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PREFACE

In an era when programs have been written to perform medical
diegnoses, find oil, analyze soybean diseases, and even rediscover 19‘h-centurv
chemistry,  have written a program -- and one of some size -- that seemingly
does almost nothing.

The program, called Seek-WVhence, is designed to discover, model, and
reformulate patterns presented as sequences of nonnegative integers. The
patterns are not mathematically complicated ones -- they are based on little
more than the successorship and sameness relations between pairs of integers
— yettheycan become arbditrarily complex, challenging even for humens. Qur
work on Seek-Whence represents only the barest begihnings in exploring this
domein space; the program can handle onlyafew types of problems of
moderate complexity. Nonetheless, we believe that our goals and approacl;_ are
sufficiently important to warrant further wvork and much concentrated study.

- Butsequence extrapolation is a solved problem, handled by Pivar and
Finkelstein [Pivar 64 |twenty years ago -- is it not? Notin its full generality.
The Piver-Finkelstein system concentrated on extrapolating sequences with
underlying mathematical formulas. Hence, these sequences could often be
solved by applying a battery of mathematical techniques until an explanatory
formula (or collection of formules) was found. Their domain and approach are

quite distant conceptually from ours.



vii

Those who have worked on the formulation and implementation of
Seek-Whence are interested in modeling the human ability to discover patterns
and to find multiple and/or changing patterns in an evolving situation.
Integer sequences happen to be an excellent domain for our purposes for
several reasons.

First, we can strip away enough complicating detail to get at ¢ore issues.
For example, by eliminating knowledge of mathematical operations (such as
addition, multiplication, squaring, etc.), we can divest the nonnegative integers
of all but their most fundamental properties. They can then serve as atomic
units - structures without internal imttern -~ in our pattern domain.

In addition, by presenting sequence terms one at atime, we can explore
the ways in which perceptions about a pattern change as it evolves. Humans
are able to move from one plausible pattern characterizaton to another without
entertaining a host of unrelated and impleusible characterizations along the
way. Ve want to model this ability.

Finally, we can test the aélequacy of the system’s pattern perception by
esking for:

1) acharacterization of the pattern;

2) an extrapolation of the sequence according to that characterization.

In summaeary, although Pivar and Finkelstein explored mathematical
sequence extrapolation, their work —— and that of their successors — has left the
important and difficult problem of pattern perception in the domein of integer

sequences unexplored. The following claim will emphesize the importance we
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attach to this prodblem:

Finding patterns in sequences, developing amodel to describe the
perceived pattern, and reformulating the model on the basis of newevidence is
nothing less than scientific induction in microcosm.

This dissertation is organized into five chapters. In the first chapter, we
discuss the foundations of our work, including both underlying questions and
extant systems thatinfluenced our idess g.nd .approach. The subsequent two
chapters document the currentimplementation of the Seek-Vhence program.
In chapter four, we compare the Seek-Whence approach and program to several
related systems. Finelly, in chapter five we present implementation dJeteils,
review some shortcomings of the system, and set some directions for future

research.
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ABSTRACT

Seek-Whence is an inductive learning program that serves as a model of
anewvapproach to the programming of “intelligent” systems. This approach is
characterized by:

structural representation of concepts;

the ability to reformulate concepts into new, related concepts;
a probabilistic, biologicelly-inspired approach to processing;
levels of abstraction in both representation and processing.

The program's goels sre to discover patterns, describe them as structural
pattern concepts, and reformulate those concepts, vhen appropriate. The
system should model humen performance as closely as possible, especiellyin
the sense of generating plausible descriptions and ignoring implausible ones.
Description development should be strongly data-driven. Small, specisl-purpose
tasks working at different levels of abstraction with no overseeing agentto
impose an ordering eventuelly guide the system toward a correct and concise
pattern description.

The chosen domain is that of non-mathematically-sophisticated patterns
expressed as sequences of nonnegative integers. A user presents apatterned
number sequence to the system, one term at atime. Seek-Vhence then either
ventures a guess at the pattern, quits, or asks for another term. Should the
system guess a pattern structure different from the one the user hes in mind,
the system will attempt to reformulate its faulty perception.

Processing occurs in two stages. An initial formulation must first
evolve; this is the work of stage one, culminating in the creation of &
hypothesis for the sequence pattern. During stage two, the hypothesis is either
verified or refuted by newevidence. Consistent verification will tend to
confirm the hypothesis, and the system will present the user with its
hypothesis. An incorrect guess or refutation of the hypothesis by new evidence
will cause the system to reformulate or abandon the hypothesis.

Reformulation of the hypothesis causes related changes throughout the
several levels of Seek-Whence structures. These changes can in turn cause the
noticing of new perceptions about the sequence, creating an important
interplay among the processing levels.
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CHAPTER ONE
ECUNDATIONS



A. INTRODUCTION

Humans are excellent pattern perceivers, Erom the tiny baby learning
to recognize its mother's face to the scientist whose perspiration is rewarded by
asudden inspiration, we spend much of our lives noticing patterns. Although
we find nothing amazing about being able to recognize afriend at a distance of
three blocks — acommon ebility — we do prize the pattern_-discoverv ability of
those who are especielly good at it in some domain.

For example, when Larry Bird has one of those special games of which
he is capable, we watch in amezement, trying to capture the experience with
such phrases as “seing the vhole court” or "playing out of his mind”. Ve can
feel that he "understands” the court, that he knows where everyone is, vhere
they ¥ill be, and what they will be doing. He has a sense of system , of how
things fit together, that escepes almost everyone else. "Playing out of his mind”
is literally true, in the sense that he need only follow the mental structure he
has created to be successful.

The basketball situation outlined above strikes us as very similar to that
of the scientist having a "breakthrough”, vhen things simply “come together”
or "fall into plaée" - that is, vhen important connections are made. Ve feel
that both of these situations, along with a multitude of the more common,
everyday kind, are at the core of human creativity. To be precise, the core of
creativity is the ability to find unexpected relationships and to discover

previously-unnoticed patterns.

BONGARD PROBLEMS
Bongard problems let us experience the “natural” human ability to
create and reformulate pattern characterizations. The problems, first posed by

Mikhail Bongard [Bongard 70], present the solver with twelve drawings. six on



either side of adividing line. The object is to characterize the difference
between the figures on the left and those on the right — in essence, to explain
why the dividing line “mekes sense”. Several Bongerd prodlems are reproduced
in the Appendix.

In solving Bongerd problems, wve move from one half-formed and
tenuously-held idea to another, can feel notions bubbdling up from somevwhere
in our minds, and arrive at unexpected but immediately accepted
chearacterizations. For example, after a group of people worked for a moment or
two on prodlem #21 -~ shown in the Appendix -- one person suddenly called out
“puppies ere allowed!”, and the group immediately agreed. Such idees crystallize
suddenly, and feel right. This certaintyis not a result of dealing with overly
simplistic or common notions. In fact, the favored characterization is often a
phrease rather than asimple term, and different people will come up with
different but acceptable characterizations that share an underlying notion, the
one "conceptual skeleton” (1o use Douglas Hofstadter's term) that fits.

‘ My first encounters with Bongard problems were in two classes given by
Dougleas Hofstadter at Indiana University — one, aseminer on his book Gddel
Escher Bach: an Eternal Golden Braid [Hofstadter 79], and the other a class in
artificial intelligence. During the seminar, we vere made aware of the
potential afforded by these problems as a vehicle for exploring human
intelligence, and, in a wider sense, vere made awvare of the unexplored territory
opened by such domeins as opposed to those typically studied in A.I. — the
knowiedge-intensive, the "difficult”, the relation-entangled. The discussion of
Bongerd problems given in GEB , and the problems themselves -- in Bongerd's
own book, Pattern Recognition [Bongerd 70]— are valuable reading for anyone

interested in the mechanisms and structural depth of human intelligence.
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In our artificial-intelligence class, we began to explore the Bongard
problems themselves a bit more deeply. Ve tried to watch ourselves solve the
problems, tried to verbalize what was going on as our minds seemed to “leave us
behind” on some of the problems and come up with solutions. On other
problems, we consciously tried different characterizations, our attempts often
being colored by our experience with previous problems.

Hofstadter has found or created many terms to describe what goeson in
our minds as we attempt to solve these problems. Such terms as “reformulate”,
“focus and filter”, “deform”, "structural similarity”, "sameness detector”, “levels
of description”, "slipping”, "meta-description”, "template”,and “flexibility”
echieve special meaning in this context. Perhaps most important of all:

“One can think of the Bongard-problem worid as a

tiny place vhere ‘science’ is dJone - that is, vhere

the purpose is to discern patterns in the wvorld.”
[Hofstadter 79, p.659]

BIRTH OF SEEK-WHENCE

The intriguing perspective on intelligence presented in the Hofstadter
courses made astrong <ase for the importance of exploring this new universe of
the non-verbalizable, the mentel undercurrent, the “subcognitive”. All that
was required was a suitable domain, one that captured the essence of the
problem without being tied to 100 many extraneous and complicating veriables.
A fully generel Bongard-problem-solver was ¢clearly beyond reach because of
the limits of visual processing systems and the overhead they vould entail. Ve
needed quicker access to the central issues of perception and reformulation. It
was then that a previous project in sequance extrapolation leapt to the fore.

As have many students in artificial intelligence ¢lasses, I wrote a



program to extrapolate integer sequences. Typically enough, the program

could recognize smallish primes and Fibonacci numbers, and could untangle

interleaved sequences of fixed- or patterned- length period, such as:
1133311333...,0r

102203330...

It could finite-difference its way to solutions of many pathological problems
humans would never solve (except by finite-differences, and only under
duress) -- for example:

125154298 ...

(asequence \?hoé second differences are every third prime).

Although plessed that the program could solve so many intricate
sequences, I was disturbed in particular by its total lack of “intelligence”. The
program wes ‘mechanistic”, blindly recursive, and not at all sensitive to
pattern, as would be ahuman. The same solution machinery was applied to all
sequences, regardless of their form or content,

The juxtaposition of the two projects -- a Bongard-like pattern-discovery
and reformulation program with an overly mechanisti¢, pattern-insensitive
sequence-extrapolator -- made for an obvious conclusion, and so the
Seek-Whence project was born. Sequence terms have simple descriptions. By
ignoring "mathematical” sequences wve could concentrate on “the processes of
recognizing patterns” [Hofstadter 1982¢, p. 10]-— the essence of both Bongard
problems end science — without becoming mired down in “large amounts of
specialized knowiedge about mathematics and arithmetic” (p.10). The project's
name refiects both our domain interest -- we can “seek whence” terms arise in a
patterned “seq-uence” -- and the multiple perspectives one must oftenn have of a

single object - in this case, the project’'s name ~- in order to understand it fully.



SOME TYPICAL PROBLEMS

In Seek-Whence, terms of a sequence are presented one by one 1o the
solver by the presenter. The solver's goal is to guess the pattern the presenter
hasin mind. Clearly, for any given initial segment there are multitudes of
possible patterns; however, the solver usually finds the correct solution to a
reasonable pattern efier seeing relatively few patterned groups of terms.

In order to give & sense of wvhat ve mean by “correct” solutions and
“reasonable” patterns, ve list below a dozen sequences, These sequences wvere
actually presented in the manner described above to each of twenty-five
students at Blackburn College, in an experiment to determine the typesof
complications most troublesome to human pattern perceivers [Meredith 83].
Their experience can be approximated by sampling the sequences one term ata

time, making hypotheses as one goes along. The "parsed” sequences follow.

THE BLACKBURN DOZEN

1) 112123123412345...
2) 1234567...

3) 212222232242252...
4) 1223334444 ...

S) 185818581858...

6) 2122232425...

7 231232223333234444...
8) 1223344556...

9) 123344555666...

10) 91929394...

11) 181218123218123...
12) 185581185581...



THE PARSED DOZEN

1) 1 #12%123%1234%12345 %,

2) 1 #2 %3 %2425 %05 %7

3) 212%222%232%242%252...

4) 1 #22%333%4444%. .

5) 1858*1858*1858%, .

6) 21 *#22 %273 %#24#%25

7 23 *23R22)*23(33N*23(1449)"...

8) 12% 23 %34 %45% 56 .

9) 1 #2 %33 %¥44%555*%666...

10) 91 %92 %93 % 94 .

1) 181*@1DBA2*(321)8123) *...

12) 185581 *185581*. ..

We call arun of terms between asterisks (*) in the parsed versions a
“template”. In order to demonstrate an understanding of the pattern, the solver
must complete the current template and fill out the next one — which is wvhat

people usually do anyway when presented these problems.

B. THE SEEK-VHENCE APPROACH

The Seek-Vhence system, like any human problem-solver, is presented
sequance terms one at a time by the user (presenter). Aseach term is
presented, the system tries to come up with a hypathesis, or characterization of
the sequence pattern. If subsequent terms confirm the hypothesis, the system
will venture a guess -- not simply by supplying the next template (although it
does this), but by showing the user a synopsis of its model. On the other hand,

should subsequent terms refute its model, the system attempts to reformulate



the model to conform 10 the new data as well as to the old. If successful at this
reformulation effort, the system hes anew vorking hypothesis, open for

confirmation or refutation

GETTING AT THE ESSENCE

To be sure, there are some differences between Seek-Vhence and a
full-tlown Bongard-type program. Most obvious is that we chose to deal with
one sequence, not & set of twvelve drawings. This requires us to predict
successive terms, rather than to come up with & verbal characterization.
However, the fact that we require construction of a predictive model mitigates
this difference somewhat, in that wve are attempting to characterize the
sequence in some explicit vay.

Another difference is that we chose to present the sequence to the
system one term at a time, rather than es a whole, es is the case with Bongard
problems. This models the scientific method by forcing Seek-WVhence to react
to new evidence, to reformulate its model of the sequence in the light of new
terms. We believe that our choices have made the sequence problem an

appropriate dJomain for the study of the phenomena in which we are interested.

EXTRAPOLATOR LESSONS

One lesson learned in writing the sequence extrapolation program for
our artificial-intelligence ¢lass was that one must be careful notto build in too
many clever devices. The success of that program was directly proportional to
the number of tricks and special sequences the programmer c¢ould devise.
In resction to that, we have not permitted Seek-Whence to vork on derived
sequences (e.g., first differences, first ratios, even-numbered terms, et¢.) of any

kind. Such menipulations as separating interleaved subsequences, pulling out



group lengths, and the like are "high-level” actions that can only be employed
after the initial noticing of patterns has taken place, Tointroduce such
operations 100 soon would be to run the risk of overly directing the progrem'’s
actions, and so of doing its work for it.

Vhen the programmer does get to the point of supplying & “"bag of
tricks” such as noticing interleaving, or whatever, the program should be able
to select tricks from that bag by itself, based on its perceptions at the time — as
people do -- and not besed on some “canned”, pre-determined hierarchy of
techniques. Asis pointedout in alater chapter, the Seek-Whence system is just

now becoming ready to employ top-down approaches such as these.

C. REPRESENTATION ISSUES

The central concern of the Seek-Whence project is to explore the ability
to discover pafterns. an ability that requires the development and reformulation
of pattern (concept) descriptions. The representation of concepts is critical to
the success of the system, because the concept descriptions must express salient
information -- where salience is not predefined - and so must be amenabdle to
fluid and continual modification. In the following section&, we will outline our
approach to concept representation and processing in Seek-Whence, beginning
with a discussion of our distinction between “complex” and "complicated”

systems.

COMPLEX VS. COMPLICATED
Consider this interchange betveen acollege Dean and afaculty member,

which occurred in the middle of a discussion about replacing ajust-resigned
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member of the faculty:

Prof: "I guess we should advertise as scon as possible now that it's

official. Aahh --looks like I lost a button off this shirt.”

Dean: "It's always sad when a faculty member loses his buttons.”

Prof: “Yes, but not assad as a Dean wvho loses his faculties.”

This ;onversation, similar to many that occ'm' each day, is nothing
spectacular, special, or difficult to understand. Those same actors could also
have engaged in a complicated discussion of international law or faculty politics
-- adiscussion too complicated for many non-specialists or outsiders to
understand. The exchange of (sad) puns is, however, a prime example of what
we consider to be a complex (as opposed to complicated) interchange. Few
elements are being related or discussed, no web of tangled linkages is involved,
and no technical terms are used. Rather, the cleverness comes from finding
and using unexpected relationships among the elements.

Here is another complex but everyday discussion, this time between a
three-year-old and her motherat9 A M.

Child: I wantto go visit Toby.

Mom: "OK, but vou'll have to wait until after lunch.

Child: May I have a peanut butter sandwvich now?

Again, we have asituation where nothing difficult is being
discussed, but there are obvious important rumblings going on beneath the
surface. Qne can almost see -- cartoonlike -- alittle bump appear in the ground
and wravel from one place to the next, simply disturbing the surface as it passes
along belov. Something subtle has gone on in the child’'s mind, butitis
unexpected, and it takes us a little while t0 "catch on”.

The terms we will be using -—- "complex” and "complicated” ~- may not be

the best to capture the twvo underlying notions, the implementation of which



11

may mep quite well onto Michalski's "structural- vs. attribute~ based”
descriptions [Dietterich 83, p.42]. Nonetheless, they will serve as pegs on wvhich
we can perhaps hang meanings.,

By “cc_agnpl_icated". wve mean a big, “busy”, tangled system of linkages, with
much data involved -- a "tropical jungle” of concepts. Complicated systems
inciude murder-mystery plots, autc-:mobile engine diagrams, and typical
expert-system domains. In computer applications, the concept representations
involved tend to be frame-beased, with fixed slots to go vith the predefined
linkeges. The focus is on following the proper links to get from one concept to
another.

In contrast, a “complex” domain is deep rather than dbroad -- more like
en iceberg field than ajungle. There maybe some clear linkages, but some
apparently separate bergs are actually connected delow the surface of the
water. The concept space is relatively uncluttered and the linkeges often subtle.
Complex domeins include puns, some poems, and patterns. In computer
applications, the focus wouid be in finding interesting relationships among the
few concepts, which would tend to have structural descriptions. ( Vinston
[Winston 75 ]and Ronald Brachman, with his KL-ONE system [Brachman 77; 85]
have made some progress in the area of structural description of concepts.) Ve
find a helpful metaphor for our distinction between “complicated” and
“complex” in the comparison betveen unraveling a murder-mystery and
understanding a short but allusive poem.

There are certainly some domains -- speech recognition and the writing
and understanding of stories come immediately to mind — that are doth
complex and complicated. In fact, there are probably elements of both in almost
every problem. Vhat is of note, though, is that the complex dimension seems to

have been viriuaily ignored so far in most Al research.
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SEEK-WHENCE CONCEPT REPRESENTATION

In Seek-Whence, we attempt to begin opening the “can of worms”
outlined in the previous section. Seek-Whence compound concepts are
represented as netwvorks of primitive concepts. The primitives are fixed, as are
most base-level refations. That is, we describe a compound concept in terms of
primitive concepts and links, so that a concept’s structure holds much
information about it. This "complex”, structural representation of concepts will
permit the use of structural similarities as "virtual links” in the system. That is,
we can relate two concepts by noting similarities in their structures and/or
structural building dblocks, rather than simply looking at their lists of
attributes. Moreover, aconcept's representation is not unique — it can be
“rephrased” or, as we say, reformulated. In fact, as new sequence terms are
presented to it, the system is constrained to change its pattern description in the
lightof the newvevidence. In addition, however, the representation can de
changed even though the current model is accurate, simply to see if a different
representation "looks better”. These miniature paradigm-shifts are termed
"slipping”, and are ¢crucial if the system is to model fluid movement from one

concept to another.

WINSTON AND STRUCTURAL DESCRIPTIONS

The idea of using structural descriptions in a computer system is
certainly not new. Patrick Vinston, in his important structure-learning
program [WVinston 75], was keenly interested in employing such descriptions in
order to capture notions such as “table”, “tent”, and "arch”. Moreover, in
“learning” these notions from & succession of examples and nesr-misses, his

program first created a concept description and then modified it to conform to
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newevidence. In addition, once the program had learned several concepts, one
of its goals wes: "To compare some scene with alist of models and report the
most ecceptable match” [Winston 75, p. 2001 |

The use of positive and negative evidence, the construction of structural
models, and the use of these models to categorize new dblock figures all have a
Bongard-like flavor that ve find veryinteresting and sppealing. However, ve
have had to face some additional representational issues, vhich we will discuss

after first describing our approach to structural representation.

D. SEEK-VHENCE DIAGRAMS

As afirst major step in understanding what we were about, our group
(Hofstedter, Clossman, and Meredith ) devised aset of primitives and a structural
representation technique that we called "Seek-Vhence diagrams”, These
expressive visual disgrams, which to some extent have been implemented in the
current system, give a sense of how wve envision reformulation to take place and
how various distinct concepts can be seen to be related through "closeness” of

their structural representations.

THE PRIMITIVES

There are eight primitive notions in Seek-WVhence diagrams, each of
which is represented by anode that takes at least one input value. The function
of each primitive is to return a velue wvhen queried -- or hit, as we say. A
primitive returns no velue vhen an input lies outside of the appropriate domein
or when the processing would produce a result out of the range of nested groups

of nonnegative integers. A returned value may in turn dbe used as input to
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another primitive or may be returned as a final result. The primitives are:
Constant (k) -- returns the value k, anonnegative integer —-
Example; (Constant 4)---»> 4;
Countup (k) -- returns K, then k+1, then k+2,. .. on successive hits —
Example: (Countup 4)-—> 4, 5, 6.. ., (on successive hits);
C-group (val.n)-- & "¢copy-group": returns n copies of val, grouped in
a pair of parentheses --
Exemple: (C-groups 3)—> (55 5);
S-group (k.n)-- & "successorship group”: returns the grouped terms
(k. k+l,k+2, ... k+n-1)--
Example: (S-group 6 4)-—> (6 7 8 9);
P-group (k.n) - & "predecessorship group™ returns the grouped terms
(k,k-1,k-2,..., k-n+l) -
Exemople: (P-group 7 3)—> (7 6 5);
Y-group (first, mid, last) — a "symmetry group™: returns the grouped
elements (first, mid, lest), where "last” is a mirror image of
“first”. If "mid” is simply the word "nil”, Y-group returns
(first, last) —
Exemples: (Y-group (5 2) 3 mirror)-—> (52 3 2 5)
(Y-group (6 3) nil mirror)--=> (6 3 3 6);
Tuple (arglist) - returns & group of its arguments’ velues, evaluated in
the order given in "arglist” —
Example: (Tupte (5 3 9))---> (5 3 9);
Cycle (arglist) -- returns the velue of successive members in “arglist” on
successive hits, in a cyelic fagshion --
Exemple: (Cycle (5 3 9))--- 5, 3, 9, 5....0n successive hits.

Figure 1 shows our diagrammatic representation of all but the two
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simplest primitives. In Figures 1 and 2, each line represents one hitor query of
the given structure,

' The primitives can be compounded, with the output of one structure
serving es input to another. A hiton the topmost structure causes the
propagation of hits throughout the network. The bottommost structures return
their values to their calling structures, which then use the returned values to
calculate their own values, and so on upweards. A simple example of this is
shown in the first disgram of Figure 2. The top-level Y-group requires a velue
from the Tuple, and so hits it, receiving “(1 4)" from that structure. Itthen uses
this value to compute itsown —- “(1 4 4 1)". More examples of compounding are
shown in later figures.

Seek-Vhence netwvorks can also ethloy shared structures, as showvn in
the second and third diegrams in Figure 2. In the first of these, a "Countup”
structure is shared by two inputs to the Tuple. Vhen the Countup is hit by the
first input, its value — 3 — is fed to both inputs, giving the Tuple a value of
“(3 1 3). Similarly. the next hitof Tuple returnsa (4 | 4)", andsoon.

An analogous shared structure is shown in the last disagram of Figure 2.
This time, however, the sharers are two inputs 10 aCycle, and so wve geta
different sort of result, The first hit of Cycle causes its first input to be hit, so
Countup is hit in turn and feeds both sharing structures - the first and third
inputs to Cycle. The Cycle then returns a 3. On the second hit of Cycle, the
middle input is hit, and returns a 1. Then, on the third hit of Cycle, the third
input is hit, causing it to hit the Countup again. Countup then returns a4 to the
first and third inputs of Cycle, overwriting both "3"'s at once with "4™'s, and

consequently the third input returns a value of 4 10 Cycle, vhich reports it.



16

4P 22 2

@ <4+—> 2 3 4

N AT 44— 8 7 6 5
O O

8 0 3)

Figure | -- The meajor primitives



17

44— (14 41)

mirror

3 1 3)
41 4
(5 1 5)

Figure 2 -- Seek-WVhence disgrams wvith some shared structures
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Note that if the Cycle above had two different Countups under its inputs
instead of a single shared structure, the results returned would have been

different. Then it would have returned 3.1,3.4, 1, 4. ...0n successive hits.

E. MODELING SEQUENCE PATIERNS

People presented with the first few terms of a sequence have a strong
tendency to formulate a hypothesis about the underiying pattern. One of our
goals in creating Seek-Whence diagrams was to be able to model such
hypotheses in an understandable, expressive, and flexible (both modifiable and
extensible) pictorial form.

Given below ere several possible hypotheses based on the initial segment
"112":

(1) 1 *12%123%1234%*

(2) 11 %#22%33%44%

(3) 11 *22%1 %22+

(4) 11 #2 %11 *2 % |

() 1 *#12%1 %12 %

6) 11%21 %31 %41+

(7) 11 %#222*%3333%44444¢*...

(8) 112%122%132%142%152*%

(9 1(12)*2(12)*3(12)*%*4(02)...

(10) 112%213%314%415¢%

(11) 112%314*%516%718%, .

(12) 1 *121*%12321*1234321* ..

(13) (11) #2 %3 #% (] 1) ®#2 %3 &% (] |) %2 %3 *s

(18) (1 1) #2 %3 %% | *(22)%J %8| #2 % (373)#%(11)...
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These are ell reasonable extensions of the initial segment, aithough some
are more likely than others to come to mind immediately. The last of these, the
"marching doubler”, is GrayClossman's invention. It poses some interesting
representational problems, as shown in Figure 6. The other parses are given es
diegrams in Figures 3 - 5.

In diegrem (1) of Figure 3, we have an S-group (“successorship™ group)
structure. Its first input — the start value -- is a constant, 1. This means that
each hit of the top-level structure will be & successorship group counting up
from 1. The second input — which tells us the group length - is here the result
of hitting a Countup structure. Thus, the S-group lengths will vary, increasing
by one on each successive hit. The first length will be 1. Therefore, the first
hiton the diagram will return an S-group starting atl and of length 1 —ie.,
"1". The second hit's result again begins at 1, but wvill be of length 2 —ie., "1 2"
Successive hits give us successively longer successorship runs (with success).

In diagram (2) of Figure 3, ve see a top-level C-groﬁp ("copy" group),
whose first input -—- the value to be copied — changes, but whose second input --
the length or number of copies — remains constant at 2. Because the first input
is fed by aCountup structure, the value to be copied will be successive integers
starting at the Countup's start-value -- |, in this cese.

In disgram (6), there is a top-level Cycle. Vhen hit, it will return the
velue of ahit to one of its inputs. Thus, the first hit of the Cycle results in "1
being returned -- the result of a first hit to the Countup. The next hitof Cycle
causes it o return "1, put this time thanks to a hit of its second input. A third
hit of Cycle brings us back to the Countup, so a “2" is returned. Successive hits

wvill then generate the indicated pattern.
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Figure 3 -- Some parsesof "1 | 2"
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(7b)

(1t 1) 2 22 (333 3).

Figure 4 -- Two different representations of asingle parse

In Figure 4, we see an example of two different representations of the
same pattern concept. In this particular case, the representations are not
aprarently very different, since both use "C-group” as the basic organizing
notion. The only real difference is thatin (b) the successorship relationship
between the content and length of each group is made explicit by meens of the
rectangular "addl” box, whereas in (a) it is not. This small difference can result
in verydifferent geperalizations of the pattern, however. For example, if asked
to generalize from “1"t0 “2", aprogram holding representation (a) would give
us the sequence :

22333444455555...
wvhereas a program holding representation (b) would generalize to:

222333344444555555....

No one can say vhich is the “correct” generalization -- it depends upon the

presenter’s pattern concept. Vhat we ¢ag say is that both are "reasonable”.
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112122132142.,

mirror

112 314 516... MM 21)0 2321 ((1234321)..

Figure 5 -- More parsesof “1 1 27
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Cycle

replace by -
C-group Hnz23¢1n23...
2
Cycla
®
jump to next
raplace by sib
C-group
2

1123122)312 (33)(1)23..,.

Figure 6 — The doubler and Clossman’s "marching doubler”

In Figure 6, we sgein encounter rectangular “instruction” boxes,

indicating modifications to be done on the fly. In the first diegram, the "1" will
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be replaced by al-group of length 2 whose value is taken as the “1”. In the
second disgram, the same sort of replacement is done, but vhen the “jump”
box is encountered (after each hit of the “3"), the entire replace-box structure
moves over t0 the next sibling below the Cycle. Here, it moves cyclically from

"1 10 "2" t0 "3 t0 "1”, and so on.

