
•

Seek-Whence: A Model of Pattern Perception

by

Marsha J. Ekstrom Meredith

Computer Science Department
Indiana University

Bloomington, Indiana 47405

TECHNICAL REPORT NO. 214

Seek-Whence: A Model of Pattern Perception
by

Marsha J. Ekstrom Meredith

September, 1986

• Copyright © 1986 by Marsha J. Ekstrom Meredith

•

Accepted by the Graduate Faculty, Indiana University, in

partial fulfillment of the degree of Doctor of Philosophy.

¥'£~
Douglas R. Hofstadter:Ph:o::c:air

Daniel P. Friedman, Ph.D.

Mitchell Wand, Ph.D.

William C. Perkins, D.B.A.

August 20, 1936

iv

DEDICATION

To Sam. for all the hours end ell the encouragement .

•

•

•

v

ACKNOVLEDGMENTS

The vork presented here has benefitted from years of support and

critique bye. number of people. First and foremost is Professor Douglas R .

Hofstadter, vithout vhose inspiration, encouragement, patience, and friendship

over the years none of this voUld have been possible. Professor Daniel

Friedman hes been e. constant source of encouragement. and e.lvays gave

generously of his time. Professor Mitchell Vand's careful reading e.r>.d clear

thinking have helped me enormous! y, and Professor Villiem. Perkins hes

consisten t1 y gone out of his vay to be helpful.

I voUld also like to thank two Systems Managers - David Plaisier at

Indiana and Barbe.re. Zimany at Blackburn -- and their staffs for their help in

getting my program on its feet. Thanks also to PaUl Reynolds and Audrey

Vehking for their vork on human pattern perception, and to Dr. Ivan Liss and

his CSllO class at Blackburn for serving es guinea pigs in our experiment.

Finally, I voUld like to thank severe.! people vho have helped me on a

personal level over the years. Thanks: to Jill Porter for her mighty efforts to

keep e.11 my records in order; to !Caty, ICen, and Regina Ratcliff for their

hospitality and friendship; to Ivan Liss for the pep talks; to my parents, Fred

and Margaret Ekstrom. for encouragement and understanding; tom y sister

Meggie for all those summers of help and support; to Kirsten and Kelsey for

being more understanding than could be expected of children; and to Sam, for

everything.

Of course, in spite of the efforts of all these people, there may be errors

of formulation or execution in this vork. For these. I take full responsibility.

•

•

vi

PREFACE

In an era vhen programs have been written to perform medical

diagnoses. find oil, analyze soybean diseases. and even rediscover 19th-century

chemistry. I have written aprogre.m -and one of some size -- that seemingly

does almost nothing.

The program. celled Seek-Vhence, is designed to discover. model. and

reformulate patterns presented as sequences of nonnegative integers. The

patterns are not mathematically complicated ones -- they are based on little

more than the successorship and sameness relations betveen pairs of integers

- yet they can become arbitrarily complex. chellenging even for humans. Our

'I/Ork on Seek-Vhence represents only the barest begihnings in exploring this

domain space; the program can handle only a fev types of problems of

moderate complexity. Nonetheless. ve believe that our goals and approach are

sufficiently important to varrant further wrk and much concentrated study.

But sequence extrapolation is a solved problem. handled by Pi var and

Finkelstein [Pi var 64] tventy years ago -- is it not? Not in its full generality.

The Pi var-Finkelstein system concentrated on extrapolating sequences vith

underlying mathematical formulas. Hence. these sequences could often be

solved by applying a battery of mathematical techniques until an explanatory

formula (or collection of formulas) vas found. Their domain and approach are

quite distant conceptuell y from ours.

•

•

•

vii

Those vho have vorked on the formUl.ation and implementation of

Seek-Vhence are interested in modeling the human ability to discover patterns

and to find mUl.tiple and/or changing patterns in an evolving situation.

Integer sequences happen to be an.excellent domain for our purposes for

several reasons.

First. ve can strip avayenough complicating detail to get at core issues.

For example, by eliminating knovl.e<lge of mathematical operations (such as

addition. mUl.tiplication. squaring, etc.). ve can divest the nonnegative integers

of all but their most fundamental properties. They can then serve as atomic

units - structures tjthout internal pattern -- in our pattern domain.

In addition. by presenting sequence terms one at a time. ve can explore

the vays in vhich perceptions about a pattern change as it evolves. Humans

are able to move from one plausible pattern characterizaton to another tjthout

entertaining a host of unrelated and implausible characterizations along the

vay. Ve vant to model this ability.

Finally, ve can test the adequacy of the system's pattern perception by

asking for:

1) a characterization of the pattern;

2) an extrapolation of the sequence according to that characterization.

In summary, although Pi var and Finkelstein explored mathematical

sequence extrapolation, their vork -- and that of their successors - has left the

important and <lifficUl.t problem of pattern perception in the domain of integer

sequences unexplored. The follotjng claim tjll emphasize the importance ve

viii

attach to this problem:

Finding patterns in sequences. developing a model to describe the

perceived pattern. e.nd reformulating the model on the be.sis of nevevidence is

nothing less the.n scientific induction in microcosm.

This dissertation is organized into five chapters. In the first chapter. ve

discuss the foundations of our vork. including both underlying questions e.nd

extant systems that influenced our idee.s e.nd approach. The subsequent tvo

chapters document the current implementatioa of the Seek-Vhence pr~gram.

In chapter four. ve compare the Seek-Vhence approach e.nd program to several

related systems. Finally. in chapter five ve present implementation details,

reviev some shortcomings of the system. and set some directions for fUture

research.

•

ix

ABSTRACT

Seek-Vhence is an inductive leerning progre.m that serves as e. model of
e.neve.pproe.ch to the programming of "intelligent" systems. This approach is
cheracterized by:

structural representation of concepts;
the ability to reformulate concepts into nev. related concepts;
a probabilistic. biologically-inspired approach to processing;
levels of abstraction in both representation and processing.

The program's goals ere to discover patterns. describe them as structural
pattern concepts. and reformulate those concepts. vhen appropriate. The
system should model human performance as closely as possible. especially in
the sense of generating plausi!>le descriptions and ignoring implausible ones.
Description development should be strongly de.ta-driven. Small. special-purpose
tasks vorking at different levels of abstraction vith no overseeing agent to
impose an ordering eventually guide the system toverd e. correct and concise
pattern description.

The chosen dome.in is that of non-mathematically-sophisticated patterns
expressed es sequences of nonnegative integers. A user presents a patterned
number sequence to the system. one term at a time. Seek-Vhence then either
ventures e. guess at the pattern. quits. or asks for another term. Should the
system guess e. pattern structure different from the one the user has in mind,
the system vill attempt to reformulate its faulty perception.

Processing occurs in tvo stages. An initial formulation must first
evolve; this is the vork of stage one, culminating in the creation of e.
hypothesis for the sequence pattern. During stage tvo, the hypothesis is either
verified or refUted by nev evidence. Consistent verification vill tend to
confirm the hypothesis, and the system vill present the user vith its
hypothesis. An incorrect guess or refUte.tion of the hypothesis by nev evidence
vill cause the system to reformulate or abandon the hypothesis.

Reformulation of the hypothesis causes related changes throughout the
several levels of Seek-Vhence structures. These changes can in turn cause the
noticing of nev perceptions about the sequence, creating an important
interplay e.mong the processing levels.

•

x

TABU OF CONTENTS

CHAPTER. ONE: FOUNDATIONS

A. Introduction

B. The Seek-Vhence Approach

C. Representation Isrues

D. Seek-Vhence Diagrams

E. Modeling Sequence Patterns

F. System Organization

G. The Hofstadter Connection

H. Conclusion

2

7

9

1'3
18

25
27

33

CHAPTER. TWO: SEEK-WHENCE: STAGE ONE--HYPOTHESIS CREATION

A. Introduction 36

B. Overviev of the Seek-Vhence System

1. Domain e.nd Goals

2. The Tvo Stages of Processing

3. Processing e.nd Tasks

4. Structures e.nd the "Plasms"

5. Summery

C. Seek-Whence in Detail

36

38
41

42

47

1. The Platoplasm - Abstract Notions 48

2. The Hypothesis 59

3. The Cytoplasm -- the Base 60

4. Plato-cyto Relations 68

5. Reviev e.nd Previev 70

6. Template Creation - One Mold to Fit All 73

7. The Socratoplasm - In the Middle 76

8. Hypotheses - Encapsulating Patterns 79

D. The End Of Stage One 85

•

xi

CHAPTER THREE: SEEIC-VHENCE: ST.AGE !VO- REFORMULATION

A. Introduction 88

B. Background 88

1. The Human .Approach 89

2. Platonic Relations 90

3. freeze-dried Hypotheses 91

C. Changing a Hypothesis 92

1. Cosmetic Reform 93

2. Medical Reform 97

3. Reconsideration 99

a. Determination of the Reigning Type 99

!>. Reformulator 105
4. The Gnoth Operations 109

5. Ce.rr'Ying Out Reforms 124

D. failure and Slip-scouts 126

CH.APTER FOUR: COMPARISONS VITH OTHER VORK

A. Introduction 128

B. Comparison vi.th Pi var and Finkelstein 128

c. Relation to Simon-Kotovsky 130

D. Comparison vi.th Persson 132

E. Dietterich and Michalski 134

f. Some Related Systems 138

1. Evans and ANALOGY 138

2. Lenat and Heuristics 140

CH.APTER FIVE: PERFORMANCE, PROBLEMS, .AND FUTURE DIRECTIONS

A. Implementation and Performance 145

1. System Performance

2. Human Performance

B. Problems

1. Implementation faux Pas

2. Unconquered Sequences

145

147

148

149

150

•

xii

3. Lov-level Myopia

4. High-level Haughtiness

5. Coordination Problems

6. Herky-jerky

C. The Future

151

151

152

153
154

1. Minor Deteils 154

2. Major Goals 156

D. Conclusion 158

APPENDIX 159

Bongerd Problems 160

Box Implementations 161

Program Runs

The Sequence "3 7 3 7 3 7 .. :· 164

The Sequence "3 7 3 3 7 3 ... " 167

The Sequence "1 2 1 2 3 1234 ... " 170

GLOSSARY 180

BIBLIOGRAPHY 183

xiii

LIST O.F .FIGURES

CHAPTER ONE .

.Figure 1 The major primitives 16

.Figure 2 Seek-Vhence diagrams vith

some shered structures 17

.Figure '.3 Some parses of "1 1 2" 20

.Figure 4 Tvo different representations

of a single parse 21.
.Figure 5 More parses of "1 1 2" 22
.Figure 6 The doubler and Clossman's

"marching doubler" 23

CHAPTER TVO

.Figure 1 The Seek-Vhence vorld 44

.Figure 2 Some links l>etveen plasms 45

.Figure '.3 A !>ox tree for the form

(C-group (S-group 2 J) 2) BJ

CHAPTER THREE

.Figure 1 Measuring gnoth stability 102

.Figure 2 Neighboring gnoths 106

CHAPTER ONE

:E'OUNDATIONS

2

J... INTRODUCTION

Hwnens are excellent pattern perceivers . .From. the tiny be.by learning

to recognize its mother's face to the scientist vhose perspiration is revarded by

a sudden inspiration. ve spend m.uch or our lives noticing patterns. Although

ve find nothing amazing about being able to recognize e. friend ate. distance or

three blocks - e. common ability- ve do prize the pattern-discovery ability or

those vho are especially good at it in some dome.in .

.For example. vhen Larry Bird has one of those special games or vhich

he is capable. ve ve.tch in amazement. trying to capture the experience vith

such phrases es "seing the vhole court" or "playing out or his mind". Ve can

feel that he "understands" the court. that he kno~ vhere ever-yone is. vhere

they vill be. end vhe.t they vill be doing. He hes e. sense or system • or hov

things fit together. that escapes almost ever-yone else. "Playing out or his mind'"

is litere.lly true. in the sense that he need only follov the mental structure he

hes created to be successfUl..

The besketbe.11 situation outlined above strikes us es very similar to that

of the scientist having e. "breakthrough". vhen things simply "come together"

or "fe.11 into place" - that is. vhen important connections are me.de. Ve feel

that both of these situations. along vi th e. multitude of the more common.

everyday kind. are at the core of hum.en creativity. To be precise. the core or

creativity is the ability to find unexpected relationships and to discover

previously-unnoticed patterns.

BONGJ..RD PROBUMS

Bongard problems let us experience the "natural'" hwn.an ability to

create and reformulate pattern characterizations. The problems. first posed by

Mikhail Bongard [Bongard 70]. present the solver vi th tvelve dre.vings. six on

3

either side of e.dividing line. The object is to che.racteriZe the difference

betveen the figures on the left end those on the right - in essence. to exple.in

vhythe dividing line "makes sense". Severe.1 Bongard problems are reproduced

in the Appendix.

In solving Bongard problems. ve move from one he.tr-formed and

t~nuowly-held idea to another. can feel notions bubbling up from somevhere

in our minds. and arrive e.t unexpected but immediately e.ccepted

chare.cterize.tions. for exe.mple. e.!ler a group of people vorlced fore. moment or

tvo on problem "'21 - shovn in the Appen~ix - one person sUddenly called out

"puppies are alloved!". and the group immedie.tely e.greed. Such ideas crystallize

sUddenly. and feel right. This certe.inty is note. result of dealing vi th overly

simplistic or common notions. In re.ct, the re.vored che.re.cterize.tion is often a

phre.se rather thane.simple term. and different people vill come up vith

different but accepte.l>le characterizations the.t she.re an underlying notion. the

one "concepttiel skeleton" (to use Dougle.s Hofste.dter's term) the.t fi~.

