
A Research Agent Architecture for Real Time Data
Collection and Analysis

Travis Bauer
Computer Science Department
Lindley Hall, Indiana University

150 S. Woodlawn Avenue
Bloomington, IN 47405, U.S.A.

trbauer@indiana.edu

David Leake
Computer Science Department
Lindley Hall, Indiana University

150 S. Woodlawn Avenue
Bloomington, IN 47405, U.S.A.

leake@indiana.edu

ABSTRACT
Collecting and analyzing real-time data from multiple sources re-
quires processes to continuously monitor and respond to a wide
variety of events. Such processes are well suited to execution by
intelligent agents. Architectures for such agents need to be gen-
eral enough to support experimentation with various analysis tech-
niques but must also implement enough functionality to provide a
solid back end for data collection, storage, and reuse. In this paper,
we present the architecture of Calvin, an research grade agent sys-
tem for supporting and analyzing users’ document access. Calvin
provides specific applications for collecting, storing, and retrieving
data to be used for information retrieval, but its extensible object
oriented implementation of resource types makes the architecture
sufficiently flexible to be useful in multiple task domains. In ad-
dition, the architecture provides the ability to capture and “replay”
data streams during processing, enabling the automatic creation of
data testbeds for use in experiments comparing alternative analysis
algorithms.

1. INTRODUCTION
Calvin is a Java-based agent system for researching agent-based
personal information retrieval. Calvin monitors users while they
are using a computer, recording and analyzing the documents they
access. It then indexes resources accessed and suggests previously
indexed documents, based on their relevance to the user’s current
task. Developing infrastructures for intelligent agents that monitor
and support users presents two broad problems. The first is how to
perform data accumulation and storage. An infrastructure needs to
be in place to collect data by recording the user’s actions and or-
ganize that information for convenient analysis. The second broad
problem is how to use the data to identify and satisfy user needs. In
Calvin, this corresponds to how to analyze the documents accessed
in order to identify task contexts, and how to index new documents
by context to assure proper future retrieval.

Calvin’s Java-based infrastructure focuses on solving the former

Figure 1: Main User Interface

problem in such a way that researchers can focus on solving the
latter. This lets Calvin serve as a research grade agent system which
can serve different data collection and analysis tasks beyond those
being investigated in our research. Calvin’s architecture provides
a general purpose framework for collecting and recording data of
customizable types. By providing a flexible interface at various
levels, it is easy to change and upgrade individual parts of Calvin
without substantial modifications to the entire architecture.

Central to Calvin is the ability to capture and replay streams of col-
lected data. This enables researchers to save and reuse standardized
test beds of data streams. This allows fair comparison among dif-
ferent analysis techniques, because they can be applied to exactly
the same set of data.

2. OVERVIEW
Calvin has been designed and implemented in the context of sup-
porting users as they access documents. As the user browses, Calvin
records the documents which the user is accessing. From these doc-
uments, Calvin uses information retrieval techniques to create an
index for each document reflecting its subject matter. These doc-
uments are retrieved and suggested to the user when similar docu-
ments are accessed in the future. A screen shot of Calvin’s resource



Figure 2: Calvin’s Architecture

suggester is shown in figure 1. Calvin’s task and user interactions
are described in detail in [8].

Although Calvin was designed in the context of information re-
trieval, its architecture was designed to be general enough to en-
able using its components in multiple task domains, and for its data
storage techniques to be applied in other research contexts where
processing data needs to be collected and analyzed for system eval-
uation.

Calvin’s architecture is shown in figure 2. Calvin includes sub-
agents as part of an extensible system to collect data from various
sources and send the information for analysis via an XML message.
This information is analyzed by a researcher-defined “Data Analy-
sis” component. This component conforms to a specific interface
specification so that data analysis components can be changed out
without changing the rest of the system. The kinds of data which
can be passed among system components are specified in a registry
and are customizable. This configuration allows researchers to use
Calvin to perform the data collection/storage and focus on issues of
analysis.

Calvin’s architecture has the following features:

1. Data Collection

(a) Flexible data collection techniques for knowledge en-
gineering or machine learning focused approaches to
information analysis.