COMPARISON WITH VINSTON

As we noted earlier, Vinston's vork on structural descriptions colored
our thinking on Seek-Vhence. But vheress his program had tg find discrete
objects and then describe the physical relationships among them, our program
is given the discrete objects and must describe petterns formed by neighbdoring
groups of them. Winston's program did use grouping es a vay of simplifying
descriptions. However, block groups wvere defined in astrict, algorithmic way
on the besis of shared properties. Once formed, agroup became a permanent
unit in the scene description. Qur grouping mechanism is more fundamental to
our system, in that groups are continually being created and destroyed as the
system attempts to formulate a pattern description. Grouping goeson
simultaneously with description. Qur difficulties, then, lie in finding structures
simultaneously with comparing those structures in the “correct” way. For
example, in the sequence:

212222232242...
we can eesily tell exactly what the terms are and vho is next to whom. Ve can
even note that there is agroup of five “2” s, starting with the third term ~- a
Seek-Vhence “(C-group 2 5)". None of this is relevant, however. Vhat ve
must notice in order to analyze the pattern is that the aforementioned C-group
must not be viewed as such. It has to be torn apart, and its pieces recombined

with other sequence fregments in order to make a parse of the sequence
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reflecting its underlying rule.

Vinston's diagrams almost look like the object they describe. We can see
the three elements of an arch, and the fact that the supports serve symmetric
functions in the whole. In contrast, in Seek-Vhence, “a pattern has not been
fully understood if the disgram representing it itself contains a pattern. For
that means either that some aspect of the pattern wes missed or that the notation
lacks the power to characterize that aspect and therefore had to copy it
verbatim" [Hofstadter 82a Appendix1,p8].

The implementations of the two systems bring out additional distinctions
between them. The structures created by Vinston's program wvere essentially
static, designed to be viewved and modified. In contrast, the Seek-Vhence
structures have an active facet — they “act” as wvell as "are”. foev need to
compute and return values, a process that often requires some sort of memory
in each node — of what was hit last, of what value weas last computed, and so on.

In summary, ve ove much to Vinston and his notion of modifiadle
structural descriptions. Howvever, our domeain and interests involve usin a
world where the objects t0 be related must be discovered and described
simultaneously, and where the physical relationships bett}een inputs are only
fragments of the information needed to descridbe an underlying pattern. His
domeain is more like Bongard's in the use of positive and negative evidence to
determine membership in aset — be it "arch” or "left-hand-side”. OQursis more
like Bongard's in the requirement of coming up with a characterization of

perceived pattern rather than a description of physical reality.

E. SYSTEM ORGANIZATION
Representation issues as discussed above are closely intertwined with

processing and organization in Seek-Whence. The system employs simulated
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parallel processing vith non-cooperating processes vorking independently
and under no overseeing agent. "Triggered” processes — those avekened by
recent events -~ are chosen at random to perform their duties, the choice being
affected (but not determined) by the weights or “urgencies ~ of the candidate

processes.

HEARSAY II

The HEARSAY 1l speech-understanding system [Reddy 76 | contributed
much 1o our conception of Seek-Whence. First, it used level-based concept
representation, vherein the utterance under consideration was represented
differentiy at different levels, in alanguage appropriate to the level. Lower
levels provided evidence for a higher-level hypothesis, and wvhenever a support
was weakened, the higher-level notion wes also weakened, Similarly, whenever
a high-level construct was called questionable by some higher-level criterion,
the lower-level supports for it were also wveakened. Thisinterplay among levels
of representation is, we believe, one of the most important contributions of
HEARSAY IL

Ceftainlv. the "Knowledge source” approach 10 processing weas another
contribution. Seif-activated, independently-acting processes operated in
parallel, communicating only by the process trace they left behind. The
trace of a process consisted of the structures it created or modified on the
“blackboard” — aglobal, three-dimensional data structure -- and the triggered
(or "awakened”) processes left in its wake. This approach, taken to its logical
conclusion ss in Minsky's "society of mind" notion [Minsky 86], seems t0 us to

be the vave of the future.

.
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COMPARISON WITH HEARSAY 11

Qur system organization is similar in some ways to that of HEARSAY II,
butour processes are smaller and less poverful than its “knowiedge sources”
and our global data structure is much simpler than its blackboard,
Seek-Vhence does not physically maintain a coliection of alternative
hypotheses as did HEARSAY II. Rather, it maintains one "reigning” hypothesis
and the ability to reformulate that hypothesis into an aiternative one as the
"evidence” -- the pressure to change -- mounts. The success of this approach in
general will depend upon the system'’s adility to reformulate easily and

reasonably — a tall order.

E. THE HOESTADTER CONNECTION

Certainly, Douglas Hofstadter hes deeply influenced my vork on
Seek-Vhence, from conception through representation and organization to
implementation. Notions he has developed and those that ve have developed in
' innumerabdle discussions together and with Gray Clossman have become
inextricably intertwined, and their realizations have begun to emerge (we
hope) in Seek-Vhence. These include such notions as active symbols that are
composed of groupings of lower-level units, which are in turn groupings of
even lower-ievel units..., reformulation and the importance of “natural” human
abilities, conceptual skeletons, slipping, fluid concepts, focusing and filtering,
the “terraced scan” approach to processing, the elusive quality of salience, roles
end the importance and difficulty of recognizing similarity, the simultaneous
creation and use of categories mede “on the fly” as needed, the importance of
non-cooperaing processes and rendomnessin lieu of an overseeing
all-powerful agent designed t0 make “important decisions”, recognition of the

complexity and subtiety of perception and its central place in human
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intelligence, the importance of "toy worlds” and the frictionless universe in
getting to the heart of aproblem.

A clear end direct exposition of some of the central notions underlying
Hofstadter's work is given in the paper "Artificial Intelligence: Subcognition as
Computation” (Hofstadter 82b]. This is important reading for anyone deeply
interested in exploring intelligence rather than chesing its shadows. The
paper, and some subsequent thoughts, are reprinted in the book, Mﬂmgugg
Themes [Hofstadter 85a] (as Chapter 26).

SEEK-WHENCE AND ITS FEAMILY

The Seek-Whence project presented here is only one of a family of
Hofstadter-inspired works designed to address the issues of perception,
reformulation, and similarity. Other members of the family are Jumbo — an
anagram-solver; Copycat-- apattern analogy progrem. and Letter Spirit—a
style-extrapolation system operating in the domain of visual letterforms
“a" - “z". The Fluid Analogies Research Group (FARG) at the University of
Michigan is currently working on or has completed work on each of these

projects {Hofstadter 85b].

JUMBO

The eldest member of the Hofstadter-inspired family is Jumbo
[Hofstadter 83] This system explored the domain of word “jumbles” (ansgrams).
As the game is usually played, the ansgram solver is given a word wvhose letters
have been scrambled -- such as "toonin” . The solver's objectis to unscramble
the letters 10 reveal the unique vord that cen be formed from them. Jumbo
strays from this norm in that it doe.s not actually have to come up vith real

words —- it has no dictionary of the English language. Rather, its objectisto
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create vord-like entities — things that could dbe English words ~- from the given
letters. This modification goes to the heart of the matter -—- how people go about
solving jumbles -- vhile bypassing the side issue of dictionary lookup. The
system must “judge its progress on purely internal criteria of coherency at
several levels of structure atonce.” {(Hofstadter 84, p.11]

Jumbo has knowiedge of howv consonants and vowels “like” to be grouped
into clusters, how clusters can be made into reasonable syllables, and how
syilables can be combined into words. The system, knowing only these
affinities and using a prodabilistic, simulated-parallel control structure similar
to Seek-Whence's, consistently comes up with good vord-like objects from its
input letters. Macro-level order emerges from micro-level chaos, chaos of
processing as well as of input.

In Jumbo, Hofstadter also began exploring the ideas of terraced scan,
lemperature and selif-vatching. A "terraced scan” is atechnique for
progressively deepening the exploration of several different pathways in
parallel. The most fruitful or interesting pathways tend to be explored more
deeply, while less plausible pathways are seldom visited.

Briefly summarized, the “temperature” of a system doth describes and
emerges from the activity level in the system. WVhen the temperature is high,
even unlikely pathways may be explored. Conversely, in low temperatures only
very plausible pathways are explored. In Jumbo, the system’s temperature is
controlled by the "happiness” of the structures it has created. Initially, when
single letters ("unhappy" because they “want” to be combdined with other
letters) are introduced, the temperature is high, encouraging the tetters to
mingle and combine. Later, vhen a suitable word-like entity has been created
and all letters are included in it, temperature falls off 10 the freezing point,

inhibiting any further activity.
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Self-watching is an important notion in any system lacking overseers
that check for loopiness of behavior. In asystem such as Jumbo or
Seek-Whence, structures are continually being created and destroyed. Itis
certainly possible that such a system will recreate a structure time and again,
This sort of loopiness is not & problem unless it takes over the system — that is,
unless it takes place at ahigh enough level that it inhibits other processing. _
Jumbo had no effective controls for such behavior, relying on
externally-imposed temperature changes to destroy recurring structures.
Seek-Whence goes astep further by remembering encapsulations of
previously-generated hypotheses in order to prevent their re-use. More
sophisticated self-watching is being incorporated into the Copycat system, the

third member of the FARG family.

COPYCAT

Copycat [Hofstadter 84; 85, ch.24]is the principal current focus of
attention at FARG. Like Seek-Whence, it involves noticing patterns, but this
time in aslightly different "idealized domain” and with explicit attention to one
of Hofstadter's major interests -- analogies. The Copycatsystem is given ihree
strings of letters, each string dbeing one element in a four-part analogy
problem. The system is to complete the analogy by discovering the fourth
string. For example, if given the input:

ABC == ABD; PQR =a» 7
the system should respond with another elphabetic string as its answer. ("PQS”
would be good, "PQD"” would be defensible, and "ABS" would be strange.)

Like Bongerd problems and Seek-Vhence problems, Copycat anealogies
require agood deal of thought and ingenuity to solve in all generality.

Attention must be given both to the “face-value”, the actual letters involved --
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their "extensional” or "syntactic” identities -~ and to the rgles those letters play
in the strings in which they are seen — their “intensional“or “semsantic”
identities. The depth of difficulty in defining roles and evaluating their
meaning is explored in [Hofstadter 80; 85, ch.24].
Not surprisingly. the notion of salience pops up in Copycat as it didin
Seek-Vhence. In our example above, is it important that "A” is the first letter of
i the alphabet, or is that factjust "noise”, interfering with our abilitytofind a
good solution? Do the lengths of the strings matter or not? How do we identify
the important facets of the first half of the analogy and then translate those
accurately to the second half? These questions are not easy 10 answer in
genersl. ARG might have tried to create a letter-analogy “"expert”, butinstead
opted for the usual Hotstadter. system organization -- simulated parallelism
among small tasks. The tasks are non-cooperating, vith no overseeing agent to
direct system activity. Rather than construct alternative high-level
hypotheses, a terraced scan [Hofstadter 84, pp. 13 - 14]is used to explore meny
low-level pathways simultaneously. The most successtul and appesaling paths
will tend to be pursuad most actively. As in Seek-Vhence, a current hypothesis
will be reformulated vhen the weight of evidence turns ageainstit. Thus, the
process of discovery that the Copycat system must go through is very similar to
that required of Seek-Vhence. The explicit use of analogy makes the
connection 10 Bongard problems clear.
In developing Copycat, the members of FARG have begun implementing
a "Slipnet” similar to but more sophisticated than the one used in Seek-Vhence.
The Slipnet structure, absent from jumbo, is arepository of information about
the Platonic concepts known to the system. Its nodes and links "form a
storehouse of conceptual proximities (slippability links) and semanticities

(centrality values)” [Hofstadter 84, p. 20]. The Slipnet is crucial in supporting
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fluid yet controlled passage of activation from & concept to its neighbors. This
“spreading activation” causes some of the concepts to be more “interested”in
the ongoing problem-~solving activity than others. Those that are most
interested will tend to come forth 8s potential organizing notions, “"popping 10
mind" as it were.

A well-developed and fluid Slipnet is necessary for the complete
exploration of relationships among the atomic entities of the system -- be they
letters or numbers - and among any perceived groupings of those entities. Itis
also difficult to implement. There must be enough activity so that new ideas
keep coming as needed. On the other hand, a "hyperactivated” Slipnet, wherein
nearly all the concepts are active most of the time, is too confusing to be
helpful. GrayClossman has become veryinterested in taming the Slipnetas
well as in creating uniform structures for all levels of abstraction in the system
[Clossman 85).

Both Seek-Whence and Copycat are chearged with finding a useful
description of their input -- a description that "works” in solving the problem
posed. In Copycat, the first two letter strings must be contrasted to show a ¢clean
distinc¢tion. The first and third must provide fodder for transiation, including
the translation of the difference between the first two! David Rogers at FARG
has begun to attack these problems in aunique way -- by creating potentially
schizophrenic¢ structures [Rogers 86]. For example, in the string "ABD", the “D"
will feel alittle uncertain about its identity, because the "B” and the string "AB"
would like to be followed by & “C”, and will continually ask the "D" if itis, in fact,
a “C". Thus, the unusual elements of a string may dbe pointed out by the system's
structures themselves.

Seek-Vhence does not have as many distinct elements as Copyeat to work

with, since it operates on asingle sequence of integers. Thisisaboon in
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allowing the system to focus its attention in one place, but a bane in imposing
fewer constraints -- the help it could get in parsing the sequence by looking at
two structures that are known to be similar. Nonetheless, the two systems
obviously share a conceptual skeleton and are deeply concerned with
perceptual mechanisms as the foundation for even the highest levels of

cognition.

LETTER SPIRIT

The "youngest” member of our project family -- Letter Spirit -- involves
what may be the purest domain for the exploration of perception. The tesk of
this system is to extrapolate the style of a given letterform to other letters of the
alphabet. Some workers at FARG have begun to atteck this problem, but the
cheallenge is great. Perhaps the best indicator of the difficulty of this
undertaking is 1o note that the final Bongard problem -- prodlem 100 --

consisted of six "a™’s on one side of the dividing line and six "d™'s on the other.

H. CONCLUSION

In the Preface to this dissertation, we claimed that pattern péfception is
scientific induction in microcosm. To be sure, we recognize that scientists rely
on agreat deel of factual knowviedge and that the scientific method requires
careful experimentation and evaluation of evidence. In this respect, wve are
exploring only asmall region of a vast territory. However, the creative essence
of science is the inductive part, the ability to find connections where none were
previously known. Ve believe we can explore this essential region through
programs such as Jumbo, Seek-Whence, Copycat, and Letter Spirit. In a topology
where complexity is the metric, our smeil dJomains for the study of discovery

and perception may be of the same size as highly complicated scientific
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domains. Ve are, at least, certain that our problem — the perception of patterns
— is, as almost everyone notes wvhen firstentering Dr. Vho's Tardis, "bigger on

the inside than on the outside”,



CHAPTER IVO
SEEX-WHENCE: STAGE ONE - HYPOTHESIS CREATION
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A. INTRODUCTION

In the previous chapter, we presented our centrel problem -- finding
patterns in sequences of nonnegative integers. We also developed
"Seek-Whence diagrams”, a structural representation system for describing
such patterns. In this chapter and the next, we go on to describe the
Seek-WVhence system and to document those features that have been
implemented in the current version of the program.

The program realizes most of the features of Seek-Whence diagrams in
its structural representations of patterns -- called hypotheses. The most
important omission is of the rectangular instruction boxes seen in Figures 5 and
6 of the last chapter. For many (but certainly not all) sequences, the program
can create a hypothesis as it is presented the terms ofa sequence, thereby
building its own model of an unfolding pattern. Moreover, the system can often
reformulate its hypothesis to form a new one when subsequent sequence terms

prove the current hypothesis incorrect.

B. OVERVIEW OF THE SEEK-WHENCE SYSTEM

1. DOMAIN AND GOALS

As was mentioned in the Preface, the domain of Seek-¥hence lends itself

to the study of pattern perception. By eliminating knowledge of mathematical
operations, we can aveoid such problems as whether "4" should be interpreted as
2%2,5-1, or 100/25. This permits us to concentrate on "4” as an atomic element
in apattern. The value of the element may of may not have othér significance,
but it cannot be seen as having anyinternal pattern. For example, “4" isan
elementin the segment "2 3 4 5", and it also represents the length of that
segment; it can also be viewed as the successor of "3 or as the predecessor of

5" Beybnd that, it has very little structure.
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Why did we choose such a "simple” domain? Ve wanted to study pattern
perception, not finite differences or number theory. Ve can come up with some
very difficult patterns in our littte universe, yet the components are simple.
This is just vhat we were after — adomain wherein problem-solving difficulties
clearly arise from the way in vhich the elements are combined and not from
the elements themselves.

The patterns studied, therefore, are non-mathematically-sophisticated
rules that generate sequences of nonnegative integers. In responsetoa
prompt, auser presents to the system numbers which presumably follow some
pattern the user has in mind. The system receives these terms one by one and,
after each one, either ventures a guess at the underlying pattern, quits, or asks
for more information (another term). Should the system guess incorrectly —
that is, guess an underlying rule different from the one the user has in mind --
the user will so indicate and the system will continue, probably by asking for
more terms, and then using those as a basis for reformulating its faulty
perception. The patterns presented can be very subtle or very simple, butin
every case the system’s guessed rules should be "reasonable”, acceptable as
poésible solutions to a human observer; theyshould elegantly and economically
explain the portion of the sequence already seen, as well as predict an infinite

continuation.
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Some “typical” pattern problems might startout as follows:
222..
112233 ..
122333 ..
121231234 ...
1010010001..
128348568...
1283456867898..
373737..
808808808...
112122132 ...

Some non-domain problems are:

235711... —--——-— "primes"is too mathematically sophisticated a notion;

-3-2-1... —=———--- negative integers are "unknown"”;

1791518 .. -—=---—-- “get bigger”is too amorphous; there is no canonical
"‘nextterm”.

In essence, we ¢an assume the system is like a small ¢hild who is able to
count and notice samenesses but vho cannot do arithmetic¢, count by twos, recite
primes, etc.. It is critical o emphasize that we are after pattern rather than

mathematics here.

2. THE TWO STAGES OF PROCESSING
There are two stages of processing in Seek-Whence. An inftial
formulation must first evolve; this is the work of stage one, ¢culminating in the
¢reation of a hypothesis for the underlying rule. This "preliminary” stage is
really quite complicated and veryimportant. The structures ¢reated during

stege one play acritical role in later processing, since all high-level actions
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inevitably affect them and are affected by them. As did the HEARSAY Ilsystem
[Reddy 76], Seek-Whence operates simultaneously at several levels, from the
most concrete — the integers input at the terminal — through the descriptive --
the hypothesis and its supporting concept descriptions —- to the most abstract —
the "ideal” primitive concepts. Low-level structures support the creation of
higher-level ones, and indirectly even determine the course of high-level
processing. Vhen changed by high-level actions, as they inevitably are, the
lower-level structures may have an unexpected effect on the higher-level ones.
These reverberations, modeled on the "ripplings” among levels in HEARSAY I,
are at the heart of SEEK-WHENCE's processing, and are necessary to cause the
interplay of bottom-up and top-down activity required for Seek-Whence to work
properly.

During stege two, the hypothesis is either supported or refuted by new
evidence. Consistent verification, in the form of terms which support the
hypothesis, will lead the system to aconfirmation of the hypothesis and the
venturing of a public guess. An incorrect guess (one that is rejected by the
user ) or refutation of the hypothesis by new evidence will cause the system to
reformulate or. in rare instances, abandon the hypothesis. Hypothesis
abandonment or “scrapping”, which is analogous to a humean's "let’s start all
over again"”, takes system processing back to the lower levels. This is not a total
restart with a clean slate as though the sequence terms had never been seen,
but rather areturn to the term level, with all perceived groupings eradicated
but with accumulated knowledge of term saﬁnenesses and other primitive
relations maintained.

The major distinction between the two stages of processing is the
existence of the hypothesis in stage two. Without it, the system has no model of

the sequence and so cannot predict the next term to be encountered. Once a
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hypothesis is in place, all newevidence is “filtered” through it (checked for
sgreement with it) . Confirming data — new terms that fit the hypothesis -- are
handled rapidly, essentially just being "swallowed” by the system. In contrast,

entry of an unexpected term makes the system “sit back and look things over”.

REFORMULATION AND THE SLIPNET

Changing a hypothesis is done by reformulation -- modification of the
form of the hypothesis. Reformulation is accomplished by “slipping” from one
Seek-Whence concept to another. The direction of change will be suggested by
system processes, based upon the evidence gathered from that portion of the
sequence already seen and guided by the “slipping knowledge” possessed by the
system. A structure c¢alled the Slipnet which maintains relationships among
the primitive Seek-Whence concepts — the “ideals” -- as well as pointers to
salient structures at various levels of representation, contains much of the
information needed in the reformulation process and thus serves as an
important reference source for the system.

Reformulation of the hypothesis causes related changes throughout the
several levels of Seek-WVhence structures, changes made so that all levels of the
system operate with the same pattern structure "in mind”. These changes can
in turn cause the bubbdling-up or noticing of new perceptions about the
sequence, ¢reating an importantinterplay among the levels. Moreover,
reformulation permits changes in the representation of concepts in order to
facilitate the discovery of "structural” similarities (similarities of form)
between them. Seek-Whence cannot as yet make such discoveries.

In Seek-Whence, concept descriptions are not necessarily atomic
entities; they can be compound structures created by combining the primitive,

atomic concept descriptions in simple or complicated ways. Thus, concepts can
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be related because their descriptions share the same or related structurel
building blocks, an important feature reflecting asimiler human ability.
For example, we can sense that there are similarities among:

171181191 ..

232 242 252..

10012002 3003 ...
even though the “face value” content, the actusl numbers used, differs.
Seek-Whence's facility for meking such structural similarities manifest in its
concept descriptions could prove very useful in the future for discovering

analogies between sequence pattern concepts.

3. PROCESSING AND TASKS

A word about processing technique is in order. In Seek-Whence, all
operations are carried out in task series which run in simulated parallel. The
tasks comprising various series are chosen at random for processing, so no
assumptions can be meade about wvhich of tvo competing tasks will run first. In
fact, the tasks in a given series may vary, because any task may alter the
environment A particular task may create, access, or modify some data
structure, may request information from the user, or may set out other tasks --
place them on the taskrack where they will stay until chosen and run.

A biological metaphor -- thanks to Douglas Hofstadter -- is the model for
this type of processing. Within acell, various enzymes are present. One of
these may act upon a molecule, causing it to change in some way. This action
will meke the molecule more atiractive to some enzymes and less attractive to
others, thus affecting the course of later "processing” in the cell. The gloms in
Seek-Whence's cytoplasm serve as molecules and the tasks as enzymes in our

version of this biologicel model.
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At certain times some cleaning is done (removing old tasks of certain
types) but it is perfectly possible for an old task finally to be chosen and, when
it runs, for it to find the Seek-Vhence world quite different than when it was
created. Such atask will probably do nothing, because the structures on wvhich
it was designed to operate no longer exist or are inaccessible to it. All tasks have
"urgencies” (integer weights), and more urgent tasks will have a greater
chance of being chosen than less urgent ones do.

Seek-Whence, then, depends upon order to emerge from chaos. Small
special-purpose tasks, wvorking at different levels of abstraction with no
overseeing agent eventually guide the system toward convergence upon a

working hypothesis.

4. STRUCTURES AND THE "PLASMS"

Like most other computer systems, Seek-Whence relies heavily on an
assortment of data structures. Already mentioned was the hypothesis, an active
formulation of the system’s current view of the evolving pattern. Its
lower-level counterpart, the teplate, is atransitory, veeker, less expressive,
and less" flexible structure used as a first rough statement of an emerging
formulation. Below the template level are the central working structures of the
system, namely, the glints the gloms , and the gnoths (pronounced “knots”,
since they are used to “tie things together").

Briefly. glints are Seek-Whence representations of input terms,
members of the class "Glints”, The Glints form a distinguished subc¢less of the
“Gloms” class, with glint structures being atomic and undissoivable. Gloms are
structures representing collections of adjacent glints, hierarchically grouped
for a variety of reasons. "Glomming"” is the process by which two or more

existing gloms combine to form anewglom. All glomsreside in the cytoplasm.
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Ve view the Seek-Vhence world es consisting of three levels, with two
potential intermediating structures -- the hypothesis and the template. Qur
levels correspond to the Socratic vision of & “real world”, a Platonic¢ "ideal
wvorld”, end a "pe:;ceived world” between them. At the lowest level is the
cytoplasm, which represents our "real world” -- representations of the input
integers and relations among them. The "purest” notions, corresponding to the
Seek-Whence diagram "primitives”, are housed in {(of course) the platoplasm.
Finally, the intermediate level -- our socratoplasm — houses the system's
representation of its parse of the sequence.

In order to representits parse of atarget sequence, the system needed
structures with some permanence, so that a parse would remein intact, yet with
the ability to interact with each other, so that the parse ¢ould be changed at the
request of highgr-level processes,

Gloms could not perform this parse-representation function for several
reasons. First, they were designed to combine readily with each other, the
combination occurring only because of "bottom-up” pressures. Secondly, when
glomming occurs, the participants do not survive the operation. Rather, they
are destroyed and anew glom is created from their subgloms. Therefore, the
system cannot attach information to gloms and rely on its being aveilable at any
future time. Finally, gloms cannot change their basic structure in any vay
from the momentof their creation -- they cannot absord other gloms or give
away or recombine any of their subgloms without themselves being destroyed.
Thus, gloms are too ephemeral and unpredictable to represent a sequence parse.

Our solution to the parse-representation problem was to create a whole
new level in the Seek-Vhence world -- the socratoplasm, or "perceived world”,
and to populate it with more stable structures than gloms, called “gnoths”,

amenable to "top-down” change. Gnoths, like gloms, represent groupings of
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gloms, but they are more permanent and asingle gnoth can represent different
glom clusters atdifferent times. A gnoth can pass gloms to its neighbors, can
withstand reformulation of its subgloms, and can even become a representative
of concepts different from those associated with it at the time of its creation.
The entire nature of a gnoth may change several times during its lifetime. A
gnoth ceeses to exist only when its subglom collection is empty. (For an
interesting discussion of intensioﬁalitv and the "meaning” of arepresentation
structure, see [Hofstadter 80].)

Gnoths, then, are what the system uses to represent and restructure its
current view of the sequence. They live in the socratoplasm, the middle level of
Seek-Whence structures, and serve as bridges among the gloms, the hypothesis,

and the "ideal notions” of the platoplasm [see'Eigure 11

HYPOTHES IS . PLATOPLASH

Ideal-repeaters

ldeal-groups
Gnoths

|deals-saen

Boxes
Printstructures

TEMPLATE

loms, Pseudo-g!oms

Gloms
Glints

Sparks
Bonds

CYTOPLASH

Figure 1| — The Seek-¥hence world



THE PLATOPLASM AND IDEALS

As noted above, the platoplasm is the home of the "pure Platonic¢ notions”™
or "ideals” of the Seek-Whence system. These include idealized versions
("types”, if you will) of the input integers ("tokens" represented in the
cytoplasm ), the grouping structures known a priori, end some relations emong
them. Ideals are connected to the “real world” or cytoplasm through
manifestation links and to the "perceived world” or socratoplesm through
actualization links. For example, if the system groups three 2's, the glom
representing this grouping in the ¢ytoplasm becomes a "manifestation” of the
ideal sameness notion (called "C-group”). If the glom is also ¢crucial to the
system's hypothesis for the sequence and so has a gnoth devoted to it, that gnoth

becomes an "actualization” of the ideal [see Eigure 2].

HYPQTHES IS pLATOPLASH

SOCRATOPLASH Ideal-groups

C-group

Gnoths

]

actualization

. manifestation

TEHMPLATE

cYTOPLASH

Figure 2 -- Some links between plasms
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THE SOCRATOPLASM AND PERCEPTIONS

The socratoplesm is a working area and sometime battieground between
the cytoplesm and the platoplesm. Its most important structures are the gnoths
(from "gnothi éeamon", the motto — "know thyself” -- of the Socratic school of
philosophy), roughly the socrato-level equivalents of the ¢ytoplasm’s gloms.
However, wvhereas the hallmark of gloms is their ephemeral nature, their
proclivity to combine and split, the main function of gnoths is to capture the
current “view' — parse or parenthesization — of the sequence. The first gnoths
are created contemporaneously with the first hypothesis and reflectits pattern
description. From then on, gnoths must always be in sgreement with the
hypothesis ( as described later in our sections on gnoth-hypothesis
equivalence). Thus, gnoths are not as free as gloms to simply combine at will.
They feel the "top-down" pressure of the hypothesis as well as the "bottom-up”
pressure coming from lower-level activities. Confli¢ts between these pressures
must be resolved through the gnoths. Each gnoth has a collection of subgloms
from which it derives its structure, its view of the sequence. Any change to the
gnoth's structure is realized by changing the subglom coliection.

Much bubbling and pushing-up of groupings goes on in the ¢ytoplasm.
The requirement of conforming to the current hypothesis, with the related
subsequent downweard pushing and glom destruction, is added in the
socratoplasm. Reformulation is implemented, also to be reflected in ¢cyto-level

activity. Mindlessness ceases here.

THE CYTOPLASM AND GLIMMERINGS
The cytoplesm is the bottom level of the Seek-WVhence system. All
changes to higher-level structures filter down here, are reflected here, and

cause reactions which may "bubble up” new structures. All processing here is
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automatic and myopic — no glodal views of the sequence are maintained. Any
new structures, such as a newly-formed glom, or the glint meade wvhen anew
term is entered, are immediately made centers of interest called active fo¢i and
heightened activity takes place around them,

The main goal of this level is to hit upon a pattern of gloms which can
be taken as a template for the sequence. Once a template is in place, a “cap” is,
in effect, placed over the the top-level gloms to prevent their disappearance.
This cap is in the form of a pseudo-giom, a glom that has subgloms but that is
inert, unable to interact with other gloms. Vhen such acap is in place, new
terms’ glints still bond and even glom with other gloms but no changes that
contradict the template can be made. Should anew term not fit the template, a
reviewis begun vhiclf; may lead to template modification or destruction.