My first encounters vi th Bonge.rd problems vere in tvo cle.sses given l>y

Dougle.s Hofstadter e.t Indiana University-one, e.seminar on his book GOdel

Escher Be.ch· an Eterne.1 Golden Bee.id 1Hofste.dter 79]. and the other e. class in

artificie.1 intelligence. During the seminar. ve vere me.de e.ve.re of the

potential e.trorded by these problems e.s a vehicle for exploring human

intelligence. and. in avider sense. vere made e.ve.re of the unexplored territory

opened by such dome.ins e.s opposed to those typically stUdied in A.I. - the

knovtedge-intensive. the "difficult". the rele.tion-entangled. The discussion of

Bongard problems given in W. and the problems themselves - in Bongard's

ovn book. Pe.nern Recognition 1Bongard 70 I- are Ve.lue.l>le ree.ding for an yane

interested in the meche.nisms and structural depth of human intelligence.

4

In our artificial-intelligence class. ve began to explore the Bongard

problems them.selves a bit more deeply. Ve tried to ve.tch ourselves solve the

problems. tried to verbalize Vhe.t ve.s going on as our minds seemed to '1eave us

behind" on some of the problems and come up ~th solutions. On other

problems, ve consciously tried different characterizations. our attempts often

being colored by our experience ~th previous problems.

Hofstadter has round or created many terms to describe Vhat goes on in

our minds as ve attempt to solve these problems. Such terms as "reformulate",

"focus and filter", "deform.", "structural similarity", "sameness detector", "levels

or description", "slipping", "meta-description", "tem.ple.te".and "flexibility"

achieve special meaning in this context. Perhaps most important or all:

"One can think of the Bongard-problem. vorld as a
tiny place Vhere 'science' is done - that is. Vhere
the purpose is to discern patterns in the vorld."

[Hofstadter 79, p. 659]

.
BIRTH OF SEEK-VHENCE

The intriguing perspective on intelligence presented in the Hofstadter

courses me.de a strong case for the importance of exploring this nev uni verse of

the non-verbe.liZal:>le. the mental undercurrent. the "subcognitive". All that

ve.s required ves a suitable dome.in. one that captured the essence of the

problem. ~thout being tied to too many extraneous and complicating variables.

A fully general Bongard-problem-solver ve.s clearly beyond reach because of

the limits of visue.1 processing systems and the overhead they vould entail. Ve

needed quicker access to the centre! issues or perception and reformulation. It

ve.s then that a previous project in sequence extrapolation lee.pt to the fore.

As have many students in artificial intelligence classes. I vrote e.

5

program to extrapolate integer sequences. Typically enough, the program

could recognize smallish primes end Fibonacci numbers. and could untangle

interleaved sequen~es of fixed- or patterned-length period. such as:

1133311333 ...• or

102203330

It could finite-difference its vay to solutions of many pathological problems

humans vould never solve (except by finite-differences. and only under

duress) - for example:

1 z 5 15 42 98

(e. sequence "'hose second differences are every third prime).

Although pleased that the program coUld solve so many intricate

sequences. I ve.s disturbed in particular by its total le.ck of "intelligence". The

program ve.s "mechanistic". blindly recursive. and not at e.11 sensitive to

pattern. as vould bee. human. The same solution me.chineryve.s applied to all

sequences. regardless of their form or content.

The j uxte.posi tion of the tvo projects -- e. Bonge.rd-like pattern -discovery

end reformulation program vi.th en overly mechanistic. pattern-insensitive

sequence-extre.pole.tor -- me.de for an obvious conclusion. and so the

Seek-Vhence project ve.s born. Sequence terms have simple descriptions. By

ignoring "mathematical" sequences ve could concentrate on "the processes of

recognizing patterns" [Hofstadter 1982c. p. 10]- the essence of both Bongard

problems end science - vi.thout becoming mired do'nl in '1e.rge amounts of

specialized knovtedge e.t>out me.thematics end arithmetic" (p.10). The project's

name reflects both our dome.in interest -- ve can "seek wence" terms arise in e.

patterned "seq-uence" -- end the muttiple perspectives one must often have ofe.

single object - in this cese. the project's name -- in order to understand it fUlly.

6

SOME TYPICAL PROBLEMS

In Seek-Vhence, terms of a sequence are presented one by one to the

solver by the presenter. The solver's goal is to guess the pattern the presenter

has in mind. Clearly, for enygiven initial segment there are multitudes of

possible patterns; hovever, the solver usually finds the correct solution to a

reasonable pattern after seeing relatively rev patterned groups of terms.

In order to give a sense of vhat ve mean by "correct" solutions end

"reasonable" patterns, ve list belov a dozen sequences. These sequences vere

actually presented in the menner described above to each of twenty-five

students at Blackburn College, in en experiment to determine the types of

complications most troublesome to human pattern perceivers [Meredith 83 I.

Their experience cen be approximated by sampling the sequences one term at a

time. mel<:ing hypotheses es one goes along. The "parsed" sequences follov.

THE BLACKBURN DOZEN

1) 1 12123123412345 ...

2) 1234567 ...

3) 2 1 2 2 2 2 2 3 2 2 4 2 2 5 2 . . .

4) 1 2 2 3 3 3 4 4 4 4 ...

5) 185818581858 ...

6) 2 1 2 2 2 3 2 4 2 5 ...

7) 231232223333234444 ...

8) 1223344556 ...

9) 123344555666 ...

10) 9 1 9 2 9 3 9 4 . . .

11) 181218123218123 ...

12) 185581185581. ..

7

THE PARSED DOZEN

1) 1*12*123*1234*12345*

2) 1 * 2 * '3 * 4 * 5 * 6 * 7 ...

'3) 2 1 2 * 2 2 2 * 2 3 2 * 2 4 2 * 2 5 2 ...

4) 1 * 2 2 * 3 3 3 * 4 4 4 4 * .. .

5) 1 8 5 8 * 1 8 5 8 * 1 8 5 8 * .. .

6) 2 1 * 2 2 * 2 3 * 2 4 * 2 5 .. .

7) 2 3 (1) * 2 '3 (2 2) * 2 '3 (3 3 3) * 2 3 (4 4 4 4) * ...

8) 1 2 * 2 '3 * '3 4 * 4 5 * 5 6 ...

9) 1 * 2 * '3 3 * 4 4 * 5 5 5 * 6 6 6 ...

10) 9 1 * 9 2 * 9 3 * 9 4 ...

11) 1 8 1 * (2 1) 8 (1 2) * ('3 2 1) B (1 2 3) *

12) 1 B 5 5 8 1 * 1 B 5 5 B 1 * ...

Ve cell a run of terms t>etveen asterisks (•) in the parsed versions a

"'template... In order to demonstrate an understanding of the pattern. the solver

must complete the current template e.nd fill out the next one - vhich is vhat

people usually do anyve.y vhen presented these problems.

B. THE SEEK:-VHENCE APPROACH

The Seek-Vhence system. like any human problem-solver. is presented

sequence terms one at a time by the user (presenter). As each term is

presented. the system tries to come up vi th a hycothesis • or characterization of

the sequence pattern. If subsequent terms confirm the hypothesis. the system

vill venture a guess - not simply by supplying the next template (el.though it

does this). but by shoving the user a synopsis of its model. On the other hand.

should subsequent terms refute its model. the system attempts to reformulate

8

the model to conform to the nev de.ta as vell as to the old. If successful e.t this

reformulation effort, the system has anevvorlcing hypothesis, open for

confirmation or ret\lte.tion

GETTING AT THE ESSENCE

To be sure, there are some differences betveen Seek-Vhence and a

full-l>lovn Bonge.rd-type progrem. Most obvious is that ve chose to deal Tlith

one sequence, not a set of tvelve dravings. This requires w to predict

successive terms, rather than to come up Tlith e. verbal che.r~cterization.

Hovever, the fact that ve require construction of a predictive model mitigates

this difference somevhe.t. in that ve are attempting to characterize the

sequence in some explicit vay.

Another difference is that ve chose to present the sequence to the

system. one term at e. time, rather than as a vhole, as is the case Tlith Bonge.rd

problems. This models the scientific method by forcing Seek-Vhence to react

to nev evidence, to reformUlate its model of the sequence in the light of nev

terms. Ve believe that our choices have me.de the sequence problem e.n

appropriate dome.in for the study of the phenomena in vhich ve are interested.

EXTRAPOLATOR LESSONS

One lesson learned in vriting the sequence extrapolation progrem for

our artificial-intelligence class ve.s that one must be careful not to build in too

many clever devices. The success of that progrem ve.s direct! y proportional to

the number of tricks and special sequences the progremmer could devise.

In reaction to that. ve have not permitted Seelc-Vhence to vork on derived

sequences (e.g., first differences, first ratios, even-numbered terms, etc.) of e.n y

kind. Such manipUle.tions as separating interleaved subsequences, pUlling out

9

group lengths, and the like ere "high-level" actions the.t can only be employed

efler the initiel. noticing of patterns has taken place. To introduce such

operations too soon vould be to run the risk of overly directing the program's

actions, and so of doing its vork for it.

Vhen the programmer does get to the point of supplying e. "beg of

tricks" such as noticing interleaving.. or vhe.tever. the progt'.am should be able

to select tricks from that beg by itself. based on its perceptions at the time - as

people do -- and not based on some "canned", pre-determined hierarchy of

techniques. ~is pointed out in e.le.ter chapter, the Seek-Vhence system is just

nov becoming ready to employ top-dovn approaches such es these.

C. REPRESENTATION ISSUES

The centrel. concern of the Seek-Vhence project is to explore the ability

to discover patterns, an e.l>ility the.t requires the development and reformulation

of pattern (concept) descriptions. Th& representation of concepts is criticel. to

the success of the system. because the concept descriptions must express salient

information -- vhere salience is not predefined- and so must be amenable to

fluid and continual modification. In the folloving sections, ve vill outline our

approach to concept representation and processing in Seek-Vhence, beginning

vith e. discussion of our distinction betveen "complex" and "complicated"

systems.

COMPUX VS. COMPLICATED

Consider this interchange betveen e.college Dean and a faculty member,

vhich occurred in the middle of e. discussion about replacing e. just-resigned

1 0

member of the facUlty:

Prof: "I guess ve shoUld advertise as soon as possible nov that it's

official. Aehh - looks like I lost a button off this shirt.·

Dean: "It's alve.ys se.d vhen afe.cUltymember loses his buttons."

Prof: "Yes, but not as se.d as a Dean vho loses his faculties."

This conversation, similar to many that occur each day, is nothing

spectacUlar, special, or difficult to understand. Those same actors could elso

have engaged in a complicated discussion or international lav or faculty politics

- a discussion too complicated for many non-specielists or outsiders to

understand. The exchange or (sad) puns is, hovever, a prime example or vhat

ve consider to be a complex (as opposed to complicated) interchange. Fev

elements are being related or discussed, no vet> of tangled linkages is involved,

and no technical terms are used. Rather, the cleverness comes from finding

and using unexpected relationships among the elements.

Here is another complex but everyday discussion, this time betveen a

three-year-old and her mother at 9 A.M.:

Child: I vant to go visit Toby.

Mom:· OK:; but You'll have to vait until after lunch.

Child: May I have a peanut butter sandvich nov?

Again, ve have a situation vhere nothing difficult is being

discussed, but there are obvious important rumblings going on beneath the

surface. One can almost see -- cartoonlike -- a little bump appear in the ground

and travel from one place to the next. simply disturbing the surface as it passes

along belov. Something subtle has gone on in the child"s mind, but it is

unexpected, and it takes us a little vhile to "catch on".

The terms ve vill be using - "complex" and "complicated" - may not be

the best to capture the tvo underlying notions, the implementation or vhich

1 1

may map quite vell onto Michalski 's "structural- vs. attribute- based"

descriptions [Dietterich 83. p.42]. Nonetheless. they vill serve as pegs on vhich

ve can perhaps hang meanings.

By "complicated". ve mean e. big. "busy". tangled system. of linlcages. vi th

much date.involved- e. "tropical jungle" of concepts. Complicated systems

include murder-mystery plots, automobile engine diagrams. and typicel

expert-system dome.ins. In computer applications. the concept representations

involved tend to be frame-besed, vi.th fixed slots to go vith the predefined

linkages. The focus is on folloving the ,Proper links to get from one concept to

another.

In contrast, e. "complex" dome.in is deep rather than broad - more like

an iceberg field than ajungle. There maybe some clear linlce.ges, but some

apparent! y separate bergs are actually connected t>elov the surface of the

ve.ter. The concept space is relatively uncluttered and the linkages often subtle.

Complex domains include puns, some poems. and patterns. In computer

applications. the focus vould be in finding interesting relationships among the

fev concepts, vhich vould tend to have structural descriptions. (Vinston

[Vinston 75] and Ronald Brachman, vi th his KL-ONE system [Brachman 77; 85)

have me.de some progress in the area of structural description of concepts.) Ve

find a helpful metaphor for our distinction between "complicated" and

"complex" in the comparison betveen unraveling a murder-mystery end

understanding e.short but ellusive poem.

There are certainly some dome.ins -- speech recognition and the vriting

and understanding of stories come immediate! y to mind - that are both

complex and complicated. In fact. there are probably elements of both in almost

every problem. Vhe.t is of note, though, is that the complex dimension seems to

have been virtUelly ignored so far in most AI research.

