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Abstract. Case-based regression often relies on simple case adaptathods.
This paper investigates new approaches to enriching th@attan capabilities of
case-based regression systems, based on the use of ersefidnlaptation rules
generated from the case base. The paper explores both lutajlabal meth-
ods for generating adaptation rules from the case base,rasdris methods for
ranking the generated rules and combining the resultingrehie of adaptation
rules to generate new solutions. It tests these methodsdrstandard domains,
evaluating their performance compared to four baselind o, standard k-NN,
linear regression, locally weighted linear regressiom an ensemble of k-NN
predictors with different feature subsets. The results aiestrate that the pro-
posed method generally outperforms the baselines andhhatcturacy of adap-
tation based on locally-generated rules is highly comipetiwith that of global
rule-generation methods with much greater computatioostl. ¢

1 Introduction

Case-based reasoning (CBR) (e.g., Mantetas., 2005) solves new problems by re-
trieving stored prior cases solving similar problems, addpding their solutions to
fit new circumstances, based on the differences betweenethgoroblem and prob-
lems addressed by the retrieved case(s). When CBR is afplisghthesis tasks in
knowledge-rich domains, an important component of its esgds the use of sophisti-
cated case adaptation strategies. However, when CBR ajfpioapplied to regression
tasks, reliance on simple case adaptation is common. Fanmrak-Nearest Neighbor
(k-NN) regression approaches often compute target vakiagigstance-weighted aver-
age of the values of thie cases closest to the input problem. Using simple adaptation
helps to alleviate the knowledge acquisition problem fasecadaptation knowledge
for these tasks, and in practice can achieve good perforen@ng., [2]). However, the
contrast between extensive focus on case adaptation in GBI areas and the lim-
ited attention to richer adaptation methods for case-baeggession raises the question
of whether case-based regression performance could bewegbby generating richer
combination/adaptation rules automatically.

This paper presents new approaches for automatically autimgeadaptation capa-
bilities for case-based regression, using only knowledgedained in the case base. Its
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primary contributions are methods for generating adapiatiles from local or global

sets of cases, methods for applying ensembles of adaptat&s) and an experimental
comparison of alternative strategies for using local antdglinformation in both adap-
tation rule learning and rule application, which illumieatthe relative performance
benefits of local and global approaches.

The paper is organized as follows. Section 2 introducestthgegies we consider
for generating adaptation rules and selecting the bass é@se which the estimations
are built. Section 3 introduces our approach, Ensemble ajpfations for Regression
(EAR), a general technique for augmenting k-NN for reg@ssasks by automati-
cally generating adaptation rules, choosing which of mastgmtially applicable rules
to apply, and using the resulting ensemble of rules for gy new solutions. It
also describes the basic parameters of the approach, witjigst s use of local ver-
sus global information in selecting cases to adapt and géngradaptation rules from
existing cases. Section 4 presents results of an evaluadioyparing alternative ver-
sions of EAR with k-NN, linear regression, and locally weigghlinear regression for
estimating solutions in five sample domains. The study stewesuraging results for
accuracy and for the ability to rely on local informationpgoared to more computa-
tionally expensive use of extensive global informationjallsuggests the practicality
of lazy learning of adaptation rules based on local inforamatSection 5 compares
related work on using ensemble techniques in CBR and knagldight methods for
generating and applying adaptations for case-based stgindasks. Section 6 presents
conclusions and future work.

2 Learning and Applying Ensembles of Adaptation Rules

Our basic approach to adaptation rule generation builde®@nase difference heuristic
approach proposed by Hanney and Keane [3] and further eegblay others (e.g., [4,
5]). The case difference approach builds new adaptatias fubm pairs of cases and
compares their problem parts (respectively, solutionspaand identifies their differ-
ences to generate a candidate rule mapping the observeckdife in problems to the
observed difference in solutions. For example, for préuicapartment rental prices,
if two apartments differ in that one has an additional bedrpand its price is higher,
an adaptation rule could be generated to increase estimatedhen adapting a prior
case to predict the price of an apartment with an additioedfd®oom. Applying the case
difference approach depends on addressing questions swdhich pairs of cases will
be used to generate adaptation rules, how rules will be gegterand how the resulting
rule set will be applied to new problems. In the next sectiod discuss EAR’s strate-
gies for addressing these, and in Section 5 we compare tipgseaghes to previous
work.