If, meanwhile, the template has caused the formation of a hypothesis, .
newterms are filtered through the hypothesis rather than the template, and

-the template is virtually abandoned in deference to the more malleable, more
expressive structure. The filtering process, by vhich new terms are checked
for consistency with the hypothesis, can question the hypothesis’ velidity. This,
in rurn, can cause énoth changes which may precipitate glom-, template-, and

even hypothesis-modification or rejection.

5. SUMMARY
In summaeary, Seek-Whence is a program which attempts to discover and
represent rules underlying nonmathematical sequences of nonnegative
integers. Itis not always successful. When it is successful, the complex but
subliminal first stage of processing develops a hypothesis, an encapsulation of
the perceived underlying pattern. The hypothesis is represented in such a way

as to make the reformulation often found necessary in the second stage of
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processing not only possible but also simple to carry out in meany cases.
Processing occurs in simulated parallel on several levels of abstraction
atonce. At the lovest level of the Seek-Vhence wvorld, the cytoplasm,
glimmerings of grouping-ideas (gloms) derived from comparisons among the
system's representation of the inputterms (glints) are "pushed up” to be
recognized as perceptions (gnoths) in the socratoplasm, the middie level.
Recognition of useful cyto-groupings is aided by reference t0 the ideal notions
of the platoplasm, the most abstract level. Suggestions continually bubble up,
either to be pushed up further or to be rejected, sent back down. The interplay

of bottom-up and top-down processing is central 1o the system's functioning.

C. SEEK-WHENCE IN DETAIL

1. THE PLATOPLASM —- ABSTRACT NOTIONS
Currently, the platoplasm houses the ideal types —- the primitive,
built-in notions available to the system for use in constructing its viewof a
sequence. These can be seen as its vocabulary for the well-structured “phreses”
it constructs. New notions, the newly-constructed phrases, may eventually
come to be housed in the platoplasm as first-class citizens. Ve are developing a
network of relations among the ideal types 10 aid the system's reformulation

efforts.

ATOMIC IDEAL TYPES

The jdeal-atoms are Seek-Whence analogues to the integers entered at
the keyboard. An ideal-atom has predecessor and successor vatues, its own
value, and manifestations in the ¢cytoplesm. For example, the “ideal5” has

predecessor “ideal4” and successor "ideal6”, while "ideal0” has no predecessor
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but has "ideali“ 8s successor. Glints are certainly manifestations
(cytoplasm-~-level instances) of these ideals, because they are the system's
representations of the terms of the sequence. For example, in the sequence
fragment "5 0 5" the first and lest terms are manifestations of ideals, while the
middle term is a manifestation of idealQ. Certain other integer-valued
quantities, such as group length, may elso be important to the developmentof a
good representation of a given sequence pattern, and so should also be viewed as
menifestations. For example, the length of the group “(4¢ 4 4 ¢ 4)" might prove
to be en important manifestation of ideald. In the current version of the
system, however, only glints are referenced as manifestations of ideal atoms —a
simplifying (and weakening) design decision. In the future, we hope to address
the problem of what other quantities should be viewed es manifestations end

under what circumstances they become important.

NON-ATOMIC IDEAL TYPES

There are eight non-atomic ideal types, each of which is associated with
a formeat having one or more active parameters:

(typename start-value 1ength actual-value).
In our descriptions, optional parameters which have been included will be
given in prackets ("[I'). In each of the examples below, ve showaform an
instantiation of the given format. ¥hen such aform is queried -- or “hit", as
we say — it returns a value. The results of successive hits are shown on sepearate
lines. Note that these types and their formats correspond qQuite closely (but not

exactly) to the Seek-Whence diagram primitives introduced in Chapter One.
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constant --- astructure that always returns one value, its argument,
vhen queried.
format: (Constant arg)
examples:
(Constant 3) —=> 3
-3
-3

etc.

Countup --- astructure that returns nonnegative integers in
succession, starting with its argument, when queried.

format: (Countup n)

examples:

(Countup 3) --=> 3

--= 4

-~ 5

etc.

(Countup 8) ---» 8

=== 9

--=> 10

etc.
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C-group (Copy-group) --- a structure that returns anumber of cdpies of
a given argument.
format: (C-group start length)
examples:
(C-group23)~—(222)
- (222)

etc.

(C-group (Countup 1)2)-=(11)
—> (2 2)
- (33)
ete.
S-group (Successor-group) --- astructure that returns a given-length
run of successive integers, starting with agiven valus.
format: (S-group start length)
examples:
(S-group 2 3)--» (23 4)
- 2134)
ete.
(S-group54)--»(5678)
-->(5678)
ete.
(S-group (Countup 1) 2) --> (1 2)
- 23
- (3 4)

ete.



52

P-group (Predecessor group) —- a structure that returns a given-length
downward progression of nonnegative integers, starting wvith a
given value.

format: (P-group stert length)
examples:
(P-group 84)-->(8765)
- (8765)
ete.
(P-group 2 ¢) - undefined (would run to
negative numbers).

Y-group (Symmetry group) --- astructure that returns a given group of
nonnegative integers, symmetric about the center.
format: (Y-group [start]{length ]actual)
examples:

(Y-group15(18381))--»(18381)
-->(18381)
etc.
(Y-group ((Countup 1) 8 (Countup 1)))
- (181)
- (282)
- (383)

etc.
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Cycle — astructure that cycles through its actual parameter’s
value, returning one top-level element each time queried.
format: (Cycle actual)
examples:
(Cycle (218))--2
—1
-=3 8
-2
== 1

ete.

(Cyele (3 (Countup 1))) - 3
-1
-=»3
-=»2
~=3
-3
==»73
-4
ete.
Tuple -— astructure that returnsits actual parameter’s value each
time queried.
format: (Tuple actual)
examples:
(Tuple (184))--(184)
--> (1 84)

etc.
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(Tuple (22)) -— (22)
-y (22)

etc.

THE HIERARCHY OF IDEAL TYPES
These non-atomic {deal-types (or Platonic classes) fall into a hierarchy
of categories, each of which captures an important organizing notion for the
Seek-Whence world. The realizations of the types at different levels of the
system have differing attributes but always reflect this basic organization.
Briefly, the categories can be distinguished as follows:
repeater type — These are one-parameter generate types; given the
single parameter (and the state), the next value can be generated.
members: Constant, Countup
generate type — Given atypename and the start and length parameters
(e.g..(C-groupl 3)), the actual value (e.g., (1 11))can be
generated by the essociated "generating function™.
Any generate type possesses a process as des;ribed below.
members: C-group, S-group, P-group
process type -- Possesses & "process”, amethod of determining whether
or not some actual group is a representative of the class without
reference to anyinformation external to the group and the class
in question.
member: Y-group
fence type -- Has no generator, no process; virtually any collection
of neighboring terms can be called agroup by virtue of these
types. Typically, such groups exist because of external pressure

from neighboring terms or groups rather than internal
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cohesion. In effect, the terms are “fenced off” into a group by
their neighbors.
members: Cycle, Tuple
At the bottom of the hierarchy are the fence types, the least restrictive
types. The name derives from the fact that groups are usually identified as
being of this type when the system:

1) cannot classify them as being higher-level types and

2) can setup a “fence”, identifying the group as a group.

For example, in the parsed sequence | 5873 2 583 3 583 4 583..,
the terms "5 8 3" ere grouped, not because of any mutual attraction or shared
characteristic, but simply because of the interleaved {, 2, 3,... and the fact that
the group rep;ats. Itis important to note that in order to see the repetition of
the group, itis necessary 1o identify it as a group, and such recognition of
repetition in effect confirms the budding notion that a group is there to be
found. The group would probably be represented as “(Tuple (58 3))".

An entire sequence can have a fence-type representation:

4747.. canbe represented as (Cycle (4 7)), wvith an understood

| repetition.

At the next-highest level of the hierarchy ere the process types. The
onlyentry here is Y-group, asymmetry group. The characteristic of this class
is that it possesses a "process”, a method for identifying representatives of the
¢lass, if not for generating them. The form “(Y-group 1 5)", aY-group of length
5 starting vith a1l (we have given this form the optioneal start and length
parameters), is not sufficient to éenerate aunique symmetry group, butis
sufficient to determine that (1 747 1) is such a Y-group whereas (18251),
(171),and (2000 1) are not.

The generate types, the next-highest in our hierarchy, can use two
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parameters, the starting value and length. to generate aparticular grouping
representative of the given type. For example,
(C-gfoup 15)«<=--(11111), aconstant group of five 1's;
(S-group 2 3) <—> (23 4), asuccessorship group of length three,
starting with 2;
(P-group 9 4) <~—> (987 6), a predecessorship group of length four
starting at 9.
Each repeater type takes one parameter. The form “(Constant2)”
represents a structure that always returns 2 as its value, while "(Countup 3)”
represents a structure that always returns a 3 upon first request, then a ¢, a5,

and soon.

COMBINING IDEALS
1deal types can be combined to create structures wvhich encapsulate
fairly intricate patterns. In the examples below, each [ine again representsone
hitof the given form. Shared structures are indicated by the word “shared”,
with an arrow pointing to the first instance of the structure 10 be shared.
(S-group 1 (Countup 2)) -->12
123
-~»1234
etc.,
thus giving the sequence:

121231234...



(C-group (S-group 1 (Countup 1).2)-->(11)

- ((12)(12))
- ((123)(123))
ete,,
giving:
111212123123...
(Cycle(8 (Comared)) -8
-= 1
-2
--» 8
- ‘3
—> 4
etc.,
giving:
812834856...
(Tuple (2 (Countup 1)2)) - 21 2
-—->222
--»2732
etc.,
giving:

212222232242252...



58

(Tuple (2 (Countup 1) shared)) -->212
-~ 222

--»232
etc.,
giving:
212222232242252...

The difference between the latter two representations is subtle but can be
important. In the last one, the sameness of the "bracketing” 2's is made explicit.
Notice how this can affect generalizations of the sequence:

(Tuple (5 (Countup 1) 2)) is a possible generalization of the first
representation because the bracketing integers are seen as distinc¢t, having no
necessary sameness. Querying it three umes will give us:

-~512

-»522

=532
ete..

In the secbnd form, we generalize 10 5 as follows:

(Tuple (mhared)) —-515

=525
=535
ete..
The ability to combine the Platonic notions as demonstrated gives the

system the flexibility and expressive power needed 10 model sequence patterns

and ¢reate a hypothesis.
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2. THE HYPOTHESIS
The major goal of the Seek-Whence system is to formutate a hypothesis —
a structure that describes and can extrapolate the perceived pattern. The
hypothesis, vhich is derived from the information at hand — the sequence
terms seen and any relationships the program has been able to establish among
them - is expressed in terms of the Platonic ¢lasses described above. For
example,
1121231234 canbeexpressed as the form:
(S-group | (Countup 1)), while
212223 24 ..can beexpressed as the form:
(Cyele (2 (Countup 1))).

Should a hypothesis fail to predict properly, the tendency of Seek-Vhence
will be:

a) to generalize parameters, maintaining the Platonic ¢lass
structure;

b) to slip to aless strict ¢lass (“"vertical” slippage) or
to arelated ¢class (“lateral” slippage).

In the future, the system will have an implicit imperative to modify the
hypothesis so that in al] instances the strictest appropriate class is used in the
representation. For example, while "1 1 1" can be viewved asa Tuple, itis also a
C-group and should generally be so characterized. There are of course times
when "1 1 1" should be viewed as a Tuple; for this reason there will be no
prohibition egainst doing so, butitis very unlikely to be the first view adopted.

Both generalization and specification are required in Seek-Vhence and
both require knowledge of ihe grouping types described above and any
relations among the Platonic types. Such relations will be stored in the

platoplasm as “Ideal-relations” and wvill include lateral links (betwveen C-group
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and S-group, say, for "groups” of length one) as well as vertical ones (as

between Countup and S-group) in the plato-class hierarchy.

3. THE CYTOPLASM -- THE BASE

The cytoplasm has the role of “real world" in our “Socratic model”, in
which the platoplasm houses the analogues of Plato’s Ideals and the
socratoplesm is the analogue of Socrates’ "perceived world”. It houses the
lowest-level structures in the system -- the sparks, bonds, glints and gloms —-
and is the site of much upward-thrusting, relatively uncritical activity.
Suggestions for pattern formulation bubble up from ¢ytoplasm-level
(hereinafter shortened to "¢cyto-level”) activity to be tested at higher, more
"cognitive” levels. Ve believe that the probabilistic, undirected cyto-level
activity mimics low-level human perception processes to some extent.
Groupings are continually being generated and regenerated at this level, Just
8s people cannot prevent themselves from reinventing an ideg, reperceiving a
pattern, or reperforming an action, but compensate for such repetition by an
ability to notice that they are ¢eyeling or looping in their behavior, we will
leave it 1o higher-level processes 10 notice and handle any unproductive
looping in ¢yto-level activity.

The ¢cyto-level should bombard the upper levels with suggestions, noted
similarities, and groupings of terms. Itis up 10 the processes above to curd this

enthusiasm and 1o consider the suggestions more carefully and critically.

CYTO-LEVEL STRUCTURES
The four data types residing in the cytoplesm are Sparks, Bonds, Glints,
and Gloms. The former two ¢lasses are for finding, proposing, and later

eveluating glom groupings. The latter two classes, the Glints and Gloms, are
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used for representing the sequence terms and any term groupings of current

interest,

GLINTS AND GLOMS

In Seek-Whence, glints are the cyto-level representations of the
integers entered at the keyboard. Each glint is a structure wvith several fields:
class, name, print-value, position, span, pred (or left-nbdr), succ (or right-nbr),
and bonds-in, the last one being optional. For example, if the terms "1 22 3" had
been entered, the second 2 might be represented as follows:

class: Glints

name: glint3

print-value: 2

position: 3

span: 1

left-nbdr: glint2

right-ndbr: glint¢

The "span” field is really unnecessary in glints, butis a consequence of
the fact that the Glints class is a subclass of the Gloms. [tindicates that thisglom
isof length 1. This glint's left-nbr, its neighdor 10 the left, wvould de the glint
representing the preceding 2. called "glint2” here. Similarly, its right-nbr, its
neighbor to the right, would be the glint representing the succeeding 3. The
other fields &e self-explanatory.

Vhen asequence term is entered, the system creates aglint for it and then

lists that glint as & manifestation, or cyto-level analogue, of the appropriate
ideal-atom in the platoplesm. In our example, glint3 would become &

manifestation of ideal2 because its value is 2 and it represents an inputinteger.
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The glintis then examined by cyto-level tasks as described below to determine
howit is related to other ¢yto-level structures,

The class "Glints™ is a distinguished subclass of the ¢lass “Gloms”. Each
glintis indestructible -—- an “atomic” glom. Non-glint gloms are cohesive units,
made of adjacent atoms bound by “bonds” of one type or another. Itshould be
noted that chains of atoms linked by bonds are not necessarily converted to
gloms; some bond types (e.g., one indicating that gloms (8 1 4) and (1 2 3) ereof
the same length) are generally not considered strong enough to cause
glomming but are facts of note preserved for use by higher-level processes.

Non-glint gloms have as fields: ¢lass, name, type, print-velue,
start-position, span, positions-covered, subgloms, structure, and bonds-in. The
last two are optional, and are filled in vhen appropriate bj; cyto-level processes.
For example, in the sequence segment "8 222 8", the three 2's might be

represented jointly as aglom, as follows:

class: Gloms

name: glom?

type: (Same 1;rint~va111e group)
print-value: (222)

start-position: 2

span: 3

positions-covered: (24)

subgloms: {glin12 glin13 glint4)
Such gloms are ephemeral and can disappear at any time. Disappearance by
dissolving (being destroyed as aunit, but with all subgloms surviving intact),
bursting (being destroyed as aunit and having ell non-glint subgloms burst as
well -- leaving only the underlying glints), or glomming (being combined with

another glom) is fluid and continual. The cytoplasm might be viewed as a soup
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bubbdling with gloms, the bubbles which rise to the top being the system's
current view of the sequence. If neighboring bubbdles have enough mutual
attraction (strong enough bonds) they will combdine; otherwise they will either

exist independently or burst 1o permit new dbubbles to take their place.

BONDING AND GLOMMING
The identification and creation of useful gloms is the primary function
of the tasks operating at the ¢ytoplesm level. To see how this is done, we must

start at the bottom and follow the process of "pushing up” gloms.

SPARKS AND BONDS

Sparks and Bonds, two more cyto-level classes (the others being the
Glints and Gloms discussed above), are used during the early stages of group
discovery. A spark iscreated between two gloms when aSparkler task pulls
those gloms at random from the cytoplasm and determinesin & very cursory
way that the two structures might be amenable to bonding. The Sparkler
simply looks for gloms that are not subgloms of each other. It does notlook for
any ¢common features -- this is the work of other tasks. For example, the glints
“1* and "1 might very well be bondable, since they have the same print-value.
Gloms “(1 2)"and "(1 2)" might dbe bondable for the same reason, or because
they have the same "span” (length in sequence terms covered). The glint “1”
might be bonded to the glom "(2 3)" by reason of adjacent successorship —- 2 is
the successor of 1, and the structures in question ere adjecent. However, no
glom can de bonded to one of its own subgloms, so the glom “(1 (1 1))" cannot

be bonded to the subglom “(1 1)"in any wey.



64

BEYOND SPARKLING

When aspark is created between two gloms, a horde of “Testers” is
placed on the taskrack. Vhen invoked (chosen to run) at some later time, each
Tester chooses some spark, not necessarily the one whose creation caused the
tester's creation. The spark’s members (the two gloms betwveen vhich the spark
is flying) are tested to ascertain if they are currently in existence (recail that
gloms are ephemeral). If both gloms exist, their bond-fields — the
characteristics such as print-vaiue or span which are importantenough to be
used as a rationale for bonding -- are intersected, and these fields' values are
tested for similarities. The system uses several types of bonds -- sameness,
successorship, predecessorship, adjacency, and meeting (e.g., “(8 1 4)" and
“(47)" "meet" at 4) — grouped into families, to link gloms. The most important
of these are, not surprisingly, sameness and successor~-predecessorship. If a
bonding test is passed, a “Bonder” task is created with the intent of performing
the actual bonding. One Bonder task will be created for each bonding test passed
by the two gloms, so several Bonders might actually be ¢created for any given
glom pair. For example, gloms “(1 2)"and "(1 2)" might engender both “same

print-value” and “same span” Bonders.

BONDING
WVhen invoked, aBonder
1) ¢checks t0 see that both gloms still exist, and
2) checks to see that they are not already bonded in this wvay.
If these conditions are satisfied, then the Bonder creates a Bond-class structure,
which we refer to simply as a bond . This bond, which exists in the ¢ytoplasm,
links the tvo gloms and has a strength associated with it. Bond strength is

derived from the bond type (e.g., "sameness”), any bond modifiers (adjacent
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terms are more strongly bonded than non-adjacent ones, for example) and the
glom characteristic (e.g., “print-value”) that is the subject of the bond. Creation
of abond causes the release of more Sparklers, stimulating the system to carry
out more low-level search and bond ¢creation, and causes the release of some

Glom-scouts -- tasks designed to look for and push up glom groupings.

GLOMMING

Bonds are created in order to provide some basis for the grouping of
sequence terms (glints) and term groups (gloms). The act of bonding simply
reflects the fact that tvo gloms are related in some way. Glomming however, is
performed only vhen the bonds among two or more gloms are sufficiently
strong that the system should vie;v the {tems comprising the bond-cheain as a
unit. The system distinguishes between the "bond-fields” of a glom and its
“glom-fields”. Bond-fields are those characteristics of gloms that are to be
compared for the purpose of bonding. Typically, the print-value and spen are
useful bond-fields. Thus, two glomssuch as “(1 2 3)"and “(7 8 9)"or "(1 2 3)"
and “(8 1 4)" will generally be bonded. But, aithough knowiedge of the fact
that two gloms have the same =spem is “interesting”, it is generally not
compelling enough to varrant glomming them in and of itself. In an early
version of this system, we did allow such gloms. The result wes a plethoraof
uninteresting gloms that seemed to get in the way of the system s real vork. In
fact, this was one of the main reasons for introducing the "bond-field”/"glom-
field" distinetion. Glom-fields are the glom characteristics that are important
enough to use for glomming purposes. Only print-vealue is used as a glom-field
in the current system. The system ¢an make chosen glom characteristics more
salient by designating them as bond-fields or glom-fields, or less salient by

removing these designations; in practice this ability is not yet used.



66

As wes noted earlier, bond creation causes the release of Glom-~scouts
onto the taskrack. These tasks look for glommable bond-chains. They also serve
to introduce a good example of a terraced scan in Seek-WVhence, The tasks
introduced between this point in the dissertation and our discussion of
"Plato-evaluator” tasks perform increesingly extensive tests on target gloms,
screening the gloms es potential representatives of various Platonic classes. If
8 glom passes one test, it is targeted for further evaluation. Shouldaglom faila
test, it may be re-evaluated by other tasks. Gloms that are not discernably
Platonic are either ignored or destroyed.

WVhen in'voked. a Glom-scout chooses a cyto-element (a glint or glom
which is not a subglom of any other glom) and attempts to group it with its
neighbors. Actually, three quicktests tests are made for any bond-familyin
wvhich the glom is involved:

1) is it groupable? (bonded to any neighbors in this way?)

2) isit coverable? (bonded into a symmetry group?)

3)isitfenceable? {are there remote gloms to which it is bonded?)

Note that these tests are the precursors of the plato-level notions of generate,
process, and fence classes. Any tests passed cause creation of aGlomtester task
10 make a more extensive testof the glom. The Glomtester's weight (urgency) is
dependent on the test (“groupable” being strongest) and the bond-type involved
(sameness being stronger than successorship, and so on). For example, if the
terms “1 885 2" have been entered, the system may notice several relationships
among various terms. The two neighboring 8's might be seen as a budding
"sameness group” because of their adjacent sameness. However, the remote
successorship petween the 1 and the 2 might also be noted and used 10 propose &
“successorship fence" group, one that would separate the given segmentinto

gloms "(1 889)"and “(2)". Such groupings are potentially very important,
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especially if the sequence is:

1885 2885 3885 .
or the like, but are not as immediately compelling as such groupings es the pair
of 8's. Therefore, aGlomtester for a sameness group is given a higher weight
than a predecessor fence Glomtester. The system is thus biased toward noticing
certain similarities first, yet it is not compelled to do so.

When invoked, a Glomtester task must first be certain that the glom itis
supposed to test is still in the cytoplesm. If so, it must then determine the extent
of the evolving glom. The thrust here is to get maximally-sized gloms.

For example,

1)in"21113", with the second “1" targeted and "sameness™ the

bond-type, the Glomtester would suggest the.t‘ “1 11" de grouped.
2)in"91259", with the first "9 targeted and “fence” the resson,
"91 25" would be suggested.
3)in"53161 34", with "6"targeted and “symmetry" the reason,
"3161 3" would be suggested.
4)in"12323", with the first “2" the target and the "pred-succ” bond
family the reason, "1 2 3 273" would be suggested.
The Glomtester either rejects the group as a glom or ¢creates a Glommer task t0
refine the group and perform the final glomming.
WVhen invoked, the Glommer will do abit of "bookkeeping”. It creates the
new glom and makes it an active focus -- a site of increased system activity. It
also creates a Glom-inspector tesk to continue pushing the glom up to higher

levels.
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4. PLATO-CYTO RELATIONS

The Seek-WVhence system has an imperative to find analogues of its
plato-classes. Atthe low levels of processing discussed thus far in this
dissertation, that drive has been realized, in & procedural and uncritical vay, by
the nature of the system's tasks. Above these levels, some declarative knowledge
is used; some manifest reference is made directly to the ideal-types to begin, if
not rejecting gloms, then favoring those that seem the purest analogues of the
ideals. When found, these special gloms will be "dubbed”. All others will be
puton & track toweards destruction. Plato-scouts perform the first step in this
process.

A Glom-inspector determines which, if any, plato-¢classes might find
the given glom ."interesting" -- which classes might possibly consider.
it a "manifestation” of themselves. If there are any such classes, the
Glom-inspector then creates aPlato-scout task, giving it the glom in question
and the names of the “interested” (candidate) plato-classes. If the glom still
exists vhen the Plato-scout is invoked, the scout begins its work.

During the glomming stage, maximally-sized groups of gloms — all
“¢hains” thiat consist of gloms related to their neighbors by some elementof a
bond family — are collected. For example, 12323 "¢couldbe a
“pred-succ-family” glom. The Plato-scout stege will now focus on "purifying”
these groups.

Recall that all but the fence-type plato-classes (Tuple and Cycle) possess
a "process” -- a function which, vhen given anumber string. determines
whether or not the string is an instantiation of the class. A Plato-scoutis given
aglom and a list of candidate plato-classes. It applies the process function for
each candidate class to the glom's print-velue. If the glom passes the test, then

the glom is pure and will be dubbed a manifestation of the candidate class. A
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glom can be dubbed more than once. Theglom “(1 1 1), for example, might be
dubbed as both & C-group ("copy-group™) and a Y-group ("symmetry-group”).

If the plato-class is a fence type (and so has no process), and if the glom
is "flat” -~ has only glints as subgloms -- a "pass by default” occurs. This
permits flat potential Tuple and Cycle gloms to be dubbed as such.

Any glom that does not pass even one of its process tests is cause for the
creation of a Plato-evaluator task. When invoked, the Plato-evaluator examines
the glom a bit further, looking for dubbable gloms of secondary purity
(non-flat) and for pure subcollections of gloms within the proposed target glom.
Thus "1 232 3" might well be sent to a Plato-evaluator, vhich might break it
into the two pure successorship groups "1 23" and "2 3%, and send on the gloms
for these two groups 1o be dubbdbed. If the Plato-evaluator has no success and the
glom has not already been dubbed as a manifestation of some other platotype,
the scene is set for its destruction. A Burster task is created to destroy the glom

and all its non-glint subgloms.

DUBBING THE PURE
If some glom is deemed “pure” by aPlato-scout, the Plato-scout calls for
the glom to be “dubbed”. This is a two-step process:
1) the glom's structure field is modified to indicate
a) new structure: (platotype [start-val] [length ] [value])
e.g. .(C-groupl3)or (Cycle (2981))
b) purity: pure <--> an exact manifestation; flat,eg, (111)
secondary <--> notflat; e.g. ((15) (15 (15)
2) the Platonic ideal has this glom added to its list of manifestations.
Dubbing causes creation of a Template-scout process, indicating that the

glom is strong enough to warrant a check to determine whether or notits
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structure, as described in the structure field added during dubbing, might yield
a pattern for the entire sequence,

Those gloms that do not pass eny of the tests leading to dJubbing are
targeted for destruction by a Burster or a Dissolver tesk. A Dissolver is atask
that destroys a glom, leaving its highest-level subgloms to float independently
in the cytoplasm. For example, if the glom “((1 1) (2 2))" were to be dissolved,
the underlying gloms "(1 1)" and "(2 2)" would survive, but would, of course, no .
longer be glommed with each other. A Burster tesk is even more destructive of
glom structure. If a Burster wvere seton the glom "((1 1) (2 2))", all levels of
glomming would be destroyed, leaving only the glints "1°, "1", "2", "2" in the
cytoplasm.

Once a Burster or Dissolver hes beet‘x created on aglom, the glom's only
escape route is t0 become invisible in the cytoplasm by glomming with another
glom. Thus, after reaching the point of perusal by a Plato-evaluator, a glom will
either a) be dubbed; b) be destroyed and have some subgloms dubbed; or ¢) be
targeted for destruction. The Plato-evaluator creates no other tesks. Jur

terraced scan has come to an end.

5. REVIEW AND PREVIEWV
Thus far in this thesis we have discussed all the major ¢cyto-level tasks
and structures. Before moving on to adiscussion of other levels, it might be
well to get an overview of what remains and how it relates 10 vhat we have
already done. |
WVhen people work on sequence or Bongard prodlems, they usually
| progress through several steges. Atfirst, they see and recognize new terms as
the terms ere revealed. Then they meake linkages betwveen new and

previously-encountered terms, and begin to meake tentative groupings of terms
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in an effortto "come up with something”. This essentially data-driven activity
is modeled in the ¢yto-level processing that we have just discussed. Actual terms
and reel, undisputable relationships (e.g.. “adjacent successor”) are used as the
basis for crea“t'ing', rather haphazerdiy and nondeterministically, the ephemeral
structures, "held wremblingly in the hand”, known to Seek-Vhence as “gloms”.

The next step in human sequence-solution activity is to answer the
question, “Vhat is it ['ve seen?”, or better still, "Vhatis it [ think ['ve seen?”,
The corresponding processing level of Seek-WVhence, the template level, meakes
a similar attempt to realize or identify wvhat the system “perceives” thatit has
seen. In the process of doing this, it tries to create a "template” for the sequence
— afirst rough approximation of the developing sequence pattern-description.
This is a stage where we try “to get a handle” on the pattern for internel
processing purposes. People operating at this stege will often say something
like, "Vait -- [ think ['ve gotit ... no, maybe not.” The description is atentative
one, not believed too firmly, but nonetheless asort of crystallization of current
perception. The happiest possible outcome from this stage is a parenthesization
of the sequence in accord with the developing and nov} more firmly held and
more explicit pattern description. In Seek-WVhence, this happy outcome means
the creation of a hypothesis - the more-firmiy-held description - and the
creation of gnoths — the parenthesization.