(b) Information collection from a diverse extensible set of
resource types.

(c) The ability to inter-operate in a multi-agent/multi-platform
data collection environment using XML.

2. User Interaction

(a) An agent user interface for making suggestions to users
and allowing the user interaction.

(b) A user interface for gathering data for controlled exper-
iments.

3. Data Analysis

(a) Creation/use of a test bed of document access behavior
for standards creation.

(b) Facilities for simulating/replaying user browsing.

(c) Plug-and-play data analysis component interfaces for
experimenting with multiple types of analysis without
altering the infrastructure.

4. Implementation

(a) Written in Java for cross-platform development/experimentation
and uses a number of freely available packages.

(b) Uses standard protocols for exchanging information for
easy data analysis in third party packages.

The following sections discuss each of these in turn.

3. DATA COLLECTION
Calvin supports a distributed multi-agent approach to data filter-
ing. The “XML Executor” module accepts connections via TCP/IP
for the transmission of information about new documents. Agents
which monitor the user communicate their information via XML.
To report a document access, the monitoring agent opens a connec-
tion to the XML Executor and sends an XML message containing
the document information. The Executor then replies with a mes-
sage indicating whether or not it was able to parse the message.

Currently, our primary monitoring agent is a Java proxy server
which monitors WWW browsing behavior and reports the pages ac-
cessed. However, using XML over TCP/IP allows non-java agents
to easily interface with Calvin, and allows a potentially large num-
ber of different agents to gather information without requiring any
further modifications to Calvin itself. For example, Windows API
calls provide much information about user document access. Planned
future development of Calvin includes writing an agent to access
these API calls and send document information to Calvin.

Two way communication is supported in Calvin to eventually en-
able agents to send queries through the XML Executor to learn
about the user, and to allow user interfaces to control the sub-
agents. Currently our XML specification does not provide this syn-
tax, but it could easily be added.

Although the primary kind of user resource access we are currently
studying is WWW browsing behavior, Calvin is extensible to han-
dle different resource types, including document references manu-
ally entered by users. This extensibility is handled via the Resource
Registry. Using a predefined interface, programmers can write Java
resource handlers and add references to them in the registry. A re-
source handler defines how to communicate information about a
document internally among Calvin resources, user interfaces for
displaying/editing meta information about the resource, and how to
automatically retrieve the resource referred to.



These Java classes are registered with the Resource Registry through
the Registry editor. Once they are registered, Calvin uses the regis-
tered information to determine how to treat references to the spec-
ified type of document. Because the resource handlers implement
predefined interfaces, no modifications are necessary to the Calvin
source code to deal with these resources; the new resource types
are seamlessly integrated with Calvin. This makes Calvin cus-
tomizable to different kinds of environments where different doc-
ument access recording goals may be required. To support our
research, Calvin has pre-defined default handlers for the follow-
ing types of documents: WWW Document, Email address, Phone
number, Book, and electronic concept maps [10] (a type of graphi-
cal knowledge representation).

The following illustrates the use of the resource registry. When
Calvin is running and the WWW proxy server sends it an XML
message, the proxy server identifies its resource type by including
a field “<type>0</type>.” Before further processing of the mes-
sage, Calvin asks the resource registry for an instance of a class cor-
responding to resource type id 0. The registry responds with an in-
stance of theWebURLResourceclass, which is a descendent of the
ResourceModelclass. Calvin then parses the rest of the XML mes-
sage using the API specified byResourceModel. Once the message
is fully parsed, the instance ofWebURLResourcecan be accessed
to manipulate the resource. Section 7 provides more information
on the primitives for manipulating resources.

4. USER INTERACTION
User interaction with Calvin occurs through one of three different
interfaces. The “User Interface” is designed to be used by an end
user in day to day interaction with Calvin. The user interface used
in our research is shown in figure 1. Through this interface, Calvin
suggests resources to the user. The user can also see a list of the re-
sources Calvin has accumulated from the current browsing session.
Users can set up customizable filters to prevent indexing particu-
lar kinds of documents (such as documents containing the user’s
name, or advertisements from web browsers). Different data analy-
sis components may also have various user-controlled parameters,
or special diagnostic displays to show the user. The user interface
is designed such that different data analysis component can provide
different displays to the user without requiring changes to the user
interface itself.

