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Abstract

Component-based problem-solving environments (PSEs) provide scientists and engineers with a framework of
integrated problem-solving tools and resources that they can easily compose and apply in their particular task
domains. Developing e�ective solution strategies within these environments depends on making good choices
about the selection, parameterization, and organization of component tools and resources. Because making good
choices may require considerable e�ort and expertise, designing \intelligent" components that can make informed
recommendations about solution development will play a valuable role in realizing the full potential of PSEs. As
part of an overall e�ort in software component systems and PSEs for scienti�c computing at Indiana University,
the CBMatrix project is developing \intelligent recommender components" that use case-based reasoning (CBR)
methods to assist in selection, organization, and application of scienti�c PSE tools and resources. This paper gives
an overview of the CBMatrix project, the issues involved, initial results, and the recommender components under
development.
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1 Introduction

Scienti�c problem-solving environments (PSEs) provide scientists and engineers with a framework of integrated
problem-solving tools and resources that they can easily compose and apply in their particular task domains (e.g.,
[12, 14]). Increasingly, PSEs are being developed as applications of component architectures [3]. Component archi-
tectures simplify and expedite the solution design process by encapsulating functional units of executable code with
high-level interface speci�cations for composition; by facilitating the design and execution of distributed applications,
enabling them to be composed from standard component services and resources; and by supporting distributed and
collaborative problem-solving. Projects such as the DOE Common Component Architecture (CCA) [3], for example,
de�ne speci�cations enabling scientists and engineers to write software components for high-performance comput-
ing that can be reused and composed in a wide range of computing environments. This paradigm of composing
functional software units and resources shifts the focus of problem-solving from iteratively building workable system
implementations to interactively designing optimized solution strategies from existing high-level components.

Designing e�ective PSE solution strategies depends on making good choices about the organization and con�g-
uration of component tools and resources, and considerable expertise may be needed to achieve full bene�t from
the tools and resources provided by a PSE. Consequently, arti�cial intelligence methods to develop \recommender
systems" [20] to guide tool selection, organization, and application have a valuable role to play in realizing the full
potential of PSEs [1, 11, 26]. In particular, the component paradigm a�ords signi�cant opportunities for integrating
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\recommender components" that users may invoke to aid them in selecting and con�guring individual components,
composing multiple components, and in selecting, monitoring and managing computing resources.

CBMatrix is an ongoing research project in augmenting scienti�c PSEs with recommender components to support
both novice and expert problem-solving. It is part of an overall e�ort in software component systems and PSEs for
scienti�c computing at Indiana University (e.g., [28, 12]), and it focuses on applications of case-based reasoning (CBR)
[21, 23, 29] as the arti�cial intelligence methodology for making recommendations. Case-based reasoning systems reason
and learn by storing records of speci�c prior problem-solving and re-applying their lessons in analogous situations. By
unobtrusively recording the decisions of experts as they use a PSE to solve problems, and providing those decisions
as suggestions to guide new problem-solving, CBR provides a vehicle for capturing and sharing expert knowledge.

This paper describes our perspective on recommender components in scienti�c PSEs, presents the motivations for a
case-based reasoning approach to recommendations, and illustrates this approach with developments in the CBMatrix
project. We draw examples from our work with the Linear System Analyzer, a problem-solving environment for
developing strategies to manipulate and solve large-scale sparse linear systems of equations [12].

2 Recommender Components for Scienti�c Problem-Solving

The goal of developing recommender components is to increase the e�ectiveness of problem-solving activity in PSEs.
There are two important and complementary ways to further this goal, and they in
uence how recommender compo-
nents are constructed and used. The �rst, user support, deals with helping the user to make decisions more e�ectively.
For example, one way to support a user in setting the parameters for a linear solver might be to invoke a particular vi-
sualization tool|helping the user to understand the nature of the matrix in question, in order to select an appropriate
parameterization. While the visualization tool itself is not part of the component solution strategy (linear system !

parameterized solver ! result), it may have played a key role in parameter choice for a similar prior problem-solving
episode, and thus a user support recommender component could suggest using the visualization tool as part of cur-
rent solution setup. The second, component support, is aimed directly at optimizing the operation of components and
component compositions. For example, a component might directly recommend the best data structure representation
for a sparse linear system, based on characteristics of the system, in order to achieve good performance with a given
solver.