EAR is a lazy approach to adaptation rule generation. Givemput problem, it
generates ensembles of adaptations as needed, basedelaqteekcriteria for (1) se-
lecting a neighborhood of cases in the case base from whigkrerate solutions by
adaptations, and (2) generating rules for adapting eadiosétcases, ranking the rules
for each case and combining the values of thertaples, and finally, combining the
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Algorithm 1 EAR'’s basic algorithm

Input:

Q: input query

n: number of base cases to adapt to solve query
r: number of rules to be applied per base case
CB: case base

Output: Estimated solution value for Q

CasesToAdapt +— NeighborhoodSelectiot,n,C B)
NewRules: — RuleGenerationStrateg(CasesToAdapt,C B)
for cin CasesToAdapt do
RankedRules— RankRulesVew Rules,c,Q)
Val Estimate(c) < CombineAdaptationg{anked Rules, c, )
end for
return CombineVals{cc casesToadapt V al Estimate(c))

values generated for each of the cases to adapt. This priscessimarized in Algo-
rithm 1.

2.1 Selecting Source Cases to Adapt

We consider three general alternatives for selecting thexci® adapt, defined by whether
they use highly local, local, or global cases:

1. Nearest: Select only the single nearest neighbor to theyqd-NN)

2. Local: Select the k nearest neighbors to the query (k-NMNafsmall value of
greater than 1)

3. Global: Select all cases in the case base

As we discuss in Section 5, adaptation learning methodgumarestandlocal case
sets have been considered previously in CBR, but the glgmbach is seldom used.
Because the global approach may consider cases quite is<irom the input query,
its feasibility depends on the quality of the adaptation emmhbination strategies used.

2.2 Selecting Cases from which to Generate Adaptation Rules

For each case selected to be used as a source case for athaptaticonsider three
options for selecting pairs of cases to be used to generafgtatibn rules, as listed
below. The strategies are described by their names, whieh the form StartingCas-
esEndingCases, where StartingCases describes a set sffeagéhich rules will be
generated, and EndingCases describes the cases to whithfélae StartingCases will
be compared. Each comparison results in a different rule,sngle starting case may
participate in the formation of many rules.

1. Local cases—Local neighbors: Generating adaptati@s twf comparing each pair
of cases in the local neighborhood of the query.
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Fig. 1. lllustration of (a) Local cases—Local neighbors, (b) Glatzses—Local neighbors, and (c)
Global cases—Global neighbors.

2. Global cases—Local neighbors: Generating adaptaties by comparing each case
in the case base with ifsnearest neighbors

3. Global cases—Global neighbors: Generating adaptaitles by comparing all cases
in the case base

Figure 1 illustrates the three methods. In each figure, thetiproblem is at the center.
Circles enclosed by dotted lines show neighborhoods ofsdasm which adaptations
will be generated, and a sample point is connected to thes agitle which it will be
compared to generate adaptation rules.

Potential Tradeoffs Combining each of the three selection strategies with ortbeof
three adaptation generation strategies gives nine pesagijroaches. Each approach
has potential ramifications for efficiency and accuracy @fdation.

Ramifications for efficiencyThe different methods provide different levels of effi-
ciency. Using Global cases to generate adaptations froralln@ighbors requires con-
sidering more rules than generating adaptations for loaaég only. Using Global
cases—Global neighbors, determining each adaptatioriresg(n?) processing for
a case base with cases, which may be infeasible for large case bases.