A Seek-Whence hypothesis is the closest analogue the system hasto a
verbalization of the sequence pattern. A human sequence solver, perhaps after
one or more false starts, will eventually announce triumphanty, “] think ['ve
gotit!”, Atthis point, or certainly by the time the déscription is verbalized, the
subject's pattern description has prodably crystallized completely. This
description is (usually) firmly held, is predictive, and can be communicated

clearly to others — either by some encepsulation method (e.g.,"three I'sand a
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2") or by reciting the tarms in a patterned or sing-song manner. Seek-Vhence
hypotheses (which are described in detail later in this paper) have similar
features; the system has not yet begun to sing them, though.,

As mentioned eartier, we view the gnoths — collectively, our
parenthesization ¢of the sequence — as existing in a place we call the
“socratoplasm”, somewhere betwaen the “real world” of the cytoplesm and the
"ideal world” of the piatoplesm. If we view the cvtopl;sm as data-driven andits
structures as "real”, and the platoplasm as theory-driven with “ideal” structures,
then the socratoplasm is what wve will call "perception-driven” and its
structures “perceived”. In the socratoplasm, Seek-Vhence must reconcile
theory with reality, and thus mustin effect answver the question, "Does what 1
think ['ve seen make sense?”. The gnoths will alvays agree with the hvpotﬁesis
10 some extent, but may fail to be fully consistent with it. Similarly, there may
also be some temporary disagreemeht between the gnoths and the gloms that
theyin effect “represent” . This rather unpleasant-sounding state of affairsisa
consequence of the necessary state of flux at this level. If the hypothesis is
changed -- if, for example, the system now wants thé segment “1 22"
parenthesized as "1 (2 2)", whereas it used to be parenthesized as “(1 2) 2" -
the system will have to propegate that change down through the various
processing levels. The socrato-level is the level possessing the vocabulary in
which to express those necessary changes. Itis the level at vhich
reformulation begins to be brought about.

Now that we have some foreshadowing of future developments, it is time
to return to our more systematic discussion of Seek-Vhence processing. Ve left
off at the point when template-level processing was about to begin, the stage of
“casting around” for an appropriate formulation of the sequence pattern

description.
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6. TEMPLATE CREATION — ONE MOLD TQ FIT ALL

Whenever a glom is dubbed es a manifestation of some plato-type, a
Template-scout process is placed on the teskrack. It and other processes
involved in template creation and evaluation operate at an intermediate level
between the "real”, Jata~driven cyto-level and the "perceived”,
perception-driven socrato-level. The human analogue is the stage during
which a person’s eyes move back and forth across the terms, as the person waits
for an idea to emerge. This is astage in vhich people can literally observe
themselves vork, yet be unable to explain verbally what is happening, wvhat
theyare “thinking"”. People wvorking on Bongard problems experience this
stage in an especially clear and forceful vay.

In Seek-Vr;ence, the template-level processes attempt to come up vith a
template or descriptor of the sequence. This is a preliminary step to devising a
hypothesis -- that is, a predictive model of the sequence, an encapsulation of its
structure. Templates and hypotheses have similar forms, but templates are far
less complete and exact, lacking the predictive ability and expressive power of
hypotheses. A good, working template will eventually give rise to & hypothesis.

A temﬁiate is formed when the structure of some particular dubbed glom
is found to explein, at least roughly, all the sequence terms seen thus far. For
example, the template form “(S-group 1 n)" sufficestoexplain“1 12 123"
since it “fits” all the term groupings, even though there is no built-in notion or
even any recognition that "n” means "countup” here. The same template would
suffice equally wellfor “12 12345 | 123" The ability to notice
"eross-glom " properties, such as n <--> countup, is left to higher-level processes.

Once atemplate is created, it puts a pseudo-glom celled the template glom
over the highest-level gloms in the cytoplasm (those that are not subgloms of

any other glom) to prevent the disappearance of the gloms that engendered and
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nowreflect it. A pseudo-glom cannot combine with real gloms, and it prevents
its subgloms from glomming activity as well. Some cyto-level activity can still
continue — bonding being done as freely as ever, for example ~- but no new
templates are considered for the lifetime of the given template.

The template vili be checked by a Template-eveluator task and either be
passed, or rejected and abandoned. If {tis passed, it wvill probably be the basis
for hypothesis and gnoth creation. This means that until a hypothesis exists, all
newterms will be “filtered” past the template, checked for agreement with it.
Should a term not fit the template, a review is set up, with resulting modification
or rejection of the template. The filtering process is the first major top-down
action performed by the system; the template level has taken control. Thisis
not 1o say that cyto-level activity ceases or slows; the cyto-level processes
continue in their accustomed way. What is added is direction from above:

instructions to make or dissolve gloms, to create units of a particular form.

TEMPLATE DIEEICULTIES

The process of devising a template is not as easy as it might first appear.
For example, suppose that the sequenceterms “1121273" were enteredand
the first “1 2" were glommed, dubbed as “(S-group 1 2)", and tergeted by a
Template-scout. Vhen invoked, the scout would set out a Template-applier task
to determine if the entire sequence seen is of that form. The applier vould
attempt to view the sequence as arepetition of “(S-group 1 2)" and would, of
course, fail because of the initial “1" and the trailing “3“ The applier does not
give up immediately, but rather checks 10 see if loosening a parameter or two in
its representation would help. In this case, changing the form from the original
“(S-group 1 2)" to “(S-group 1 n)" ~- where "n" means “any nonnegative

integer” - will do the trick. The accepted template will then be "(S-group L n)".
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If the Template-applier fails, it creates a Template-resolver task for one
final attempt. Vhen invoked, the resolver 100ks at glints rather than gloms to
determine whether or not the sequence can be re-viewed to fitinto the given
mold. For example, if the segment 11212 3" were glommedas (11)2(123),
the Template-applier wvould fail because of the first glom. A Template-resolver
working with the template “(S-group 1 n)", howvever, might be abte to find the
appropriate S-groups by locking at the sequence terms rather than the gloms.
If the Template-resolver is successful, it "blasts” (does an immediate burst of) all
gloms and has the glints reglommed to fit the template. This is a fairly radical
action in thatitignores all the cyto-generated glom units, but it does provide
some potential for destroying "locked-in” gloms, ones the system created and
can never seem to burst. If the proposed templaté does not work at term level, it
is forgotten and the engendering glom dissolved.

In practice, the Template-resoiver is seldom invoked because the system
can usually devise a template early on vhich is good enough topush up a
hypothesis. Once that hes happened, the higher levels take over the job of
resolving problems. Itisin the spiritof Seek-Vhénce processing 1o give each
level alittle more ¢apability than it should ne;ed to use -- the ability to handle,
albeit lamely, situations that would be better handled by higher-level processes.

The Template-reviever process is in this category. Itis invoked after a
template has been created (but no hypothesis exists) and when new terms fail ta
fit the template. It can try some very simple fixes and can either:

1) call for modification of the template and restart the creation
and evaluation processes;
2) leave the template alone;
.3) target it for abandoning .

The creation and acceptance of a template causes increased activity in
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the system, in effect “raising the temperature” in the system. Most importantly,
it sets off two tasks, a Gnoth-meker and a Hypothesizer. This action pushes
processing up into the next level, the socrato-level, vhere more considered
operations are performed on the fluid but less ephemeral structures of the

so¢ratoplasm.

7. THE SOCRATOPLASM — IN THE MIDDLE

The socratoplasm is the “perceived vorld” of Seek-Vhence, the place
where perceptions developed at the cyto-level are noticed, ¢atalogued, and dealt
with. It can be viewed as a battleground betveen the “ideal” plato-notions and
the “real” cyto-glimmerings — that is, between the semantic and the syntactic -
;u- -- to put it one last vay -- between the cognitive and the subcognitive. In
any case, it is the system's playground, where perceptions ¢an be modified and
meanipulated; in short, itis wvhere slipping occurs.

For emphasis, we should note once again that operations carried out at
the socrato-level inevitably cause cyto-level activity. This is very desirable.
Such low-level activity may result in the noticing of aspecial bond or the
creation of anewglom which might eventually engender a better parse.

A single cyto-level task is too low-level to control its own or the system’s
processing directly (although in aggregate these tasks are very influential). In
contrast, the socrato-level can and does support tasks vhich say, in essence,
“Enough! [ have a hypothesis. Let's have the next term to check itout”, or
better still, "I think the answer is ... Tell me if I'm wrong.”

As was previously noted, the acceptance of atemplate signals the
system'é readiness t0 ¢consider creation of a hypothesis -- an encapsulation of
the sequence’s structure. Although this goal may not yet be attainable, a

correct hypothesis not forthcoming, the highest-level processes should now be
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introduced into the fray. At this point, malleable, manipulable, relatively
non-ephemereal structures are needed so that any necessary slipping can pe
noticed and carried out. Moreover, areformulation vocabulary must be
developed so that the system can express clearly and succinctly the actions it

needs to take. Thus, the structures we call "gnoths” are created.

GNOTHS
Each gnoth, a member of the class Gnoths, is viewed in three different
weys:
1) itis an actualization of a Platonic class;
2) ithes an underlying glom collection from which it derives its
structure;
3) itrepresents one “hit” of the current hypothesis (if there is one).
Vhen aGnoth-maker task, set off by the system after template creation,
is invoked, it creates one gnoth for each subglom of the template-glom and
notifies the associated plato-classes of their existence.
For example, in the sequence "l 12 123", vhere we might have gloms:
glom2: (1)
glom7: (1 2)
glom4: (123)
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and template “(S-group 1 n)", the Gnoth-meaker would create three gnoths:
£nothl
¢lass: Gnoths
name: gnothl
frame: | this gnoth holds the first hypothesis “hit”
plato-class: S-g‘:;oup _
glom: glomi0 (where glom10 has glom?2 as subglom)
the gnoth's "pseudo-glom™

range: (11) the sequence terms it "covers”

£nothg

class: Gnoths
name: gnoth2
frame: 2
- plato-class: S-group
glom: glomll (where giomll hasglom? as subglom)
range: (23)

£noth3
class: Gnoths
name: gnoth3
frame: 3
plato-class: S-group
glom: glom12 (where glom12 has glom4 as subglom)
renge: (46)
Each gnoth places a pseudo-glom (called a “gnoth-glom™ ) over its glom

collection (which contains just one glom initially). A gnoth-glom, like a
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‘template-glom, cannot glom with other cyto-elements and serves to prevent the
haphazard disappearance of glom structures important to the system. In this
case, since the underlying glom collection gives the gnoth its character, that
collection must be preserved until the gnoth itself must change. Cyto-level
bonding activity can continue but now the gnoth oversees the fate of its gloms.

Cyto-level tasks are somewhat myopic, able to view the sequence onlyin
arestricted, localized way. They have no overview of the sequance. The
structures -- the gloms ~- created at the cyto-level reflect this myopic view. In
contrast, the hypothesis and platonic-level processes can be said to have no
“upnderview” of the sequence, no direct contact vith reality as it exists in the
cytoplasm. Gnoths are designed to dbridge the gap between these levels, to
provide a place vhere inconsistencies betveen the high-level and low-level

views ¢can be vorked out.

8. HYPOTHESES -- ENCAPSULATING PATTERNS

The overall purpose of the system is t0 develop areasonable hypothesis:
a clean, predictive model of the rule underlying the sequence. Vhen atemplate
is accepted, a Hypothesizer task is set off along with aGnoth-meker, described
above. Vhen invoked, the Hypothesizer is responsible for devising & hypothesis
for the sequence, based on the template and the existing gnoths (if any) and
gloms. If, for some reason, there is a faulty template (or none atall), the
Hypothesizer can take the fall-back position of declaring the sequencetobea
Tuple, the weakest of all plato-classes.

Because the Hypothesizv_er's model, like those developed by humans,
may turn out, as more terms_a.rrive, to fail to be predictive, or may be judged
"elumsy” or "ugly”, it must also be easy to change. Thus, hypotheses must be not

only predictive and ciean, but aiso amenable to reformulation - “slippable”.
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Naturally, Seek-Whence must be able 10 notice when reformulation is catled for,
to know why it should be done, 10 know wvhat changes t0 make, and to know how
to carry out these changes, It becomes obvious, then, that hypothesis structure
is critical, in that it can make or break the system's ability to carry out these
tasks.

The predictive nature of a hypothesis is asemantic rather than a
syntactic requirement, and so poses few constraints on hypothesis form. The
other two goals ~- clean representation and slippable form -- do give us
something to work tovards. A hypothesis must have sufficient expressive
power to represent the observed regularity accutrately. It should have aclean
visual appearance so that it can be understood by humans — who will, after all,
be investigating its validity. Itshould be modular, so that the reforn;mation S0
fluidly and naturally done by humans can dbe carried out equally smoothly by

the system.

HYPOTHESIS EORM ‘

The form we have chosen for hypotheses is, not surprisingly, closely
tied to the ideals in the platoplasm — anatural and direct conseqﬁ:nce of
having the system view its wvorld in terms of those concepts. It also closely
resembles S—e-Whence diagrams. The fragment”l | 17, for example, may well
be viewed as a C-group (Constant group). A hypothesis would express this in the
form “(C-group 1 3)", alist consisting of the Platonic class name, the start-velue
and the (top-level) length of the grouping.

The sequence segment 456 45 6" could be expressed:

(C-group (S-group 4 3) 2),
indicating a C-group of length 2, each of whose entries is the S-group

(successor-group) starting with ¢ and of length 3.
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The segment “456 56 7" could de:
(S-group (Countup 4) 3).
Each "hit" or evaluation of this form would yield a length-3 successor group.
The first group would start vith 4, the next with 5, et¢..
The segment _“1 584 2 584 3 584" might be expressed:
(Cycte ((Countup 1) (Tuple (584)))).
The segment "112 1" could de:
(Cyele ((Countup 1)1)) <= (11)(21)(31)..
OR
(Cycle (1 (S-group12))) «— (112U {U2)....
The segment "1 2 1" might be:
(S-group 12) <> (12)(12)...
OR
(Y-group (1] BI(121)) = (121)(121) ... .
These forms are constructed by the system as it attempts 10 build a
hypothesis for the pattern presented. The Hypothesizer process will take such a
form and from it construct a Seek-Vhence hvpotheslis -- g data structure with

several fields, capabilities, and functions.

HYPOTHESIS FEATURES

First and appearently simplest, the hypothesis can displayits form, much
&5 was shown in the last section. [t can also predict the next term to be expected
following that form. [n addition, it has a validity associated with it - anumber
that grows as new, correctly-predicted terms are encountered. The most crucial
field, however, and the one that supports the others, is simply called the
hypothesis’ box. The box is the structure vhich, vhen "hit", produces the next

run of terms predicted by the hypothesis. The box can de reset to start again,
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asked to list a number of terms, or asked to predict the next term, given the
sequence’s currently known terms. The hypothesis’ box isamember of the
cless "Boxes” and as such lives in the socratopiesm, the middle level of the
Seek—Vhence world, along vith members of the classes “Printstructures” and
"Gnoths”. Gnoths, as we have seen earlier, are the central representative
structures in the socratoplasm. boxes and the closely-related printstructures
are not as visible, serving amore private purpose. The next section details the

operation of boxes and is not central 1o the flowof our discussion.

BOXES AND PRINTSTRUCTURES

Each box is arepositoryof information about an underlying
printstructure and through that printstructure branches out, tree-like, to
represent in an active way structures with such forms as:

(C-group 1 3) or (C-group (S-group 2 3)2) [see Figure 3].

Boxes can be "hit", prodded for their next value. Vhen implementing
box hits, [ wanted to be sure that hit propagation dowvn the dox tree could be
done in a fully parallel manner, with no reliance 1on the return of any
particular value before anyother. The following implementation will work in
this fashion, although the current version of the program treats box hits as
indivisible operations, rather than as a task series.

When a box is hit, it calls upon its underlying printstructure to feed ita
value. Each printstructure has a collection of fire-boxes subboxes which must
be hit to give it a value. When the printstructure “fires” — that is, hits its
fire-boxes, each box must return a value. Thus, ahiton a top-level box
propagates down through the tree of printstructures and boxes below it until
the most deeply-nested structures return their velues. These are passed up and

the upwards-bubbling proceeds until the top-level answer appears in the top
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box's "pstruc-val”
Box1
printstruc: ~
pstruc-val: Pstruci
ready: type: C-group
: (box1)
Box2 f
— k-val:
printstruc: s————— AN
BoXs
pstruc-val:
. printstruc: =————
ready:
pstruc-val:
Pstruc2 ready:
type: S-group Pstruch
s} {-1-H 2
b xes’, (box2) type: Constant
n-val
~val: boxes: {box5)
: \\\\ value: 2
Box3 Box4
printstruc: =——— prinistruc:
pstruc-val: pstruc-val:
ready: ready:
Pstrue3 Pstrucd
type: Constant type:  Constant

boxes: {box3)

value

2

boxes: (box4)
value: 3

Figure 3 -- A box tree for the form (C-group (S-group 23) 2)

In Figure 3, for example, the “fire-boxes"” for Pstrucl -- aC~group

printstructure -- are its “n-val" and "k-val” boxes, namely Box2 and Box5.

In order for Box2 to fire, though, it mustin turn receive a value from its

subordinate printstructure, Pstruc2 -- an S-group printstructure. When Box2 is
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duly filled, its "ready" field will be set 10 "true”, and it will report the valuein its
"pstruc-val” field to Pstrucl. Itis possible for two or more boxes to share the
same underlying printstructure. This happens, for example, in the sequence:

"8128734856..°
which can be described by the form "(Cycle (8 (Counmred))“.
Modeling this form requires the creation of three boxes: one for the
“Constent 8, one for the first “Countup 1", and one for the second “Countup 1
( referred to s "shared” in the given form). The “shared” distinguishes this
situation from the one implied by the form "(Cycle(8 (Countup 1) (Countup 1)))",
wvhich also requires three doxes, and vhich corresponds to the sequence
"81182283.3."

In our first form, only one Countup printstructure is created. Vhen that
printstructure fires in response 1o a hit on the first Countup box, it feeds both
Countup boxes, making doth boxes “ready”. Later on, vhen the second Countup
box is hit, the same printstructure will fire, again feeding dboth boxes, but this
time with the gext value in sequence. In contrast, the second form causes
creation of different printstructures for the two Countup boxes. Those
printstructures are hit independently, once each in a turn around the Cycle.

A simpler example of the same phenomenon can be seen using Figure 3.
If the form modeled had been “(C-group (S-group mared)" -~ rather than
“(C-group (S-group (2 3)) 2)"— so that the sameness of the 2's were to be
modeled explicitly, our diagram in Figure 3 wvould have been slightly different.
Pstruc3 would have “(box3 box5)" in its "boxes” field, and there would be no need
for PstrucS. BoxS would point to Pstruc3 asits “printstruc”.

In order 10 handle the details of firing and box-filling, each

printstructure type (C-group, S-group, etc.) has a firer associated with it, &
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process which knows how to fire the relevant fireboxes of the printstructure
and what to do with the results. When a printstructure is shared by two or more
boxes, each box must be filled vhenever the printstructure fires. Those boxes
must then record the fact that they already have a value —- set their "ready”
fields to “true” — so that they can report this value until the next time they are
hit. Boxes can also be reset to startfrom the beginning of the pattern descrited,
or asked to show anumber of terms. One proposed project for refinement of
Seek-Whence is to create a box-tree editor. Ve or the system could then change
the box tree associated with aform. This would make hypathesis modification
cleaner and more sophisticated than the current technique, vhich isto scrap
the old box tree and make anewvone.

Ve feel that the chosen implementation of hypotheses goes along wvay
towvard meeting our goals. It gives us an active structure capable of realizing
any well-formed hypothesis form. Itaccurately represents pattern structures,
and shared substructures can de represented explicitly in the dox tree. Thus it

is expressive. Itis modular so thatslipping — reformulation -- is supported.

D. THE END OF STAGE ONE

Once the hypothesis is in place and the gnoths corresponding to it are
“up” (crea.ted' 57 the Gnoth-maker), the system has reached the culmination of
its stage-one processing. from now on, activity will take ptace at all tevels of
the system simultaneousty. The new goal will be confirmation of a predictive
model for the sequence.

Virtually ail the structures created before the gnoths and hypothesis
operate at a level that we feel is generally ignored by most Al systems. We have

developed a set of gnoth operations, a language in wvhich we can express
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several ways for gnoths to combine and split, to share terms, and generally to
interact with each other. This isthe level that Al programstendtotekeas a
starting point. We have attempted o implement arich “subcognitive” level to
illustrate our belief that such asubstrate is critically important to truly
intelligent systems, marking astep up from formel symbol manipulation. Many
Al programs have been created to do very sophisticated things, but fewif any
are able to do simple, childlike things. Both abilities are important. A program
able to combine fuidly reformulatable, structural concepts such as ours with

' the knowledge of a sophisticated domain would be an achievement indeed, both

knowledgeable and flexible.



CHAPTER THREE
SEEK-WHENCE: STAGE TWO -- REEORMULATION
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A. INTRODUCTION

The current version of Seek-Whence was designed as an illustration of
the plausibility of our approach, so [ spent much time developing the paradigm
and implementing the lower levels of the system described in the previous
chapter. The highest levels are not as completely implemented, but do serve to
illustrate the potential of our approach. Several sequence problems have been
solved by the system. These include:
111..
1234 ..
111222333 ..
343434..
373737..
373373373 ...
1615141716151817 16 ...
16151415141314 13 12 ... (as well as possible, given anon-infinite pattern)
121231234 ...

Ve will use the last of these in arunning example of Seek-¥Vhence
processing throughout the remainder of this dissertation. A discussion of what
the current version of the system cannot do is given in Chapter Five, along with

some speculations as 10 why and some goals for the future.

B. BACKGROUND

The defining characteristic of stage two is the looming presence of the
hypothesis. Vithout it, the system suffers from a "blind men and elephents”
problem -- trying to make global sense from multiple local perspectives. Vith
the hypothesis, the system has a "point of view", apredictive model of the

s'equence to which it can cling until contradictory evidence is encountered.
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1. THE HUMAN APPROACH
Ve haﬁ presented sequence patterns 1o people singly and in groups.
Almost invariably, and justifiebly, once they have developed a hypothesis they
insiston its correctness until it is proved incorrect by the production of aterm
that simply will not fit. For example, when shown:
1223

many people hypothesize:
(1)@22)(3B33N 444

or, in Seek-Vhence terminology:
(C-group (Counmared).

If we say, "Nope, not it” and then present another 3, the usual reaction is
“Yeah?”, uttered with an inflection of challenge and the hint of asuggestion
that the presenter has actually forgotten the pattern. Itisonly when the next
term is presented, a 4, making the initial sequence:

122334
that they really believe ancther formulation is required. Then followsa
variable-length period of review and reorganization, vhich is in turn followed
by the generation of anew rirmly-héld hypothesis (or, in difficult cases,
resignation).

This "show me" attitude and the belief in a favorite hypothesis are
modeled in Seek-¥hence. The system maintains one hypothesisatanygiven
time, rather than alist of possibilities. It is able to do this and still function
reasonably well because of its ability to “slip” from an old hypothesis to anew
one. The hypothesis is, in effect, surrounded by ¢loud of potential hypotheses,
close variants into which it can be transformed whenever appropriate.
Underlying this ability are links among the Platonic concepts and information

about the ¢yto-level environment favored by each Platonic concept.
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2. PLATONIC RELATIONS (no pun intended)

The Platonic concepts of Seek~Whence, C-group, Tuple, Countup,
and the like, are to be connected by a variety of links reflecting the concepts’
interrelationships. This network of connections, in conjunction with a
philosophy for their use, constitutes the "Slipnet” which is so essential to the
system’s reformulation ability. In the current version, we have implementeda
small number of undifferentiated slipping links, called g-links, for this purpose.

The system’s slipping network -- which is all within the platoplasm —is
supplemented by another, " level-spanning”, network which relates each
concept 10 its own lower-level realizations. This network includes the lists each
Platonic concept maintains of its manifestations and actualizations. As
described earlier, the menifestations of a concept are cyto-level structures
which have been dubbed as representatives of the concept, which model itup to
the expressive ability of that level. The actualizations are socrato-level
structures which have similarly been identified as representatives of the
concept at that level, Also included in the level-spanning netwvork are lists of
pulling and pushing bonds, bonds which the concept can use to group or

separate sequance terms. Level-spahning links are little used as yet.

S-LINKS

As currently implemented, the s-links have direction and “slipperiness”.
For example, S-group has s-links to Countup, C-group, Y-group, Cycle, and Tuple.
Associated with each s-link is a number between 0 (non-stippery)and t
(perfectly slippery), which indicates my estimate of the system's proclivity to
move from the given concept to the neighbor. The s-link from S-group o0
Countup has slipperiness 0.1, reflecting the fact that it is difficulttoslipto a

stricter class. Slipperiness from S-group to Tuple is 0.4, since Tuple can serve as
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ageneric grouping mechanism if no satisfactory stricter cless is appropriate.
The slipperiness values can be changed during processing, elthough the
current system does not do so. A richer collection of linkage types and a fuller

description of the Slipnet notion is given in [Hofstadter 841.

PULL-PUSH BONDS

In addition to the s-links, each concept preserves information about the
types of bonds it finds most useful in grouping sequence terms. For example,
the C-group concept, because it involves copy or sameness groups, favors
adjacent sameness bonds most strongly, but also likes to see gloms having the
same span (number of sequence terms covered). Bonds vhich aPlatonic class
might use to hold groups together are listed as “pull-bonds”; those it tends to use
to separate groups are listed as "push-bonds”. Each so-designated bond type is
given astrength from | to 10, strengths which again could be, but in practice

are not, changed by the system.

3. EREEZE-DRIED HYPOTHESES

When ahypothesis has been deemed inadequate, it is "freeze-dried” -- its
form is extracted and is kKepton alist of old hypotheses, along with the number
of terms of the sequence it explained. The old hypotheses serve as acheck
against cycling in the system. When Seek-Whence has trouble coming up with
a hypothesis, it, like most humans, keeps coming back to the same incorrect
hypotheses again end again. This, we feel, is not a bad feature, since people are
guilty of the same “foolish” behavior. It would be disastrous, however, should it
go unnoticed. Gray Clossman and others in the Fluid Analogies Research Group
(FARG) at Michigan have thought quite deeply about the‘importance of

"self-noticing " or "self-watching"” [Hofstadter 85]. No doubt the Copycat project
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in progress there will have a more sophisticated approach to the problem than
the smell effort presented here. In any case, freeze-dried hypotheses at least
flag cyclic behavior at this level of granularity. On the other hand, we do not
wantto prevent ¢ycles at low levels for several reasons. People experience
them. Although we may find them quite ennoying at times, they are often

quite useful.in forcing us to consider once again a correct notion which we had
rejected for some “high-level” but incorrect reason. Seek-Whence has thrashed
about more than once, ¢clinging 10 some Platonic ¢lass or glom, while
underlying layers push up another, correct, notion over and over again.
Knowing when to permit these notions to take over and when to squelch them is
amost difficult problem. Qur current solution has been, vhen no progress has
been made f;:r quite some time, to blast away all gnoths and gloms, leaving only
the glints and their bonds to push up an inspiration. A mathematics student and
friend was the inspiration for this approach. After struggling unsuccessfully
for hours with a problem set, she would toss all her papers away, walk around
the room, confront the problem sheet and say, in a very cheerful voice, "Oh,
look -- aproblem set! I wonder wvhat the questions are. Shall ve trysome? [ bet

they'll be fun.” Sometimes it worked and sometimes....

C. CHANGING A HYPOTHESIS
There are actually two reasons for changing ahypothesis:
1) it fails to predict;
2) itis predictive butits form is less than satisfactory.
Ve term hypothesis changes made for the former reason “medical
reformulations” to distinguish them from the "cosmetic reformulations” made in1
response to the latter. The current version of Seek-Whence supports the more

critical medical reformulations but has only made & beginning at handling the
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cosmetic ones. Because our discussion of medical reformulation will of

necessity be rather lengthy, we will cover the cosmetic refors first.

1. COSMETIC REEORM

Once a hypothesis has been formulated, it becomes important to refine
it. An "ugly”, though correct, parse can be very dissatisfying to humans; there
is generally strong egreement on which of several candidate parses is "best” in
this heuristic sense. For example, given the sequence

212222232242252...
most successful solvers will come up with the parse:

(212)(222)(232) ...
More then one person has parsed it as;

2(122)(222)(322)..
becoming annoyed at the presenter for posing a problem with such a tricky,
ugly parse, "with that 2 sticking out in front.”

In some instances, alternative parses are equally acceptable, but will
generalize differently. For example, such sequences as:

(515)(525)(535)...and

(516)(526)(536)...
are both considered generalizations of the sequence

(415)(425)(435)....
The difference is that in the first generalization the ¢countup betveen the
bracketing 4 and 5in the original (last-listed) sequence is either not noticed or
not considered salient, while in the second generalization it is meintained. Eor
an interesting study of the problems of analogy and generalization, see
[Hofstadter 82¢]

Hypothesis refinement is as yet only minimelly supported in
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Seek-Whence. Itisto be carried out byinternal gnoth reformers, processes that
modify the internal structure of the gnoths. Such modification wiil be done for
either of two reasons:
1) torelieve internal pressure within a gnoth, pressure deriving from
those bonds within the gnoth that would push it apart;
2) to meke the gnoth's structure cpnrorm more closely 1o the reigning
hypothesis,
The rirs; of these descridbes "bottom-up” pressures, such as an unwieldy
structure or poor parenthesization. An example of this would de the
212222232... casecited above, where the first structure -- holding alone 2
— would seem rather out of place. The second is & "top-down ™ attempt to insure
that the gnoths model the reigning hypofhesis as closely as possible. The
driving force behind this attempt is the goal of structural equivalence between

each gnoth and the hypothesis.