2.1 Recommendation Types
Recommender components can be useful at all levels of scienti�c problem-solving, from high-level mathematical model-
ing to mesh manipulation to (non-)linear algebra to data analysis and visualization. Regardless of the level in question,
we can typically divide possible types of recommendations into one of the following categories. Each of the following
provides a suggested mapping: user task + task context ! recommendation.

� User Support: Given the description of a user task and intended decision, propose resources that can provide
helpful information to better enable the user's decision making. This could be applied as an alternative or
addition to any of the component-based recommenders described in the following points.

� Strategy Selection: Given a speci�cation of the problem to be solved, select an overall strategy for addressing
the problem. For example, given a matrix, select a set of preconditioners and a solver that would give a good
solution.

� Component Selection: Given the context (e.g., the characteristics of a di�erential equation or linear system to
solve) in which a needed component (e.g., some linear solver) will be executed, recommend the best component
for the task (e.g., a particular sparse linear solver). Note that the context could be richer, for example, in
selecting a preconditioner for a given linear system and solver.

� Component Parameterization: Given a component that takes parameters, and a context for that compo-
nent's execution, recommend the best values for the parameter set. Note that some parameters may be �xed by
the user, and would become part of the context. Note also that remaining parameters could be recommended
based solely on a partially speci�ed parameter set, a kind of parameter completion recommendation.

� Resource Selection: Given a software component that needs to be executed, as well as the parameter settings
and input to that component (or a description of the input), recommend a computational resource to use when
executing the component. This could involve selecting the initial resources for a run or selecting more appropriate
ones during a run, for components to automatically move themselves to more appropriate resources.

Recommenders for PSEs must also be 
exible enough to support to users with varying levels of expertise, providing
the information they need and shielding them from super
uous information. Recommender components should serve
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these goals for novices by guiding their decision-making, and for experts by providing them with advice when needed,
along with explanations to help them evaluate the advice provided.

2.2 Arti�cial Intelligence Recommendation Methods
An intelligent component library for scienti�c computing may include a range of components using di�erent arti�cial
intelligence methods individually or in combination. For tasks that are well understood a priori (e.g., selecting direct
methods for dense matrices), experts can specify a set of rules that fully cover the range of recommendations associated
with varying circumstances. Thus these types of recommenders leverage an existing strong domain theory. Traditional
rule-based expert systems have been integrated into a number of scienti�c systems (e.g., for con�guring PDE solver
libraries [22], for selecting elliptic PDE solution methods [10], and for selecting ODE numerical solvers [19]). Because
the methods rely on static pre-de�ned knowledge, they are considered non-learning.

For tasks without hard-and-fast rules (e.g., selecting preconditioned iterative methods for non-symmetric system-
s), techniques that learn how to make recommendations by using sets of previous examples are more appropriate.
Eager-learning methods (e.g., induction of decision trees, backpropagation in neural networks, and inductive logic
programming) attempt to make generalizations based on a given set of examples (e.g., by deriving a set of rules).
The generalizations are then used to make recommendations. This presumes that there is an implicit and relatively
strong domain theory that can be exposed from the given set of examples. Research on agent-based frameworks
for distributed, collaborative problem-solving and simulation [17], for example, has extended and integrated earlier
research on neuro-fuzzy techniques for categorization as part of addressing the algorithm selection problem for elliptic
PDEs [30]. More recently, inductive logic programming techniques have been used to learn rules for tasks such as
numerical quadrature [27], and analyzing performance e�ects in elliptic PDE solvers [14].

For learning tasks in which there may not be a relatively strong domain theory implicit in the working set of ex-
amples, lazy-learning methods (e.g., instance-based learning, case-based reasoning) that reason from speci�c examples
instead of generalizations are more appropriate. In terms of processing, lazy-learning methods typically incur a greater
on-line performance cost, but they have a much lower cost for incremental learning of new examples.

Our research concentrates on applications of case-based reasoning methods. Case-based reasoning is an arti�cial
intelligence methodology for reasoning and learning from stored records of speci�c experiences with analogous prior
problems. Learning is an intrinsic part of the case-based reasoning process, because the solutions to prior problems
and their outcomes are saved as cases to extend the reasoner's knowledge. When similar situations arise in the future,
successful prior cases are retrieved to suggest useful reasoning to reapply, and failure cases are retrieved to warn about
potential problems to avoid.