When performing experiments to study the behavior of a data anal-
ysis technique, one may not want the user to receive so much infor-
mation, or have such control over the system. In addition, it may
be necessary to request additional user feedback. To facilitate col-
lecting data for experiments, Calvin includes a “Task Generator”
which provides a different user interface to the Calvin system. This
interface presents the user with a series of tasks which the experi-
menter determines beforehand. After the user spends some speci-
fied amount of time on the task, a new window is displayed to ask
the user experimenter-defined questions. Figure 3 shows a sample
survey developed for an experiment on user browsing behavior.

During the experiment, the system keeps records not only of re-
sponses, but also of the task context in which those responses oc-
curred. Information about every document accessed is gathered and
stored, including the document location, full text of the document
(if available) and document title, and a time stamp when the doc-
ument was accessed. This information, along with the answers to
the surveys are cross indexed according to an internally assigned id
number and unique document id.

Figure 3: Task Generator Interface

5. DATA ANALYSIS
At the core of an information retrieval agent is the ability to ana-
lyze, index, and retrieve documents in a useful way. Calvin’s ar-
chitecture provides the infrastructure for manipulating documents.
This frees the researcher from thinking about how to integrate the
resources with Calvin to focus on the more interesting research
question of how the data in the given task domain should be an-
alyzed. Calvin provides “Plug-and-Play” data analysis modular-
ity so researcher can experiment with different data analysis tech-
niques with minimum effort.

An abstract Java class has been defined which performs most of the
background work in storing and retrieving documents. This class
also tells the rest of Calvin how to interact with any future data
analysis component. When this abstract class is extended, different
data analysis techniques can be implemented to control the behav-
ior of the data analysis component. Because the extended classes
obey the predefined interface, Calvin can use any such data anal-
ysis component without modification. Taking advantage of Java’s
dynamic class loading, the end user GUI and the Task Generator
take the data analysis component as a parameter on the command
line when the program is executed. This flexibility lets a developer
experiment with different kinds of data analysis component with-
out having to continually change the rest of the code. This frees
the experimenter to deal with the research issues of information re-
trieval and not the technical details of dealing with a database back
end for the user interface.

6. REPLAYING DATA STREAMS
Both the end user GUI and the Task Generator can automatically
collect data streams, which in the context of information retrieval
are sequences of document accesses. The system stores the time
stamp, and full document text, providing the information needed
for programs to “replay” the web search to the data analysis com-
ponent. In Java, this replay is implemented as an Iterator. After
specifying the path the user wants to replay, going through a past
instance of user behavior is as simple as creating afor loop.

The ability to replay user behavior provides an important advantage



for research in personal information agents: it allows the creation
of a test bed of data accumulated from user interactions with the
system, to use as a standard for comparing different kinds of infor-
mation retrieval. Information retrieval agents are sometimes tested
on manually-collected test sets of documents, which are used to
simulate document access. The Reuters collection, a set of pre-
categorized new articles, is an example of such a test set. One
problem with such test sets is that the documents are already sifted
and organized and thus do not represent the same kind of informa-
tion stream that occurs in real user behavior. Passing a set of docu-
ments from the Reuters collection through an agent is much differ-
ent from providing the actual text that gets passed to a web browser
during information search. Consequently, results from testing an
agent against the Reuters collection may not be indicative of ex-
pected performance during actual use. However, always relying on
test with real users is problematic as well: it is unrealistic to test
real users on hours of web searching to test small improvements
to the algorithm. Even if subjects were available, variation in the
documents accessed would reduce certainty that any change in per-
formance was due to changes in the algorithm rather than variations
is user behavior.

The ability to capture test beds of past document access solves
this problem. The stored documents are what users really accessed
(even the advertisements can be stored), and the same test bed can
be sent to multiple versions of IR algorithms. This assures that
when new versions of the algorithm are tested, any changes in the
performance of the algorithm are due to the algorithm, and not just
variation in user behavior.