GNOTH-HYPOTHESIS EQUIVALENCE

We have stated that each gnoth is to represent one hit of the hypothesis.
Butis it sufficient that the gnoth givé the same terms as a hypothesis hit? Or do
we vant the same terms with the same parenthesization? Or might we also
want the gno“t-h td obey the same underlying form (that is, have the same
parenthesization for the same reason)? In the following sections wve will
describe these three levels of representation, which we call "term equivalence”,
“parse equivalence”, and “structural equivalence”. Ve use the term frame of a
hypothesis to mean an abstractiy-viewed hit of the hypothesis: the collection of

Seek-Whence forms that would produce the given hit.
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TERM EQUIVALENCE

Term equivalence, the weakest of the three types of representation,
requires that each gnoth govern precisely the same terms as one frame of the
hypothesis. For example, if the hypothesis is: (S-group 1 3), then doth gnoths

shown in the following disgram are term-equivalent to it.

When asked for its value, gnoth2 produces ((1 2) 3), while gnoth3 yields
(1 23). Both gnoths produce the three terms 1, 2, 3 in thatorder, so both satisfy

the requirement for term-equivalence.

PARSE EQUIVALENCE

Parse equivelence, the next level, requires that the gnoth printits value
with the same parenthesization as the corresponding hypothesis frame. In the
above example, gnoth3 is parse-equivalent to the given hypothesis while

gnoth2 is not.

STRUCTURAL EQUIVALENCE
The third and strongest level of equivalence is structural equivalence.
In order to display structural equivalence with the hypothesis, agnoth must be

parse-equivalent to it and the gnoth's form must De the same as the
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corresponding frame of the hypothesis. But what form should a gnoth assume if
it is to reflect the hypothesis accurately? There are two distinguishable
possibilities, which we call deep structure and shallow structure.,
For example, suppose that we have a fairly complicated hypothesis such
as “(C-group (S-group (Countup 1) 3)2)", derived from input terms:
123123234234345345, and parsedas:
123 123 234 234 3495 345.
Viewed at the term level, the first hit of this hypothesis generates "123123".
The shallow-structure (or deeply-hit) form of the first frame of our
hypothesis would be:
(C-group (123)2).
The corresponding deep-structure (or shallowiy-hit) form is:
(C-group (S-group 1 3) 2).
More structural detail is retained in the deep-structure form, with only the
lowest-level structures replaced by constants or funs. In the shallow-structure

form, all but the top-level structures are so replaced.

DEEP VS. SHALLOW STRUCTURE
For comparison, the first three deep-structure and shallow-structure

frames of our hypothesis “(C-group (S-group (Countup 1)3) 2)" are:

shallow deep
(C-group (123)2) (C-group (S-group 1 3)2)
(C-group (234)2) (C-group (S-group 23) 2)
(C-group (345)2) (C-group (S-group 3 3) 2)

Because the deep-structure form presents more structural detail and
represents a “one-step-down” view of the hypothesis, we chose it as our goal.

Once ahypothesis is made, the system gives each gnoth its target form, the
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deep-structure equivalent of the hypothesis frame to which it corresponds.
When the gnoth's form matches this given one, the gnoth is said to exhibit
structural equivalence with the hypothesis. Atthat time, the gnoth should be

completely "happy”, having no further goals.

EORM POLISHING

In summary, all gnoths must always maintain term equivalence with the
hypothesis. Their goal will be to achieve gtructural equivalence by reforming
into the deep-structure form of one hypothesis frame. Along the wvay they will
achieve the middle state of parse equivalence, indicated by the fact that the
gnoth's "parse-print”, the parenthesized printing of its value, matches that of

the hypothesis frame.

IMPORTANCE TO GENERALIZATION

The form polishing described above will be essential to an ability to
generalize sequencesin reasonable ways and make analogies between sequence
descriptions. Also required will be the ability to notice structural samenesses,
such as the (Céuntup 1) in the hypothesis “(C-group (Coui-nup 1) (Countup 1 )",
which vields the terms:

122333,
These are among the future high-level goals of the Seek-Vhence project,

unimplemented as yet.

2. MEDICAL REEORM
Medical reformulation, which is supported in the current version of
Seek-Vhence, is done when the hypothesis has been demonstrated 1o be invalid.

It involves a review of the 01d hypothesis and the underlying structures
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supporting it, a decision as to which Platonic type should hold sway, a
re-evaluation of the bonds noticed by the system, the use of bonds in the
environment of the chosen Platonic type 1o engender gnoth reformulations,

and finally (itis hoped) the construction of a new, predictive hypothesis.

GNOTH-SETTER

The system stores hypothesis-confirming terms in a¢atchall gnoth. a
special gnoth that simply serves as arepository for non-troublesome terms.
WVhen an unexpected term is encountered, the system immediately sets the
hypothesis’ validity 10 0, releases sparks to encourage lov-level activity, and
places a Gnoth-setter task on the taskrack. When invoked, the Gnoth-setter
carefully fills out gnoths in accordance with the old hypothesis and calls for the
system to reconsider its parse. For example, if the old hypothesis were
"(S-group 1 3)“, and two gnoths, each holding “1 23", were already in existence,
the catchall gnoth might be holding "1 23 4". The first three terms in the
segment "1 234" are in the catchall because they vere predicted by the
hypothesis; the "4" is the last term entered -- the troublesome one. The
Gnoth-setter vould therefore create two new gnoths, one to hold the initiat
“1 23" from the catchell and the other to hold the trailing 4.

Each gnoth is marked with the frame and equivalence type (term or
perse, depending on agreement with the hypothesis’ parenthesization)
appropriate for it. Any non-fiting terms are coliected together in a final gnoth
and the catchall is destroyed. In the example above, the two pre-existing
gnoths and the firstof the nevly-created ones would be marked as
parse-equivalent to the old hypothesis.

In our running exampte ("1 2 1 2 3"), entry of the first tvo terms —

"1 2 * — causes the system to hypothesize (Countup 1). When the next term
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enteredis "1, aGnoth-setter puts out three gnoths, one for each term. The

firsttwo are in accord with the discredited hypothesis and are in fact

parse-equivalent to it. The last one simply holds the non-fitting term.
Now, with “all the cards on the table”, the Gnoth-setter calls for

reconsideration to begin.

3. RECONSIDERATION
The goal of reconsideration is the construction of a new and valid
hypothesis. This is notamechanical, program-directed reconstruction,
however, but rather a "homing in" on anew formulation from a tightening

spiral of possibilities generated by independent but interacting processes.

e. DETERMINATION OF THE REIGNING TYPE

The first step taken during reconsideration is a bookkeeping measure,
saving the form of the ol.d hypothesis and destroying its box, the home of its
active representation. This leaves the system with no active structure to govern
or filter processing, only a "freeze-dried” form to remind it of its most recent
perspective, The system then decides whether to stay with the reigning ¢lass --
the Platonic ¢lass at the highest level of the (rormer) hypothesis --or tosliptoa
newone. This decision is made on several considerations.

First, if areigning class -- such as Constant - is very strictin the sense
that it is difTicult to generalize without moving 10 a new class altogether,
slipping is chosen immediately. Otherwise, some deeper investigation is made.
The old hypotheses are checked to determine the number of recent hypotheses
of this ¢lass - how many “tries” the class has had since it seized power. All
bonds are assessed in the environment of this class -- assigned a strength which

dependson the class in question as well as on the type of the bond. (Bond
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assessment is described in some detail in the next section.) The result of this
assessment is arough measurement of the existing “bond tension”, the strength
of the bonds favoring modification of the current gnoths. Strong bond tension
implies strong pressure to change some aspect of the current parse -- either to
abandon the current reigning class or to modify the gnoths’ structure within

the framework of that ¢lass.

ASSESSING BOND PULLS

Bond assessment is a relatively straigh tforward procedure designed to
assign strengths to all existing bonds under the assumption that a particular
Plgtonic class holds sway. If, for example, S-group is the reigning cless,
adjacent successor bonds are given large positive values to indicate that they
are strong pulling bonds while sameness bonds are given negative values to
indicate that they tend to push gloms apert. Should C-group be in ascendancy,
sameness bonds become strong whereas successorship bonds are made negative.
The information required for the system to assign these values is in the
) platoplasm, with each Platonic concept listing both pulling and pushing bond
types and their strengths.

Procedurally, each gnoth is processed in turn. Its internel bonds, those
among the gloms it covers, are noted, and their strengths in the current
environment -- that of the reigning class -- are assigned. Its externeal bonds,
those between its elements and those of other gnoths, are similarly assessed.
These values become instrumental in determining the "happiness” of the gnoth
— itsinclination to stand pat, The collective happiness of all the gnoths is used
as a measure of the success of the reigning class in organizing the system’s

perception of the sequence.
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SLIPOR STAY

The pressure to stay with the reigning class is the sum of what is termed
"gnoth-stabilities”, aless anthropomorphic and more functioneally defined teram
for the "happiness” mentioned above. The stability of a gnoth is the difference
between the bond forces holding it together and those acting to tear itapart.
"Holding" bonds are internal pulls and externel pushes. “Tearing” bonds are
external pulls end internal pushes. Inour “12123" example, just after the 3 is
introduced, we should have (S-group 1 2) as the now-discredited hypothesis and
three gnoths as shown in Figure 1.-

In Figure 1, the adjacent-successor bond between glintl and glint2 has
strength +10 because S-group is the reigning Platonic type and S-group favors
such bonds. This particular bond functions as an “internal pull” for gnothl
since it hes a positive value and both members, glintl and glint2, are within
that gnoth. In contrast, the adjacent successor bond between glint4 and glints
also has value +10, but functions as an “external pull” between gnoth2 and
gnoth3. Thus, the former bond tends to uphold the status quo, tends to make
gnothl “happy”, while the letter bond causes some unheppiness for both gnoth2
and gnoth3. |

The remote sameness bond (with strength -5) between glint2 and glint4
functions as an “external push”, tending to keep the parent gnoths.' gnothl and
gnoth2, apert. Therefore. it contributes to the stability or "happiness” of both
gnoths involved,

In this particular example, there are no “internal push” bonds.

STABILITY
To calculate a gnoth's stability, we first add the strengths of the bonds

holding it together. For gnothl in Figure 1, with S-group reigning, this sum
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would be +10+25+2.5 = 15. The +10 comes from the internal pull applied by the
adjacent successor bond between glintl and glint2. The 2.5's represent half the
strength of the two externel push bonds under gnothl. These are the remote
sameness bond between glintl and glint3, and the remote sameness bond
between glintZ2 and glint4. Strength-halving is done so thatexternal bond

values are not counted twice, once for each gnoth invoived.

+10 -- adjacent successor value bond

-5 -_remote same value bond

Figure | -- Measuring gnoth stability

Once the holding strength is calculated, we subtract the sum of the
tearing-bond strengths acting on the gnoth to come up with its stability.
Gnothl has no tearing bonds (no internal pushes or externel pulls), and so its

stabilityis: (+10+25+25)-(0)=15.
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Similarly, with S-group reigning, gnoth2 hes three “holding” bonds --
the internal pull between glint3 and glint from their “adjacent successor”
bond, the external push between glint! and glint3 ("remote same"), and the
external push between glint2 and glint4 (agein, “remote same”). In addition,
gnoth?2 has one "tearing” bond -- the external pull between glint4 and glint5
("adjacent successor”), of strength 10. Thus, we have gnoth2 stability:

(+10+25+25)-(5) = 10.

Finally, since gnoth3 has only one bond -- & "tearing " external pull of
strength 10, its stability is:

(@) - (5)=-5.

Ve then add the individual gnoth stabilities to find a total system
stability, in this case, of 15+10-5= +20.

Ve note that some of the. tearing pressure is due to unresoived bond
pulls favoring the reigning type -- if notits specific realization in the current
hypothesis -- and so may be considered inappropriate for our purposes.
Nevertheless, we are tapping a measure of internal consistency. Thatis, if we
assume an environment of this ¢lass and still find much bond tension (much
gnoth unhappiness), we may quickly abandon the type, at least for a vhile,

In order for areigning class to be abandoned, however, some other class
hes to demonstrate strength in its own right. Those classes that "neighbor” the
current reigning ¢lass -- those connected to it by s-links in the platoplasm --
are the primary “pretenders to the throne”. If one of them can show sufficient
strength (sufficient “slipping pressure”, es described below), it may

supplent the current “monarch”.
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The slipping pressure from the reigning class to aneighbor is evaluated

by:

1) adding two quantities — the sum of all pulling-bond strengths, and
the absolute velue of the sum of all pushing-bond strengths — taken
over all existing bonds, and assessed in the environment of the
neighboring ¢lass, and then

2) multiplying the sum by the slipperiness of the link between the
monarch and the neighbor -- the proclivity to slip in that direction.

In effect, the system tries to estimate the gnoth stability in an “alternative
universe” -- the environment dominated by the neighboring class -- as well as
the likelihood of moving from the current universe to the alternative one. A
very "close” neighbor of the current monarch vho p.resents fairly strong
prospects for stability would be aswrong candidate for ascendancy to the throne,
whereas a “distant” neighbor -- one connected to the reigning class by a
non-slippery s-link —- vhose-stability prospects are low wvould be a veak
candidate.

Slipping-pressure estimates are calculated for each ¢lass that is an s-link
neighbor of the reigning ¢lass. If the largestof ihese values is greater than the
"staying pressure” -- the current stability -- then aslip to the corresponding
¢class will be made and the system will have anewreigning class.

For example, inour “1 212 3 " cese, the slipping pressure from S-group
to Y-group ("symmetry” group -- for, say, aparse: 121 232)is:

0.4 [the s-link slipperiness]* (10 + 10) =8,
where the 10's are the strengths, in a Y-group environment, of the "remote
same” bonds between glintl and glint3 and betwveen glintZ and glint4.

Thus Y-group, with aslipping pressure of 8, cannot seize the throne from the

reigning S-group, vhose staying pressure is 20.
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A similar velue is calculated for each neighboring cless, and if the

largest of these values is greater than the staying pressure, a slip to that class

will be made.

b. REFORMULATOR

At this point, areigning c¢lass has been established -- or reconfirmed --
and so a Reformulator process is placed on the taskrack. Vhen invoked, this
process will attempt to find salient bonds and will set out Gnoth-operator tasks
designed to act upon the bond pulls or pushes in order to change the gnoths.

The Reformulator's first act is to determine a threshold bond strength.
Bonds or bond groups exerting pressures pelow this threshold will be ignored.
Currently, the new thresholdis set to either | more than the existing threshold
value or, if none exists, 80% of the strongest pull-bond strength for the
reigning type. (This value weas chosen arbitrarily, vith some vague
remembrance of Vinston's grouping elgorithm in his "dblocks-world” program
{(Winston 75] It has remained because it seems to have done no harm as yet.)
Because new bonds may have been established since the Reformulator's
creation time, its next actis to agsess all bond pulls in the environment of
the reigning class, as described above.

Then begins the process of finding strong pulls and/or pushes, and
turning them into gnoth operations — actions that modify gnoths. If the
Reformulator finds no actions to be taken or if it has completed its
recommendations, it hangs a Bond-assessor task on the taskrack (to

determine system "happiness”) and terminates,
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SELECTION OF NEIGHBOR-PULLS

All inter-gnoth moves involve the rightmost (at some level) glom of
some gnoth and the leftmost (again, at some level) glom of the gnoth's neighbor
to the right. This is a consequence of the sequential nature of our domein. Ve
obviously cannot rearrange the order of sequence terms (even though such an
operation might make a "more interesting” sequence); we can only readjustour
groupings. (For astudy of a less restricted pulling environment, see {Hofstadter
831)

For example, given neighboring gnoths as shown in Figure 2 below,
our system will be interested in the “lasts” of gnoth3:

(glom15 glom10 glom?7 glint4),
and the "firsts” of gnoth4:

(glom8 glom3 glom! glints).

Figure 2 -~ Neighboring gnoths
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The first moves considered are those at the highest level, under the
theory that if a glom wants to move, its subgloms should follow. It is also
possible that some glom feels relatively content butone of its subgloms is
attracted 10 a glom in the neighbor gnoth. In such acase, the subglom should
be popped out and over to the neighbor. Should both glom and subglom feel a
pull, the glom move should take precedence since it is structurally more
important. Subsequently, internal gnoth operations — actions wvhich modify
the internatl structure of a gnoth -- could dbe used to move the subglom if it still

feels the need to leave its parent glom.

SELECTION ORDER
In our Figure 2 example, neighbor-driven reformulation would be

explored in the following order:

level 1: gloml5 ¢--> glom8 (Assess the pull between the topmost
level 2: glom10 ¢-> glom8 gloms, then between level two gloms
glom1$ <> glom3 end those at levels one and two.)

glom10 <==> glomB
level 3: glom7 < (glom8 glom3) (assess pull with each in the list)
(glom15 glom10) <> glom1
glom7 <--> glom|
level 4: glintd ¢--> (glom8 glom3 gloml)
(gloml5 glom10 glom?7) ¢--> glintd
glintd == glintd
As soon as some reformulation is strong enough -- the bond pulls and
pushes supporting it exceed the threshold -- the Reformulator creates an
appropriate gnoth operation or program of operations and setsa

Gnoth-operator on the taskrack to carry it out. The Reformulator will not
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suggest any further moves, since any others would occur at a. lower structural
level and therefore would be less important to the system. Should any
lower-level moves be important, they will eventually dbe discovered by some

future Reformulator,

CONVERSION OF BOND-PULLS INTO GNOTH OPERATIONS

Vhen there is sufficient strength of pull betwveen two gloms from
neighboring gnoths, agnoth operation must be devised to bring the two gloms
together. Simply shifting one glom into the other's gnoth may not be
sufficient, because the decisive pull on it may dbe coming from a deeply-nested
glom, one several'levels down from the top. In Figure 2 for example, glint4 may
be pulled toward glom3. Inour "1 21 2 3" example, at the time describedin
Figure 1, the last term -- the "3" -- is pulled by its predecessor -- a "2" -—- which
is nested within a glom whose print-value is (1 2)".

The system must decide which of the two attracting gloms is to move and
which is to stay put. This is determined by an analysis of the bonds holding the
gloms in their respective gnoths. Single gloms are the most likely to move,
leaving an empty gnoth dehind, ashell which the system destroys.

Once the direction of the move is determined, the total move must be
constructed. As will be discussed below, gnoth operations ¢an be quite
destructive of agnoth's internal structure, bursting gloms until the target
gloms pelov are reached. When agnoth operation is performed, at least some of
this structural damage must be repaired; wve do not vant the destruction of
important nesting structures to be a side-effect of reformulation.

Finally, the strength of the operation is caiculated. This strength — the
difference between the gloms' mutual attraction and the pull exerted by other

glomms to hold them in place — must exceed the system-determined threshotd, or
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else the move would not have been generated. The strength is used by

Seek-WVhence to weight competing alternatives when necessary.

4. THE GNOTH OPER ATIONS

Gnoth operations fall into two categories: external or inter-gnoth
operations, and internal or intra-gnoth operations. The external operations
are: SHIET-LEET, SHIET-RIGHT, and SPLIT. The internal operations are:
CAPTURE, ENCLOSE, FRACTURE, MERGE, and NO-OP.

All of these operations require abit of careful manipulation. As was
descridbed earlier, each gnoth has an associated "pseudo-glom”, a glom that
cannotinteract with others, serving as acap to prevent the disappearance,
through natural glomming, of useful gloms and glom groups. The pseudc;-gloms
of any gnoths involved in gnoth operations must be destroyed to permit the true
gloms below to interact with each other. Similarly, if a very deeply nested glom
is to be involved in an operation, all gloms containing it must be destroyed so
that it can rise to the top of the ¢cytoplasm and become available.

Naturaily, all this glom-bursting destroys the enceasing gnoth's
structure. This is permitted because neither we nor the system can know
whether the destruction is the primary purpose of the operation or just e
side-effect of its real intent. Any proposer of gnoth operations that wvishes to
preserve some of the original structure must make the effort to do so. The burst
gloms cannot, of course, be brought back, but functionally similar (not
identical, because the gnoth operation did change something) ones can be
created.

Vhen a gnoth operation is compteted, a capping procedure puts anew
pseudo-giom in place above the gnoth's gloms. Often, Plato-scout tasks are

placed on the taskrack to peruse the gnoth's newly-created gloms, searching
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among them for any new manifestations of the Platonic concepts.

EXTERNALS

The formats for the external operations are:

(SHIET-LEET <left-gnoth» <right-gnoth> <glomlist),
where glomlist is a list of the gloms (which must be neighborsin order) to be
transferred from right-gnoth to left-gnoth;

(SHIET-RIGHT deft-gnoth»> <right-gnoth> <glomlist),
where glomlist serves an analogous purpose, this time from left-gnoth to
right-gnoth;

(SPLIT gnoth> splitlisv),
where splitlistis a list of gloms ¢currently under the given gnoth. A newgnoth

is to be formed using the splitlist gloms as its top level.

SHIET EXAMPLE
initial state:

gnothz: ((11) @2)]  gnoth3: [(33) (44) (44)]

glom3 glom) glom7 glom10 glom15

operation:

(SHIET-LEFT gnoth2 gnoth3 (glom7 glom10))
final state:

gnoth2: [(11) (22) (33) (44) ] egnoth3: [(44)]

glom3 glom5 glom7 glom10 gloml15



SHIET DIAGRAM

agnothfz gnoth3

(SHIET-LEET gnoth2 gnoth3 (glom7 glom!10))

SPLIT EXAMPLE
initial state:
gnoth2: [(12) (23) 23) ]
glom2 glomé6 glom!i0
operation: o
(SPLIT gnoth2 (glom6 glom10))

final state:

gnoth2: {(12) ] gnoth(new): {(23) (23) ]
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SPLIT DIAGRAM

(SPLIT gnoth2 (glomé glom10))

INTERNALS

The formats for the internal gnoth operations are:

(CAPTURE-LEET <gnoth> <glom» ccaptive>),
where the given glom within the given gnoth is to swallow its neighbor,
captive, whole. Actually, the glom is destroyed and a new one created with the
captive as its leftmost subglom and also containing all the original glom's
subgloms.

(CAPTURE-RIGHT ¢gnoth> <glom> <captive:),
analogous to the operation above;

(ENCLOSE <gnoth> encloselisty),
where encloselist isalist of neighboring gloms within the gnoth to be covered

by anew glom, dubbed to be of type "enclose”;
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(ERACTURE <gnothname>),
where the given gnoth is to have all of its top-level gloms ( the direct subgloms
of its pseudo-glom) dissolved, bringing their subgloms to the top-level;

(MERGE «gnoth» <glomlist),
where glomlistis alist of neighbor gloms in order within the given gnoth. The
listed gloms are all uncovered and their subgloms glommed into & “merge”-type
glom, which becomes atop-level glom in the gnoth;

(NO-0P gnothy),
which causes me gnoth to be "uncapped” -- have its pseudo-glom suspended -
and remain that way until the Capper task it sets out is invoked and recaps the
gnoth. This "slow-recap” permits natural glomming to occur within the
gnoth, and beween. gnoths should two neighboring gnoths be uncapped
simulteneously. The Capper finds all current gloms vhose ranges overlap with
the original range of the gnoth (before it was uncapped) and ¢laims them for
the gnoth. Should two different gnoths ¢leim the same glom -- one formed,
perhaps, by combining gloms from the two gnoths -- the gnoth that recaps first

will get the glom and the extended range.



CAPTURE EXAMPLES
initial state:
gnothl: [(12) 3]
glom1 glint3
operation:
(CAPTURE-RIGHT gnothl gloml glint3)
final state:
gnothl: [(1 2 3)]
glom2
initial state:
goothl: [((12) (23) ((23) 23))) (12)]
glom3 glom7 glom8 glom9 glomis8
¢-- glom10 ->»
¢-——m——— gloml5 ——---->
operation:
(CAPTURE-LEET gnothl! glom10 glom7)
finsl state:
goothi: ((12) ( 23) 23) 23)) (12)]
glom3 glom7 glom8 glom9 glomid

¢ —==-- glom20 -~»--- >



CAPTUREDIAGRAM
The operation:
(CAPTURE-LEET gnoth! glom10 glom?7)

will cause glom 10 to "swellow” its neighbor to the left, glom?7, within gnothl.

(CAPTURE-LEET gnothl glom10 glom?)

ENCLOSE EXAMPLES
initial state:
gaotht: [1231])
glints 1,234
gperation:
(ENCLOSE gnothl (glintl glint2 glint3))
fina] state:

gnothl: {(123) 1)
gloml glint4
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initial state:
gnoth3: [(22) ((3) ((33) (44) ) ) ((44) (55) )]
glom! glom4 glomé6 glom5S glom?7 gloms8

«-glom10-> <---glom9 —>

operation:
(ENCLOSE gnoth3 (glom5 glom7) )
finsal state:
gnothd: {(22) (3) (33) (44 (449 ) (65 ]
gloml glom4 glom6 glom5 glom?7 glom8
¢<~-glom20 -->

ENCLOSE DIAGRAM

(ENCLOSE gnoth3 (glom5 glom?7))



ERACTURE EXAMPLE
initial state:
gnoth2: [(12) ((33) (4 )]
glom! glom4 glom3
(=-m-glom5---+
operation:
(FRACTURE gnoth2)
final state:
gnoth2: (12 (33) (4 4)]
- glom4 glom3

ERACTURE DIAGRAM

(FRACTURE gnoth2)
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MERGE EXAMPLES
inival state:

gnotht: {1 1) (11 1))

gloml glom2

operation:

(MERGE gnothl (gloml glom2))
final stete:  gnothi: {(11 1 11)]

glom3

initial state:

gnothl: [((123) B34) ) ( ((56) (43) ) (678) )]

glom! glom2 glom3 glomé  glomlO
¢«-—glom¢ ---> <«--glom? —->
(e glom19 e=eeweeeee>

opereation: .
(MERGE gnothl (glom4 glom?) )
finel state:
gnotht: [( (123) 34) (56) (45) ) (678)]
glom! glom?2 glom5 glomé6 glomi0

 mmm e glom20 --—-—=mu- >
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MERGE DIAGRAM

(MERGE gnothl! {(glom4 glom?))

OPERATIONS IN SERIES

The gnoth operations descridbed above can be used to reformulate the
gnoth-based pa.r#e of the sequence (as opposed to the hypothesis-based parse)
when applied in series. Two exemples follow.

In our first example, we start out with three gnoths wvhich parenthesize
the sequence segment " 12334345 asshown initially. After several

operations, amore “reasonable” finel parenthesization emerges.
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Initial state:

gnothl gnoth2
[123)] [((34) (34))]
glom] glom2 glom3

¢<---glom4 ~=-->

(SHIET-LEET gnoth2 gnoth3 glint8)

((123)] [((34) 34) ) 5]
(CAPTURE-RIGHT gnoth2 glom3 glint8 )
((123)] ' ((34) (345)]
glom2 glom5

(FRACTURE gnothl )

(123] = ((34) (345)]
(ENCLOSE gnothl (glintl glint2) )

[(12) 3] ((34) 345)]
(SPLIT gnoth2 (glom5))

[(12) 3] (GD]
(SHIET-LEET gnoth2 gnoth3 (glinté))

((12)3] [(34) 3]

(ENCLOSE gnoth3 (glint7 glint8) )
[ (12) 3] [(34) 3]

(5]
glint8

(1 (disapbears)

((345)](emerges)
(45]

((45))
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In our second example, we once again have three gnoths wvhich
exchange gloms and are reformulated internally to come up with anew, more |
coherent parenthesization -- this time of the sequence segment
"123345645678"

[nitial state:

gnothl - gnothZ gnoth3
{{123)] [(34) (56) (45)] [(678)]
gloml glomZ glom3 glom4 glom5

(SHIFT-RIGHT gnoth2 gnoth3 (glom4) )

[(123)] ((34) (56)] [((45) (678)]
(MERGE gnoth3 (glom4 glom5) )

[(123)] T3 56)] [(45678)]

glomé6

(FRACTURE gnoth2) _

(12 3] (3456} [(45678)])
(ENCLOSE gnoth2 (glint4 glint5 glinté glint7) ) 3

(123 (3456)] ((45678)]

' glom?

BONDS INTO GNOTH OPERATIONS

The conversion of bond pulls and pushes into gnoth operations simply
requires that care be taken about who is attracting vhom and how deeply nested
each of the participantsisin its originel gnoth.

When more than astraightforward top-level move is to be required, a
Reformulator must create & PROGRAM or series of moves designed to put the
proper glom in its proper place and repair as much resulting gnoth-tearing s

possible. Some examples may help explain exacily wvhat is done.
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HIGH-LEVEL MOVES

In Figure 2 (p.106), if glom8 is to be pulled away from gnoth4 by glom15,
this high-level attraction is translated into the move:

(SHIET-LEET gnoth3 gnoth4 (glom8) ).
If, however, gloml is to be pulled avay by glom?7, we have amore complicated

situation.