Because CBR systems can learn from single examples without requiring that those examples be generalized, CBR is
an appealing method for automatically capturing information without traditional knowledge engineering. In addition,
case-based reasoning can be helpful even if few examples are present. Whenever a relevant case is available, it can be
applied; the system can be useful without having cases covering the entire space of potential problems. CBR has been
applied to scienti�c computing tasks such as algorithm selection for solving elliptic PDEs [18] and to guiding settings
for mesh generation [16]. Central issues for CBR are how to index cases in memory and how to assess similarity
between a new problem situation and problems solved previously, as well as how indexing and similarity criteria
change over time.

3 CBMatrix

We are developing a series of case-based recommender components, collectively referred to as CBMatrix. This section
describes work in developing and re�ning one such CBMatrix component for data structure selection, and summarizes
our current research directions.

3.1 Data Structure Recommendation
We have constructed a prototype CBMatrix component for recommending data structures to use in solving partitioned
matrix blocks from large sparse linear systems. In solving these sizable sub-matrices, e�cient data structures must be
used to store the individual matrix blocks while allowing standard operations to be applied e�ectively. The selection
of an appropriate data structure for each block can signi�cantly increase the performance of the linear solver system,
speeding up the overall problem solving process. Even a small percentage improvement over standard performance
could mean a signi�cant reduction in problem solving time.

Because there are no hard-and-fast rules for selecting the best data structure, it is usually chosen based on intuitions
about the sparsity pattern of the overall matrix or by simply relying on one standard representation for all problems.
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Applying CBR to data structure selection promises three main bene�ts. First, by automating the choice of appropriate
data structures, it enables novices to take advantage of resulting performance gains and relieves the expert of the burden
of manual data structure selection (especially when that choice would be made for each block of a partitioned matrix).
Second, a CBR system can improve its performance by storing cases corresponding to expert choices and results.
Third, cases can be used to inform users (to teach a novice or provide support for an expert), by explaining system
recommendations with examples of similar situations.

Given a new matrix, the system recommends the data structures that were most appropriate for similar matrices
solved in the past. The similarity judgment is based on easy to compute characteristic features of the matrices (e.g.,
number of non-zeros, degree of bandedness). The �rst version of our system used a weighted k-nearest neighbor
algorithm (e.g., [29]) to determine its recommendations, selecting a predetermined number of similar situations and
using the results from that set to determine which data structure to suggest. Our measure of goodness was performance
in 
ops, and the baseline data structure for performance comparisons was compressed sparse row. Tests with various
methods for determining a data structure recommendation from the k-nearest neighbors indicated that the most
direct method (selecting the overall closest) produced the best results. The second version of the system used only this
method. This produced good results in cross-validation testing (seeding the case-base with a portion the case data
and retrieving against the rest), and mixed results for individual selections in completely new situations presented to
the linear solver system. The third version implemented a similar algorithm to the second, but performed more data
normalization. In cross-validation tests, the system made nearly perfect data structure selections. In informal tests
using completely new situations, signi�cant performance increases were found in approximately half of the probes.

3.2 Re�ning Similarity Criteria
With encouraging results in initial tests, we were interested in how machine learning techniques might be used to
re�ne our similarity metric. In computing similarity, it is possible for certain features to be more predictive of data
structure choice (e.g., the relative number of non-zeros in a matrix is a likely candidate). If such features are known,
they can be assigned a greater weight in the similarity computation. Likewise, less predictive features can be assigned
a lower weight or even dropped entirely, increasing the speed of nearest-neighbor retrieval by decreasing the number
of feature comparisons.

We conducted a set of tests that used genetic algorithms (GAs) [13] to automatically determine a good set of feature
weightings for matrix characteristics in the data structure selection task. The set of data-structure cases was divided
into three distinct sets: a set to use as a reduced case-base, a set to train the GA, and a set to evaluate the weighting
scheme learned by the GA. For our randomly chosen test sets, unweighted retrieval accuracy was perfect. This was
excellent for the selection task itself, but obviated accuracy as a goal in evolving weight sets. The goal of minimizing
the number of required features still remained, however, and the GA evolved a set of weights which preserved perfect
accuracy, but reduced the number of features used at all by 63 percent (24 to 9). Taking minimization of the number
of features as a new goal, the GA found a weight set that reduced the number of features by 92 percent (24 to 2)
with a 7 percent loss in accuracy. In order to test whether the GA could assist in accuracy, we explicitly selected 58
cases that gave some degree of error in the unweighted condition. We performed tests that used the di�cult set alone
(48 training, 10 testing) and combined that set with additional randomly selected instances (152 training, 20 testing).
Though the weightings in this second set of tests could not be taken to apply for the entire population, they did show
showed that the GA could both improve accuracy, when gains were to be made, and reduce the number of features
used.