12

SEEK-VHENCE CONCEPT REPRESENTATION

In Seek-Vhence. ve attempt to begin opening the "can ofvorms"

outlined in the previous section. Seek-Vhence compound concepts are

represented as netvorks or primitive concepts. The primitives are fixed. as are

most base-level relations. That is. ve describe a compoi,md concept in terms or

primitive concepts and links. so that a concept's structure holds much

information about it. This "complex", structural representation of concepts vill

permit the use of structural similarities as "virtual links" in the system. That is,

ve c~ relate tvo concepts by noting similarities in their structures and/or

structural building blocks. rather than simply looking at their lists of

attributes. Moreover. a concept's representation is not unique - it can be

"rephrased" or. as ve say, reformUlated. In fact. as nevsequence terms are

presented to it. the system is constrained to change its pattern description in the

light or the nev evidence. In addition. hovever. the representation can be

changed even though the current model is accurate. simply to see if a different

representation "looks better". These miniature paradigm-shifts are termed

"slipping", and are crucial if the system is to model fluid movement from one

concept to another.

VINSTON AND STRUCTURAL DESCRIPTIONS

The idea of using structural descriptions in a computer system is

certainly not nev. Patrick Vinston. in his important structure-learning

program [Vinston 75]. vas keenly interested in employing such descriptions in

order to capture notions such as "table", ··tent", and "arch". Moreover. in .
'1earning" these notions from a succession· of examples and near-misses. his

program first created a concept description and then modified it to conform to

13

nev evidence. In addition. once the progrem. had learned several concepts. one

of its goals ves: ''To com.pare some scene vi th a list of models and report the

most acceptable match" [Vinston 75. p. 2001

The use of positive and negative evi<lence. the construction of structural

models. end the use of these models to categorize nev block figures all have e.

Bongard-like flavor the.t ve find very interesting end appealing. Hovever, ve

have had to fe.ce some additional representationel issues. vhich ve vill discuss

after first describing our approach to structure! representation.

D. SEEK-VHENCE DIAGRAMS

Ase.first major step in Wlderstanding vhe.t ve vere about. our group

(Hofste.dter, Clossmen. end Meredith) devised a set of primitives end a structural

representation technique the.t ve called "Seek-Vhence die.grem.s". These

expressive visuel. die.grems. vhich to some extent have been implemented in the

current Sf'$tem. give a sense ofhovve envision reformulation to teke place end

hov verious distinct concepts cen be seen to be related through "closeness" of

their structural representations.

THE PRIMITIVES

There are eight primitive notions in Seek-Vhence die.grams, each of

vhich is represented by a node that tekes at leost one input Value. The !Unction

of each primitive is to return e. Value vhen queried - or bil. os ve say. A

primitive returns no Value vhen en input lies outside of the appropriate dome.in

or vhen the processing vould produce e. result out of the range of nested groups

of nonnegative integers. A returned Value me.yin turn be used e.s input to

14

another primitive or maybe returned 8S a final result. The primitives are:

Constant (k) -- returns the value k. a nonnegative integer -­

:Example: (Constant 4) --> 4;

Countup (lc)-returns k. then k+l. then k+2 •... on successive hits -

Example: (Countup 4) -> 4, 5. 6 ... , (on successive hits);

C-group (vetn)- a "copy-group": returns n copies of vet, grouped in

a pair ofperentheses -

Example: (C-group 5 3)--> (5 5 5);

S-group (k,n) - a "successorship group": returns the grouped terms

(k. k+l. k+2 k+n-1)--

Exomple: (S-group 6 4) --> (6 7 B 9);

P-group (k,n) - a "predecessorship group": returns the grouped terms

. (k. k-1, k-2, ... , k-n+l)-

Exem,ple: (P-group 7 3) --> (7 6 5);

Y-group (first, mid, 18St) - a "symmetry group": returns the grouped

elements (first. mid, 111St), vbere "18St" is a mirror image of

"first". If "mid" is simply the vord "nil", Y-group returns

(first, last) -

Examples: (Y-group (5 2) 3 mirror)--> (5 2 3 2 5)

(Y-group (6 3) nil mirror)-> (6 3 3 6);

Tuple (ergl.ist) - returns a group of its arguments' values, evaluated in

the order given in "arglist" -

Exem,ple: (Tuple (5 3 9)) ---> (5 3 9);

Cycle (arglist)-- returns the value of successive members in "arglist" on

successive hits, in a cyclic fashion --

Exem,ple: (Cycle (5 3 9)) ---> 5, 3. 9, 5 on successive hits.

figure 1 shovs our diagrammatic representation of all but the tvo

15

simplest primitives. In figures 1and2, ee.ch line represents one hit or query of

the given structure.

·The primitives can be compounded, vi.th the output of one structure

serving as input to another. A hit on the topmost structure causes the

propagation ()f hits throughout the netvork. The bottommost structures return

their V8lues to their c8lling structures. vhich then use the returned V8lues to

calculate their ovn V8lues, and so on upvards. A simple example of this is

shovn in the first die.gram of figure 2. The top-level Y-group req\lires a V8lue

from the Tuple, and so hits it receiving "(l 4)" from the.t structure. It then uses

this V8lue to compute its ovn - "'(1 4 4 1)". More examples of compounding are

shovn in later figures.

Seek-Vhence netvorks can e.lso employ shared structures. e.s shovn in

the second and third die.grams in Figure 2. In the first of these, e. "Countup"

structure is shared l>y tvo inputs to the Tuple. Vhen the Countup is hit by the

first input, its value - 3 - is fed to both inputs, giving the Tuple a V8lue of

"(3 1 3)". Similarly, the next hit of Tuple returns e. "'(4 1 4)", and so on.

An analogous shared structure is shovn in the le.st diagram of Figure 2.

This time, hovever. the sharers are tvo inputs to a Cycle, and so ve get a

different sort of result. The first hit of Cycle causes its first input to be hit so

Coun tup is hit in turn and feeds ~she.ring structures - the first and third

inputs to Cycle. The Cycle then returns a 3. On the second hit of Cycle, the

middle input is hit. and returns a 1. Then, on the third hit of Cycle, the third

input is hit causing it to hit the Countup age.in. Countup then returns e. 4 to the

first and third inputs of Cycle, over-witing both "3'"s e.t once vith "'4'"s, e.nd

consequently the third input returns a V8lue of 4 to Cycle. vhich reports it.

Tuple

0

16

(2 2 2)

(2 3 4)

(8 7 6 5)

(1 4 1)

(8 0 3)

8
0
3

Figure 1 --The major primitives

17

mirror

(1 4 4 1)

(3 1 3)

3
1

(4 1 4)
(5 1 5)

4
5

1
6

Figure 2 -- Seek-Vhence diagrams vi.th some shared structures

18

Note the.t if the Cycle e.bove he.d tvo different Countups under its inputs

instead of e. single she.red structure. the resUlts returned woUld he.ve been

different .. Then it "l'IOUld have returned 3. L 3. 4, 1. 4 •... on successive hits.

E. MODELING SEQUENCE PATTERNS

People presented Vi.th the flrst rev terms or a sequence have a strong

tendency to rormUle.te a hypothesis e.l>out the underlying pattern. One of our

goals in creating Seek-Vhence diagrams ves to be e.l>le to model such

hypotheses in e.n underste.nde.l>le. expressive. e.nd flexible (both modifie.l>le e.nd

extensible) pictorial form.

Given belov ere severe.1 possible hypotheses based on the initie.1 segment

"1 1 2":

(1) 1 * 1 2 * 1 2 3 * 1 2 3 4 * ...

(2) 1 1 * 2 2 * 3 3 * 4 4 *
(3) 1 1 * 2 2 * 1 1 * 2 2 *
(4) 1 1 * 2 * 1 1 * 2 *
(5) 1 * I 2 * 1 * I 2 *
(6) 1 1 * 2 I * 3 1 * 4 1 *
(7) 1 1 * 2 2 2 * 3 3 3 3 * 4 4 4 4 4 *
(8) I 1 2 * 1 2 2 * 1 3 2 * 1 4 2 * 1 5 2 * ..
(9) 1 (1 2) * 2 (I 2) * 3 (I 2) * 4 (1 2) ...

(10) 1 1 2 * 2 1 3 * 3 1 4 * 4 1 5 *
(11) 1 1 2 * 3 1 4 * 5 1 6 * 7 1 8 *
(12) 1 * 1 2 1 * 1 2 3 2 1 * 1 2 3 4 3 2 I *

(13) (I I) * 2 * 3 ** (1 I) * 2 * 3 ** (I I) * 2 * 3 **

(14) (1 I) * 2 * 3 ** I * (2 2) * 3 ** I * 2 * (3 3) ** (I I) ...

19

These are e.11 reesonal>le extensions of the initial segment. although some

are more l.ilcel y then others to come to mind immediately. The lest of these. the

"marching doubler". is Gre.y Clossman 's invention. It poses some interesting

representational problems. es shovn in Figure 6. The other pe.rses are given as

die.grams in Figures 3 - 5.

In diagram (1} of Figure 3. ve have en S-group ("successorship" group}

structure. Its first input - the start velue -- is e. constant. 1. This means that

each hit of the top-level structure vill be e. successorship group counting up

from 1. The second input - vhich tells us the group iength - is here the result

of hitting e. Countup structure. Thus. the S-group leniths vi.11 vary. increasing

by one on each successive hit. The first length vi.11 be 1. Therefore. the first

hit on the die.gram vi.11 return en S-group starting at 1 end of length 1- Le .•

"1 ". The second hit's rerult again begins e.t 1. but vill be of length 2 - Le .. "l 2".

Successive hits give us successively longer successorship runs (vi.th success}.

In die.gram (2} of Figure 3. ve see e. top-level c-iroup ("copy" group},

vhose first input - the velue to be copied - changes. but vhose second input -­

the length or number of copies - remains constant at 2. Because the first input

is fed by e.Countup structure, the velue to be copied vi.11 be successive integers

starting at the Countup's start-velue - 1. in this cese.

In diagram (6}. there is e. top-level Cycle. Vhen hit. it vi.11 return the

velue of a hit to one of its inputs. Thus. the first hit of the Cycle results in "l"

being returned -- the result of e. first hit to the Countup. The next hit of Cycle

causes it to return "l ",but this time thanks to a hit of its second input. A third

hit of Cycle brings us be.ck to the Countup. so e. "2" is returned. Successive hits

vill then generate the indicated pattern.

20

(1) (2)

(1) (1 2) (1 2 3) ... (1 1) (2 2) (3 3) ...

(3)-

(1 1) (2 2) (1 1) (2 2)". •. (1 1) (2) (1 1) (2) ...

(5) (6)

(1) (1 2) (1) (1 2) (1) (1 2) ... 11213141 ...

Figure 3- Some parses of "1 1 2"

21

(7b)

(1 1) (2 2 2) (3 3 3 3) .

Figure 4-Tvo different representations ore.single parse

In Figure 4, ve see e.n exemple of tvo different representations of the

same pattern concept. In this particular ease. the representations e.re not

apparently very different. since both use "'C-group ·as the basic organizing

notion. The only ree.1 difference is that in (b) the successorship relationship

betveen the content e.nd length of ee.eh group is made explicit by means of the

rectangular ""e.ddl" box. vhereas in (e.) it is not. This small difference can result

in very different genere!izations of the pattern. however. For exemple, if asked

to generalize from "l" to "2", e.program holding representation (a) vould give

us the sequence :

2 2 3 3 3 4 4 4 4 5 5 5 5 5 ...

vhereas a program holding representation (b) vould generalize to:

222333344444555555

No one can say vhieh is the "correct" generalization - it depends upon the

presenter's pattern concept. Vhat ve ~say is that both e.re "reasonable··.

22

(Bb)

112122132142. ..

(9) (10)

1 (1 2) 2 (1 2) 3 (1 2) . (1 1 2) (2 i 3) (3 1 4) .

(11) (12)

Countup

1 1 2 3 1 4 5 1 6 ... (1) (1 2 1) (1 2 3 2 1) (1 2 3 4 3 2 1) ...

Figure 5 -- More parses of .. 1 1 2 ..

Cycle

2

replace by-

replace by

23

(1 1) 2 3 (1 1) 2 3 ...

jump to next
sib

(1 1) 2 3 1 (2 2) 3 1 2 (3 3) (1 1) 2 3 ...

figure 6 - The doubler e.nd Clossrc.e.n's "'re.arching doubler"'

In figure 6, ~again encounter rectangular "'instruction"' boxes.

indicating modifications to be done on the fly. In the first diagre.rc.. the ··1 .. vill

24

be replaced by a C-group of length 2 vhose value is te.ken es the "1 ". In the

second diegram.. the same sort of replacement is done. but vhen the "jump"

box is encountered (after each hit of the "3"). the entire replace-box structure
.

moves over to the next sibling belovthe Cycle. Here. it moves cyclically from.

"1" to "2" to "3" to "1 ",and so on.