For example, we are currently developing textual analysis tech-
niques to automatically identify keywords which serve as topic
identifiers for specific user interests. The textual analysis code has
undergone multiple revisions as we explore various approaches. By
wrapping our analysis code into a class descended from Calvin data
analysis abstract class, we do not have to change Calvin itself to
explore different analysis methodologies. By replaying past data
streams (in this case, sessions of web browsing), we can see how
the analysis techniques are improving against a standard set of data.
Because our current analysis techniques are stochastic, we also run
the algorithm against the same data set multiple times to measure
the variance in performance.

7. IMPLEMENTATION
Most of Calvin is written in Java, allowing it to be developed and
tested in Windows, Unix, and Linux. The use of inheritance among
the classes allows various components to be extended and recom-
bined for different research tasks. The goal is to maximize the
ability to reuse components so that when the research goals shift
slightly, obsolete components can be deleted without requiring ex-
tensive rewrite of other components. This is achieved in part by
abstracting both resource types and data analysis components. By
defining abstract operations over resources, the specific kinds of
resources used in Calvin can change without requiring Calvin it-
self to change. The primitive operations defined for a resource are
shown in table 1. As described previously, new resource types are
added to Calvin by writing a class which implements these opera-
tions for the new resource type. This class is added to the registry,
effectively integrating the new type into Calvin without changing
Calvin itself.

In order to abstract the data analysis component, we assume that ev-
ery implementation of a data analysis component analyzes a stream

displayMe Displays information about the resource
editMe Displays a window for the user to edit the

information
fetchMe Load the resource into its native applica-

tion
get/set Content Returns or changes the full text of the re-

source
get/set IdString Returns or changes the short natural lan-

guage description of the resource
get/set Location Returns or changes the location of the re-

source (such as URL, disk location, etc.
get/set Memo Returns or changes user comments on a

resource
get/set ResourceId Returns or changes a unique internal iden-

tifier for the resource
get/set TypeId Returns or changes the identifier for the

type of resource this is.

Table 1: Primitive operations defined on Resources

closeContext Stop using the current context
closeResources Find resources sufficiently

similar to the current context
contextId Return the unique id for this

context.
currentResources Return the resources which

have been accessed during this
research session.

deleteResource Remove all references to this
resource from the database.

getControlPanel Return a graphical control
panel for users to change pa-
rameters and/or see the perfor-
mance of the current context.

getUserList(Resource List) Return a list of all users who
have accessed this resource.

ignoreResource(resource id) Do not count this resource as
having been accessed during
this research session.

initialize Prepare the context for use for
a specific research session.

initModel Set up any underlying database
structures necessary for this
context model to work prop-
erly. Only can be done once
per database.

registerHint Tell the context model about a
particular phrase that might be
relevant to this context.

registerResource(resource) Tell the data analysis compo-
nent that a particular resource
has been accessed.

retrieveResource(resource id)Return the particular resource
from the database.

Table 2: Primitives operations defined on contexts. As de-
scribed in the text, “Context” in this table refers to a stream
of data. A data analysis component processes the data stream
to learn context-based indexing features for the documents the
user accesses.



Figure 4: Postgresql Text Interface

of data, which we call a context. A data analysis component can
then be defined abstractly as a set of operations over a context. See
table 2 for the set of operations. By building classes that implement
these operations, all the components of Calvin can use multiple, di-
verse versions without modification.

The only part of Calvin that is not written in Java is the Postgresql
database used to store data for later retrieval and analysis. Post-
gresql is an open source object relational SQL database server.
Calvin components communicate with it through a JDBC driver
over a TCP/IP connection. Although this reduces Calvin’s ability
to be deployed on a wide scale for individual use, the SQL database
makes it much easier to analyze and store large amounts of data.
Data in Postgresql can be retrieved one of any number of ways.
Postgresql’s ODBC driver lets one import it into Microsoft Access
or SPSS. The JDBC driver lets one access it via Java. Or one can
use the command line sql utility included with Postgresql to access
it directly.