3.3 Research Directions
We are currently developing new case-based recommender components in conjunction with the latest component
architecture research developments at Indiana University. The Indiana University Extreme! Computing Group has
built CCAT [6], an implementation of the Common Component Architecture (CCA) for High Performance Computing
speci�cation [7, 4]. CCAT has been used to implement a CCA version of the Linear System Analyzer (LSA), a problem-
solving environment for developing strategies to manipulate and solve large-scale sparse linear systems of equations
[12, 5]. The LSA provides users with a palette of components that can be selected and wired together to construct
complete applications. These components di�er from subroutines, libraries, etc., in that component composition
involves linking binaries, rather than source code to re-compile, and in that components interact on a peer-to-peer
basis without one component designated as the \main" program. We expect experience gained in this framework to
facilitate construction of recommender components in other PSEs.

Within the CCAT framework, we are designing components that learn by capturing parameter settings (e.g., for
a particular solver), component con�gurations (e.g., sequences of preconditioners and solvers), and information on
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resource characteristics (e.g., load patterns on particular machines). Feedback on performance will be gathered both
from the user (unobtrusively, for example when the user rejects suggested parameter settings) and from monitoring
performance information (e.g., when reasoning from the prior case leads to expectations that con
ict with observed
performance).

The success of case-based recommender components depends on being able to select useful features for assessing
the similarity of scienti�c computing problems. However, we believe that this burden can be alleviated through the
application of machine learning methods to enable automatic re�nement of feature weightings (e.g., the GA approach
described in Section 3.2). Other research issues include how to make the system adjust its recommendations in response
to changes in the external processing environment (e.g., by monitoring and responding to error trends detected over
time, as in [25]; how to e�ectively access cases distributed across case libraries from di�erent component instantiations
(e.g., [9]); and how to determine which cases to retain and which to delete, in order to reduce storage requirements as
large numbers of problems are solved [24]. We are also investigating machine learning approaches to compacting case
bases through both explicit generalization of similar cases (e.g., [8]), and implicit generalization by choosing a smaller
representative subset of cases (e.g., [2]).

4 Conclusion

We have described our perspective on recommender components for problem-solving environments in scienti�c com-
puting, as well as applications and current development of case-based reasoning recommender components in the
CBMatrix project. As component-based PSEs for scienti�c computing continue to develop, we believe that CBR will
play an important role in making intelligent recommendations to support component use by experts and novices at
all levels of the problem-solving process.

References

[1] Harold Abelson, Michael Eisenberg, Matthew Halfant, Jacob Katzenelson, Elisha Sacks, Gerald Sussman, Jack
Wisdom, and Kenneth Yip. Intelligence in scienti�c computing. Communications of the ACM, 32(5):546{562,
1989.

[2] D. Aha, D. Kibler, and M. Albert. Instance-based learning algorithms. Machine Learning, 6:37{66, 1991.

[3] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and B. Smolinski. Toward a
common component architecture for high-performance scienti�c computing. In Proceedings of the Eighth IEEE

International Symposium on High Performance Distributed Computing, 1999.

[4] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott Kohn, Lois McInnes, Steve Parker, and Brent
Smolinski. Towards a common component architecture for high-performance scienti�c computing. In Proceedings

of the High Performance Distributed Computing Conference, 1999.

[5] Randall Bramley, Dennis Gannon, Thomas Stuckey, Juan Villacis, Esra Akman, Jayashree Balasubramanian,
Fabian Breg, Shridhar Diwan, and Madhusudhan Govindaraju. The linear system analyzer. Technical Report
TR511, Indiana University, 1998.

[6] CCAT project. <http://extreme.indiana.edu/ccat/index.html>, February 2000. Accessed February 25 2000.

[7] Common component architecture forum. <http://z.ca.sandia.gov/�cca-forum/>, February 2000. Accessed
February 25 2000.

[8] P. Domingos. Rule induction and instance-based learning. In Proceedings of the Thirteenth International Joint

Conference on Arti�cial Intelligence, pages 1226{1232, San Francisco, CA, August 1995. Morgan Kaufmann.

[9] Michelle Doyle and P�adraig Cunningham. On balancing client-server load in intelligent web-based applications
involving dialog. Technical Report TCD-CS-1999-25, Trinity College Dublin, 1999.

[10] Wayne R. Dyksen and Carl R. Gritter. Scienti�c computing and the algorithm selection problem. In Houstis
et al. [15], pages 19{32.