A related ramification is the potential for lazy learning dégtation rules as needed.
The Global cases—Global neighbors approach requires gsimgeall potential adapta-
tions. If this is applied to the system’s initial cases, a&rsét can be stored for future
use, avoiding re-calculation but potentially requiringnsinlerable storage and—if kept
static—not reflecting new cases added to the case base. tased—Local neighbors
is amenable to a lazy approach with just-in-time generaifoadaptation rules, which
could enable incremental adaptation rule generation, adkaptation rule generation
taking into account any new cases added to the case baseragiba of the query.

Ramifications for accuracytt is more difficult to anticipate the accuracy effects of the
strategies. For example, one might hypothesize that géngradaptation rules from
local cases would be beneficial because the adaptationesng ¢eenerated from the
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same area of the domain space as the input query, making tioeenlikely to properly
address the differences between the input query and thehasés). On the other hand,
limiting the scope of adaptations to the context of the inguery might sacrifice the
benefit of considering distant cases corresponding to aatesdaptations. This raises
the interesting question of locality of adaptation knovgedEven if case characteristics
for a particular case base are associated with particujgone of the case base, it is
possible that the needed adaptation knowledge is stillagidbat the relationships be-
tween their feature changes and value changes may be siagtdless of region. This
stance has long been taken implicitly in CBR systems whiake leeen designed with
a single set of adaptation rules applied in all parts of ttee ¢sse. To our knowledge,
the question of locality of adaptation knowledge has nonhtstadied previously, and
the following experiments shed some light on this questowall.

3 Using Ensembles of Adaptations

The methods described in the previous sections may resthieigeneration of many
adaptation rules, especially for global-global rule gatien. EAR’s adaptation rule
ensembles are composed of a subset of the selected rulesréase adaptation ef-
ficiency. To select rules, EAR ranks them by the similarityttod current adaptation
context and the context in which the rule was generated.

3.1 Defining Adaptation Context

After generating adaptation rules for an input query, EAiRrapts to determine which
of the generated rules are most relevant. It does this byidemsg both the similarity
of the new query and the case for which the adaptation wasrggeoke and the local
adaptation characteristics of the case base, which wehesdbaptation contextWhen
selecting adaptations to apply to generate a solution gtiery, EAR favors adap-
tations which have been generated for target problems iilasiadaptation contexts.
When global knowledge is used for generating the adaptgtion example, the cases
used to generate an adaptation rule may be quite different the query, but if the
adaptation addressed similar differences, it may stilldbevant.

Given a cas&’ in the case base, EAR calculates its adaptation context astarv
based on comparing to the N cases in a neighborhood containing its nearest neighbor
cases. For each case feature, the covariance betweentire faad the case solution is
calculated over the set of cases in the neighborhood.

Let C7 and Sol(C;) denote the value of thg" feature and the value of th&"
case respectively,yaseMeanVal denote the mean of the values of the cases in the
neighborhood, an@eatureMeanV al; represent the mean value of tjfé feature of
the cases in the neighborhood. Then jHeelement of the covariance vector for case
C'is calculated as follows:
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If f representsthe number of features, for any €asee defineAdaptContext(C)
to be the vectofCov:, Covs, ...Covy).

3.2 Ranking Adaptation Rules

EAR'’s adaptation rule ranking considers two factors. That fs the similarity of the
pair query - source case to adaghd the paitarget case - source case®m which the
adaptation rule was generated. The second is the simitzritye adaptation context of
the query to the adaptation context of the target case froithwthe adaptation rule was
generated. However, if the adaptations are generated fsoah tases-local neighbors
the second factor is discarded. The first factor favors adiapis generated to adapt
similar pairs of cases. For each feature, EAR calculategehéeature difference, based
on a domain similarity metric, and generates a differencéoref those values.

The second factor reflects similarity of the adaptation exinfas defined above),
and compares the adaptation context vectors of the querthartdrget case. The ratio-
nale is that the same feature difference between two casgsanaire different adap-
tations in different parts of the case space, so favoringsriiom similar adaptation
contexts may improve adaptation results.