COMP i.RISON VITH VINSTON

J..s ve noted earlier, Vinston 's vork on structural descriptions colored

our thinking on Seei::-Vhence. But vherees his program. had tQ find discrete

objects and then describe the physical relationships among them., our program.

is given the discrete objects and must describe patterns formed by neighboring

groups of them.. Vinston·s program did use grouping es e. ve.y of simplifying

descriptions. Hovever, block groups vere defined in a strict, algorithmic vay

on the be.sis of shared properties. Once formed, e.group became a perm.anent

unit in the scene description. Our grouping mechanism. is more fundamental to

our system.. in that groups are continUallybeing created and destroyed es the

system. attempts to form.Ulate a pattern description. Grouping goes on

simultaneously vi th description. Our difficUlties. then, lie in finding structures

sim.Ultaneouslyvith com.paring those structures in the "correct" vay. For

example, in the sequence:

2 1 2 2 2 2 2 3 2 2 4 2 . . .

ve can eesilytell exe.ctlyvhe.t the terms are and vho is next to vhom.. Ve can

even note that there is e. group of five "2" ·s. starting "With the third term. - e.

Seek-Vhence "(C-group 2 5)". None of this is relevant. hovever. Vhe.t ve

must notice in order to analyze the pattern is that the aforementioned C-group

must not be vieved es such. It hes to be torn apart. and its pieces recombined

vith other sequence fregm.ents in order to make a parse of the sequence

25

reflecting its underlying rUle.

Vinston 's diagrams e.lm.ost look like the object they describe. Ve can see

the three elements of en arch, and the re.ct that the supports serve symmetric

1\lnctions in the vhole. In contrast. in Seek-Vhence. "e. pattern hes not been

fully understood if the diagram representing it itself contains e. pattern. For

that means either that some aspect or the pattern ves missed or that the notation

lacks the pover to characterize that aspect and therefore had to copy it

verbatim." [Hofstadter B2a. Appendix 1. p.B].

The implementations of the two systems bring out additional distinctions

betveen them. The structures created byVinston's program vere essentially

static. designed to be vieved and modified. In contrast. the Seek-Vhence

structures have an active racet - they "e.ct" es veil es "are". They need to

compute and return V8lues. a process that often requires some sort of memory

in each node - or vhe.t ves hit last. of vhat V8lue ves lest computed. and so on.

In summary. ve eve much to Vinston and his notion of modifiable

structural descriptions. Hovever. our dome.in and interests involve us in a

vorld vhere the objects to t>e related must t>e discovered end described

simultaneously. and vhere the physical relationships betveen inputs are only

fragments or the information needed to describe an underlying pattern. His

domain is more like Bongard's in the use or positive and negative evidence to

determine membership in a set - be it "arch" or '1eft-hand-side". Ours is more

like Bongard's in the requirement of coming up vi th a characterization of

perceived pattern rather thane. description or physical reality.

F. SYSTEM ORGANIZATION

Representation issues es discussed above are closelyintertvined "Vith

processing and organization in Seek-Vhence. The system em.ploys simulated

26

parallel processing 'Iii.th non-cooperating processes vorking independently

and under no overseeing a&ent. "Triga;ered" processes - those avekened by

recent events - are chosen at random. to perform. their duties. the choice being

affected (but not determined) by the weights or "urgencies • ot the candidate

processes.

HEAR.SAY II

The HU.RSA Y II speech-understanding system. [Reddy 76] contributed

much to our conception ot Seek-Vhence. Eirst. it used level-based concept

representation. vherein the utterance under consideration vas represented

ditteren tl y at different levels. in a lenguege appropriate to the level. Lover

levels provide·d evidence tor a higher-level hypothesis. end vhenever a support

ves veakened. the higher-level notion ve.s also veakened. Similarly. whenever

a high-level construct ves called questionable by some higher-level criterion.

the lover-level supports tor it vere also veakened. This interplay emong levels

of representation· is. ve believe. one of the most important contributions of

HEARSAY II.

Certainly. the "'knoVledge source"' approach to processing ve.s another

contribution. Self-activated. independently-acting processes operated in

parallel. communicating only by the process trace they left behind. The

trace of a process consisted of the structures it created or modified on the

"'blackboard" - a global. three-dimensional date.structure -- and the triggered

(or "e.vakened") processes left in its vake. This approach. taken to its logical

conclusion es in Minsky's "society of mind" notion [Minsky 86]. seems to us to

be the ve.ve of the future.

27

COMPARISON VI!H HEARSAY II

Our system organization is similar in some ve.ys to that of HEARS.A Y II.

but our processes ere smaller and less poverf\Jl than its ''knovl.edge sources"

and our rloba1 de.ta structure is much simpler than its blackboard.

Seek-Vhence does not physically maintain e. collection of alternative

hypotheses as did HEARSAY II. Rather. it mainteins one "reigning" hypothesis

and the ability to reformulate that hypothesis into an alternative one as the

"evidence" - the pressure to change - mounts. The success of this approach in

general wl depend upon the system's ability to reformulate easily and

reasonably- e. tall order.

E. THE HOEST ADTER CONNECTION

Certainly, Douglas Hofstadter has deeply influenced myvork on

Seek-Vhence, from conception through representation and organization to

4nplemente.tion. Notions he has developed and those that ve have developed in

innumerable discussions together and ~th Gray Clossman have become

inextricably intertwined. and their realizations have begun to emerge (ve

hope) in Seek-Vhence. These inclUde such notions as active symbols that are

composed of groupings of lover-level units. vhich are in turn groupings of

even lover-level units ... , reformulation and the importance of "natural" human

abilities. conceptual skeletons, slipping, fluid concepts, focusing and filtering.

the "terraced scan" approach to processing, the elusive quality of salience, roles

and the importance and difficulty of recognizing similarity, the simultaneous

creation and use of categories made "on the fly" as needed, the importance of

non-cooperating processes and randomness in lieu of an overseeing

all-poverf\Jl agent designed to make "important decisions", recognition of the

complexity and subtlety of perception and its central place in human

•

28

intelligence, the importe.nce of "toy vorlds" end the frictionless universe in

getting to the heart of a problem.

A. clear end direct exposition of some of the central notions underlying

Hofstadter's vorlc is &:iven in the paper "J.rtificial. Intellla:ence: Subcognition es

Computation· [Hofstadter 82b] . This is important readin&: for en ycne deeply

interested in exploring intelligence rather then chesin&: its shadovs. The

paper, end some subsequent thoughts, are reprinted in the book, Metomagice1

Themos [Hofstadter 85a] (es Chapter 26).

SEEIC-VHENCE .A.ND ITS F.A.MILY

The Seek-Vhence project presented here is only one of a family of

Hofstadter-inspired vorlcs designed to address the issues of perception,

reformulation. end similarity. Other members of the fe.milyere jumbo - e.n

e.ne.gre.m-solver; Copycat - a pattern ene.logyproa:re.m; end Letter Spirit - a

styie-extrapolation system operating in the dome.in of Virue.1 letterforms

"a"-> "z". The Fluid .A.nal.ogies Research Group (F.A.RG) e.t the University of

Michigan is currently vorking on or hos completed vork on each of these

projects [Hofstadter 85 b] .

JUMBO

The eldest member of the Hofstadter-inspired family is Jumbo

[Hofstadter 8'3 l This system explored the dome.in of vord "jumbles" (e.ne.gre.ms) .

.A.s the ge.me is usue.ll.y played, the ene.gre.m solver is given a vord vhose letters

have been scrambled -- ruc:h es "toonin". The solver's object is to unscramble

the letters to reveal the unique vord that ce.n be formed from them. Jumbo

strays from this norm in that it does not actue.Uyhave to come up vith ree.1

vords - it hes no dictionary of the English le.ngue.ge. Rather. its object is to

29

create vord-lilce entities - things that~ be English vor<ls -- from the given

letters. This modification goes to the heart of the matter - hov people go e.bout

solving jumbles - vhile bypassing the side issue of dictionary lookup. The

system must "judge its progress on purely internal criteria of coherency at

several levels of structure at once." [Hofste.<lter 84. p.11]

jumbo hes knovledge ofhovconsonants and vovels "lilce" to be grouped

into clusters. hov clusters cen be me.de into reasonable syllables. end hov

syllables can be combined into vor<ls. The system. knoving only these

affinities and using a probabilistic. simulated-pare.llel control structure similer

to Seek-Vhence's, consistently comes up vi.th good vord-like objects from its

input letters. Macro-level order emerges from micro-level chaos. chaos of

processing as vell as of input.

In Jumbo. Hofstadter al.so began exploring the ideas of terraced scan.

temperature and self-ntchjng. A "terraced scan" is a technique for

progressively deepening the exploration of several di.!!erent path vays in

parallel. The most fruitful or interesting pathve.ys tend to be explored more

deeply, vhile less plausible pathve.ys are seldom visited.

Briefly summarized, the .. temperature .. of a system both describes and

emerges from the activity level in the system. Vhen the temperature is high.

even unlike! y path ve.ys may be explored. Conversely, in lov temperatures only

very plausible pathve.ys are explored. In jumbo. the system's temperature is

controlled by the "happiness" of the structures it hes created. Initially, vhen

single letters ("unhappy" because they "vent" to be combined vi.th other

letters) ere introduced. the temperature is high, encouraging the letters to

mingle and combine. Later. vhen a suitable vord-like entity has been created

and all letters are included in it. temperature falls off to the freezing point.

inhibiting eny further activity.

30

Self-vatching is an important notion in any system le.eking overseers

that check for loopiness of behavior. In a.system such e.s Jumbo or

Seek-Vhence. $tructures are continuelly being created and demoyed. It is

certain! y possible that such e. system vil1 recreate e. $tructure time and a.gain.

This sort or loopiness is note. problem unless it takes over the system - that is,

unless it takes place e.t a.high enough level that it inhibits other processing.

jumbo he.d no effective controls for such behavior. relying on

externally-imposed temperature changes to de$troyrecurring $tructures.

Seek-Vhence goes e. $tep further by remembering encapsulations or

previously-generated hypotheses in order to prevent their re-use. More

sophisticated self-vatching is being incorporated into the Copycat system. the

third member of the :E'J.RG family.

COPYCJ.T

Copycat [Hofstadter 84; 85. ch. 24]is the principal current focus or

attention e.t :E'J.RG. Like Seek-Vhence. it involves noticing patterns. but this

time in a slightly different "idealized domain" and vi.th explicit attention to one

of Hofstadter's major interests -- e.nelogies. The Copycat system is given three

strings or letters. each string being one element in a four-part analogy

problem. The system is to complete the analogy by discovering the fourth

string. For example. if given the input:

J.BC ••> J.BD ; PQR sa> ?

the system should respond vi.th another alphabetic string e.s its ansver. (''PQS"

vould be good. "PQD" vould be defensible, and "ABS" vould be strange.)

Like Bonge.rd problems and Seek-Vhence problems. Copycat analogies

require a good dee.1 or thought and ingenuity to solve in all generality.

Attention mU$t be given both to the "face-value", the e.ctue.1 letters involved --

31

their "exteruionel" or "syntactic" identities - and to the t21tt those letters play

in the strings in vhich they are seen - their "interuionel "or "semantic"

identities. The depth of difficulty in defining roles and eV8luating their

meaning is explored in [Hofstadter 80; 85, ch. 24].

Not surprisingly, the notion of salience pops up in Copycat as it did in

Seek-Vhence. In our exemple above, is it important that "J.." is the first letter of

the elphe.bet, or is that fact just "noise", interfering vi th our ability to find a

good solution 7 Do the lengths of the strings matter or not? Hov dove identify

the important facets of the first half of the anelogy and then translate those

accurately to the second half? These questions are not easy to ans"1t'er in

generel. FAR.CT might have tried to create a letter-analogy "expert"', but instead

opted for the usual Hofstadter system organization - simulated parallelism

among small tasks. The tasks are non-cooperating, vi th no overseeing agent to

direct system activity. Rather than constrU(;t alternative high-level

hypotheses, a terraced scan [Hofstadter 84, pp. 13 - 14]is used to explore me{ly

lov-level pathvays simultaneously. The most SU(;cessful and appealing paths

vill tend to be pursued most actively. J..s in Seek-Vhence, a current hypothesis

vill be reformulated vhen the veight of evidence turns against it. Thus, the

process of discovery that the Copycat system must go through is very similar to

that required of Seek-Vhence. The explicit use of analogy makes the

connection to Bongard problems clear.

In developing Copycat, the members of FJ..RCT have begun implementing

a "Slipnet" similar to but more sophisticated than the one used in Seek-Vhence.

The Slipnet strU(;ture, absent from Jumbo, is a repository of information about

the Platonic concepts knovn to the system. Its nodes and links "form a

storehouse of conceptual proximities (slippability links) and semanticities

(centrality V8lues)" [Hofstadter 84, p. 20]. The Slipnet is crU(;ial in supporting

32

fluid yet controlled passage of activation from a concept to its neighbors. This

"spreading activation" causes some of the concepts to be more "interested" in

the ongoing problem-solving activity than others. Those that are most

interested vill tend to come forth as potential organizing notions. "popping to

mind" as it vere.

>.. ve11-deve1oped and fluid Slipnet is necessary for the complete

exploration or relationships among the atomic entities or the system -- be they

letters or numbers - and among any perceived groupings or those entities. It is

also difficult to implement. There must be enough activity so that l)ev ideas

keep coming as needed. On the other hand, a "hyperactivated" Slipnet. vherein

nearly all the concepts are active most of the time, is too confusing to be

helpful. GrayClossm.an has become very interested in taming the Slipnet as

veil as in creating uniform. structures ror all levels or abstraction in the system.

[Clossm.an 85] .