DEEPER MOVES
In the case of such deeper moves, a PROGRAM must be generated. In the
glom?7 -~ glom1 example, a translation of the resultis:
(PROGRAM ((SHIFT-LEET gnoth3 gnoth4 (glom1)) [move gloml over]
(CAPTURE-RIGHT gnoth3 glom10 gloml) [swallow it]
(ENCLOSE gnoth4 siblings-of-glom1) [replace glom3]
(ENCLOSE gnoth4 newglom3&sibs-of-glom3) [replace glom8]
(ENCLOSE gnoth3 sibs-of-glom10&newglom10) [replace glom1S]
)

A REAL MOVE

In most cases, such deep nesting is not encountered. In the case of
“121273" [Figure 1], the 2 <— 3 pull is resolved via:
(PROGRAM ( ((12))((12)) (3)

(SHIFT-LEFT gnoth2 gnoth3 (glints)) - ((12)) ((12)3)

(CAPTURE-RIGHT gnoth2 glom2 glint5) - ((12)) ((123))

(ENCLOSE gnoth2nil) [no repair necessary]

(ENCLOSE gnoth3nil) [no repair necessary]
»

Reformulator processes are responsible for creating such "PROGRAM s
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as described above. For the most part, once the initial move or two have been
supplied, the remainder of the PROGRAM is designed simply and mechanically to
repair any concomitant structural damage. Such damage is usually caused by
the need to burst a glom in order to get atone of its subgloms, perhaps even one
nested several levels below it. The dameage is repaired by re-enclosing the
remaining gloms at each intermediate level -- those not directly involvedin the
operation -- and setting out Plato-scouts on thé newiy-enclosed gloms. This last
step is taken to determine whether any "interesting” new structures have been
created. Itshould be emphasized that PROGRAM construction is a mechanical
action, performed by a task that exists at ahigh enough level to possess the
necessary vocabulary. The Reformulator’s activity in writing a PROGRAM is
no more intelligent than a Glommer's or a Bonder's, or that of any other
Seek-WVhence task. Vhatever "intelligence” the Seek-Vhence system possesses
is an emergent phenomenon arising from the performance of all of these

mechenical tesks in parallel.

DIVESTING PUSHES

In addition to neighbor pulls, there is a second potentially strong egent
for reformulation -- what we call a "divesting push”. There may be no real pull
between one glom in & gnoth and the neighboring gnoth, but the glom's
current home may not vant it. This sort of unilateral decision to push outa
glom and either foist it off on the neighbor or create anew gnoth to hold it
could be the foundation for much useful reformulation. Divesting pushes
are notimplemented in the current system, causing some weakness in its
performance vhen handling Tuples, for example. More will be said about this

in the "Problems” chapter.
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5. CARRYING QUT REFORMS
A Gnoth-operator task is charged with carrying out the operation or

PROGRAM given it by a Reformulator at the time of its creation. It must first
check to see that all the structures relevant to its operation are still in existence,
having survived the system’s activity vhile the Gnoth-operator wvas har;g‘mg on
the taskrack. If the relevant structures do still exist, the Gnoth-eperator carries
out the operations; if not, it will simply terminate. Vhen aGnoth-operator does
in fact operate, its last action is to decrease the system's bond-strength
threshold by |. The effect of this threshold reduction is to encourage the system
to make more reformulations by allowing weaker bondsto be considered, in
effect "heating up” the environment. Reformulators, by adding 1 to the
threshold, have the opposite effect, cooling things down. Eventually, the system
will settle as the Reformulators find fewer and fever relevant operations to

suggest to Gnoth-operators, reflecting the fact that the gnoths are stadilizing.

BOND-ASSESSOR

A Bond-assessor task is created each time a Reformulator decides that it
has finished finding interesting gnoth operations at some particular level. The
Bond-assesso;':s io'b is tb ldok at all current bonds and determine whether or not
there is reason to continue reformulation. If there are sufficiently strong
bonds to warrant further reforms, the Bond-assessor places a Reformulsator on

the taskrack. If not, it creates aGnoth-caster task instead and terminates.

CASTING GNOTHS
Vhen invoked, a Gnoth-caster attempts to descridbe each gnoth in terms
of the reigning class. In more sophisticated versions of the program, there will

be provision for casting gnoths in terms of more complicated dbut still
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incomplete forms -- such as " (C-group (S-group m n) (Cycle (14))" or
“(Y-group [3] ({C-group m n)8shared) )", where "m"“and "n" have no
numerical value. This will be necessary when more complicated Seek-Whence
descriptions are required to parse target sequences.

Since each gnoth is supposed to represent one frame of the hypothesis,
such casting must be possible if the classis right and the gnoths are correctly
formed.

If ell the gnoths can be cast, or if ail but the last can and it shows
promise, the Gnoth-caster then attempts to create amore general form common
10 all the ¢castings. For example, if the term groupings generated by the gnoths
are: (34) (34)°(3). then the form “(S-group 3 2)" would de generated.

In our slightly more complicated running example, given
(12) (1 23). the form "(S-group 1 (Countup 2))" is generated.

The casting process is quite mechanical, as currently implemented, and
SO errors or poor castings are passidle. A final.test -- t0 weed out any surviving

bad casts —— is made of a cast when it becomes a hypothesis candidate.

TESTING HYPOTHESIS CANDIDATES

The casting form returned, if any, now becomes a hypothesis candidate.
A "box”, or predictive model, is made for it and is tested to see whether it can
accurately "postdict” the known terms of the sequence. If so, the ¢candidate is
instantiated as the new hypothesis for the system, which can nowsit back in
the "certainty” that its new model is the correct one for the given sequence. At
this point, the system typically calls for the nextterm in order to testits new

hypothesis.
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D. FAILURE AND SLIP-SCOUTS

If the Gnoth~caster is unable to cast ell the gnoths in terms of the
reigning class, or if it cannot generalize the casts to ¢come up vith a candidate,
or if the candidate fails to postdict the sequence properly, the reformulation
effort hes failed. In each such case, a "Slip-scout” process is placed on the
taskrack.

Slip-scouts are only skeletally implemented in the currentsystem, &
partial explm;i.atiorn rof ité floundering in many cases when initial
reformulation fails. When invoked, a Slip-scout will make a more detailed study
of the potentiel for slipping to another reigning class, and the probabilityofa
cless change will increase. The Slip-scout will look at all existing bonds to find
frequently-occurring types and will be especially sensitive to the possibilityof
an interleaving of two or more independent subsequences. It will use the
knowiedge of which classes favor what bonds to help suggest a new reigning
class, or perhaps a subclass within areigning Cycle or Tuple.

This seems to be the point where Simon and Kotovsky [Simon 63 ]began
their program — looking for ac¢ycle. If so, we have now almost completed the
substrate necessary for a system to support heuristics of their sort in afluid,

non-mechanistic wvay.



CHAPTER FOUR
COMPARISONS WITH OTHER WORK
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A. INTRODUCTION

Inevitably, because the domain we have chosen is that of integer
sequences and because we are interested in exploring the process of induction,
our work must be comnpared with thatof several predecessors. These in¢lude
Pivar and Finkelstein, Simon and Kotovsky, Persson, and Dietterich. There are

also comparisons and contrasts to be made with work by Evans and by Lenat.

B. COMPARISON WITH PIVAR & FINKELSTEIN
Pivar and Finkelstein [Piver 64] were interested in "the problem of
programming a computer to perform induction on certain general kinds of data
in amanner superior to the majority of human beings” (p. 125). Their program
wes capeble of building models of certain types of sequences and of
extrapolating from these models more quickly and more accurately than most
people. The program could recognize ¢certain well-known sequences, such as
the primes, and could devise models with exceptions for non-fitting terms. The
target sequence types wvere cyclic, constant skip, or an intertwining of the two.
Thus, the program could “solve” (represent as a LISP function) such sequences
<. .
2468...
21325374115...(primesand positive integers intertwined)
1491625... (squares of positive integers)
However, the process of induction, as done by people, was not explored.
Their program relied heavily on finite-differencing methods to model
polynomisl and other highly mathematical sequences, in effect substituting the

“black box” of differencing for that of induction.
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In fact, they note a difference in thrust between their program and that
of Simon and Kotovsky:

“The program was written as aresult of seeing a
previous progrem developed by Simon. Simon's
program was developed for the purpose of
simulating the observed behavior of people when
trying to solve problems of predicting letter
sequences from an intelligence test. The program
PERTEST, on the other hand, was oriented towards
the automation of inductive thinking rather than
the simulation of human beings; therefore, wve
developed somewhat simpler though perhaps more
mathematical ways of dealing wvith the problem.”
(p.131).

We feel that in trying to "automate” the process, they were, in fact,
looking for a shortcut, a way of obtaining the result of inductive thought -- in
this case, a model of the sequence — without having to go through or
understand the inductive process itself. In contrast, our major interest is in the
process of induction. Sequences of intereast to us tend to represent patterns,
such as:

121231234...0r

1123122312331123...,
rather than n‘h-degree polynomials or every third Fibonacci number. Ve want
to explore inductive processes that might be similar to those used by humans as
they notice and represent patterns. we do not simply want to extrapoiate
sequences. To paraphrease the mathematician Atiyeh (on the NOVA program
"Mathematical Mystery Tour”), "we are not simply in the business of getting
answers; we wvantto understand”. This, then, wvould seem to put us in the
company of Simon and Kotovsky, but there are distinctions 1 be drawn here as

well.
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C. RELATION TQ SIMON - KOTOVSKY

In their 1963 paper {Simon 63}, Simon and Kotovsky presented
convincin_g_ evidence to support their theory that:

1) people build a mental model of a sequence from the terms they have
seen, and

2) they use this model to extrapolate the sequence, to generate successive
terms. |
In addition, they demonstrated that the most salient features noticed before and
during model-construction vere sameness and successorship-predecessorship.
We heartily agree with all these points. Our differences with Simon and
Kotovsky are matters of direction and emphasis and can de descridbed along
several dimensions. .

Simon and Kotovsky were primarily interested in demonstrating that
people do build and use mental models which are developed through a process of
induction. In contrast to their vork, we simply assume that this is the case.
However, we believe that itis important 1o explore model construction fer more
deeply.

The Simon-Kotovsky program wes presented several ferms of a target
sequence in alist and proceeded by looking first for periodicityin the deata
[Simon 63). Then, once aperiod was discovered, equal and successor relations
between neighboring terms of a period were explored, to finalize the pattern
description. In fact, all fifteen of their target sequences were cyclical with
fixed-length period. For example, prodlem 9 was the sequence:

urtustuttu__

The resulting formulation was judged either correct or incorrect,
Our approach differsin asubtle but important way; the Seek-Whence

system is presented terms of asequence one atatime. This apparently small
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difference is the visible tip of a veritable iceberg of processing differences
between the two systems. In Seek-Vhence, each newterm notonlyinspiresa
good deal of noticing of samenesses, successorships, and the like but also drives
the system to revise its model of the sequence. That s, the processes of model
construction and revision go on in parallel with those of noticing. In contrast,
0 quote Simon and Kotovsky [Kotovsky 731:

“The Ss’ [humean subjects’}behavior departs in one

respect from the model. Periodicity is determined

by noticing I and N [identity and next — same and

successor jrelations. In the computer program,

information about relations that are noticed at this

stage is not retained, but is regenerated during the

second stage, when the pattern description is

being built up. Ssclearlyretain much or all of

this information, and use it vhile building the

pattern description. Thus, the current program

separates the two pheases of prodblem-solving

activity -- detection of periodicity and pattern

description ~- more sharply than do the Ss.”
(p.410).

Because of the way in which Seek-Whence goes about its modeling job, it
is verylikely to come up with early formulations of the sequence that are
"wrong” in that they will be contradicted by future terms. When this happens,
when acontradictory term is entered, the system must react to the failure of its
model. It does so by attempting to reformulate the model on the besis of the new
evidence (the nevterm). Thus, Seek-Vhence's formulation changes during the
course of processing. based upon the "evidence” — sequence terms -- it has seen
so fer. Ve feel that thisapproach more accurately models human induction, a
view supported by the Kotovsky quote above.

Finsally, the requirements imposed on the system by its use of
reformulation include the need for adifferent type of model. The

Simon-Kotovsky model had to express accurately a description of the sequence.
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But, because the description weas developed only once and then simply checked
for correctness, it could be essentially static in nature. Our model, or
hypothesis, as we call it, must be modifiabdle and reactive to failure. The system
does not simply go dback and apply a machine to the "nev” sequence consisting
of the old one with one more term at the end in order to generate anew
hypothesis. Rather, it analyzes the current hypothesis in the light of the new
term’s evidence and attempts to change the hypothesis' form t0 encompass the
newterm.

In summary, Seek-¥hence is directly concerned with the inductive,
model-building aspect of the extrapolation of patterned (as opposed to
mathematical) sequences. This requires the noticing of relationships among
terms and term groupings simultaneously with model creation. Qur system,
then, needs a different sort of model than did Simon and Kotovsky's. Our model
is notsimply an end-product defining an extrapolation, but a structure with
expressive fluidity, one that is reformulatable on the basis of newevidence, one

that evolves as the sequence terms are presented one byone.

D. COMPARISON VITH PERSSON

In 1966, Staffen Persson wvrote a series of programs -- “machines”, as he
called them ~- to solve sequence-extrapolation problems [Persson 66]. His main
interest appears to have been in extrapolating and identifying "noisy”
sequences wvith underlying generating polynomials, making his domain much
like that of Piver and Finkelstein. This similarity of domein was paralielied bya
similerity of approach. Persson, like Pivar and Finkelstein, relied heavily on
differencing. He also devised a special machine 1o extrapolate intertwined
sequences. Here again, though, the cycles investigated were always of fixed

length.
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Persson's interest in error-correction wes realized by having the
program inte:;polﬁte correct terms based on the values of the surrounding ones.
For example, given asinput the segment:

9 16 21 24 dlank 24 21 16 9
Persson's program attempts to come up with an explaneatory polynomial. Its
resultis: -x2 + 10x + 0, which it then finds wanting because of the “blank” at the
fifth term. It rechecks the polynomial and, finding it explanatoryin all other
cases (and having been forewarned that there might be one error in the input
data), uses the polynomial to interpolate the missing term, 225, and then
extrapolate the sequence [Persson 66, p.128]

Persson recognized that computers solving sequence-extrapolation
problems by sich methods might be seen es having more ¢apability than they
actually possess:

"At first glance, sequence-extrapolation will
seem torequire application of genuine induction,
i.e. tostartoutfrom a pattern, represented by an
input-sequence, and eventusily arrive at a more
general representation from vhich the
input-sequence may be deduced. However, true
inductive reasoning is not necessarily required.
In many cases, apparent inductive behavior
should rather be described as ‘'deduction disguised
as induction'.” (sec. 4.)

“...the risk of confusing ‘inductive power’ with

efficient algorithms for exploring very narrow
domeains must also be realized.” (p.66)

In fact, Persson mentions [Persson 66, pp. 66-7) both Piver and
Finkelstein [Piva:_' 64] and Simon and Kotovsky [Simon 63] as having ¢laimed
inductive behavior in programs which are actually purely deductive in design.

Ve agree with this criticism, and believe that none of the systems thus far

discussed addressed the central issue of modeling inductive reasoning.
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E. DIETTERICH AND MICHALSK!

“Given & sequence of events {or objects), each
characterized by a set of attributes, the problem
considered is to discover a rule characterizing the
sequence and able to predict a plausible
continuation.” [Dietterich 85, Abstract]

Clearly. given the above quote and the preceding discussion of
Seek-WVhence, our interests lie very close to those of Thomas Dietterich and
Ryszard Michalski. The questions they ask, the domeain explored, and even some
of the terminology they use -- & g, "structural descriptions”, “concaptual
clustering”, “constructive induction” — bear aswriking resemblance to our own.
They, to0, obviously reject the idea that sequence pattern induction is a solved
problem. However, wve and they take a very different approach to processing.
They relyon a logic-based formulation and an algorithmic solution technique.
Ve employ structural pattern descriptions and a "terraced scan” (Hofstadter 83;
84] in order 10 epproximate the actual processes of induction.

"SPARC/E", the program discussed in [Dietterich 85], is an advisor o a
human who is playing the card game "Eleusis™. In this game the dealer, with e
card-pattern-generating law in mind, puts dovn acard. In turn, each player
places on the table a card they believe to be in the class of possible next terms.
If a player is correct, the card is left on the “main line”; if incorrect, the cardis
placed on the “side line” below the last correct (mein line) card. The positive
evidence on the main line in conjunction with the negative evidence on the
side lines is used by players in their formulation of adescription of the

underiying rute. The player who can first formulete the dealer’s rule is the

winner.
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For example, the dealer might put down the Ace of Spades, with the
pattern “elternate black and red cards” in mind. If the first player puts down
the deuce of Spades (thinking “sequential spades™), the dealer will put the deuce
on the side line below the Ace. Should the next player put down the Ace of
Clubs, it too will be placed on the side line. If, finally, aplave;‘ puts down the
Ace of Hearts, it will be placed on the main line next to the Ace of Spades. Play
will continue until one of the participants guesses the “correct : rule.

The Eleusis advisor program will eventually be called in by its user to
analyze a given situation and to tryto come up vith the “best” generating rule
for that situation. Given the board we have descriped, it might guess
"alternating red and black Aces”, for instance.

The descriptors for playing cards are initially just suit and rank. Other
descriptors, such as color or primeness of rank, can be added later by the user
and employed by the system in its analysis. This addition of attributes is one of
the four ways in which a game situation can be transformed “in order to |
facilitate the discovery of sequence-generating rules” [Dietterich 85, p. 2001
The others are:

segmenting — dividing the sequence into non-overiapping segments,
each of which can be described separately;

splitting -~ dividing the original into separate subsequences (seeing the
original es what we have been calling "interleaved” sequences);

blocking -- creating overlapping segments, called "blocks”, and giving
attributes to each separately.

In order to devise its rule, the program uses the card descriptions given
it as positive and negative evidence in parametrizing each of three different
potential models of the sequence (decomposition, periodic, and disjunctive

normal form). This model construction is done in stages, using five "rings” or
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processing levels. Each model is then tidied up es it is passed back up through
the rings, assessed for plausibility, and the winning rule or rules are presented
to the user as ﬁotenu‘al organizing notions [Dietterich 85, p. 2231

SPARC/E can solve some fairly intricate problems, situations with rules
such as: " strings of the same color ... strings must always have odd length”
[Dietterich 85, p.225], or "a higher-rank card in the next ‘higher’ suit (recall
that the suits are ¢cyclically ordered) or a lower-rank card in the next 'lower’
suit” [Dietterich 83, p227]

In spite of the impressive performance of SPARC/E in whatis, tous, a
very appropriate domain, ve have some serious differences of opinion with
Dietterich and Michelski on the structure of computer systems designed to
perform in inductive domains.

The underlying structures and processing techniques in SPARC/E are
logic-based. For example, m the case of the DNF (disjunctive normael form)
model, alogical description of the cards on the table is constructed in
disjunctive normal form and is fed into the A9 algorithm. This algorithm
constructs a “cover” -- a logical description that includes all positive instances
and exciudes atl negative ones -- having the fevest conjunctive terms. The
result is passed back up through the processing rings to be presentedeas a
candidate rule. This process has more of a "black box” flavor than we would
like; it skirts the central issue (to us) of the process of induction.

Moreover, in SPARC/E processing, all three potential models are alvays
used to construct pattern descriptions; virtually the entire processing structure
is brought to bear on each prodlem, regardless of its "difficulty”. Ve would
prefer asystem that uses the evidence presented to select a model and to vork
with that model until it proves fruitless or another seems more appropriate.

Notice that in SPARC/E, an entire situation is given to the system,
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whereas Seek-Whence continually reacts to new evidence. In SPARC/E, the
entire system would have 10 be restarted for a new game situation; there is no
sense of flow or continuity. This means that another centrel issue, that of
reformulation, does not enter into SPARC/E processing. A game anelysis, a rule
or collection of potential rules, is either "right"or "wrong”.; there is no reaction
10 new data, no response if the generated rules are incorrect,

In spite of these criticistns -- or, more accurately, differences of opinion
on what is important — we have agreat deel of respect for Michelski and his
group. They have had some real success in constructing useful programs, such
as Michalski's soybean-disease classifier, while still maintaining an interest in
the core issues of learning and induction. Ve attempt to concentrate on the
“core”, but have so far built onlya toy.

Dietterich and Michalski have developed some very appeeling notions.
These include the distinction between “attribute descriptions” -- those which
“specify only global properties of an object:' --and "structural descriptions” —
those which "portray objects as composite structures consisting of various
components” [Dietterich 83, p. 42]. Certainly, as they note, Patrick Winston's
“blocks-world” program [Vinston 75 ) was a ground-breeker in the use of
structural descriptions.

The pattern descriptions constructed by Seek-Vhence are elso structural
descriptions. In addition, they can be summarized neatly in their "freeze-dried”
form, and so can become part of an attribute-based description. Thatis, once a
concept has been formulated, it can be “captured” in an attribute-description
framework. The freeze-dried summary of the concept's structure could be
recorded as one of many attributes, a.hd the enclosing frame used in a purely
syntactic way. Hovever, anytime the concept was used in & semantic wvay, its

underlying structure could be "reconstituted” so that it could have its very
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critical structural component.
Another sppealing Dietterich-Michalski notion, and one that we believe

Seek-Whence addresses directly, is thatof “constructive induction” .

"Constructive induction is any form of induction

that generates new descriptors not present in the

input data. Itis important for learning programs

to be able to perform constructive induction, since

itis well known that many Al problems cannot be

solved without & change of representation.”

[Dietterich 83, p. 47]

Certainly in Seek-Whence we at least make a valiant attempt to employ a form of
constructive induction to come up with astructural description of the input
sequence pattern. Eventually, we hope to keep these descriptions (or at teast
their “freeze-dried” summaries) around to help in the solution of new pattern

problems, thus supporting a pattern-remembering system.

E. SOME RELATED SYSTEMS

In addition to the work described above, there have been other programs
related to Seek-Vhence in spirit, if notin domain. These include Thomes Evans’
ANALOGY program [Ev_'ans 68]and Douglas Lenat's AM and EURISKO [Lenat 82; 83
a.b.c; 84] "

1. EVANS AND ANALOGY
Evans' ANALOGY programvwas designed to solve pictorial anatogy
problems, many of which were taken from examinations given to ¢ollege-bouna
high-school students by the American Council on Education. They are of the
form “Aisto BasCisto which of (*1,%2,#73,% 4, *5)7", vhere *1 .. *5 are five
candidate pictu.res.. The testee is to choose the candidate that, in its relation to

picture C, is most like B's relation to A.
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The program was written in two major pieces (primarily because the
whole system could not fit into the available computer). Datastructures
describing the figures in each picture and their positions were fed to the first
part of the program. This information was used to form relationships between
pictures A and B_. es wvell as between picture C and each of the five candidate
pictures. The vocabulary used in describing the relationships consisted of some
fixed notions (e.g. "above”, “left-of ") along with any Jescriptors the user might
decide to add for a particuler run (e.g., "shaded”, "overlap”).

Once the descriptions were made, the system had to choose the “C to
candidate” description that was most like the "A to B” description. This was
accomplished by essigning weights (importance) to the various types of
transformations and formulating “rules” to describe how picture A could de
transformed into B, and howC could be transformed into each of the candidates.
The A : B rule set was then compared to each C:candidate set. Each A :Brule
was "reduced”, if possidble, to fit agiven C:candidate rule. Then the rules were
assigned weights based on the transformations they used, the weights were
assessed, and the vinning candidate — the one with the highest score — was
chosen. The program accomplished its task with verying degrees of success,
dependent to a great extent on the adequacy of the supplied descriptors to
capture the salient relationships in a given problem.

The ANALOGY program was an impressive piece of work, but we believe
that it is a mistake to attribute to the program powers of “induction” and "theory
formation”. Here, as in the Pivar and Finkelstein sequence program, wve again
have a program that can do very well — probably better than humans--ina
well-defined dJomeain that is really smailer than it would appear at first glance.

Although Evans claimed that the program ¢ould probably handle fifteen

out of the thirty problems typicelly given on an ACE exam, we are not given
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systematic evidence to support that claim. All the problems solved by the system
were numbered 12 or lower. It could not handle the only "problem 20” given it.
Moreover, the problems were taken from different exams, rather than
systematically from one exam. Thisin itself might simply mean that the
program has the inductive power of a sixth-grader rather than thatof &
high-schooler. However, there ere verysimple analogy prodlems from the
same ACE exams that the system cannot do [Evans 68, p.325] indicating perhaps a
less than human inductive ability, or at least one very different from humeans’.
In summary,then, we do not believe that the Evans program can be
credited with achieving inductive “concept formation™ [Lenat 83a, p.351 because
the "concepts” rormulatéd are too brittle, too “attribute-based” (to use the
Michalski terminology). Ve echo the Persson comment (made about Piver and
Finkelstein's sequence-extrapolation program) that the processing technique
employed here is really "deduction disguised as induction™. Nonetheless, the
ANALOGY program is remarkable for its abmtv to operate in a "core” domein,
one that has potential for leading us to central issues in intelligence. It would
be atreat to see the program redone in the light of recent thinking about
induction, concept formation, and analogy. The domaeain is one to which

artificial intelligence researchers should return "until we getit right”.

2. LENAT AND HEURISTICS
Douglas Lenat is deeply concerned with inductive thought. He has
explored what he calls "theory formation” in several domeains through his
programs AM and EURISKO. In particular, he is interested in the development
and use of heuristics in discovering and exploring new concepts.
Certainly, both AM and EURISKO have been enormously successful

programs. AM is famous for its rediscoveryof arithmetic operations, prime
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numbers, and some important conjectures in number theory. Next to this, what
does Seek-Whence have to offer? The answer: roots.

The "accretion mode] of theory formation”, developed by Lenat for the
EURISKO system [Lenat 83a], is a program of seven steps to be followed by the
system in forming theories about some underlying domain. The model maps out
broad sweeps of territory for the system 10 cover. For example, step 2 of the
seven is "to tryto notice regularities, patterns, and exceptions to patterns, in
the data” [Lenat 83s, p. 371 Lenat himself recognizes that his program, being
concerned with the "big picture”, can only approximate a solution to the
problems posed in fully implementing step2:

"Step 2 in the model innocuously requasts the
learner to be observant for recognizable patterns,
That assumes that he/she/it has alarge store of
Known patterns to recognize, or is working in &
world where an adequate set can be learned very
quickly. "..the process of ‘recognizing’ dlends
continuwously into ‘analogizing'.”

(p.38)

Domeins in which Lenat can bestemploy his heuristics methods have
such characteristics as: many objects and operators and many types of both;
several tvg;es of relations among objects and among operators; lots of heuristics
but few algorithms to follow in exploring the domain. These domains should
have been little explored previously, and should provide a way to conductor
simulate experiments {Lenat 83d, pp. 91-94] He advocates studying difficultor
complicated domains, ones that are “tush with structure” [Lenat 83¢, p.285]

In contrast, the Seek-TVhence domain has fewobjects and is simple in
structure. Nonetheless, it represents a complex, if not complicated (1o use our
terminology from Chapter One), domain in the sense that the central problems
of inductive thought can be encountered here. It may be that the dbroad sweeps

and structurally rich domains Lenat favors can be served adequately by an



142

attribute-based representation system, beca;w:e the concepts grow tall rather
than deep. Vith the accretion model, new ideas are built upon old ones, giving a
tower-like effect as the system explores “interesting” ideas to the fullest. Rich
underlying structures are not necessary to the type of up ward-thrusting
concept generation that goes on in these programs; the approximations offered
by attribute-based representations are good enough to permit good upward
progress. When, however, we stop to explore deeply the small portions -- the
nooks and ¢crannies -- of the broadly-swept territory. we need to capture
underlying structural descriptions. It may very well be that there is, at present,
notenough computing power in a single system to be both droad and deep.

But AM developed its ideas from first principles, from very primitive
roots. How can it not bde deep as well as broad? The answer to this is that AM
was accretive, It formulated manyideas, some good and some less fruitful.

In a sense, it is akin 10 astory-generating program as opposedtoa
story-understander. It could construct vhatever ideas it liked; someone --
in fact, Lenat himself -~ was bound to notice the "winners”. An anslogous
understander would have 1o find & way to represent concepts with vhich it
was presented without losing any important facets. The difference between
programs of these two types is like the difference between the charges:

“Find something interesting.”, and

“"Here is an interesting idea. Do you getit?”,

Neither problem is particularly easy; they are justdifferent, each with itsown
difficulties.

Finally, one problem we attempted to address in Seek-WVhence was
identified very clearlyin [Lenat 83c]: ‘The cearrying along of multiple
representations simultaneously, and the concomitant need to shift from one to

ancther, has not been much studied, or attempted, in Al to date....” (p. 283) Ve
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hope that our efforts to implement a system that supports reformulation will be

the first step in attacking this problem.



CHAPTER FIVE
PEREORMANCE, PROBLEMS, AND EUTURE DIRECTIONS
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A. IMPLEMENTATION AND PERECRMANCE

The Seek-Whence program currently consists of approximately 5400
lines of Franz Lisp code. Because it is still under development, the program is
running interpreted rather than compiled. This, combined with the fact thart it
runson a VAX 11/750 which also serves an entire smail-college computing
operation, slows Seex-¥hence dovn' a bit. Nonetheless, successful runs e.ré
generally completed in under ten minutes of real time. Unsuccessful runs teke

a bit longer (potentially forever ), as the program thrashes about for a solution.

1. SYSTEM PERFORMANCE

In order to get some perspective on the current program’s strengths and
weaknesses, let us go through the "Blackburn dozen™ -~ the twelve sequences
we presented to twenty-five college students — and analyze the system's
performance on those problems.

(D 1121231234 ...

The program thrashes hopelessly on this one, elthough it readily solves
121231234 . "[see Appendix]. The problem seems to be that the
initiel C-group interferes with the system's ability to find the lengthening
S-groups. Vhen it does find thein, it seems unable to push the correct notion
beyond the template level. Lingering high-level interestin C-groups and
low-level rediscovery of C-groups combine to cause this unhappy state of
affairs.

) 1234...

Fortunately, the program can solve this one ~- and quite readily, in just
under one minute.

(3) 212222232242...

- This is hopeless as yet, we have not even attempted it. There is far too



1486

much ipterference -- terms having multiple potential roles. (For example, in
the segment 1 22", the middle 2 could be part of a C-group or part of a Countup.)
This particular sequence is one of our favorite examples. It has been, and
continues to be, adistant goal.