EAR’s ranking method balances feature differences agamtegptation context dif-
ferences by taking the Hadamard (element-wise) produttefdature difference vec-
tor and the adaptation context vector. The ranking scorensptited as the Euclidean
distance between: (1) the Hadamard product of the adaptatiatext vector of the
case to adapt and the difference vector for the case to addpha input query, and
(2) the Hadamard product of the context vector of the admptaitile and the vector
representing feature differences of the composing castsabfule.

More formally, suppose querg is to be solved by adapting the caSg let A;
represent the difference vector of the features of the qQeandC;, and letR, be the
problem part of thet” adaptation rule. Let represent the Hadamard product of two
vectors. Then the second component of EAR'’s rule scorindpotkis calculated as:

d(As, R) = distance((AdaptContext(C;) o A;), (AdaptContext(Cr) o Ry))  (2)

If D(A;, R,)isthe distance betweef; andR,., then the final ranking of adaptation
rules is achieved by using a weighted average of D and d as:

RuleScore(R,) = a x D(A;,R,;) + (1 —a) x d(4;, R,) (3)

where0 < a < 1. The value ofz is set to tune the ranking for different domains.

3.3 Estimating the Target Value from a Rule Ensemble

In its simplest form, k-NN estimates the value of a query bgraging the value of its

k nearest neighbors. If Q is the query afidt(Q) represents its estimated target value
(solution), andSol (C;) represents the known solution value of tHenearest neighbor
of Q, then k-NN estimates the value of Q as:
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k
- Sol(C;
Bst(Q) = 2= 1) = C) 4)
For each base cage to be adapted to provide a value for a query, EAR computes a
weighted average of the values proposed by each ofithgghest-ranked adaptation
rules generated for that case by Eq. 3:;1fl < i < n are then top-ranked adaptation
rules in order of descending rank score,

SuggestedVal(C) = Z M 5)
1=1,n

The value for the query is then simply

- Zle SuggestedVal(C;)

) ©®)

Solution(Q)

4 Experimental Results

We conducted experiments to address the following questidiout extending case
adaptation with ensembles of automatically-generategdtatian rules:

1. Can using the automatically-generated ensembles ofatitays improve accuracy
over using a single adaptation?

2. How does accuracy compare for adaptations generateddaaivs. global knowl-
edge?

3. How does EAR’s accuracy compare to that of the baselimessgpn methods lo-
cally weighted linear regression and k-NN?

4. How does EAR’s accuracy compare to that of case-baseessign using standard
feature subset ensemble methods?

5. How does EAR's rule process ranking (based on adaptatiotext and case simi-
larity) affect its performance compared to the baselingd pfandom selection of
adaptation rules and (2) considering case similarity only?

4.1 Data Sets and Experimental Design

Our experiments use five data sets from the UCI repositorp{bmobile (A), Auto
MPG (AM), Housing (H), Abalone (AB), Computer Hardware (Clpr all data sets,
records with unknown values were removed. To enable cosgaxiith linear regres-
sion, only numerical features were used. (Note that if theafsadaptation context in
EAR is disabled, it could be used for symbolic features a$;\walluding those poten-
tially would have increased accuracy for EAR when local sdeeal neighbors strategy
is used for generating the adaptations). For each featalees were standardized by
subtracting that feature’s mean value from each individeaiure value and dividing
the result by the standard deviation of that feature. Talsiegrimarizes the characteris-
tics of the test domains.
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Table 1. Characteristics of the test domains

Domain name# features # casefAvg. cases/solutionsol. sd
Auto 13 195 1.1 8.1
MPG 7 392 3.1 7.8

Housing 13 506 221 9.2
Abalone 7 1407 176 1.22
Hardware 6 209 1.8 160.83

The experiments estimate the target value for an input q&enythe Auto, MPG,
Housing, Abalone and Hardware, the respective values imas are price, mpg,
MEDV (median value of owner-occupied homes in $1000's)gsiiffor the Abalone
data set we only selected cases with rings ranging 1-8), &Rl (published relative
performance) respectively. Linear regression and locatyghted linear regression
tests used Weka's [7] simple linear regression and locajgited learning classes
respectively. Accuracy is measured in terms of the Mean Alsderror (MAE) and
leave-one-out testing is used for all domains unless eXglinentioned otherwise.