Both Seek-Vhence and Copycat are charged vi.th finding a useful

description of their input -- a description that "wrks" in solving the problem

posed. In Copycat. the first tw letter strings must be contrasted to shov a clean

distinction. The first and third must provide rodder for translation. including

the translation or the difference betveen the first tw! David Rogers at FA.RG

has begun to attack these problems in a unique 178.y-- bycreating potentially

schizophrenic structures [Rogers 86). For example. in the string "A.BD", the "D"

vill feel a little uncertain about its identity, becawe the "B" and the string "A.B"

vould like to be folloved by a "C", and vill continually ask the "D" if it is, in fact.

a "C". Thus. the unusual elements or a string may be pointed out by the system's

structures them.selves.

Seek-Vhence does not have as many distinct elements as Copycat to wrk

vi th, since it operates on a single sequence or integers. This is a boon in

33

al.loving the system to focus its attention in one ple.ce, but a be.ne in imposing

fever constraints -- the help it could get in pe.rsing the sequence by looking at

~structures that e.re knovn to be simile.r. Nonetheless. the tvo systems

obviously she.re a conceptual skeleton e.nd ere deeply concerned vith

perceptual mechanisms as the foundation for even the highest levels or

cognition.

LETTER SPIRIT

The "youngest" m~mber or our project re.mil y- Letter Spirit -- involves

vhat may be the purest domain for the exploration of perception. The task of

this system is to extrapolate the sty1e of a given letterrorm to other letters of the

alphabet. Some wrkers at FARG have begun to attack this problem. but ihe

challenge is great. Perhaps the best indicator of the difficulty of this

undertaking is to note that the final Bonge.rd problem - problem 100-

consisted or six "a"'s on one side of the dividing Une e.nd six "b"'s on the other.

H. CONCLUSION

In the Preface to this dissertation. ve claimed that pattern perception is

scientific induction in microcosm. To be sure, ve recognize that scientists rely

on a great deal of factual knov1edge e.nd that the scientific method requires

careful. experimentation e.nd eval.uation of evidence. In this respect. ve e.re

exploring only a sme.11 region of a vast territory. Hovever. the creative essence

or science is the inductive pe.rt. the ability to find connections vhere none vere

previously lcnovn. Ve believe ve ce.n explore this essential region through

programs such as Juml>o. Seek-Vhence, Copycat. and Letter Spirit. In a topology

vhere complexity is the metric, our sme.11 domains for the study of discovery

and perception maybe of the same size as highly complicated scientific

34

dome.ins. Ve ere. at lee.st. certain that our problem - the perception of patterns

- is, e.s el.most everyone notes vhen first entering Dr. Vho's Terdi:s:. ''bigger on

the inside than on the outside".

CHAPTER rvo
SEEIC-VHENCE: STAGE ONE-HYPOTHESIS CREATION

36

A. INTRODUCTION

In the previous chapter. ve presented our central problem -- finding

patterns in sequences of nonnegative integers. Ve also developed

"Seek-Vhence diagrams", a structural representation system for describing

such patterns. In this chapter and the next, ve go on to describe the

Seek-Vhence system and to document those features that have been

implemented in the current version of the program.

The program ree.lizes most of the features of Seek-Vhence diagrams in

its str.ucture.1 representations of patterns -- called hYPotheses. The most

important omission is of the rectangular instruction boxes seen in Figures 5 and

6 of the last chapter. For many (but certainly not all) sequences, the program

can create a hypothesis as it is presented the terms of a sequence, thereby

building its ovn model of an unfolding pattern. Moreover. the system can often

reformUlate its hypothesis to form a nev one vhen subsequent sequence terms

prove the current hypothesis incorrect.

B. OVERVIIV OF THE SEEK-VHENCE SYSTEM

1. DOMAIN AND GOALS

As vas mentioned in the Preface. the domain of Seek-Vhence lends itself

to the stUdy of pattern perception. By eliminating kno'Vledge of mathematical

operations. ve can avoid such problems as vhether "'4" should be interpreted as

2*2. 5-1. or 100/25. This permits us to concentrate on ··4·· as an atomic element

in a pattern. The Value of the element may or may not have other significance.

but it cannot be seen as having any internal pattern. For example, "4" is an

element in the segment "2 3 4 5". and it also represents the length of that

segment; it can also be vieved as the successor of "3" or as the predecessor of

'"5". Beyond that, it has very little structure.

37

Vhydid ve choose such a "simple" domain? Ve vented to study pattern

perception, not finite differences or number theory. Ve can come up vi th some

very difficult patterns in our little universe, yet the components are simple.

This is just vhat ve "'lrere after - a domain vherein problem-solving difficulties

clear! y arise from the vay in vhich the elements are combined and not from

the elements themselves.

The patterns studied. therefore. are non-mathematically-sophisticated

rules that generate sequences of nonnegative integers. In response to a

prompt. a user presents to the system numbers vhich presumably follov some

pattern the user has in mind. The system receives these terms one by one and.

after each one, either ventures a guess at the underlying pattern. quits, or asks

for more information (another term). Should the system guess incorrect!y­

that is. guess an underlying rule different from the one the user has in mind -­

the user vill so indicate and the system vill continue. probably by asking for

more terms. and then using those as a basis for reformulating its faulty

perception. The patterns presented can l>e very rubtle or very simple. but in

every case the system·s guessed rules should be "reasonal>le", acceptable as

possible solutions to a human observer; they should elegant! y and economical! y

explain the portion of the sequence already seen. as vell as predict an infinite

continuation.

38

Some "typical" pattern problems might start out as follo~:

222 ...

112233 .. .

122333 .. .

121231234 ...

1010010001...

128 3 4 B 5 6 8 ...

1 2 8 3 4 5 8 6 7 8 9 8 ...

373737 ...

8 0 8 8 0 8 8 0 8 .. .

1 1 2 1 2 2 1 3 2 .. .

Some non-domain problems are:

2 3 5 7 11 ... --------- "primes"is too mathematically sophisticated a notion;

-3 -2-1 ... -------- negative integers are "unknovn";

1 7 9 15 18 ... -------- ··get bigger" is too amorphous; there is no canonical

"next term".

In essence. ve can assume the system is like a small child vho is able to

count and notice samenesses but vho cannot do arithmetic. count by tvos. recite

primes. etc .. It is critical to emphasize that ve are after pattern rather than

me.theme.tics here.

2. THE rvo STAGES Of PROCESSING

There are tvo stages of processing in Seek-Vhence. An initial

formUlation must first evolve; this is the vork of stage one. cUlminating in the

creation of a hypothesis for the underlying rUle. This '"preliminary'" stage is

ree.11 y quite complicated and very important. The structures created during

stage one play a critical role in later processing. since all high-level actions

39

inevitably affect them and are effected by them. As did the HEARSAY II system

[Reddy76]. Seek-Vhence operates simu1taneouslyat several levels. from the

most concrete - the integers input at the terminal - through the descriptive -­

the hypothesis end its supporting concept descriptions - to the most abstract -

the "ideal" primitive concepts. Lov-level structures support the creation of

higher-level ones. and indirectly even determine the course of high-level

processing. Vhen changed by high-level actions. as they inevitably are. the

lover-level structures may have en unexpected effect on the higher-level ones.

These reverberations. modeled on the "ripplings" among levels in HEARSAY II.

are at the heart of SEEK-VHENCE's processing. and are necessary to cause the

interplay of bottom-up and top-dovn activity required for Seek-Vhence to vork

properly.

During stage tvo. the hypothesis is either supported or refUted by nev

evidence. Consistent verification, in the form of terms vhich support the

hypothesis. vill lead the system to a confirmation of the hypothesis and the

venturing of a public guess. An incorrect guess (one that is rejected by the

user) or refUtation of the hypothesis by nev evidence vill cause the system to

reformu1ate or. in rare instances. abandon the hypothesis. Hypothesis

abandonment or "scrapping". vhich is analogous to ahuman's "let's start all

over again". takes system processing back to the lover levels. This is not a total

restart vi th a clean slate as though the sequence terms had never been seen.

but rather a return to the term level. vi th all perceived groupings eradicated

but vith accumu1ated knovledge of term samenesses and other primitive

relations maintained.

The major distinction betveen the tvo stages of processing is the

existence of the hypothesis in stage tvo. Vithout it. the system has no model of

the sequence and so cannot predict the next term to be encountered. Once a

40

hypothesis is in place, all nev evidence is "filtered" through it (checked for

agreement vi th it) . Confirming data - nev terms that fit the hypothesis -- are

handled rapidly, essentially just being "svatloved" by the system. In contrast.

entry of an unexpected term makes the system "sit back and look things over".

REFORMULATION AND THE SLIPNET

Changing a hypothesis is done by reformulation -- modification of the

form of the hypothesis. Reformulation is accomplished by "slipping" from one

Seek-Vhence concept to another. The direction of change vi.11 be suggested by

system processes, based upon the evidence gathered from that portion of the

sequence already seen and guided by the "slipping knovtedge" possessed by the

system. A structure called the Slipnet vhich maintains relationships among

the primitive Seek-Vhence concepts - the "ideals" -- as vell as pointers to

salient structures at various levels of representation. contains much of the

information needed in the reformulation process and thus serves es an

important reference source for the system.

ReformUlation of the hypothesis causes related changes throughout the

several levels of Seek-Vhence structures. changes made so that all levels of the

system operate vith the same pattern structure "in mind". These changes can

in turn cause the bubbling-up or noticing of nev perceptions about the

sequence, creating an important interplay among the levels. Moreover.

reformUlation permits changes in the representation of concepts in order to

facilitate the discovery of "structural" similarities (similarities of form)

betveen them. Seek-Vhence cannot as yet make such discoveries.

In Seek-Vhence, concept descriptions are not necessarily atomic

entities; they can be compound structures created by combining the primitive.

atomic concept descriptions in simple or complicated va.ys. Thus, concepts can

41

be rele.ted because their descriptions share the same or related structural

building blocks. an important feature reflecting asimilar human a.l:>ility.

Ear example. ve can sense that there are similarities among:

171181191 .. .

232 242 252 .. .

10012002 3003 ...

even though the '"face value'" content. the actual numbers used. differs.

Seek-Vhence's facility for making such structural similarities manifest in its

concept descriptions could prove veryusefUl in the fUture for discovering

analogies betveen sequence pattern concepts.

3. PROCESSING-AND TASKS

A vord a.bout processing technique is in order. In Seek-Vhence. all

opere.tioru: are carried out in task series. vhich run in simule.ted parallel. The

tasks comprising various series are chosen at random for processing. so no

assumptions can t>e made about vhich of tvo competing tasks.vill run first. In

fa.ct. the tasks in e. given series me.y vary. because any task me.y alter the

environment. A particular task may create. access. or modify some data

structure. me.y request information from the user. or me.y set out other tasks -­

place them on the taskrack vhere they vill stay until chosen and run.

A biological metaphor -- thanks to Douglas Hofstadter -- is the model for

this type of processing. Vi thin a cell. various enzymes are present. One of

these may act upon a molecule. causing it to change in some vay. This action

vill make the molecule more e.ttractive to some enzymes and less attractive to

others. thus affecting the course of later '"processing'" in the cell. The gloms in

Seek-Vhence's cytoplasm serve e.s molecules and the tasks as enzymes in our

version of this biological model.

42

At certain times some cleaning is done (removing old tasks of certain

types) but it is perfectly possible for an old task finally to be chosen and, vhen

it runs. for it to find the Seek-Vhence vorld quite different than vhen it vas

created. Such a task vill probably do nothing, because the structures on vhich

it ves designed to operate no longer exist or are inaccessible to it. All tasks have

"urgencies" (integer veights). and more urgent tasks vill have a greater

chance of being chosen than less urgent ones do.

Seek-Vhence, then, depends upon order to emerge from Chaos. Small

special-purpose tasks, vorking at different levels of abstraction vith no

overseeing agent eventually guide the system tovard convergence upon a

vorking hypothesis.

4. STRUCTURES AND THE ""PLASMS"

Like most other computer systems. Seek-Vhence relies heavily on an

assortment of data structures. Already mentioned vas the hypothesis, an active

formulation of the system·s current viev of the evolving patt~rn. Its

!over-level counterpart, the template. is a transitory. veaker. less expressive.

and less nexible structure used as a first rough statement of an emerging

formulation. Belov the template level are the central vorking structures of the

system. namely, the glints. the gloms. and the gnoths (pronounced "knots".

since they are used to "tie things together").

Briefly, glints are Seek-Vhence representations of input terms,

members of the class "Glints". The Glints form a distinguished subclass of the

"G!oms·· class. vi.th glint structures being atomic and undissolvable. Gloms are

structures representing collections of adjacent glints. hierarchically grouped

for a variety of reasons. "Glomming" is the process byvhich tvo or more

existing gloms combine to form a nev g!om. All g!oms reside in the cvto1>lasm.

43

Ve viev the Seek-Vhence vorld as consisting of three levels, vith tvo

potential intermediating structures -- the hypothesis and the template. Our

level.$ correspond to the Socratic vision of a "real vorld", a Platonic "ideal

vorld". and a "perceived vorld" betveen them. At the lovest level is the
~

cytoplasm, vhich represents our "real vorld" -- representations of the input

integers and relations among them. The "purest" notions, corresponding to the

Seek-Vhence diagram "primitives", are housed in (of course) the platoplasm_

finally. the intermediate level - our socratoplasm - houses the system·s

representation of its parse of the sequence.

In order to represent its parse of a target sequence. the system needed

structures vi.th some permanence. so that a parse vould remain intact, yet vith

the ability to interact vith each other. so that the parse could be changed at the

request of higher-level processes.