(4) 1223334444 ...

Turnabout is fair play. Here, the initiel S-groups -- (1 2) and (2 3) —
interfere with the budding C-group notion. The central problem here is
analogous to that in sequence (1) -- the correct notion is discovered, but cannot
seem to breek through into a hypothesis. Not surprisingly, in view of the
sequence (1) commentary, the system ¢ap solve the sequence problems
223334444 .."and"1 12223333 ...

5) 18581858 ...

In this sequence, the program finds the Y-group "1 8 5 8 1" and:
doggedly clings to it. Ve stopped it after afifteen-minute attempt, since it
seemed to make little progress. Note that it can, however, solve the sequence
‘1858118581 ...

6) 2122232425 ...

Again.! there is 100 much interference here, combined with an
slternation of terms. This is beyond the current system.

(?7) 2312322233332344414...

This is far beyond the current system. It combines interference,
interleaving, and groving group lengths - all features that make a sequence
problem more difficult.

(8) 12233445 ...

The system solves this within three minutes.

(9) 123344555666 ...

This will prove difficult for a while yet. The subtle pattern of growth in
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group lengths will tax the system's representation scheme.

(10) 91929394 .

The only problem here is the alternation of terms of which atleestone is
non-constam. This will probably be the next sequence solved by the sysiem.

(11) 181218123218123432181234...

This sequence is hard. There is interference between the groups, which
grow at both ends. The expressive power is available, but the system gets
bogged down in spurious relationships.

(12) 185581185581 ...

The system solves this, but ¢an take up to twenty minutes to do so. It
finds a Y-group, but often itis the Y-group “(1 8(5(58 1 185)5)8 1),
rather than the one wve would like. The need for “cosmetic reform” becomes
evident in cases such as this.

In summary, then, the current Seek-Vhence program can solve only
three of the Blackburn dozen - problems 2, 8, and 12, Vith slight extension, it
should solve problem 10 as well. [t will have to cling less forcefully to its
original formulation in order for it to solve problems 1, 4,5, and 6. The system's
interference handling will need improvement dbefore it can handle prodblems 3,
7.and 11. The solution of problem 9 will probably require that group lengths be
used as manifestations (they are not, currently). In addition, the system will

need the ability to use its representational power more effectively.

2. HUMAN PERFORMANCE
WVhen we presented these sequence problems 10 our humean subjects
[Meredith 83], we permitted them to take as much time as they vanted on each
sequence. A subject could “pass” on aparticular sequence if it proved insoluble.

The subject could not return to & passed sequence.
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Ve kept arecord of the number of people who passed on each of the
sequences. Ve also timed the subjects, in order to determine which sequences
took the longest time to parse. Ve assume that these will tend to be the most
difficult for human soivers.

Problem (7) was definitely the most difficult for our subjects. Seven
people passed on it (no more than two people passed on any other sequence),
and those who did solve it took far more time on it than on any other sequence.
Problem (11) weas also clearly more time-consuming than most others. The
“easiest” problems were (2) and (10), followed by (8), then (4) and (5), then (6)
and (12), and then (1), (3), and (9).

Ve find it heartening that the problems Seek-Whence has been able to
solve, and those which we feel it is closest to soivi.ng, are among the easier
problems for humans, while those our system finds difficult are also difficult

for humans.

B. PROBLEMS

The original goals set for the Seek-Vhence program wvere and still are:

1) to discover non-mo.thematicallvlsophisticated patterns in sequences
of nonnegative integers

2) to represent those patterns as concepts constructed from eight
“primitive” concepts -- Constant, Countup, C-group, S-group,
P-group, Y-group, Cycle, and Tuple;

3} to be able to reformulate the pattern descriptions fluidly, by the
technique of "slipping”, when the description is non-predictive
or non-optimal.

Each of these goals has been met to some extent, but more imrk will be required

to implement a system that realizes them in full. From our discussion above, it
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becomes clear that the Seek-Vhence program
1) feils to notice interleaved sequences of any complexity:
2) is unable to handle interference well;
3) clings too teneciously to its first organizing notion.
In the following ;ections. we will discuss these and other problems and will

present our current thoughts as to how to solve them.

1. IMPLEMENTATION FAUX PAS

As in any fairly substantial system written over a period of yeers, there
are no doubt some inconsistencies and quirks in the currentimplementation of
Seek-Whence. The present system wes programmed by one person, and so
reflects the weaknesses and idiosyncracies of a particular style. These include a
fairly conservative, but readsble, expr-based approach to Lisp programming
and some disregard for "neatness” in cleaning up old, unvanted structures.

Seek-Vhence is unadbashedly “ad hoc”. There has been no focus on
separating domain-dependent from domain-independent processing, structures,
or approaches. The only excuse for this is that the program is a proto-effortin
the development of & generic processing structure and approach. People with
similar ideas have been programming and continue to program systems for
Jumbo (word unscrambdling), Letter Spirit (style extrapolation), and Copycat
(letter-sequence anajogies). Vhen all the systems are completed, wve will
hopefully be able to abstrect out common, domeain-independent features which
will be generally useful. This is a “high-risk, high-gain” strategy. Ve hope it
works.

If all of our prodblems were ones of programming style, wve vould be

delighted. Unfortunately, there are some more fundamental vorries, notthe
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least of which is that there are some non-difficult sequences that the system

cannot parse.

2. UNCONQUERED SEQUENCES

Although Seek-Whence does agood job in enalyzing the simplest
of sequances and can do some medium-difficulty ones, it fails on some |
not-very-hard ones. Itis unable to handle independent interleaved sequences
when the components are any more complicated than constants. That is, it can
do"373737. "butitcannotasyetdo"121034105610.."

A major reason for this problem is the way bonds are used by the system.
Currently, bonds ere used only in a dbottom-up fashion, 1o push up gloms.
However, there is knowledge in the platoplasm of the bond types favored by the
various Platonic clesses. For example, the existence of many "adjacent
sameness” bonds might be a clue that C-group is astrong candidate as an
organizing notion, because C-groups are closely assocjated with such bonds. As
vet, the system makes no direct use of this information. Itisimportantto note
that such information must be used cautiowsly, since it may lead to false
conclusions. In thesequence 2 12222273224 2...", for example, there
are many adjacent samesses between 2's, but the "C-group” notion is not
involved in the correct parse.

Knowviedge about manifestations and actualizations, which could be
useful in suggesting alternative organizing notions or in indicating the
existence of interieaved sequences, is virtually unused by the current system.
Slip-scouts, described later, will begin to make some use of this information.

The Seek-Whence system cannot analyze sequences that display a good
deal of interference -- such as 212 222 232 242 .7or

"111 121 131...". People seem toovercome interference bylooking fora
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place in the sequence where there is little confusion -- a place where the
interference isminimal. Seek-Whence may need to look more closely at terms
that have few bonds and use these a guideposts for organizing the sequence.
This strategy, like looking for interleaved sequences, is arelatively high-level
one, suitable at the Slip-scout level and beyond.

The system's inclination to cling to eariy organizing notions is related
to the other two problems, and probably stems from the same root ¢causes. In
addition, we may have to tinker with our slipping mechanisms, t0 see if we can

get a bit more movement avaey from failed ideas.

3. LOW-LEVEL MYOPIA
The low-level processes of Seek-Whence operate with a micro-level

vocabulary, dealing with localized structures and providing no overview of the
sequence pattern as a vhole. This naturally leads 10 the phenomenon that ve
cell “low-level myopia”“. There can be some micro-level rigidity as aresult, with
the lower-level proc¢esses clinging to certain favorite g::oupings (usuelly gloms
formed early in the processing). This can get in the wayof pushing up neatly
balanced structures -- we can get ” ((1 2) 3)" handed up instead of a preferred
“(12 3)" -~ but it is nota devastating problem. Its effects will be mitigated when

divesting pushes, ¢cosmeti¢ reform, and “form-polishing”™ are implemented.

4. HIGH-LEVEL HAUGHTINESS
The higher levels of Seek-Vhence seem to suffer as well from some
besic rigidity. Once the high levels take over, the imposition of top-down,
model-driven processing does not appear t¢ leave quite enough room for
lower-level ¢coercion of change. This leads the system to stick with a

formulation type or platonic class longer than it should, to be optimally
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effective. It becomes too difficult for lower-level processes to push up a notion
with sufficient force to stage a “coup”.

Ve have often watched in frustration as a good notion has come up
repeatedly to become a template, and then to disappear, never to reach
hypothesis status. Ve plan to investigate this unfortunate phenomenon,
which we call the "Little Prince Problem":

Lowlevels: "See my pretty bond-cheain?”

High levels: "Notnow-- ['m trying to parse this sequence.”

DIVESTING PUSHES

A "divesting push” will occur when & gnoth contains a glom that causes
it "unhappiness”in the sense of decreasing its stability, but the neighbdoring
gnoth does not have any particular attraction for the glom either. In this case,
the parent gnoth may push the glom out 10 the neighbor or may simply call for
the creation of an intervening gnoth to hold the unwanted glom. These pushes
will permit gndths to work on conforming to the hypothesis, or suggesting
weaknesses in it. Implementation of divesting pushes will be afirststep in
giving more credence to low-level suggestions, thereby decreasing the degree
of "high-level haughtiness®. They will also serve as a safety valve for the
current reigning class, by increasing gnoth stability vithout calling for anew

monarch.

S. COORDINATION PROBLEMS
Although Seek-Whence relies on independent, paraliel processes to
carry out its work, there is nonetheless some need for coordination of results.
For instance, the hypothesis and the gnoths must be in agreement (at least to

some extent) on the current view or parse of the sequence. Devising a
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technique for insuring this coordination heas been amajor problem, and one
which we are notcertain is solved at present. The levels of hypothesis-gnoth
equivalence give us something of a handle on the problem, but it would be nice
not 1o have to worry about it at all. That s, it would be nice simply t0 change
either the gnoths or the hypothesis and be certain that the other would
automatically fall into agreement. We have not.yet devised such a mechanism,

nor are we sure that one exists.

6. HERKY-JERKY

One goal of Seek-Vhence was fluid reformulation, the ability to move
easily from one concept representation to another. The current system isonly
pertially successful in meeting this goal. Its reforms, at the highest level, can
seem a little rough. Instead of the smooth transition wve vant, ve get something
more akin to the jerky motion felt when one rides to the top of the Gatevay
Arch in St. Louis -- one gets there, but the ride is not as continuous es one would
like it to be. This maypoint t¢ the need for another or level or twvo of process{ng
to ease the transitions, or it may simply requi_re more care in programming.

Below, we suggest the possibility thataricher system of linkeges in the

platoplasm might help mitigate this problem.

DIEFERENTIATING PLATO-LINKS

The platoplasm’s link system currently consists of undifferentiated
"slipping links” — the s-links. It is very likely that in using differentiated links,
we would be able to give the system amore rationat collection of slipping
alternatives and the ability to apply more constraints on slippeage possibilities
in particular situations. Thatis, instead of having to consider slippage

possibilities on the relatively gross grounds of s-link slipperiness in
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conjunction with "absolute bond pulls”, the system may be able touse a
finer-grained decision strategy. We therefore need to investigate more deeply
what types of links belong in the platoplasm and how best to incorporate them
into the system's processing. This is a very big question in an abstract sense,
butimplementation in Seek-Whence should not be too difficult, and maygo a

long vay toward conquering the "herky-jerky” problem.

C. THEEUTURE

Ve plan to revise and extend the Seek-WVhence system in several waysin
the future, and at many levels of abstraction. There are some relatively minor
details that need to be addressed, some major additions to be made, and ultimately
ﬁ will have 10 redo the system in amore structured, domain-independent

fashion.

1. MINOR DETAILS
Some of the minor reforms will be feirly simple to include, butone
or two will require some careful thought before implementation can be

considered.

GREASING PLATC-LINKS

As was previously mentioned, it is possible that various platonic ¢lasses
will be "closer” to a given class at differenttimes. This means that the s-links
between concepts should have differentslipperiness values at different times.
The current system does not provide any mechenism for changing s-link
slipperiness, nor does it explore the notion of "relative ¢loseness” in any vay. It
would be interesting to investigate this question a bit further in later versions

of the program. This is an example of an addition that will be fairly easyto
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implement once we decide exactly what we want to do.

CHANGING PLATONIC BOND STRENGTHS

Similarly, the degree to which a given platonic class favors certain types
of bonds may change during the course of processing. Changing the bond
strengths would not be hard to implement, but the central question -- nota -
particularly easy one - would be how o have the system decide when it shouid

be done and how much to change the strengths.

ADDING AND REMOVING BOND-EIELDS

An interesting problem is the central one of “salience”. What features of
a sequence are of central importance? What should be used to describe it? Ve
have built into Seek-Vhence the capacity to use any field of aglom for donding
or glomming purposes, but as was mentioned earlier, wve currently use only
“vealue” for glomming and “value” or " span” for bonding. Building in a real
capacity to add to or subtract from these fields is critical in accurately parsing
some sequences —sucheas™1 22 333 4444.."— vhere the lengthof a
group and its content or position in the sequence ere intimately connected.

We certainly hope to build this capacity into future versions of the system.

BOX STRUCTURE EDITOR

A nice little project associated with Seek-Whence, but outside of the

- maeinstream of its processing, is the construction of & “box-tree” editor. The
system could use this to model its own reformulation actions by editing a
hypothesis’ box to reflect a new modification of the hypothesis. The current

(heavy-handed) technique is to completely scrap and replace the box.
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2. MAJOR GOALS
We have some major plans for future revisions of Seek-Vhence, in
addition to the “fix-ups” mentioned above, These deal with broader issues within

the domain of our project, issues with perhaps more “global” significance.

FORM POLISHING

“Form polishing” is the term we use to cover the notions of cosmetic
reform — reformulation done to improve the look of a hypothesis - and
internal gnoth reformulation in order to achieve structural equivalence with
the hypothesis. A gnoth displays structural equivelence with the hypothesis
vhen its actual, glom-based ff:rm agrees with the deep-structure form given it
es a model. The deep-structure form is that of one frame of the hypothesis -~ the
{rame corresponding to the gnoth. These reforms will probably not be easy to
carry out, because they are not central to having & “correct” parse of the
sequehice, but rather the "best” parse, and for the “right” reeson. That s,
form-polishing is more heuristic than is parenthesization of the sequence, and
soits implementation vill probably be even less deterministic than normal

Seek-Vhence processing.

USING MANIEESTATIONS — SLIP-SCOUTS

One of our major goals for the future will be to implement “Slip-scouts”™,
processes that will begin to use information that the system has gathered about
the sequence, but hes as yet not used. Slip-scouts will be looking at bonds,
manifestations, and actualizations, in order 10 suggest wvays in vhich the
sequence could be parsed. They will be especially sensitive 1o interleaved
independent sequences, suchas”1 210341056 10 ...", and will suggest parses

with deeper nesting of structures than is required for the simpler types of
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sequences. The addition of Slip-~scouts is extremely important if the system is
going 1o move on to parse more difficult sequences, and so will be one of the

first goals we attack.

FINER-GRAINED REECRMS

When reformulation is required, we now use arather heavy-handed
approach -- reform at the top. What the system now needs is the abilityto
perform finer-grained reformulations, perhaps retaining the reigning classas
monarch, but adding some “epicycles” to the hypothesis. The reigning class
may be the right one, but because there are deeply-nested structures vhich the
system does not perceive as such, there may dbe agood deal of "unhappiness”in
the system -~ the stability may be low. Rather than toss the monarch out, the
system should sometimes investigate other reforms, reforms geared toward

finding a deeper explanatory structure.

LEARNING

There are two essential requirements for a successful “inductive
learning” program. First, it must discover thet vhich itis to learn. Second, it
must remember what it has discovered. The Seek-Whence program heas made
some progress in the areaof discovery. Unfortunately, as currently structured,
Seek-Whence does not "remember” a parsed sequence in order to aid in parsing
another, or for purposes of comparison.

We would like to build upon our ideaof "freeze-dried” hypothesesto
implement a facility whereby old, remembered hypotheses could, in essence,
offer themselves up as models for parsing new sequences. Thatis, the old
hypotheses could be loosely “pluggedin” at variom.levels of the system, and

when asimilar structure is created could interrupt the proceedings to present
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themselves as potential models. This, and the ability to do Bongeard-like analogy
and generalization problems with collections of sequences, are more removed,

but potential goals for future research.

D. CONCLUSION

Seek-Whence is not a parfect program. It suffers from problems at
seversal levels and of several types. Nonetheless, it does serve as an exampleof a
new approach to the programming of "intelligant” systems, asample of anew
- paradigm. The hallmarks of this approach are: concepts with underlying
levels of reprasentation; arepresentation scheme that encourages fluid
reformulation; the ability to accept and react to evidence: anda
nondeterministic, parallef system organization. Ve believe that these are
important notions, onas that should be explored further and in many domains.
They may prbve useful -- and even <¢ritical -- in the development of systems that
possess "common sense” and the ability to relate concepts in unexpected and

novel ways.
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The program's equivalent of the form

/’_\
(C-group {(Ccuntup 1) shared):

-> (build-box
'{C-group (same pstrucl) (same pstrucl))
'((pstruct (Countup 1))))

box5

-> {show-box 'boxS)
(1)

-> {show-box 'box5!
{2 2)

-> {show-box 'box5}
(3 3 3)

-> {(show-box 'boxS)
(4 4 4 4)
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The program's esguilvalent <f the form

(Tuple 1 3 ({Ceuntup !} 8 shared))):

-» (build-box
*{Tuple 1 3 ({same pstruc2) §

(same pstruc2)))
'"( {pstruc2 (Countup 11)]}

)

box12
-> {show-box 'hox12]

{v 8 1}
-> {show-box 'box12)

(2 8 2)
~> (show-box 'box12)

{38 3)

-> {show-box 'box12)
{4 8 4}
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The program's equivalent of the form

(Cycle 1 3 ((Countup 1) 8 shared)):
~> (build-box
"(Cycle 1 3 ((same pstruc3) 8 (same pstruc3)))
'*{ {pstruc3 (Countup 11))))
box19
-> (ghow-box 'box19)
~> (showlbox "box19)
- (showébox "box19)
-> (showgbox 'box19)
-~ (showibox 'box19)
-> (showébox 'box19)
-> (showfbox "box19)
-> (showgbox 'box19)
-> Vshowébox "box19)

6
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The Sequence 3 7 3 7 37

-> (startup)

please enter a term: 3
doing task Sparkler-plus on (glint! glinti
doing task Dissolver

please enter a term: 7

deoing task Sparkler

sparkt --- between glintiglint2
doing task Tester

doing task Dissolver on (glint1)
doing task Sparkler

spark2 --- between glintiglint2
doing task Sparkler-plus on (glint2 glint!
spark3 --- between glint2glint]

doing task Sparkler-plus on (glint2 glint2
doing task Sparkler-plus on (glint2 glint1
sparkd --- between glint2glint]

doing task Tester

doing task Tester

doing task Sparkler-plus on {glint2 glint]
spark5 --- between glint2glint)

doing task Tester

doing task Tester

please enter a term: 3
doing task Sparkler-plus on (glint3 glint!
spark6é --- between glint3glint)
doing task Dissolver on (glint2)
doing task Sparkler
doing task Sparkler-plus con (glint3 glint2
spark? --- between glint3glint2
doing task Sparkler-plus on {(glint3 glint3
doing task Sparkler-plus on (glint3 glint2
spark8 -—-- between glintiglint2
doing task Tester
doing task Tester
doing task Sparkler
doing task Sparkler-plus on (glint3 glint2
spark9 --- between glint3glint2
doing task Tester
doing task Tester
doing task Bonder on
(Same print-value (remote) glintl glint3)}
bondt --- between glintlglint3
doing task Sparkler
deoing task Sparkler
sparki10 --- between glint3glinti
doing task Glom-scout

2)

2)

10)

10)
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Same -cover proposed --> glinti

Same -fence proposed --> glint!

doing task Glomtester on (Same cover glinti)
doing task Glomtester on (Same fence glintil)
i The system now gloms the first two terms,
; giving a parse of (3 7) 3.

doing task Glommer on
(Same print-value fence (glintl glint2))
Glommer for Same print-value fence
members: (glintl glint2)
doing task Sparkler-plus on (gloml gloml 10)
doing task Glom-inspector on (gloml)
doing task Glommer on
(Same print-value cover (glint1 glint2 glint3})
failed to glom (glintt? glint2 glint3)
doing task Plato-scout on (Cycle glom1)
doing task Tester
doing task Sparkler
doing task Bonder ¢n .
(Same print-value (remote) glintt glint3)
doing task Template-scout on (glom1)
doing task Template-applier on
(glomt (Cycle 3 2 (3 7}))
create-template-glom (Cycle 3 2 (3 7))(glomi)
top-down glom glcom2

; A template is made. °

template made : (form (Cycle 3 2 (3 7))
doing task Template-evaluator
check-cycle template {(Cycle 3 2 ((3 7)))

; A hypothesis is created.

doing task Hypothesizer
(Cycle 3 2 (3 7))
doing task Glom-scout
doing task Sparkler

sparkll --- between glintliglint2
doing task Sparkler-plus on (glom! glint3 10}
sparki12 --- between glomiglint3

doing task Sparkler
doing task Gnoth-maker
top-down glom glom3
gnoths constructed
doing task Tester
doing task Tester
doing task Call-term
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please enter a term: show-hypothesis
(Cycle 3 2 (3 7))

7 The next term will confirm the hypothesis.

please enter a term: 7

doing task Hfilter

new term being hypothesis~filtered
through (Cycle 3 2 (3 7))
top-down glom glom4

I have a guess!

; The system ventures a guess.

hypothesis: (Cycle 3 2 (3 7))
37 37

; It is correct -- this time.

enter no if wrong, ok if right ok
bve
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The Sequence 3 7 3 3 7 3

please enter a term: 3

please enter a term: 7

sparkl --- between glintiglint?2
spark2 —--- between glintiglint2
spark3 --- between glint2glint!
sparkd4 --- between glint2glint?
spark5 --- between glint2glint!
please enter a term: 3

spark6 --- between glint3glint!
spark? --- between glint3glint?2
spark8 --- between glint3glint2
spark9 --- between glint3glint2
bondl --- between glintiglint3
sparki0 --- between glint3glint!
Same -cover proposed --> glint!
Same -fence proposed --> glinti

Glommer for Same print-value fence
members: {(glint1 glint2)

failed
create

to glom (glint?! glint2 glint3)
7)

-template-glom (Cycle 3 2 (3 J(gloml)

top~down glom glom2

; At

emplate is created after three terms,

template made : {(form (Cycle 3 2 (3 7))

state

working coverage (1 2) glom glom2)

check-cycle template (Cycle 3 2 ((3 7)1}

spark!
spark]l

1 --- between glintiglint?2
2 --- between glomlglint3

top-down glom glomd

gnoths

constructed

; We ask the system to "show" us its structures.

please
terms
37 3

bonds:
bond1l

gloms:
glomi
glom3

enter a term: show
of the seguence:

Same print-value (remote) -- (glint! glint3)

(Same print-value fence) --»> (3 7) terms 1 to 2
pseudo --»> ({3 7)) terms 1 to 2
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gnhoths:

class: Gnoths

name: gnoth?

frame: 0

plato-class: Cycle

glom: glom3

notes: nil

form: {{({Cycle 3 2 (3 7)) purel)
state: stable

range: (1 2)

; A hypothesis was made. We ask to see it

please enter a term: show-hypothesis
(Cycle 3 2 (3 7))

i The next term will deny the hypothesis.
please enter a term: 3

new term being hypothesis-filtered
through (Cycle 3 2 (3 7}}

spark13 --- between glintdglint2
sparkl4 ~--- between glintdglint3
spark!5 —--- between glintdglint3
sparkl6 --- between glint4glint!
spark1? --- between glintd4glint3
set-out -- wvalidity: 0

top-down glom glomd

groups: ((glint1 glint2))
glom: (glintt glint2)

top-down glom gloms

top-down glom glomé

top~-down glom glom71

top-down glom glom8

gnoths: {gnothl gnoth2 gnoth3)

; The system will continue to let "Cycle" reign.

slip-check: staywval: 0.0

best: nil

sparkl18 --- between glint3glintd

bond2 --- between glint3glint4

spark!9 --- between glint3glintj§
spark20 --- between glint4glint3

bond3 --- between glintiglint4d

spark21 --- between glint4glinti

casts: ({Cycle 3 1 {(3)) (Cycle 7 1 (7))

(Cycle 3 1 (3))) (Cycle 3 3 (3 7 3))
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i A new hypothesis is made.

new hypoth candidate (Cycle 3 3 (3 7 3))
spark22 --- between glintl!glint2

please enter a term: show-seqg
3733

; The next term will confirm the new hypothesis.

please enter a term: 7

spark23 --- between glint5glintt

new term being hypothesis-filtered
through (Cycle 3 3 (3 7 3))

top-down glom glom9

I have a guess!

hypothesis: (Cycle 3 3 (3 7 3))}
37337

; The hypothesis is correct.

enter no if wrong, 6k if right ok
bye
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The Sequence 1 2 1 2 3 1 2 3 4

-> (startup)

please enter a term: 1

doing task Sparkler-plus on {(glintl glint? 2)
doing task Dissolver .
doing task empty-task
please enter a term: 2
doing task Sparkler
spark!l --- between glintiglint2
doing task Tester
doing task Sparkler-plus on (glint2 glintt! 10)
spark2 --- between glint2glinti
doing task Sparkler-plus on (glint2 glintt! 190)
spark3 --- between glint2glint]
doing task Dissolver on (glint1)
doing task Bonder on
(Succ print-value (adjacent) glintil glint2)
bondl ---~ between glintiglint2
doing task Tester
deing task Glom-scout

Pred -group proposed --»> glint2

doing task

Glom—scout

Pred -~group proposed --> glint?2

doing task
doing task
doing task

Glomtester on (Pred group glint2)
Tester
Glommer on

(Pred print-value group (glintl glint2))
Glommer for Pred print-value group members: (glint?

glint2)

doing task
Glomtester
doing task
deing task

Glomtester on (Pred group glint2)
failed glint2

Sparkler

Bonder on

(Succ print-value (adjacent) glintl glint2)

doing task

Bonder on

(Succ print-value (adiacent) glintl glint2)

doing task
doing task
spark4 ---
doing task
doing task
doing task

Glom-inspector on {(glomi)

Sparkler-plus on (glint2 glintt! 2)
between glint2glintt

Tester

Plato-scout on ((S-group P-group) glomi)
Bonder on

(Succ print-value (adjacent) glint1 glint2)

doing task
doing task
deing task
doing task

Plato-evaluator on (P-group glomi)
Sparkler-plus on (glint2 glint2 2}
Sparkler :
Template-scout on (glomt)

create-template-glom (S-group 1 2}{glomi)
top-down glom glom2
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i A template is made.

template: (form (S-group 1 2)

doing task Sparkler

spark5> --- between glintlglint2

doing task Template-evaluator on nil

doing task Sparkler-plus on {(gloml glom)! 10)
deoing task Gnoth-maker

top—-down glom glom3

gnoths constructed

doing task Sparkler

; Now comes the first hypothesis.

doing task Hypothesizer
(Countup 1)

doing task Tester

doing task Call-term

please enter a term: show-hypothesis
(Countup 1)

please enter a term: show
terms of the sequence:
1 2

bonds:
bondt Succ print-value (adjacent) -- (glint1 glint2)

gloms:
glom! (Pred print-value group) --> (1 2) terms 1 to 2
glom3 pseudo —--> ({1 2)) terms 1 to 2

-

gnoths:

¢lass: Gnoths

name: gnothl

frame: 0

plato-class: S-group

glom: glom3

notes: nil

form: ({(S-group 1 2} pure))
state: stable -
range: (1 2)

; The next term denies the hypothesis

please enter a term: 1

doing task Hfilter

new term being hypothesis-filtered
through (Countup 1)
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Bonder on

(Succ print-value (adjacent) glintl! glint2)

doing task
spark6 ---

Sparkler-plus on (glint3 glint1 10)

between glint3glinti

doing task Sparkler-plus on (glint3 glint2 10)
spark7 ~-- between glint3glint2

doing task Sparkler-plus on (glint3 glom3 2)
doing task Sparkler-plus on (glom! glint3 10)
spark8 --- between glomiglint3

doing task Sparkler-plus on (glint3 glint2 10}
spark9 --- between glint3glint2

doing task Tester

doing task Sparkler-plus on (glint3 glom3 10)

doing task

Bonder on

(Pred print-value (adjacent) glint2 glint3)
bond2 --- between glint2glint3
doing task Sparkler-plus on {glint3 glint3 2)
doing task Sparkler-plus on {glint3 glom3 2}
doing task Tester
doing task Dissolver on (glom3)
glom3 is not in cytoplasm
doing task Tester
doing task Sparkler-plus on (glint3 glinti
sparkl10 --- between glint3glint!
doing task Sparkler-plus on (glint3 glint2

10)
10)

sparkll --- between glint3glint2

doing task Tester

doing task Tester

doing task Sparkler-plus on {(glom! glint! 10)
doing task Sparkler-plus on (glint3 glint3 2)
doing task Bonder on

(Pred print-value {(adjacent) glint2 glint3)
doing task Bonder on .
{Same print-value (remote) glintl glint3)
bond3 --- between glintiglint3
deoing task Bonder on
(Same print-value (remote) glint! glint3}
doing task Glom-scout
doing task Glom-scout
doing task Bonder on
(Pred print-value (adjacent) glint2 glint3)
doing task Sparkler
spark12 --- between glintliglint3
doing task Sparkler
doing task Glom-scout
Same -cover proposed --> glint3
Same -fence proposed --> glint3
doing task Sparkler
sparki13 --- between glintiglint2
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doing task Tester
doing task Glomtester on (Same cover glint3)
doing task Tester
doing task Glomtester on (Same fence glint3)
deing task Sparkler '
doing task Tester
doing task Bonder on
(Succ print-value (adjacent) glintl glint2)
deing task Bonder on :
(Same print-value (remote) glintl glint3)
doing task Sparkler
doing task Sparkler
sparki14 --- between glintiglint3
doing task Sparkler-plus on {glom! gloml 10)
deing task Sparkler
decing task Beonder on
(Pred print-value (adjacent) gloml glint3)

bond4 --- between glomlglint3
deing task Sparkler
spark1!5 —--- between glint2glint?

doing task Glom-scout
Same -cover preoposed --> glint3
Same -fence proposed --> glint3
doing task Glomtester on (Same fence glint3l)
doing task Tester
deing task Bonder on
(Same print-value (remote) glint1 glint3)
doing task Glomtester on (Same cover glint3)
doing task Sparkler
doing task Gnoth-setter
top-down glom glomd
top-down glom glom5s
top-down glom glomé
top-down glom glom?
top-down glom glom8
gnoths: {gnothl gnoth2 gnoth3)
deing task Glom-scout
doing task Tester
doing task Bonder on
{Succ print-value (adjacent) glint1 glint2)
deing task Plato-scout on
{(C-group S-group P-group Y-group Cycle Tuple)
glomé) :
doing task Template-scout on (glomé)
doing task Template-scout on (glomé)
doing task Sparkler
doing task Template-scout on (glomé)
doing task Sparkler
doing task Template-scout on (glomé)
doing task Sparkler
sparki6 --- between glintiglint2
doing task Template-scout on (glomé)



174

doing task Template-scout on {(glemé)
doing task Sparkler
doing task Reformulator

; Changing to a new reigning class.
;  Countup --» S-group

doing task Bond-assessor on (S-group 8.0)
; Reformulation is performed.

doing task Gnoth-operator
( (PROGRAM ((SHIFT-RIGHT gnoth! gnoth2 (glint1})
(ENCLOSE gnothi nil))i)
top-down glom glom9
doing task Glom-scout
doing task Reformulator
doing task Tester
doing task Bonder on
(Succ print-~value (adjacent) glint?1 glint2)
doing task Sparkler
doing task Sparkler
doing task Bond-assessor on (S-group 8.0)
doing task Reformulator
doing task Bond-assessor on (S-group 9.0)
doing task Reformulator
doing task Bond-assessor on {(S-group 10.9)
doing task Gnoth-caster
casts: ((S-group 1 2) (S-group i 1))
(S-group 1 2)
new hypoth candidate (S-group 1 2)
doing task Call-term

i A second hypothesis has been devised.

please enter a term: show-hypothesis
{S-group 1 2)

please enter a term: show-parse
({1 2) (1))

please enter a term: show
terms of the sequence:

1 21

bonds:

bond1 Succ print-value (adjacent) -- (glintil glint2)
bond2 Pred print-value (adjacent) -- (glint2 glint3)

bond3 Same print-value (remote) -- (glinti glint3)



175

gloms:
glomB pseudo --»> |
glom9 pseudo --> |

1) terms 3 to 3
1 2) terms 1 to 2
gnoths:

external-bonds: ((bond2 0) (bond3 -5))
internal-bonds: {({(bondt 10))
equivalence-type: parse
groups: nil

class: Gnoths

name: gnoth2

frame:

plato-class: S-group

glom: glom9

notes: nil

form: (S-group 1 2}

state: stable

range: (1 2)

external-bonds: ({(bond2 0) {bond3 -5))
internal-bonds: nil

class: Gnoths

name: gnoth3

frame: 2

plato-class: S—-group

glom: glom8

notes: nil

form: (S-group 1 1)

state: stable

range: (3 3)

; The next term confirms the hypothesis,
; although it is incorrect.

please enter a term: 2

doing task Hfilter

new term being hypothesis-filtered through {(S-group 1
2)

top-down glom glomi(

; The system ventures a guess.