Hill climbing was used to select the best neighborhood size@éch domain based
on the training data for calculating adaptation contextskting the weighting factor
a Egn. 3, and for determining the number of adaptations toidensThe number of
adaptations used for different variants of EAR dependinghentraining data ranges
from one for EAR9 to at most 40 for EAR1, EAR2 and EARS3. In alpexments
Euclidean distance is used as the distance function in equ2t Note that the use of
contextual information is disabled for versions of EAR thsaé the local-local strategy
to generate adaptations (i.e. EAR1, EAR4 and EARY).

4.2 Performance Comparison

To address experimental questions 1-3, we conducteddesigipare the results achieved
by each of the 9 versions of EAR, k-NN, linear regression (BR{l locally weighted
linear regression (LWLR) in the sample domains. Table 2 sanmes the results, which
we discuss below. Best values are indicated in bold.

4.3 Discussion of Results

Accuracy from Ensembles vs. Single Adaptationsin the experiments, EAR4 (local,
local-local), EARS (local, global-local), EARG (local,adal-global) and EAR9 (global,
global-global) usually yield the best results, suggestirggbenefit of generating adap-
tations based on multiple cases and selecting adaptatimmstfieir results to combine.
For most methods, the tuning process on the training datardated that generating
the final value from an ensemble of the top-ranked adap&tame the best results.
For example, EAR4 (local, local-local) yields its best fesin all domains ex-
cept Abalone) when usually five to nine adaptations are coethiThere were some
exceptions to the general pattern in favor of using ensesrdfladaptations. For EAR9
(global, global-global) in most cases using one adaptgi@mcase in the Auto, MPG
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Table 2. MAE of EAR, k-NN, LWLR and LR for the sample domains

Method _Domains
Auto (A)|MPG (AM)|Housing (H}Abalone (AB)Hardware (CH

EARL1: nearest, local-local 1.77 2.23 2.21 0.79 31.32
EARZ2: nearest, global-local | 1.66 2.22 2.2 0.82 31.04
EAR3: nearest, global-global 2.15 2.22 2.23 0.95 38.25
EARA4: local, local-local 1.38 1.90 2.04 0.60 28.74
EARS5: local, global-local 1.44 1.71 1.90 0.60 28.8
EARG: local, global-global 1.36 1.74 2.04 0.60 28.76
EAR?7: global, local-local 4,95 4.99 4.22 0.93 78.06
EARS: global, global-local 4.30 3.73 4.46 0.91 63.98
EAR9: global, global-global | 1.37 1.95 2.25 0.59 28.18
k-NN 1.61 2.00 2.74 0.61 29.12
Locally Weighted LR (LWLR) 1.61 2.02 2.54 0.68 30.82
Linear Regression (LR) 2.62 2.55 4.53 0.62 51.91

and Housing domains yields best results (for the Hardwaneadio, often two cases are
used). For the Abalone domain the optimal number of adaptsitbased on the training
data is on the order of 20, but the difference between usirgaataptation rule and
greater numbers is minimal (1%).

Effect of Domain Characteristics on EAR’s Performank¢e observed that EAR showed
less benefit for the Abalone data set than for the other dédaweh performance of
EAR often comparable to k-NN. We hypothesize that the le¥étnprovement from
EAR over k-NN could be related to the diversity of case sohuiin the case base.