[11] Efstratios Gallopoulos, Elias Houstis, and John R. Rice. Computer as thinker/doer: Problem-solving environments
for computational science. IEEE Computational Science & Engineering, 1(2):11{23, 1994.



Case-Based Recommender Components 6

[12] D. Gannon, R. Bramley, T. Stuckey, J. Villacis, J. Balasubramanian, E. Akman, F. Breg, S. Diwan, and M. Govin-
daraju. Component architectures for distributed scienti�c problem solving. IEEE Computational Science and

Engineering, 5(2):50{53, 1998.

[13] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning, pages 1{24. Addison-Wesley,
1989.

[14] E.N. Houstis, A. Catlin, J. Rice, V. Verykios, N. Ramakrishnan, and C. Houstis. PYTHIA II: A knowl-
edge/database system for managing performance data and recommending scienti�c software. ACM Transactions

on Mathematical Software, in press. http://www.cs.purdue.edu/research/cse/pythia/doc/pythia.pdf.

[15] E.N. Houstis, J.R. Rice, and R. Vichnevetsky, editors. Expert Systems for Scienti�c Computing: Proceedings of

the Second IMACS International Conference on Expert Systems for Numerical Computing, Amsterdam, 1992.
North-Holland.

[16] Neil Hurley. Evaluating the application of CBR in mesh design for simulation problems. In Manuela Veloso and
Agnar Aamodt, editors, Case-Based Reasoning Research and Development: Proceedings of the First International

Conference on Case-Based Reasoning, pages 193{204, Berlin, 1995. ICCBR, Springer Verlag.

[17] Anupam Joshi, T. Drashanksy, J.R. Rice, S. Weerawarana, and E.N. Houstis. Multiagent simulation of complex
heterogeneous models in scienti�c computing. IMACS Math. and Comp. in Simulation, 44:43{59, 1997.

[18] Anupam Joshi, S. Weerawarana, N. Ramakrishnan, E. Houstis, and J.R. Rice. Neuro-fuzzy support for problem
solving environments: A step towards automated solution of PDEs. IEEE Computational Science and Engineering,
3(1):44{56, 1996.

[19] M.S. Kamel, K.S. Ma, and W.H. Enright. ODEXPERT an expert system to select numerical solvers for initial
value ODE systems. In Houstis et al. [15], pages 33{54.

[20] H. Kautz, editor. Recommender Systems: Papers from the 1998 Workshop. AAAI Press, Menlo Park, CA, 1998.

[21] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA, 1993.

[22] Patrick Laug. DOMINO: a knowledge-based system for the users of a �nite element library. Mathematics and

Computers in Simulation, 36(4{6):293{301, 1994.

[23] D. Leake, editor. Case-Based Reasoning: Experiences, Lessons, and Future Directions. AAAI Press/MIT Press,
Menlo Park, CA, 1996.

[24] D. Leake and D. Wilson. Case-base maintenance: Dimensions and directions. In P. Cunningham, B. Smyth,
and M. Keane, editors, Proceedings of the Fourth European Workshop on Case-Based Reasoning, pages 196{207,
Berlin, 1998. Springer Verlag.

[25] D. Leake and D. Wilson. When experience is wrong: Examining cbr for changing tasks and environments.
In Proceedings of the Third International Conference on Case-Based Reasoning, pages 218{232, Berlin, 1999.
Springer Verlag.

[26] Naren Ramakrishnan. Recommender Systems for Problem Solving Environments. PhD thesis, Purdue University,
Lafayette, IN, 1997.

[27] Naren Ramakrishnan, John R. Rice, and Elias N. Houstis. GAUSS an online algorithm recommender system for
one-dimensional numerical quadrature. ACM Transactions on Mathematical Software, 2000. To Appear.

[28] Juan Villacis, Madhusudhan Govindaraju, David Stern, Andrew Whitaker, Fabian Breg, Prafulla Deuskar, Ben-
jamin Temko, Dennis Gannon, and Randall Bramley. CAT: A high performance distributed component architec-
ture toolkit for the grid. In Proceedings of the High Performance Distributed Computing Conference, 1999.

[29] I. Watson. Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann, San Mateo,
CA, 1997.

[30] S. Weerawarana, E. Houstis, J.R. Rice, Anupam Joshi, and C. Houstis. PYTHIA: A knowledge based system to
select scienti�c algorithms. ACM Trans. Mathematical Software, 22(4):447{468, 1997.