Our infrastructure also includes utilities that process the data col-
lected by Calvin to show how our information retrieval algorithm
would have performed had the users been using an agent with some
given data analysis component. Figure 4 shows the results of one
such experiment, in which the average performance of theterm fre-
quency/inverse document frequencyindexing algorithm compared
to our current data analysis component. In this example, the data is
grouped by user. But because of the infrastructure built into Calvin,
with this data stored in the database, one could just as easily group
by document, document length, or other attribute to perform any
number of analyses.

8. TRADEOFFS
There is a tradeoff between flexibility and deployability in building
research agents. Because Calvin stores its information in an SQL
database back end, Calvin would be difficult to deploy to end users
for wide scale testing. The database back end makes is easier to
manipulate and analyze data in research situations, but it makes the
software bulky for deployment. To make the system deployable,
the agent would only store as much data as was needed, and use a
simplified database which has only the needed features needed for
the functioning of the chosen analysis engine.

Another tradeoff has to do with the capabilities of the agent toolkit.
Flexibility was a design goal, but it is inevitable that constraints

be put on the what kinds of information Calvin-based agents could
perform. The Calvin toolkit is designed to analyze documents as
the user accesses them. This is consistent with many kinds of exist-
ing personal information agents, but is inconsistent with support-
ing some approaches, such as the one taken by Rhodes’ Remem-
brance Agent [11] (see section 11). Remembrance Agents suggest
resources which are not necessarily accessed by the user, but have
previously been indexed. Calvin’s nature is to index documents
as they are accessed, including documents such as WWW pages
which are not on the user’s hard drive.

Also, Calvin’s multi-agent extensibility is purchased at some ex-
pense of complexity of use. Each agent has to be started individ-
ually because it is a separate application from any particular data
analysis agent. However, this is an issue that can be dealt with
by improving the XML messaging component of Calvin. With
improved complexity in the kinds of messages Calvin can send,
Calvin could start and control different agents from a common user
interface.

9. FUTURE WORK
One area for improvement is the architecture’s XML message pass-
ing. The message passing architecture is in place, but the vocab-
ulary to which the toolkit is responsive could be improved to sup-
port two-way communication. Also, the ability for particular agents
to extend the vocabulary of the XML Executor module would en-
hance the toolkit’s usability. For example, currently the monitoring
agents which send information to Calvin function as independent
programs. If they could be made to respond to commands speci-
fied in XML such as “stop monitoring,” or “return status,” a control
panel could be added to Calvin’s user interfaces to control all the
agents from one central panel.

Finally, a Java-based client database system would increase Calvin’s
distributability. Such a database system would relieve Calvin’s
reliance on a separate database server. This would increase the
processing burden on the client workstations, but would provide a
more compact software package. Existing products, such as In-
stantDB (http://instantdb.enhydra.org) do not have enough func-
tionality to be useful yet for Calvin, although they are getting close.

10. AVAILABILITY
Many of the reusable utility classes we developed to build Calvin,
along with other related classes useful in agent/AI research, have
been released in the IGLU Java source code library, available from
http://www.cs.indiana.edu/˜trbauer/iglu. It is released under a FreeBSD-
like license. We welcome suggestions and contributions.

Some of the other components used in Calvin are also freely avail-
able. The database back end, Postgresql is an open source project
released under a FreeBSD-like license and is available for down-
load at http://www.postgresql.org. Numerous XML parsers are freely
available for Java. Calvin uses XMLtp, available from
http://mitglied.tripod.de/xmltp. XMLtp is also released under a
FreeBSD-like license.

The full Calvin toolkit has not been released. However, we wel-
come discussion on possible cooperative efforts to use and enhance
the toolkit for greater use.

11. COMPARISON TO IR AGENT ARCHI-
TECTURES



There are many other information retrieval agents which try to record,
analyze, and respond to user behavior. The Watson project [2] ana-
lyzes the format of a document and relevant keywords are extracted
to make a web search. The Watson project is not built as an appli-
cation of a general agent toolkit, which would probably make it
more difficult to be adapted to new kinds of IR agents. However,
unlike Calvin, it is quite distributable because it requires no central
database.

Remembrance Agents [11], which analyze existing documents on
a person’s hard drive and suggest them at appropriate times, use
a common engine for analysis, so some of the existing analysis
code is usable in multiple agents. Calvin, rather than focusing
on reusable analysis code, focuses on reusable infrastructure into
which different analysis algorithms can be run.