If a relatively large number of cases share identical sohgiin a domain, and the
standard deviation of solutions is low, using an appropr&inilarity measure in a
retrieve-only system (e.g. k-NN) may be sufficient to geteegmod solutions with sim-
ple averaging combination, while with more diversity, madaptation may be needed.
Table 1, shows the average number of cases sharing the sarniersand the standard
deviation of the solutions in the sample domains, which shibnat these characteristics
of the Abalone data set are substantially different fromdtieer data sets. However,
more examination is needed.

Local vs. Global Knowledge for Generating Adaptations: Table 2 shows that in
most domains, the performance of EAR4 (local, local-loéalgompetitive with the
other versions of EAR, and is superior to the baseline methdelspite the fact that it
uses limited information. For example, comparing EAR4 te thost global method,
EAR9 (global, global-global), MAE'’s are 1.38 vs. 1.37, 19 €.95, 2.04 vs. 2.25, 0.60
vs. 0.59, and 28.74 vs. 28.18. Because it uses limited irdtam, it is computationally
much less expensive than the global methods. Thus the losthlad’'s performance at
worst has a minimal accuracy penalty, and sometimes isauiiesty better. Also, it has
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Fig. 2. Percent of improvement in MAE by EAR and LWLR over k-NN

the benefit of reducing computational cost and permittirags hpproach to adaptation
rule generation).

EARY7 (global, local-local) and EARS (global, global-lopakually yield the worst
results. In those two methods all cases are considered ashass for estimating the
target value, so adaptation generated from neighbor caggsot be appropriate for
addressing the differences between the input problem anlabe cases.

EAR vs. LWLR and k-NN In all domains, the performance of EAR4 surpasses or
equals that of the baseline methods, sometimes subshastialEAR4 has almost the
same performance as k-NN in Abalone and Hardware domairal dlomains, one of
the nine versions of EAR has the best performance.

In Auto, MPG and Housing domains that EAR4 shows higher aatias compared
to the other baseline methods, one side paired t-test istasgess$ess the significance of
those results. The null hypothesis is always MAE of EAR4 fééss than that of k-NN
and LWLR. For the comparison of EAR4 to k-NN in the Auto doma.007, in MPG,
p<.062 (so not significant), and in Housings®01. Same values for comparing EAR4
versus LWLR are g.051 (not significant), f10.05 and gc.001 in the same order.

Figure 2 contrasts the relative improvement of EAR4 overk{44%, 5%, 26%,
0% and 1%) with the relative improvement of LWLR over k-NN (0%%, 7%, -13%
and -6%) in the the Auto, MPG, Housing, Abalone and Hardwareains respectively.

EAR vs. Feature Subset EnsembleAs another baseline, we also compared EAR4’s
performance to a previously used approach for applyingrehkss to CBR, feature
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Method _Domains

Auto (A)|MPG (AM)|Housing (H}Abalone (AB)Hardware (CH
k-NN 1.62 2.06 2.67 0.61 30.3
FSE 151 2.28 2.48 0.7 27.51
EAR4 142 1.84 2.01 0.63 25.79

Table 3. MAE of EAR4, k-NN and the Feature Subset Ensemble methochfosample domains

Method .Domains

Auto (A)|MPG (AM)|Housing (H)Abalone (AB)Hardware (CH
EARA4: local, local-local 1.38 1.90 2.04 0.60 28.74
EARG: local, global-global 1.36 1.74 2.04 0.60 28.74
Random: local, local-local 2.54 2.11 3.04 0.61 38.95
Random: local, global-global 3.87 2.43 3.29 0.61 72.86
distance only: local, global-glohal 1.55 1.86 211 0.61 30.68

Table 4. MAE of EAR, k-NN, LWLR and LR for the sample domains

subset ensembles (FSE). FSE uses a combination of k-NNcpweglieach of which
predicts based on a different subsets of case featuresifeéets are of fixed size) [8].
The feature subsets are selected randomly with replacef@acih subset includes at
least two features), with each ensemble containing predidiased on 100 different
subset of features, with evaluation by ten-fold cross aiah. Both EAR4 and the
feature subset ensemble methods were compared with tretiphemeter settings, as
determined by hill climbing and leave-one-out testing anttiaining data for each fold.
For feature subset ensembles, this determined:thalue to use, and the number of
features to use. For EAR4, this determined the number of bases and adaptation
rules to be used. For each domain, the local neighborhoorsse¢ to contain the top
5% nearest neighbors of the input query. Learning was disibl both methods. Table
3, shows Mean Absolute Error for k-NN, Feature Subset Ente(MSE) and EAR4
(local, local-local) on the test domains.