Gloms could not perform this parse-representation function for several

reasons. first. they vere designed to combine readily vi.th each other, the

combination occurring only because of "bottom-up" pressures. Secondly, vhen

glomming occurs. the participants do not survive the operation. Rather, they

are destroyed and a nev glom is created from their subgloms. Therefore. the

system cannot attach information to gloms and rely on its being available at any

fUture time. Finally, gloms cannot change their basic structure in any vay

from the moment of their creation -- they cannot absorb other gloms or give

avay or recombine any of their subgloms vithout themselves being destroyed.

Thus. gloms are too ephemeral and unpredictable to represent a sequence parse.

Our solution to the parse-representation problem vas to create a vhole

nevlevel in the Seek-Vhence vorld -- the socratoplasm. or "perceived vorld".

and to populate it vith more stable structures than gloms. called "gnoths".

amenable to "top-dovn" change. Gnoths, like gloms. represent groupings of

44

gloms, but they ere more permanent and a.single gnoth can represent different

glom clusters e.t different times. A gnoth can pass gloms to its neighbors, can

vi.thstand reformulation of its rubgloms, and can even become e. representative

of concepts different from those associated vi.th it e.t the time of its creation.

The entire nature of e. gnoth may change several times during its lifetime. A

gnoth ceases to exist only vhen its subglom collection is empty. (for e.n

interesting discussion of intensionality and the "meaning" of e. representation

structure, see [Hofstadter 80) .)

Gnoths, then, ere vhe.t the system uses to represent and restructure its

current viev of the sequence. They live in the socratoplasm, the middle level of

Seek-Vhence structures, and serve as bridges among the gloms, the hypothesis,

and the "ideal notions" of the ple.toplasm [see figure 1).

I
HYPOTHESIS

Gnalhs

Boxes
Printstructures

PLATOPLASM

TEMPLATE

CYTOPLASM

Ideal-repeaters

Ideal-groups

Ideals-seen

GI oms
GI ints

Sparks
Bonds

figure 1 - The Seek-Vhence vorld

THE PLATOPLASM AND IDEALS

As noted above. the platoplasm is the home of the "pure Platonic notions"

or "ideals" of the Seek-Vhence system. These include idealized versions

("types". if you vill) of the input integers ("tokens" represented in the

cytoplasm). the grouping structures knovn a priori, and some relations among

them. Ideals are connected to the "real vorld" or cytoplasm through

manifestation links and to the "perceived vorld" or socratoplasm through

actualization links. For example, if the system groups three 2's, the glom

representing this grouping in the cytoplasm becomes a "manifestation" of the

ideal sameness notion (called "C-group"). If the glom is also crucial to the

system's hypothesis for the sequence and so has a gnoth devoted to it. that gnoth

becomes an "actualization" of the ideal [see Figure 2].

HYPOTHESIS PLATOPLASM

I
SOCRATOPLASM

Ideal-groups

C-group

Gnolh·s:..,~~----~\:::::;;:::~~--~ ~ .actu.alization
....

" .

TEMPLATE

., ·· .. pseudo-
·· glom · ,

CYTOPLASM

figure 2 -- Some links l>etveen plasms

46

THE SOCR.ATOPL.ASM AND PERCEPTIONS

The socratoplasm is a vorking area end sometime battleground betveen

the cytoplasm end the ple.toplasm. Its most important structures are the gnoths

(from "gnothi see.uton ",the motto - "knov thyself'"- or the Socratic school or

philosophy), roughly the socrato-level equivalents of the cytoplasm's gloms.

Hovever, vhereas the hellmark or gloms is their ephemerel nature, their

proclivity to combine and split, the main fUnction of gnoths is to capture the

current "viev" - parse or parenthesization- of the sequence. The first gnoths

are created contemporaneously vith the first hypothesis and reflect its pattern

description. Erom then on. gnoths must elvays be in agreement vith the

hypothesis (as described later in our sections on gnoth-hypothesis

equivalence). Thus, gnoths are not as free as gloms to rim.ply combine at vill.

They feel the "top-dovn" pressure of the hypothesis as vell es the "bottom-up"

pressure coming from lover-level activities. Conflicts betveen these pressures

must be resolved through the gnoths. Each gnoth hes a collection of subgloms

from vhich it derives its structure. its viev of the sequence . .Any change to the

gnoth's structure is realized by changing the subglom collection.

Much bubbling and pushing-up of groupings goes on in the cytoplasm.

The requirement of conforming to the current hypothesis, vith the related

subsequent dovnvard pushing and glom destruction. is added in the

socratoplasm. ReformUlation is imi;>lemented. el.so to be reflected in cyto-level

activity. Mindlessness ceases here.

THE CYTOPLASM AND GLIMMERINGS

The cytoi;>lasm is the bottom level of the Seek-Vhence system. All

changes to higher-level structures filter dovn here, are reflected here, and

cause reactions vhich may "bubble U!? .. nev structures. All processing here is

47

automatic and myopic - no global Vievs of the sequence are maintained. Any

nev structures, such as a neVl y-formed glom. or the glint made vhen e. nev

term is entered, are immedie.tel y made centers of interest called active foci end

heightened actiVity takes place around them.

The main goal of this level is to hit upon a pattern of gloms vhich can

l>e taken as e. template for the sequence. Once a template is in place, a "cap" is,

in effect placed over the the top-level gloms to prevent their disappearance.

This cap is in the form of a pseudo-glom a glom that has subgloms but that is

inert unable to interact vi th other gloms. Vhen such a cap is in place, nev

terms' glints still l>ond and even glom vith other gloms but no changes that

contradict the template can l>e me.de. Should a nev term not fit the template, a

reviev is begun vhich may lead to template modification or destruction.

If, meanvhile, the template has caused the formation of a hypothesis, .

nev terms are filtered through the hypothesis rather than the template, and

·the template is Virtually al>andoned in deference to the more malleable, more

expressive structure. The filtering process, l>y vhich nev terms are checked

for consistency vith the hypothesis. can question the hypothesis' validity. This.

in turn. can cause gnoth changes vhich may precipitate glom-. template-. and

even hypothesis-modification or rejection.

5. SUMMARY

In summary, Seek-Vhence is a program vhich attempts to discover and

represent rules underlying nonme.thematicel sequences of nonnegative

integers. It is not e.lve.ys successfUl. Vhen it is successfUl, the complex l>ut

subliminal first stage of processing develops e. hypothesis, e.n encapsutation of

the perceived underlying pattern. The hypothesis is represented in such a ve.y

as to me.ke the reformUlation often found necessary in the second stage of

48

processing not only possible but also simple to carry out in many cases.

Processing occurs in simUlated parallel on several levels of abstraction

at once . .At the lovest level of the Seek-Vhence vorld. the cytoplasm.

glimmerings of grouping-ideas (glom.s) derived from comparisons among the

system's representation of the input terms (glints) are "pushed up· to l>e

recognized es perceptions (gnoths) in the socratoplesm. the middle level.

Recognition of usefUl cyto-groupings is aided by reference to the ideal notions

of the platoplesm. the most abstract level. Suggestions continually l>ul>l>le up,

either to l>e pushed up f\lrther or to l>e rejected, sent !>~ck dovn. The interplay

of bottom-up and top-dovn processing is central to the system's fUnctioning.

C. SEEK-VHENCE IN DETAIL

1. THE PL.A TOP USM - ABSTRACT NOT IONS

Currently, the platoplesm houses the ideal types - the primitive.

l>Uilt-in notions available to the system for use in constructing its viev of a

sequence. These can be seen es its vocabulary for the veil-structured "phrases"

it constructs. Nev notions. the nevty-constructed phrases. may eventually

come to l>e housed in the platoplesm es first-class citizens. Ve are developing a

netvork of relations among the ideal types to aid the system's reformUlation

efforts.

ATOMIC IDEAL TYPES

The ideol-atoms are Seek-Vhence analogues to the integers entered at

the keyboard. An ideal-atom hes predecessor and successor Vol.ues. its ovn

Velue. and manifestations in the cytoplasm. for example. the "idea15" hes

predecessor "ideol.4" and successor "ideal6", vhile "idealO" hes no predecessor

49

t>ut has "idee.11" as successor. Glints ere certainly manifestations

(cytoplasm-level instances) of these ideals, because they are the system's

representations of the terms of the sequence. For example, in the sequence

fragment "5 O 5 ", the first and last terms are manifestations of idee.15. vhile the

middle term is a manifestation of idealO. Certain other integer-valued

quantities. such es group length, may also be important to the development of a

good representation of a given sequence pattern. and so should also be vieved as

manifestations. For example. the length of the group "(4 4 4 4 4)" might prove

to be an important manifestation of ideal5. In the current version of the

system. hovever. only glints are referenced as manifestations of ideal atoms - a

simplifying (and vee.kening) design decision. In the f\lture, ve hope to address

the problem of vhat other quantities should be vieved as manifestations and

under vhat circumstances they become important.

NON-ATOMIC IDEAL TYPES

There ere eight non-atomic ideal types. each of vhich is associated vi th

a format having one or more active parameters:

(typenam.e start-value length actual-value).

In our descriptions, optional parameters vhich have been inclUded 'Vill be

given in brackets ("[]''). In each of the examples belov, ve shov a fQrm. an

instantiation of the given format. When such a form is queried-- or "hit", as

ve say- it returns a value. The results of successive hits are shovn on separate

lines. Note that these types and their formats correspond quite closely (but not

exactly) to the Seek-Whence diagram primitives introduced in Chapter One.

50

Constant --- a structure that always returns one value, its argument,

vhen queried.

format: (Constant arg)

examples:

(Constant 3) ---> 3

---> 3

---> 3

etc.

Countup --- a structure that returns nonnegative integers in

succession, starting vi.th its argument, vhen queried.

format: (Countup n)

examples:

(Countup 3)---> 3

---> 4

---> 5

etc.

(Countup 8) ---> 8

---> 9

---> 10

etc.

51

C-group (Copy-group) --- a structure that returns anuml:>er of copies of

a given argument.

format: (C-group start length)

examples:

(C-group 2 3) -> (2 2 2)

-> (2 2 2)

etc.

(C-group (Countup l) 2) -> (l l)

-> (2 2)

--> (3 3)

etc.

S-group (Successor-group) --- a structure that returns a given-length

run of successive integers, starting ~th a given value.

format: (S-group start length)

examples:

(S-group 2 3) --> (2 3 4)

-> (2 3 4)

etc.

(S-group 5 4) --> (5 6 7 8)

--> (5678)

etc.

(S-group (Countup l) 2) -> (l 2)

-> (2 3)

--> (3 4)

etc.

52

P-group (Predecessor group) -- e. structure that returns a given-length

dovn""'8rd progression of nonnegative integers. starting vi.the.

given value.

format:

examples:

(P-group start length)

(P-group 8 4) -> (8 7 6 5)

--> (8 7 6 5)

etc.

(P-group 2 4) -->undefined ('Wuld run to

negative numbers).

Y-grow (Symmetry group) --- a structure that returns a given group of

nonnegative integers, symmetric about the center.

format: (Y-group [start] [length] actual)

examples:

(Y-group 1 5 (1 8 3 8 l)) --> (1 8 3 8 1)

--> (1 8 3 8 1)

etc.

(Y-group ((Countup 1) 8 (Countup 1)))

--> (1 8 1)

--> (2 8 2)

--> (3 8 3)

etc.

53

~ a structure that cycles through its actual parem.eter's

value. returning one top-level element each time queried.

format: (Cycle actual)

exem.ples:

(Cycle (2 1 8)) --> 2

-> 1

-> 8

--> 2

--> 1

etc.

(Cycle (3 (Countup 1))) --> 3

--> 1

--> 3

--> 2

--> 3

--> 3

--> 3

--> 4

etc.

~ - a structure that returns its actual parameter's value each

time queried.

format: (Tuple actual)

examples:

(Tuple (184))--> (184)

--> (1 8 4)

etc.

54

(Tuple (2 2)) ---> (2 2)

---> (2 2)

etc.

THE HIERARCHY OF IDEAL TYPES

These non-atomic ideal-types (or Platonic classes) fall into a hierarchy

of categories. each of vhich captures an important organizing notion for the

Seek-Vhence 17tlrld. The realizatio.ns of the types at different levels of the

system have differing attributes but alvays reflect this basic organization.

Briefly, the categories can be distinguished es follovs:

repeater type - These are one-parameter generate types; given the

single parameter (and the state). the next value can be generated.

memt>ers: Constant. Countup

generate type - Given a typename and the start and length parameters

(e.g . .(C-group 1 3)). the actual value (e.g .• (1 11)) can be

generated by the associated "'generating !Unction"' .

.Any generate type possesses a process es described belov.

members: C-group. S-group. P-group

process type -- Possesses a "process", a method of determining vhether

or not some actual group is a representative of the class vithout

reference to any information external to the group and the class

in question.

member: Y-group

fence type -- Has no generator. no process; Virtually any collection

of neighboring terms can be called a group by Virtue of these

types. Typically, such groups exist because of external pressure

from neighboring terms or groups rather than internal

55

cohesion. In effect. the terms are ""fenced off .. into e. group by

their neighbors.

members: Cycle, Tuple

At the bottom of the hierarchy are the fence types. the least restrictive

types. The ne.me derives from the fact that groups are usually identified as

being of this type vhen the system:

1) cannot classify them as being higher-level types and

2) can set up e. "fence", identifying the group as e. group.