Some agents use an architecture which is similar to Calvin’s [7, 6,
9]. These architectures use a proxy server to analyze pages being
accessed by the user. The architectures focus more on observing
WWW browsing activity than Calvin, which is built to support mul-
tiple data types. Unlike these architectures, Calvin has abstracted
the notion of a resource so that resources of any type can be used.

Many other IR projects develop personal information agents to sug-
gest resources to users. In the existing literature, however, the focus
is often on the analysis techniques rather than on reusable architec-
tures. Such agents [4, 1, 3] can observe document access for analy-
sis. However, the focus on published literature of these agents is not
reusability of the infrastructure, but the analysis of the documents.

Other software projects have gathered information about user ac-
tivity, but not for the purpose of information retrieval. Gorniak and
Poole [5], for instance, developed a system which records keystrokes
in Java applications by forcing the applications to use a customized
event queue in the Java machine. This kind of data collection tech-
nique is quite amenable to the Calvin architecture: A sub-agent
could be implemented to gather this data and send it to the XML
Executor.

12. CONCLUSION
Calvin is a research grade agent system which observes users ac-
cessing documents. It provides facilities for building agent that
can index the documents, and make suggestions based on the doc-
uments accessed. The process of indexing and suggesting has been
abstracted so that multiple data analysis components can be imple-
mented without modifying the architecture. Interactions can auto-
matically be recorded and “replayed,” allowing the automatic cre-
ation of a test bed of data sets for determining the performance of
analyzing algorithms. The kinds of resources the agents can rec-
ognize, as well as the ways in which the resources are accessed are
extensible because of a built in resource registry and XML message
passing over TCP/IP connections. Calvin is designed to help free
the researchers from thinking about data storage/infrastructure is-
sues, so that they can focus on the information analysis elements of
the research.

13. REFERENCES
[1] E. Bloedorn, I. Mani, and T. R. MacMillan. Representational

issues in machine learning of user profiles. InProceedings of
the Thirteenth National Conference on Artificial Intelligence
and Eighth Innovative Applications of Artificial Intelligence
Conference, 1996.

[2] J. Budzik, K. Hammond, and L. Birnbaum. Information
access in context. InKnowledge based systems, 2001.

[3] J. R. Chen, N. Math´e, and S. Wolfe. Collaborative
information agents on the world wide web. InProceedings of
the third ACM Conference on Digital libraries, pages
279–280, 1998.

[4] W. W. Cohen. Learning rules that classify e-mail. InPapers
from the AAAI Spring Symposium on Machine Learning in
Information Access, pages 18–25, 1996.

[5] P. Gorniak and D. Poole. Predicting future user actions by
observing unmodified appliations. InProceedings of the
2000 National Conference on Artificial Intelligence. AAAI,
2000.

[6] M. Jaczynski and B. Trousse. WWW assisted browsing by
reusing past navigation of a group of users. In B. Smith and
P. Cunningham, editors,Advances in Case-Based Reasoning:
4th European worskhop, Lecture Notes in Artificial
Intelligence, pages 160–171, Doublin, Ireland, 1998.
Springer-Verlag.

[7] T. Joachims, D. Freitag, and T. Mitchell. Webwatcher: A tour
guide for the world wide web. InProceedings of IJCAI97,
August 1997.

[8] D. Leake, T. Bauer, A. Maguitman, and D. Wilson. Capture,
storage and reuse of lessons about information resources:
Supporting task-based information search. InProceedings of
the AAAI-2000 Workshop on Intelligent Lessons Learned
Systems, Menlo Park, CA, 2000. AAAI Press.

[9] H. Lieberman. Letizia: An agent that assists web browsing.
In Proceedings of the International Joint Conference on
Artificial Intelligence, August 1995.

[10] J. Novak and D. Gowin.Learning How to Learn. Cambridge
University Press, New York, 1984.

[11] B. J. Rhodes. Margin notes: Building a contextually aware
associative memory. InProceedings of the 2000
international conference on Intelligent user interfaces, pages
219–224, Jan 2000.