The results in Table 3 show that EAR outperforms FSE in atldesnains. For the
Abalone domain, k-NN slightly outperforms both ensemblé¢hads, which we hypoth-
esize to be due to lack of domain diversity. Figure 3, showgptrcent of improvement
of EARA4 (local, local-local) and SFE over k-NN in the test dons.

4.4 Effect of Context-Based Rule Ranking

A final question is how much EAR’s context-based adaptatide ranking approach
benefits performance. We tested this by an ablation studpadng EAR4 and EARG’s
performance with three different ranking methods: (1) mndanking of adaptation
rules, (2) rule ranking by case distance only, and (3) EARjsraach, balancing case
similarity and adaptation context similarity.

As Table 4 shows, random ranking has the worst performanoaguother methods,
with especially bad performance for the global-global rd#) which generate more
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rules. The comparative difference appears to increasesfoaths with higher standard
deviation (e.g. Hardware), and is lowest for Abalone, whiels the largest average
number of cases per unique solution and the lowest solutéordard deviation. There
the random method shows same performance as the distayometiiod.

Expanding the pool of adaptations with global methods desme accuracy for
distance-only method in nearly all domains, while EAR is enaobust. This provides
some support for the contextual information in EAR enablirtg select more appro-
priate adaptations from the global pool.

5 Comparison to Previous Work

The EAR approach relates both to research on ensemble nsathG@BR and on auto-
matic adaptation rule generation for case-based regressio

5.1 Ensemble Methods in CBR

Ensemble methods aggregate results from a set of modelsnAenof general-purpose
approaches have been proposed, such as Bagging [9], p<Lirand random forests
[11]. In CBR research, ensemble methods have been applietpbrove accuracy by
combining solutions from multiple subsets of a case baseoon fnultiple case bases.
For example, Cunningham and Zenobi [12] propose improvicguaacy of nearest
neighbor classifiers by using an ensemble of classifier$, leased on different feature
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subsets. Arshadi and Jurisica [13] present an ensembleothé&ih combining predic-
tions of a set of classifiers built based on disjoint subsetages from the original case
base, for which the case features are selected locally by lmjistic regression. Li and
Sun [14] propose using an ensemble of CBR systems, with ralydgenerated feature
subsets used for similarity assessment in each individB& &ystem, and forming the
final solution by combining the results of those individugstems. However, to our
knowledge, previous CBR research has not considered thefusesembles of case
adaptation rules.

5.2 Learning Adaptations from the Case Base

Learning case adaptation knowledge is an active CBR rdseaea, for which many
approaches have been pursued. For reasons of space, wairdiscussion to methods
which learn adaptations from cases in the case base forssgretasks, rather than
more knowledge-intensive approaches for other types ofailusn

Case Difference Heuristics Wilke et al. [15] provide a starting point for knowledge-
light approaches to learning adaptation knowledge by dsiag different sources of
knowledge in a CBR system and general issues for designaayaihg algorithm. They
use their framework for two different approaches of leagralaptation knowledge:
weighted majority voting and case difference heuristiqos®ed by Hanney and Keane
[3]. The latter approach investigated by Wilke et al. is &mio ours in that it generates
adaptations based on case comparison. Though, their metiesddifferent strategies
for ranking rules (e.g. confidence rating for rules) and cosipg the final solutions
compared to ours.