For example, in the parsed sequence 1 5 8 3 2 5 8 3 3 5 8 3 4 5 8 3 ... ,

the terms "5 8 3· are grouped, not because of any mutue.1 attraction or shared

characteristic, but simply because of the interleaved 1, 2. 3 •... and the re.ct that

the group repeats. It is important to note that in order to see the repetition of

the group, it is necessary to identify it as a group, and such recognition of

repetition in effect confirms the budding notion the.t e. group is there to be

found. The group vould probably be represented as "(Tuple (5 8 3))".

An entire sequence can have a fence-type representation:

4 7 4 7 ... can be represented as (Cycle (4 7)). vith an understood

repetition.

At the next-highest level of the hi er arch y are the process types. The

only entry here is Y-group, a symmetry group. The characteristic of this class

is the.tit possesses e. "process", a method for identifying representatives of the

class, if not for generating them. The form "CY-group 1 5)", e. Y-group of length

5 starting vith a 1 (ve have given this form the optional start and length

pare.meters). is not sufficient to generate a unique symmetry group, but is

sufficient to determine that (1 7 4 7 1) is such a Y-group vhereas (1 8 2 5 1).

(1 7 1). and (2 O O O 1) are not.

The generate types, the next-highest in our hierarchy, can use tvo

56

parameters. the starting value and length. to generate e.particuJ.ar grouping

representative of the given type. Eor example.

(C-group 1 5) <-> (11111). e.constant group of five 1 's;

(S-group 2 '3) <-> (2 '3 4). e.successorship group of length three.

starting vith 2;

(P-group 9 4) <-> (9 8 7 6). e. predecessorship group of length four

starting e.t 9.

Ee.ch repeater type takes one parameter. The form "(Constant Z)"

represents e.structure that e.lvays returns Z e.s its value. vhile "(Countup '.3)"

represents e. structure the.t e.l vays returns a '.3 upon first request. then a 4. a 5.

and so on.

COMBINING IDEALS

Ideal types can l>e combined to create structures vhich ence.psuJ.ate

fairlyintrice.te patterns. In the examples l>elov, ee.ch line again represents one

hit of the given form. Shared structures e.re indicated l>y the \i'Ord "shared".

vi.th an e.rrov pointing to the first instance of the structure to l>e shared.

(S-group 1 (Countup 2)) --> 1 Z

--> 1 z J

--> 1 z J 4

etc ..

thus giving the sequence:

1212'312'34 ...

(C-group (S-group 1 (Countup 1); 2) --> (11)

-> ((1 2) (1 2))

--> ((1 2 '3) (1 2 '3))

etc .•

giving:

11121212'312'3 ...

~
(Cycle(8 (Countup 1) shared)) --> 8

--> 1

--> 2

giving:

8128'34856 ...

(Tuple (2 (Countup 1) 2)) --> 2 I 2

--> 2 2 2

--> 2., 2

etc ..

giving:

212222232242252 ...

--> 8

-->.,
->4

etc .•

58

~
(Tuple (2 (Countup 1) shared)) --> 2 I 2

--> 2 2 2

--> 2 3 2

etc .•

giving:

212222232242252 ...

The difference l>etveen the latter tvo representations is subtle but can be

important. In the lest one. the sameness of the "bracketing" 2's is made explicit.

Notice hov this can effect generalizations of the sequence:

(Tuple (5 (Countup 1) 2)) is a possible generalization of the first

representation because the !>racketing integers are seen es distinct. having no

necessary sameness. Querying it three times vill give us:

--> 5 1 2

--> 5 2 2

--> 5 3 2

etc ..

In the second form. ve generalize to 5 as follovs: --------(Tuple (5 (Countup 1) shared)) --> 51 5

--> 5 2 5

--> 5 3 5

etc ..

The ability to combine the Platonic notions as demonstrated gives the

system the flexibility and expressive paver needed to model sequence patterns

and create a hypothesis.

59

2. THE HYPOTHESIS

The major goal of the Seek-Vhence system is to formulate a hypothesis -

a strUCture that descrit>es e.nd can extrapolate the perceived pattern. The

hypothesis. vhich is derived from the information at hand- the sequence

terms seen and any relationships the program he.s t>een able to establish among

them - is expressed in terms of the Platonic classes descrit>ed above. for

example,

1 1 2 1 2 3 1 2 3 4 can t>e expressed e.s the form:

(S-group 1 (Countup 1)), vhile

2 1 2 2 2 3 2 4 ... can t>e expressed e.s the form:

(Cycle (2 (Countup 1))).

Should ah ypothesis fail to predict properly, the tendency of Seek-Vhence

vill t>e:

a) to generalize pare.meters, maintaining the Platonic class

structure;

t>) to slip to a less strict class ("vertical" slippage) or

to a related class ("lateral" slippage).

In the fUture, the system vill have an implicit imperative to modify the

hypothesis so that in all instances the strictest appropriate class is used in the

representation. For example, vhile ··1 1 1" can t>e vieved e.s a Tuple, it is also a

C-group e.nd should generally t>e so characterized. There are of course times

vhen "1 1 1" should t>e vieved e.s a Tuple; for this reason there vill t>e no

prohit>ition age.inst doing so, but it is very unlikely to be the first vievadopted.

Both generalization and specification are required in Seek-Vhence and

both require knoVledge of the grouping types described above and any

relations among the Platonic types. Such relations vi11 t>e stored in the

platoplasm e.s "Ideal-relations" and vi11 include lateral. links (t>etveen C-group

60

and S-group. say. for "groups" of length one) as veil as vertical ones (as

l>etveen Countup end S-group) in the plato-class hiere.rchy.

3. THE CYTOPLASM-THE BASE

The cytoplasm has the role or "reel vorld" in our ''Socratic model·. in

vhich the platoplesm houses the ane!ogues of Plato's Ideals and the

socratoplasm is the analogue or Socrates' "perceived vorld". It houses the

lovest-level structures in the system -- the sparks. l>onds. glints and gloms -­

and is the site of much upverd-thrusting. rele.tivelyuncritical activity.

Suggestions for pattern formulation t>ul>l>le up from cytoplasm-level

(hereinafter shortened to "cyto-level") activity to l>e tested at higher. more

"cognitive" levels. Ve believe that the prol>al>ilistic. undirected cyto-1eve1

activity mimics lov-1eve1 human perception processes to some extent.

Groupings e.re continUally l>eing generated and regenerated at this level. Just

as people cannot prevent themselves from reinventing an idea. reperceiving e.

pattern. or reperforming an action. l>ut compensate for such repetition l>y an

ability to notice that they e.re cycling or looping in their behavior. ve vi1l

leave it to higher-level processes to notice e.nd handle eny unproductive

looping in cyto-level activity.

The cyto-level shoUld l>oml>ard the upper levels 'Vith suggestions. noted

simile.rities. and groupings or terms. It is up to the processes al>ove to curl> this

enthusiasm and to consider the suggestions more carefUllyand critice!ly.

CYTO-LEVEL STRUCTURES

The four date. types residing in the cytoplasm are Spe.rks. Bonds. Glints.

and Gloms. The former tvo classes e.re for finding. proposing. and later

eve!uating glom groupings. The latter tvo classes. the Glints and Gloms. are

61

used for representing the sequence terms and any term groupings of current

interest.

GLINTS AND GLOMS

In Seek-Vhence, glints ere the cyto-level representations of the

integers entered e.t the keyboerd. Ee.ch glint is e.structure vi.th severe.l fields:

cle.ss, ne.me, print-velue, position, span, pred (or left-nbr), succ (or right-nbr),

and bonds-in, the le.st one being optional. Eor example, if the terms .. l z 2 r had

been entered, the second 2 might be represented e.s follovs:

cle.ss: Glints

ne.me: glint3

print-velue: 2

position: 3

span: l

left-nbr: glintZ

right-nbr: glint4

The .. span .. field is really unnecessary in glints. but is a consequence of

the fact that the Glints cle.ss is a subclass of the Gloms. It indicates that this glom.

is of length l. This glinfs left-nbr. its neighbor to the left, vould be the glint

representing the preceding 2. called .. glintZ .. here. Similarly, its right-nbr. its

neighbor to the ria;ht. vould be the glint representing the succeeding 3. The

other fields ere self-explanatory.

Vhen e.sequence term is entered. the system creates e.glint for it and then

lists that glint e.s e. manifestation, or cyto-level analogue, of the appropriate

ideal-atom. in the platoplasm. In our example, glint) vould become a

manifestation of idealZ because its value is 2 and it represents an input integer.

62

The glint is then examined by cyto-level tasks as described belov to determine

hov it is related to other cyto-level structures.

The class "Glints" is e. distinguished subclass of the class "Gloms". Ee.ch

glint is indestructible - an "atomic" glom. Non-glint gloms are cohesive units,

me.de of adjacent atoms bound by "bonds" of one type or another. It should be

noted that chains of atoms linked by bonds e.re not necess~ily converted to

gloms; some bond types (e.g., one indicating the.t gloms (8 1 4) and (1 2 3) e.re of

the same length) e.re generally not considered strong enough to cause

glomming, but e.re facts of note preserved for use by higher-level processes.

Non-glint gloms he.ve es fields: class, name, type, print-ve.lue,

start-position, span, positions-covered, sut>gloms. structure. and bonds-in. The

lest tvo e.re optional, and are filled in vhen appropriate by cyto-level processes.

For example. in the sequence segment "8 2 2 2 8", the three 2's might be

represented jointlye.s e.glom, as follo~:

class: Glom:

name: glom7

type: (Se.me print-value group)

print-value: (2 2 2)

start-position: 2

span: 3

positions-covered: (2 4)

subgloms: (glint2 glint3 glint4)

Such gloms e.re ephemeral and can disappear e.t any time. Disappearance by

dissolVing (being destroyed e.s a unit. but vith e.11 rubgloms surviving intact),

burstjng: (being destroyed e.s e. unit and having e.11 non-glint subgloms burst e.s

vell--leaving only the underlying glints), or glomming (being combined vith

another glom) is fluid and continUe.1. The cytoplasm might be vieved e.s a soup

63

bubbling vith gloms, the bubbles vhich rise to the top being the system's

current viev of the sequence. If neighboring bubbles have enough mutual

attraction (strong enough bonds) theyvill combine; othervise theyvill either

exist independently or burst to permit nev bubbles to take their place.

BONDmG AND GLOMMING

The identification end creation of usefUl gloms is the primary fUnction

of the tasks operating at the cytoplasm level. To see hov this is done, ve mi.1st

stert at the bottom end follov the process of "pushing up" gloms.

SPARKS AND BONDS

Sperks e.nd Bonds, tvo more cyto-level classes (the others being the

Glints end Gloms discussed above), are used during the eerly stages of group

discovery. A spark is created betveen tvo gloms vhen a Sparkler task pulls

those gloms at re.ndom from the cytoplasm end determines in a very cursory

vay that the tvo structures might be amenable to bonding. The Sparkler

simply looks for gloms that ere not subgloms of each other. It does not look for

en y common features -- this is the vork of other tasks. For example. the glints

"l" e.nd "1 ··might very vell be bondable, since they have the same print-value.

Gloms "(l 2)" and "(1 2)" might be bondable for the same reason, or because

they have the same ··span" (length in sequence terms covered). The glint "l"

might be bonded to the glom "(2 '3)" by reason of adjacent successorship -- 2 is

the successor of l, and the structures in question are adjacent. Hovever. no

glom cen be bonded to one of its O"{(l'l. subgloms, so the glom "(1 (1 1))"cannot

be bonded to the subglom "(l I)" in any vay.

64

BEYOND SPARKLING

Vhen a spark is created betveen two glow, a horde of' "Testers" is

placed on the taskrack. Vhen invoked (chosen to run) at some later time. each

Tester chooses some spark:, not necessarily the one vhose creation cawed the

tester's creation. The spark's members (the tvo gloms betveen vhich the spark

is flying) are tested to ascertain if' they are currently in existence (recel.1 that

gloms are ephemeral). If' both glow exist. their bond-fields - the

characteristics such as print-Value or spen vhich e.re important enough to be

used as a rationale for l:>onding -- are intersected, and these fields' Values are

tested for similarities. The system uses several types of' bonds - sameness.

successorship, predecessorship, adjacency, end meeting (e.g., "(8 1 4)" end

"(4 7)" "meet" at 4) - grouped into families. to link: gloms. The most important

of' these e.re. not surprising! y, sameness end successor-predecessorship. If' a

bonding test is passed, a "Bonder" task is created vi th the intent of' performing

the actUe.1 bonding. One Bonder task vill be created for each bon~ng test passed

by the tvo gloms. so several Bonders might actUe.lly be created for any given

glom pair. For example. gloms "(1 2)"" and "(1 2)" might engender l:>oth "same

print-Value" end "same span" Bonders.

BONDING

Vhen invoked, a Bonder

1) checks to see that both glow still exist. and

2) checks to see that they are not already bonded in this vay.

If' these conditions e.re satisfied. then the Bonder creates a Bond-class structure.

vhich ve refer to simply as a~. This bond. vhich exists in the cytoplasm.

links the tvo glow end has a strength associated vi th it. Bond strength is

derived from the l:>ond type (e.g., "sameness"), enybond modifiers (adjacent

65

terms are more strongly bonded than non-adjacent ones. for example) and the

glom characteristic (e.g., "print-value") that is the subject of the bond. Creation

of a bond causes the release of more Sparklers. stimUlating the system to carry

out more lov-level search and bond creation. and causes the release of some

Glom-scouts - tasks designed to look for and push up glom groupings.