I have a guess!

hypothesis: (S-group 1 2)
(v 2301 2)Y(1 2)

; It is wrong this time.

enter no if wrong, ok if right nope
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please enter a term:
1 2 1 2

show-seqg

; A new term is entered.

please enter a term: 3
doing task Hfilter

new term being hypothesis-filtered through

(v 2N
doing task Sparkler-plus on (glintS glint4 10)
spark17 --- between glintSglint4
doing task Sparkler-plus on {glint5 glom8 2)
doing task Sparkler-plus on (glint4 glint1 10)
doing task Sparkler-plus on (glint4 glint3 10)
sparkl8 —--- between glint4glint3
doing task Dissolver on (glom8)
glom8 is not in cytoplasm
doing task Sparkler-plus on (glint4 glint3 10)
spark19 --- between glint4glint3
doing task Sparkler-plus on (glint5 glint1 10)
spark20 --- between glintSglinti
doing task Sparkler-plus on (glint$ glomiQ 2)
doing task Sparkler-plus on {glintS glint3 10)
spark21! --- between glintSglint3
doing task Sparkler-plus on {(glint5 glint5 2)
doing task Sparkler-plus on (glintS glint2 10)
spark22 --- between glint5glint2
doing task Dissolver on (gloml10)
glomi(0 is not in cytoplasm
doing task Sparkler-plus on (glintd4 glint2 10)
spark23 --- between glintd4glint2
doing task Sparkler-plus on (glint4 glom8 2)
doing task Sparkler-plus on (glint$S glint2 10)
spark24 --- between glint5glint2
deoing task Gnoth-setter
top-down glom glomii
top-down glom glomi12
top-down glom glomi3
gnoths: (gnoth2 gnoth3 gnoth5)

; We will stay with the reigning class -- S-group.
slip-check: stayval: 15.0

best: (Y-group 4.0)

doing task Tester
doing task Bonder on

{Same print-value (remote) glint2 glint4)
bond5 --- between glint2glint4
doing task Tester
doing task Tester
doing task Sparkler-plus on (gllntS glint3 10)

spark25 --- between glint5glint3
doing task Tester
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doing task Bonder on

(Succ print-value (remote) glint2 glints)
bond6 --~- between glint2glint$
doing task Sparkler
doing task Bonder on

{Succ print-value (adjacent) glintl3 glint4)
bond7 --- between glint3glint4g
doing task Sparkler
doing task Sparkler-plus on {(glint5 glomi( 10)
doing task Sparkler-plus on (glint5 glomiQ 2)
doing task Tester
doing task Sparkler-plus on (glintS glom8 2)
doing task Reformulator
doing task Sparkler-plus on (glintS glint4 10)
spark26 --- between glintSglint4

; More reformulation is performed.

doing task Gnoth-operator on
( (SHIFT-RIGHT gnoth3 gnothS (glint3)))
top-down glom glcmi4g
deing task Tester
doing task Bond-assessor on (S-group 8.0)
doing task Sparkler-plus on {(glintS glint4 10)
spark27 --- between glint5glint4
doing task Sparkler
doing task Tester
doing task Sparkler
spark28 --- between glintdglints
doing task Bonder on
(Succ print-value (adjacent) glintd glint5)

bond8 ~-- between-glintdglint5
doing task Sparkler-plus on {(glint5 glint? 10)
spark29 --~ between glint5glint’

doing task Tester
doing task Tester
doing task Sparkler
doing task Sparkler-plus on (glint4 glintd 2)
doing task Bonder on

(Succ print-value (adjacent) glint3 glint4)
doing task Sparkler-plus on (glint5S glints 2)
doing task Sparkler-plus on (glint4 glom9 2}
doing task Bonder on

(Succ print-value (ad]acent) glint4 glints!
doing task Sparkler-plus on (glint4 glom8 10)
doing task Bonder on

(Succ print-value (remote) glint2 glint5)
doing task Sparkler-plus on (glint5 glom9 2)
doing task Reformulator
doing task Tester
doing task Sparkler
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doing task Bonder on

(Suce print-value (adjacent) glint4 glint5s)
doing task Sparkler
doing task Tester
doing task Sparkler-plus on {(glint5 glom9 2)
doing task Tester
doing task Bonder on

(Succ print-value (adjacent) glintd4 glints)
doing task Bond-assessor on (S-group 8.0)
doing task Reformulator
doing task Tester
doing task Sparkler
spark30 --- between glintSglinti
doing task Bond-assessor on (S-group 9.0)
doing task Tester
doing task Reformulator
doing task Bond-assessor on (S-group 10.0)
doing task Gnoth-caster
casts: ((S-group 1 2) (S-group 1 3))
(S-group 1 {(Countup 2))
new hypoth candidate (S-group 1 (Countup 2)})
doing task Call-term

7 A third hypothesis is formulated.

please enter a term: show-hypothesis
(S~group 1 (Countup 2))

please enter a term: show-parse
({1 2) (v 2 3))

please enter a term: show
terms of the sequence:

121 2 3

bonds:

bond! Succ print-value (adjacent) -- (glint?! glint2)
bond2 Pred print-value (adjacent) -- (glint2 glint3)
bond3 Same print-value {(remocte) -- (glintl glint3)
bondS Same print-value (remote) -- {(glint2 glint4)
bondé Succ print-value (remote) -- (glint2 glints)
bond7 Succ print-value (adjacent) -- (glint3 glint4q)
bond8 Succ print-value (adjacent) -- (glintd4 glint5)
gloms:

glom3 pseudo --> (1 2)
glomt4 pseudo --> (1 2

terms 1 to 2
3) terms 3 to 5



179

gnoths:

external-bonds:

({bond2 0} (bond5 -5) (bond6 0} {(bond3 -5))
internal-bonds: ((bond1l 10))
equivalence-~type: parse
groups: nil
class: Gnoths
name: gnoth?2
frame: 1
plato-class: S-group
glom: glom9
notes: nil
form: (S-group 1 2}
state: stable
range: (1 2)

external-bonds:

((bond6é 0) {(bondS -5) (bond2 0) (bond3 -5))
internal-bonds: ((bond8 10} (bond7 10}
groups: nil
class: Gnoths
name: gnothb
frame: 2
plato-class: S-group
glom: glomid
notes: nil
form: (S-group 1 3)
state: stable
range: (3 5)

; The next term confirms the hypothesis.

please enter a term: show-seg
121 2 3

please enter a term: 1

doing task Hfilter

new term being hypothesis-filtered through (S-group 1
{Countup 2))

top-down glom gloml5

I have a guess!

hypothesis: (S-group 1 (Countup 21))
(v 230y 2 3)(1 2 3 4)

; This time the guess is correct.

enter no if wrong, ok if right ok
bye
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GLOSSARY

actualization ~—~ A gnoth that exhibits the properties of some Platonic¢ ¢less is an
actua.lizﬁtio'n of that class at the socratoplasm level.

attribute-based description -- aconcept reprasentation scheme that views a
concept as aunit with only global properties, rather than as a structure
(see “structural description”). _

bond - a cytoplasm-level structure that defines a relationship (e.g., sameness,
successorship) between two gloms (or glints).

box — the active portion of the structural representation of a Seek-Whence
concept, and a repository of information about the value of that structure.

bursting — an operation that destroys a glom and its subgloms, leaving only
underlying glints behind.

catchall gnoth — arightmost or"trailer” gnoth that simply holds input terms
that agree with the hypothesis vithout parenthesiziné them.

cosmetic reform —- the reformulation of a predictive hypothesis for assthetic
reasons — to give it a cleaner form -- or to make iis structure conform
more closely to that dictated by the reigning hypothesis.

cytoplesm -~ the lowest level of the Seek-Whence world: home of bonds, glints,
and gloms.

dissolving -- an operation that destroys aglom, freeing its top-level subgloms
into the cytoplesm. _

divesting push -- a unilateral move by agnoth to rid itself of an internal glom
that decreases its stability, vhether or not a neighboring gnoth haseny
attraction for the glom.

dubbing —~ the marking of a glom as a manifestation of a particular Platonic
class. For example, when the system recognizes that the glom (1 1 1) has
the properties of aC-group, it will be “dubbed” as aC-group
manifestation.

frame — an abstractly-viewed hit of a hypothesis: the collection of
Seek-Vhence forms that would produce the given hit.

freeze-dried hypothesis — the form of a hypothesis without its active, structursl
description.
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glint -- Seek-Whence's cytoplasm-level representation of an input-sequence
term.

glom -- acytoplasm-{evel structure representing a plausibly groupable
collection of neighboring glints (and/or gloms).

gnoth -- asocratoplasm-level structure representing alogical grouping of
terms in the system's parenthesization or parse of asequence.

gnoth operation — one of several well-defined actions -- SHIET-LEET,
SHIFT-RIGHT, SPLIT, CAPTURE, ENCLOSE, ERACTURE, MERGE, NC-CP -- for
modifying agnoth or neightoring gnoths.

gnoth-hypothesis equivelence -- the representation by a gnoth of one frame of
a hypothesis. There are three levels of equivalence -- term, parse, and
structural (see pp. 94-97).

hit-- a query of aSeek-Vhence diagram or of a box for its next value -- aterm
or grouping of terms.

hypothesis — a reformulatable structure that models and can extrapolate a
sequence pattern, and is constructed from one or more of the eight
primitive Platonic concepts. '

hypothesis filtering -~ a process whereby new input terms are checked for
conformity.with the reigning hypothesis. Should anewterm not
conform to the hypothesis, reformulation begins.

ideal types -- the Platonic concepts -- ideal atoms and ideal groups.

menifestation — A glom that exhibits the properties of some Piatonic classis a
manifagtation of that ¢lass at th'e cytoplasm level

medicel reform — the reformulation, using the evidence presented byanew
term or terms, of a hypothesis because it fails to be predictive.

parenthesization -- an expression of a perceived sequence parse, mede by
putting gnoths over certain gloms and glom collections. For example, the
parenthesization (1 2) (1 2 3)is achieved by putting the first two terms
into one gnoth and the last three into another.

parse -- a patterned viewv of asequence.

Platonic class (concept) -—- an idealized version of an integer, or one of the eight
primitives (Constant, Countup, C-group, S-group, P-group, Y-group, Cycle,
Tuple) from which Seek-Whence concepts are constructed.
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platoplasm - the highest level of the Seek-Whence world, which houses the
Platonic concepts and information about them.

PROGRAM -- a series of gnoth operations proposed by a Reformulator task in
order to modify the system's parenthesization of asequance.

pseudo-glom — an inert glom, in that it cannot combine with other gloms,
generally used as a cap to prevent the disappearance of agiven glom
¢luster (one glom or a collection of neighboring gloms).

reformulation -- the conversion of one ¢concept into another, related, conceptin
a "reasonable” wvay: asynonym for slippage.

s-link — A “"slipping link" between twvo Platonic classes. The slipperiness of
such alink indicates the system's proclivity to slip from one ¢lass to
another.

Seek-Vhence diagram ~- a set of primitive node types and a structural
representation technique used to give a visual sense of our concept
representation scheme and of the effects of reformulation.

Slipnet -- a repository of the informetion about the Platonic concepts and their
interrelationships needed for reformulation.

slipperiness -- (see “s-link") 4

socratopiasm -- the middle level of the Seek-Vhence world, vhich houses the
gnoths.

structural description -- a concept representation that portrays a conceptas
having separately-descridbable components, rather than as asingle entity
with only global attributes (see “attribute-based description™).

task -- an uninterruptible (and generally small) segment of & computational
process. Tasks are capable of creating or modifying structures, setting
off other tasks, or querying the user.

template -- & “proto-hypothesis”, developed as the first rough statementof an
emerging formulation.

terraced scan - a technique for progressively deepening the exploration of
several pathvays in parallel, wvhereby the most plausible pathways are
explored more extensively than the less plausible ones.



BIBLIOGRAPHY



10.

11.

12

13

14

15

184

. Anderson, James A., and Hinton, Geoffrey E., Models of information processing in

the brain, in: G.E. Hinton and J. Anderson (Eds.) Parallel Models of
Associative Memory (Lawrence Eribaum Associates, Hillsdale, NJ, 1981) 9-48.

. Anderson, John R., Cognitive Skills and Their Acquisition (Lawrence Erlbaum,

Hillsdate N ], 1981).

. Anderson, John R., Acquisition of proof skills in geometry, in: R.S. Michalski, JG.

Carbonell, and TM. Mitchell (Eds.), Machine Learning: An Artificial
Intelligence Approach (Tioga Publishing Company, Palo Alto, CA, 1983)
191-219.

. Anzai, Y., and Simon, H., The theory of learning by doing, Psychological Eew‘ev

36(2) (1979) 124-140.

. Berkeley, EC. and Bobrow, D. (Eds.), The Programming Lenguage LISP: Its

Oper;atz‘on and Applications (Information International, Inc. Cambridge MA,
1964). .

. Bierre, Piarre, The professor's challenge, The Al Magazine 5(4) (Vinter, 1985)

60-70.

. Bobrow, Daniel G, and Collins, A. (Eds.), Representation and Understanding

(Academic Press, New York, 1975).

. Bongard, Mikhail, Pattarn Recognition (Spartan Books, New York, 1970).

. Brachman, Ronald ], Vhat's in a concept: structural foundations for semantic

networks, International journal of Man-Machine Studies 9 (1977) 127-152.

, On the epistemological status of semantic networks, in: N. V.
Findler(Ed.), Associative Networks : Representation and Use of Knowledge
by Computers (Academic Press, New York, 1979) 3-50.

and Schmolze, James, An overview of the KL-ONE knowledge
representation system, Cognitive Science 9(2) (1985).

. Buchanan, Bruce G., and Mitchell, T. M., Model-directed learning of production
rules,in: D.A. Vaterman and F. Hayes-Roth (Eds.), Pattern-directed
Inrerence Systems (Academic Press, New York, 1978).

. Carbonell, 1G., Learning by analogy: formulating and generalizing plans from
past experience, in: R.S. Michaiski, ].G. Carbonell, and T.M. Mitchell (Eds.),
Mechine Learning: An Artificial Intelligence Approach (Tioga Publishing
Compeny, Palo Alto, CA,1683) 137-161.

. Clossman, Gray A., A model of the encoding of perceptusal features according to
the concepts implicit in a set of associations, internal memo, Fiuid Anslogies
Research Group, University of Michigan, Ann Arbor, 1985.

. Darden, Lindley, Reasoning by analogyin scientific theory construction, in: R.
S. Michalski (E4.), Proceedings of the International Machine Learning
Workshop, Allerton House, University of Illinois at Urbana-Champeign
(June, 1583) 32-40.



16.

17.

18.
19.

20.

21.

22.

23.

24.

25.
26.
27.
28.

29.

30.

31.

185

Davis, Philip J., and Hersh, R, The Mathematical Experience (Houghton Mifflin,
Boston, 1981).

DeJong, Gerald, An approach 10 learning from observation, in: R.S. Michalski
(Ed.), Proceedings of the International Machine Lesrning Workshop,
Alllerton House, University of Illinois at Urbana-Champeign (June, 1983}
171-176.

Dennett, Daniel C., Brainstorms (Bradford Books, Montgomery VT, 1978).

Dietterich, Thomes ., M.S. Thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign,1979.

and Michalski, R.S., A comparative review of selected methods for
learning from examples, in: R.S. Michalski, J.G.Carbonell, and T.M. Mitchell
(Eds.), Machine Learning: An Artificial Intelligence Approach (Tioga
Publishing Company, Palo Alto, CA, 1983) 41 - 81.

and Michelski, R.S.,, Discovering patterns in sequences of events,
Artificial Intelligence 25(2) (1985) 187-232.

Evans, Thomas G, A program for the solution of a ¢lass of geometric-anslogy
intelligence-test questions, in: M. Minsky (Ed.), Semantic Information
Processing (MIT Press, Cambridge, MA, 1968) 271-353.

Feigenbaum, E. A. and Feldman, J. (Eds.), Computers and Thought (McGraw-Hili,
New York, 1963).

Fredkin, Edward, Techniques using LISP for automatically discovering
interesting relations in data in: EC. Berkeley and D. Bobrow (Eds.), The
Programming Language LISP: [ts Operation and Applications, (Information
International, Inc. Cambridge MA,1964) 108-124.

Gentner, Dedre, Structure-map?ing: atheoretical framework for analogy,
Cognitive S¢ience 7 (1983) 155-170.

Gregg L. )V (E4.), Knowledge and Cognition (Lawrence Erlibaum, New York,
1974).

Groner, R, Groner, M., and Bischof, V. (Eds.) Methods of Heuristics (Lawrence
Erlbaum, Hitisdale NJ, 1983).

Hinton, Geoffrey E., and Anderson, J. (Eds.), Paralle! Models of Associative
Memory (Lawrence Erlbaum, Hillsdale NJ, 1981).

Hofstadter, Douglas R., Gédel, Escher, Bach: an Eternal Golden Braid (Basic Books,
New York, 1979).

,Clossman, G. A. and Meredith, M. ], Shakespeare's plays weren't
written by him, but by someone else of the same name, Technical Report No.
96, Department of Computer Science, Indiana University, Bloomington, July,
1980.

Hofstadter, D. R. and Dennett, D.C., Tha Mind's I (Besic Books, New York, 1981).



186

32. Hofstadter, D. R, Clossmen, G. A. and Meredith, M. ], SWV: A computer model of
perception, abstrraction, and induction, internal memo, Department of
Computer Science, Indiana University, Bloomington, 1582a

33. Hofstadter, D. R, Artificial intelligence: subcognition as computation, Technical
ReportNo. 132, Department of Computer Science, Indiana University,
Bloomington, November, 1982b.

34. . On Seeking Vhence, unpublished manuscript, 1982¢.

35. . The architecture of Jumbo, in: R.S. Michalski (Ed.), Proceedings
of the International Machine Learning Workshop. Allerton House,
University of Illinois at Urbana-Champaign (June, 1983) 161-170.

36. . The Copycat project: an experiment in nondeterminism and
creative anajogies, A.l. Memo 755, Massachusetts Institute of Technology,
The Artificial Intelligence Laboratory, January, 1984,

37. . Metamagical Themas: Questing for the Essence of Mind and
Pattern (Basic Books, New York, 1985a).

38. , Clossman, G., Rogers, D, Mitchell, M., Huber, G. and Leban, R,
Research on fluid anelogies, Fluid Analogies Research Group Charter,
Department of Psychology. University of Michigan, Ann Arbor, April, 1985b.

39. Holland, John H., Esceping brittleness, in: R. S. Michaelski (Ed.), Proceadingsof
the International Machine Learning Vorkshop, Allerton House, University
of Illinois at Urbana-Champeign (June, 1983) 92-93.

40. Kotovsky, Kenneth, and Simon, H. A, Empirical tests of a theoryof human
acquisition of concepts for sequential patterns, Cognitive Psychology 4
(1973) 399-424.

41. Kuhn, Té)rhe Structure of Scientific Rewolutions, (University of Chicago Press,
1962).

42. Langley, Pat, Bradshaw, G. L, and Simon, H., Rediscovering chemistry with the
BACON system, in: R.S. Michalski, ].G. Carbonell and T M. Mitchell (Eds.),
Machine Learning: An Artificial Intelligence Approach (TiogaPublishing
Company, Pato Alto, CA, 1983) 307-329.

43. . Learning to search: from wveak methods to domain-specific
heuristics, Cognitive Science 9 (1985) 217-260.

44, Lenat, Douglas B., The nature of heuristics, Artificial Intelligence 19(2) (1982)
189-249.

45. .Theory formation by heuristic search: the nature of heuristice
II: background and examples, Artificial Intelligence 21{1,2) (1983a) 31-59.

46, , EURISKQ: aprogram thatlearns new heuristics and domain
concepts: the nature of heuristics III: program design and results,
Artificial Intelligence 21(1,2)(1983b) 61-98.




187

47. Lenat, Douglas B, The role of heuristics in learning by discovery: three case

48.

49

50.

Sl

S52.

53

o4.

5.

56.

57,

58.

59.

60.

studies, in: R.S. Michalski, ]G. Carbonelf and T.M. Mitchell (Eds.), Machine
Learning: An Artificial Intelligence Approach (Tioga Publishing Company,
Palo Alto, CA ,1983¢) 243-306.

and Brown, John Seely, Why AM and EURISKO appear to work,
Artificial Intelligence 23(3) (1984), 269-294.

. Meredith, Marsha ]., Reynolds, Paul and Vehking. Audrey, Pattern perception

experiment presentation to the [ilinois State Academy of Sciences,
Computer Science Section, April, 1983.

Meredith, Marsha ], The code for Seek-WVhence, Technical Report, Department of

Computer Science, Indiana University (forthcoming), 1986.

Michalski, Ryszard S, Carbonell, ]G. and Mitchell, T M. (Eds.), Machine Learning:

An Arririgial Intelligence Approach (Tioga Publishing Company, Palo Alto,
CA, 19832).

Michalski, Ryszard S. (Ed.), Proceedings of the International Machine Learning

Workshop, Allerton House University of [llinis at Urbane-Champeign
(June, 1983b). .

. A theory and methodology of inductive learning, Artificial

Intelligence 20(2) (1983¢) 111-161.

and Stepp, RE., Learning from observation: conceptuat

clustering, in: RS. Michalski, ].G. Carbonell and T.M. Mitchell (Eds.),
Machine Learning- An Artificial Intelligence Approach (TiogaPublishing |
Company, Palo Alto, CA, 1983d) 331-363. :

Minsky. Marvin (Ed.), Semantic Information Processing (MIT Press, Cambridge,

MA, 1968).

. A framevork for represenfing knowiedge, in: P.H. Vinston

(E4.), The Psychologyof Computer Vision (McGraw-Hill, New York, 1975)
211277,

. Jokes and the {ogic of the cognitive unconscious, in: R.Groner,
M. Groner end V. E. Bischoff (Eds.), Methods of Heuristics (Lawvrence
Erlbaum Associates, Hillsdale, NJ, 1983) 171-193.

. The society of mind, lecture presented at Southern Illinois

University at Edwverdsville, April, 1986.

Mitchell, Thomas M., Utgoff, Paul and Banerji, Ranan, Learning by

experimentation: acquiring and refining problem-soiving heuristics, in:
R S. Michalski, ]G.Carboneli and T.M. Mitcheli (Eds.), Machine Learning:
An Artificial Intelligence Approach (Tioga Publishing Company, Palo Alto,
CA,1983) 163-190.

Moore, ]. and Newell, A, How can Merlin understand?, in: L. Gregg (Ed.),

Knowiedge and Cognition (Lawrence Eribaum, Potomac, MA, 1973).



188

61. Normug.l I))onald A.(EQ.), Perspectives on Cognitive Science (Ablex, Norwood NJ,
1981).

62. Pearl, Judea (Ed.), Search and Heuristics (North-Holland, Amsterdam, 1983).

63. Persson, Staffan, Some sequence extrapolating programs: astudyof
representation and modeling in inquiring systems, Report No.
STAN-CS-66-050, Depariment of Computer Science, Stanford University,
Stanford, CA, 1966.

64. Pivar, M. and Einkelstein, M., Automation, using LISP, of inductive inference on
sequences, in: E.C. Berkeley and D.Bobrow (Eds.), The Programming
Lenguage LISP: Its Operation and Applications, (Information International,
Inc. Cambridge MA,1964) 125-136.

65. Reddy, Reaj, Erman, L., Hayes-Roth, E., Lesser, V. and Shockey, L.. Vorking papers
in speech recognition -- IV —~ the HEARSAY I system, Carnegie-Mellon
University Computer Science Department Technical Report, Eebruary, 1976,

66. Rogers, David, personal memorandum, 1986.

67. Schank, Roger C., and Colby, K. M. (Eds.), Computer Models of Thought and
Language (Ereeman, San Francisco, 1973).

68. Schank, Roger C., Language and memory. Cognitive Science 4(3) (1980) 243-284.

69. —. Dynamic Memory: A theory of reminding and learning in
computers and people (Cambridge University Press, Cambridge, 1582).

70. The Cognitive Computer (Addison-Wesley, Reading MA, 1984).

71. Searle, John, Minds, dreins, and programs, The Behavioral and Brain Sciences 3
(September, 1980) 417-457.

72. Simon, Herbdert A. and Kotovsky, K., Human acquisition of concepts for
sequential patterns, Psychological Review 70(6) (1963) 534-546.

73. Simon, Herbert A, Complexity and the representation of patterned sequences of
symbols, Psychological Review 79(5) (1972) 369-382.

74. , Models of Discovery (Reidel, Dordrecht, 1977).

75. Stepp, R.E., and Michalski, R. S., Conceptual Clustering of Structured Objects: A
Goal-Oriented Approach, Artificial Intelligence, 28(1) (1986), 43-65.

76. Ulam, Stm)aislav, Adventuress of a Mathematician (Charles Scribner's, New York,
1976).

77. Vaterman, D. A, and Hayes-Roth, E. (Eds.), Pattarn-directed Inference Systems
(Academic Press, New York, 1978).

78. Vickelgren, Vayne A., How to Solve Problems (V. H.Freeman and Company, San
Erancisco, 1974).



189

79. Winston, Patrick H., Learning structureal descriptions from examples, in: P. H.
WVinston (Ed.), The Psychology of Computer Vision (McGraw-Hitl, New
York, 1975) 157-209.

80. . Learning and reasoning by analogy, Communications of the
Association for Computing Machinery. 23(12) (December,1980).

Bl. Vinston, P.H., Learning by augmenting rules and accumulating censors, in: R.
S.Michalski (E4.), Proceedings of the International Machine Learning
Workshop, Allerton House, University of Illinois at Urbana-Champaign
(June, 1983) 2-11,





