparable. Also, we implement the logarithm relation.

Braflel, Fischer, and Huch leave it to future work to prove termination of
their predicates. In contrast, the thrust of this paper is to formulate and prove
decidability of our predicates under DFS or DFS with interleaving. To ensure
decidability and completeness under generally incomplete strategies like DFS,
our implementation is much more complex.

We present no benchmarks, but we are encouraged by Braflel, Fischer, and
Huch’s conclusion that declarative arithmetic is practical-—and, in fact, has been
used satisfactorily as part of a Haskell-based Curry system.

Our notion of solution sets can be defined in terms of Lloyd’s SLD-trees
[4]. Unlike Lloyd, we use solution sets not to show SLD incomplete. Rather, we
use them to characterize the solutions generated by programs using SLD. Our
solution sets are coarser, and thus easier to reason with, than the partial trace
semantics often used to study termination of constraint logic programs [14].

Our approach is minimalist and pure; therefore, its methodology can be used
in other logic systems, specifically, Haskell type classes. Hallgren [15] first imple-
mented (unary) arithmetic in such a system, but with restricted modes. Kiselyov
[16, §6] treats decimal addition more relationally. Kiselyov and Shan [9] first
demonstrated all-mode arithmetic relations for arbitrary binary numerals, so to
represent numerical equality and inequality constraints in the type system. Their
type-level declarative arithmetic library enabled resource-aware programming in
Haskell with expressive static guarantees.

8 Conclusions

In a pure logic programming system, we have declared decidable arithmetic of un-
restricted unary and binary natural numbers: addition, multiplication, division
with remainder, exponentiation, and logarithm with remainder. The declared
relations have unlimited domain and are free from any mode restrictions or an-
notations. We have proven that our arithmetic predicates are fully decidable and
faithfully represent the corresponding arithmetic relations. Our technique can be
easily extended to full integers (i.e., a tuple of the sign and a natural number).

The gist of our approach is to limit the search space by a balancing act of
computing bidirectional bounds from arguments of unknown instantiatedness.
For example, the key to decidable multiplication is to limit the search using
bounds that the inputs place on each other, without testing whether any input
is instantiated. We also rely on the ability to finitely represent infinite domains

using logic variables, so that goals with infinite denotations may have only a
finite solution set. Our notion of solution sets and the associated proof techniques
are not specific to arithmetic and SLD; rather, they appear applicable to logic
programming in other domains using a variety of search strategies.

Bibliography

1]
2]
[3]

[15]

[16]

Apt, K.R.: Principles of Constraint Programming. Cambridge University
Press (2003)

Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions
on Database Systems 22 (1997) 364-418

Kowalski, R.: Predicate logic as programming language. In Rosenfeld, J.L.,
ed.: Information Processing, North-Holland (1974) 569-574

Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag (1987)
Kiselyov, O., Shan, C.c., Friedman, D.P., Sabry, A.: Backtracking, inter-
leaving, and terminating monad transformers. In: Proceedings of the Inter-
national Conference on Functional Programming. (2005) 192-203
Friedman, D.P., Kiselyov, O.: A declarative applicative logic programming
system. http://kanren.sourceforge.net/ (2005)

Braflel, B., Fischer, S., Huch, F.: Declaring numbers. In: Workshop on
Functional and (Constraint) Logic Programming. (2007) 23-36
Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press (1993)

Kiselyov, O., Shan, C.c.: Lightweight static resources: Sexy types for em-
bedded and systems programming. In: Draft Proceedings of Trends in Func-
tional Programming, Seton Hall University (2007) TR-SHU-CS-2007-04-1.
Baader, F., Snyder, W.: Unification theory. In Robinson, A., Voronkov, A.,
eds.: Handbook of Automated Reasoning. Elsevier (2001) 445-532
Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative
Approach. Third edn. Morgan Kaufmann (2002)

Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. MIT
Press (2005)

Byrd, W.E., Friedman, D.P.: From variadic functions to variadic relations:
A miniKanren perspective. In: 7th Scheme and Functional Programming
Workshop, University of Chicago (2006) 105-117 TR-2006-06.

Colussi, L., Marchiori, E., Marchiori, M.: On termination of constraint logic
programs. In: Principles and Practice of Constraint Programming. Volume
976 of LNCS. (1995) 431-448

Hallgren, T.: Fun with functional dependencies. http://www.cs.
chalmers.se/~hallgren/Papers/wm0O1.html (2001)

Kiselyov, O.: Number-parameterized types. The Monad.Reader 5 (2005)