McSherry’s [4] CREST (Case-based Reasoning for ESTimppoovides another
approach to generating adaptations from case differe@esn a case to adapt, Mc-
Sherry’s difference heuristic attempts to retrieve a cabihvdiffers from the input
query only in the value of a single feature, called the digtishing attribute. Next, a
pair of cases with the same values for the distinguishinthates as the query and (re-
spectively) the case to be adapted are retrieved, and théwobf the retrieved case
is adjusted based on their difference. Because more thasiorilar case may be re-
trieved for an input query, the final estimation of the tanggtie can be calculated by
averaging different estimations, generated by the sambkadeMcSherry’s method is
similar to EAR’s local approach, in generating adaptatibased on neighbors to the
input query. However, CREST adjusts the solutions of eade lsase by applying a
single adaptation, while EAR uses an ensemble of adaptation

McDonnell and Cunningham [5] refine the case differenceikgato address two
problems. The first is that the effect of variations in featualues on the solution may
differ according to the feature considered. The secondaisthie effect of variations in
a feature value on the solution may depend upon the valughef case features. Their
method generates adaptations by comparing the input qoergarby cases, selecting
cases for which the gradient is similar to the target caseduscal linear regression to
approximate the gradients), and deriving adaptations tteyee cases. This approach
is in the spirit of EAR’s context-based approach but not igiio ensembles of adap-
tations.
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Learning Adaptation Rules from Linear Regression Patterson et al. [16] propose
a rule acquisition process based on k-NN and regressiogsisaGiven a new prob-
lem, thek nearest neighbors are retrieved and combined in a new dizeeraase in
which features are the distance-weighted average of theidigl case features. The
k nearest neighbors are also used to train a linear regressidel for predicting the
difference between case solutions, which is applied to #rerlized case to predict
the target value for the input. Like EAR, this method useszg Epproach for gener-
ating adaptations; it differs in that it relies on linearmegsion and single adaptations
for generating and applying adaptations, instead of cdéerelices and ensemble of
adaptations, respectively.

Other Adaptation Learning Models for Case-Based Regressio Adaptation learn-
ing for regression also includes methods not based on diaset comparisons. Policas-
tro et al. [17] propose a method for learning and applying#ation knowledge from
a case base by using two components, estimators and comfénestimators they use
a multi-layer neural network, an M5 regression tree, andogstt vector machine. As
combiners, they consider the same three techniques, dppl@mbine the estimators’
values.

Craw et al. [18], Jarmulak et al. [19], and Wiratunga et al][@ropose automated
acquisition of adaptation knowledge by repeatedly partitig the case base to form a
small set of probe cases, retrievihgsimilar cases for each probe case, and building
adaptation rules based on pairs of probe cases and theiriemhbors. For each set,
their method creates rule sets, each one containing ataptaises that concentrate on
differences for a single feature. From those, their mettadecss rules whose decision
tree indexes have above-average predictive accuracy.i#hal solution is generated by
averaging, with possible refinement by adaptation rulek eddressing differences in
a single feature.

6 Conclusions and Future Research

This paper has introduced EAR, an approach for automatigaterating sets of adap-
tation rules from a case base based on case differences keatinge ensembles of
adaptations to apply. An experimental evaluation of ningaves of the EAR approach
showed that EAR variants generally increased accuracy lmasgline case-based re-
gression and linear regression approaches, and that rméra®n based on local in-
formation was sulfficient to obtain accuracy competitivehwtite best performance ob-
tained. Likewise, an ablation study provided support fer blenefit of EAR’s context-
based rule ranking approach.

Opportunities for future research include developing nmewphisticated adapta-
tion selection and combination techniques, exploring oémsemble methods for the
generation and combination of adaptations, and examining BAR could apply to
knowledge-rich domains. Yet another direction for extaegdhis work is considering
the confidence of cases to adapt and the adaptation rulesi E#at is to some ex-
tent explored in [21]. Also the question of comparative Higioé using local vs. global
adaptations is an interesting one for future research.
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