GLOMMING

Bonds are created in order to provide some basis for the grouping of

sequence terms (glints) and term groups (gloms). The act of bonding simply

reflects the fact that tvo gloms are related in some ve.y. Glomming, hovever. is

performed only vhen the bonds among tvo or more gloms are sufficiently

strong that the system shoUld viev the items comprising the bond-chain as a

unit. The system distinguishes betveen the "bond-fields" of a glom and its

"glom-fields". Bond-field$ are those characteristics ofgloms that are to be

compared-for the purpose of bonding. Typically, the print-value and span are

usefUl bond-fields. Thus. tvo gloms such as "'(l 2 3)" and "(7 8 9)" or "(1 2 3)"

and "(8 1 4)" vill genere.lly be bonded. But. although knoVledge of the fact

that tvo gloms have the same span is "interesting", it is generally not

compelling enough to varrant glomming them in and of itself. In an early

version of this system. ve did auov such gloms. The resUlt vas a plethora of

uninteresting gloms that seemed to get in the vay of the system's real vork. In

fact. this vas one of the main reasons for introducing the ''bond-field"/"glom­

field" distinction. Glom-fields are the glom characteristics that are important

enough to use for glomming purposes. Only print-value is used as a glom-field

in the current system. The system can make chosen glom characteristics more

salient by designating them as bond-qelds or glom-fields, or less salient by

removing these designations; in practice this ability is not yet used.

66

As vas noted earlier. l>ond creation causes the release ofGlom-scouts

onto the taskrack. These tasks look for glommable bond-chains. They also serve

to introduce e. good example of a terraced scan in Seek-Vhence. The tasks

introduced betveen this point in the dissertation and our discussion of

'"Plato-evaluator'" tasks perform. increasingly extensive tests on target gloms.

screening the gloms as potential representatives of various Platonic classes. If

a glom. passes one test. it is targeted for fUrther eve.luatiop. Should a glom fail a

test. it may be re-evaluated by other tasks. Glom.s that are not discerne.l>ly

Platonic are either ignored or destroyed.

Vhen invoked. a Glom-scout chooses a cyto-elem.ent (a glint or glom

vhich is not a subglom of any other glom) and attempts to group it vi.th its

neighbors. Actually, three auicktests tests are made for anybond-femilyin

vhich the glom. is involved:

1) is it group able? (bonded to any neighbors in this ve.y?)

2) is it coverable? (bonded into asymmetry group?)

J) is it fenceable? (are there remote gloms to vhich it is bonded?)

Note that these tests are the precursors of the plato-level notions of generate.

process. and fence classes. Any tests passed cause creation of aGlomtester task

to make a more extensive test of the glom. The Glomtester's veight (urgency) is

dependent on the test ('"groupable'" being strongest) and the bond-type involved

(sameness being stronger than successorship. and so on). For example. if the

terms "l 6 6 5 2" have been entered. the system may notice several relationships

among various terms. The tw neighboring e·s might be seen as a budding

"sameness group" because of their adjacent sameness. Hovever. the remote

successorship betveen the 1 and the 2 might also be noted and used to propose a

'"successorship fence'" group. one that wu1d separate the given segment into

gloms "(166 5)'" and "(2)". Such groupings are potentially very important

67

especiell y if the sequence is:

1885 2885 3885

or the like. but are not as immediate! y compelling as such groupings es the pair

of S's. Therefore. aGlomtester for a sameness group is given a higher veight

then a predecessor fence Glomtester. The system is thus biased tove.rd noticing

certain similarities first. yet it is not compelled to do so.

Vhen invoked. a Glomtester task must first l>e certain that the glom it is

supposed to test is still in the cytoplasm. If so. it must then determine the extent

of the evolving glom. The thrust here is to get maximally-sized gloms.

for example.

1) in "2 1 1 l r. vi.th the second "l" targeted and "sameness" the

bond-type, the Glomtester voUld suggest that "1 11" be grouped.

2) in "9 l 2 5 9", vi.th the first "9" targeted end "fence" the reason.

"9 1 2 5" voUld be suggested.

3) in "5 3 1 6 1 3 4" . vi th "6 "·targeted and "symmetry" the reason.

"3 1 6 1 3" voUld be suggested.

4) in "123 2 3". vi.th the first "2" the target and the "pred-succ" bond

family the reason. "l 2 3 2 3" vould be suggested.

The Glomtester either rejects the group as a glom or creates a Glommer task to

refine the group and perform the final glomming.

Vhen invoked. the Glommer vi.11 do a bit of "bookkeeping". It creates the

nev glom and makes it an active focus -- a site of increased system activity. It

also creates aGlom-inspector task to continue pushing the glom up to higher

levels.

68

4. PLATO-CYTO RELATIONS

The Seek-Vhence system has an imperative to find analogues of its

plato-classes. At the lov levels of processing discussed thus far in this

dissertation. that drive has been realized. in a procedural and uncritical vay. by

the nature of the system's tasks. Above these levels. some declarative !cnoVledge

is used; some manifest reference is made directly to the ideal-types to begin. if

not rejecting gloms. then favoring those that seem the purest analogues of the

ideals. Vhen found. these special gloms vill be "dubbed". All others vill be

put on a track tovards destruction. Plato-scouts perform the first step in this

process.

A Glom-inspector determines vhich. if any. plato-classes might find

the given glom "interesting" - vhich classes might possibly consider.

it a "manifestation" of themselves. If there are any such classes. the

Glom-inspector then creates a Plato-scout task. giving it the a;lom in question

and the names of the "interested" (candidate) plato-classes. If the glom still

exists vhen the Plato-scout is invoked, the scout begins its vork.

During the glomming stage. maxim.ally-sized groups of gloms - all

"chains" that consist of gloms related to their neighbors by some element of a

bond family- are collected. Eor example. "1 Z J Z J" could be a

"pred-succ-family" glom. The Plato-scout stage vill novfocus on "purifying"

these groups.

Recall that all but the fence-type plato-classes (Tuple and Cycle) possess

a "process" -- afUnction vhich. vhen given anumber string. determines

vhether or not the string is an instantiation of the class. A Plato-scout is given

a glom and a list of candidate plate-classes. It applies the process !'Unction for

each candidate class to the glom's print-value. If the glom passes the test then

the glom is pure and vi.11 be dubbed a manifestation of the candidate class. A

69

glom can be dubbed more than once. The glom "(1 1 1)".for example, might be

dubbed as both e. C-group ("copy-group") and a Y-group ("$'flll.!D.etry-group").

If the plate-class is e.fence type (and so has no process). and if the glom

is "fiat"--has only glints as subgloms -- a "pass by default" occurs. This

permits flat potential Tuple and Cycle gloms to be dubbed as such.

Any glom that does not pass even one of its process tests is cause for the

creation of e.Plato-eVe.lue.tor task. Vhen invoked. the Ple.to-eVe.lue.torexemines

the glom e. bit further, looking for dubbable gloms of secondary purity

(non-flat) and for pure subcollections cf gloms within the proposed target glom.

Thus "12 3 2 3" might "Wll be sent to aPlato-eVe.lue.tor. vhich might break it

into the tvo pure successorship groups "1 2 T and ''2 3", e.nd send on the gloms

for these tvo groups to be dubbed. If the Plato-eVe.lue.tor has no success and the

glom has not already been dubbed as a manifestation of some other platotype,

the scene is set for its destruction. A Burster task is created to destroy the glom

and all its non-glint subgloms.

DUBBING THE PURE

If some glom is deemed "pure .. by a Plato-scout, the Plato-scout calls for

the glom to be "dubbed". This is a tvo-step process:

1) the glom 's structure field is modified to indicate

e.) nev structure: (platotype [start-val] [length] [value])

e g .. (C-group 1 3) or (Cycle (2 9 8 1))

b) purity: pure<-> an exact manifestation; flat; e.g., (1 1 1)

secondary<--> not flat; e.g., ((1 5) (1 5) (1 5))

2) the Platonic ideal has this glom added to its list of manifestations.

Dubbing causes creation of a Template-scout process, indicating that the

glom is strong enough to verrant a check to determine vhether or not its

70

structure, as described in the structure field added during dubbing, might yield

a pattern for the entire sequence.

Those gloms the.t do not pass e.ny of the tests lee.ding to dubbing are

targeted for destruction by a Burster or a Dissolver task. .A. Dissolver is a task

that destroys a glom. lee.ving its highest-level rubgloms to noe.t independently

in the cytoplasm. For exemple. if the glom. "((l 1) (2 2))" vere to l>e dissolved.

the underlying gloms "(l 1)" e.nd "(2 2)" vould survive. but vould. of course. no

longer l>e glommed vith each other . .A. Burster task is even more destructive of

glom structure. If a Burster vere set on the glom "((1 1) (2 2))", e.11 levels of

glomming vould be destroyed, leaving only the glints "l ", "l •. "2", "2" in the

cytoplasm.

Once a Burster or Dissolver has been created on aglom. the 1tlom's only

escape route is to become invisible in the cytoplasm by glomming vith another

glom. Thus. after reaching the point of peruse.1 by a Ple.to-evalue.tor. a glom vill

either e.) be dubbed; b) be destroyed e.nd have some sut>gloms dubbed; or c) be

targeted for destruction. The Plato-evaluator cree.tes no other tasks. Our

terraced scan has come to e.n end.

5. REVIEV AND PREVIEV

Thus far in this thesis ve he.ve discussed e.11 the major cyto-level tasks

e.nd structures. Before moving on toe. discussion of other levels. it might be

vell to get an overviev of vhe.t remains e.nd hov it relates to vhe.t ve he.ve

already done.

Vhen people vork on sequence or Bonge.rd problems. they usue.11 y

progress through severe.1 stages. At first. they see and recognize nev terms as

the terms are revee.led. Then they me.ke linkages betveen nev e.nd

previously-encountered terms. and begin to me.ke tentative groupings of terms

71

in an effort to "come up vi th something". This essentielly data-driven activity

is modeled in the cyto-1eve1 processing that ve have just discussed. Actual. terms

and reel, undispute.1>1e relationships (e.g .. "adjacent successor") are used as the

basis for creating, rather haphazardly and nondeterm.inisticelly. the ephemeral

structures. "held tremblingly in the hand", knovn to See.k-Vhence as "g1om.s".

The next step in human sequence-solution activity is to answer the

question. "Vhat is it I've seen?", or better still. "Vhat is it I t1tink I've seen?".

The corresponding processing level of Seek-Vhence, the template level makes

a similar attempt to realize or identify vhat the system. "perceives" that it has

seen. In the process of doing this, it tries to create a "template" for the sequence

- a first rough approximation of the developing sequence pattern-description.

This is a stage vhere ve try "to get a handle" on the pattern for internel

processing purposes. People operating at this stage vil1 often say something

like, "Ve.it - I think I've got it ... no. maybe not." The description is a tentative

one, not believed too firm1 y, but nonetheless a sort of crystallization of current

perception. The happiest possible outcome from. this stage is a parenthesization

of the sequence in accord vi th the developing and nov more firm1 y held and

more explicit pattern description. In Seek:-Vhence, this happy outcome means

the creation of a hypothesis - the m.ore-firm1y-he1d description - and the

creation of gnoths - the parenthesization.

A Seek-Vhence hypothesis is the closest analogue the system has to a

verbalization of the sequence pattern. A hum.an sequence solver. perhaps after

one or more false starts, vil1 eventually announce triumphantly, "I think I've

got it!". At this point, or certainly by the time the description is verbalized, the

subject's pattern description has probe.1>1ycrysta11ized completely. This

description is (usually) firmly held, is predictive, and can be communicated

clearly to others - either by some encapsulation method (e.g. ,"three 1 'sand a

72

2") or by reciting the terms in a patterned or sing-song manner. Seek-Vhence

hypotheses (vhich are described in detail later in this paper) have similar

features: the system has not yet l>egun to sing them. though.

As mentioned earlier. w vievthe gnoths -collectively. our

parenthesization or the sequence - as existing in a place "f/'e ce.11 the

"socratople.sm ". somevhere betwen the "reel vorld" of the cytoplasm and the

"ideal vorld" of the platoplasm. If w viev the cytoplasm as data-driven and its

structures as "real". and the platople.sm as theory-driven vith "ideal" structures,

then the socratoplasm is vhat w vill call "perception-driven - and its

structures "perceived". In the socratople.sm. Seek-Vhence must reconcile

theory vith reality. and thus must in effect ansver the question. "Does vhat I

think I've seen me.lee sense?". The gnoths vill e.lvays egree vith the hypothesis

to some extent. but may fail to be f\Jllyconsistent vith it. Similarly. there may

also be some temporary disegreement betveen the gnoths and the gloms that

they in effect "represent" . This rather unplee.sant•sounding state of affairs is a

consequence of the necessary state ornux at this level. If the hypothesis is

changed -- if, for example, the system nov van ts the segment "1 2 2"

parenthesized as "1 (2 2)", vheree.s it used to be parenthesized as "(1 2) 2" -

the system vill have to propegate that change dovn through the various

processing levels. The socrato-level is the level possessing the vocat>Ulary in

vhich to express those necessary changes. It is the level at vhich

reformUlation begins to be brought e.bout.

Nov that ve have some foreshadoving of future developments, it is time

to return to our more systematic discussion ofSeek-Vhence processing. Ve left

off at the point vhen template-level processing ve.s about to begin, the stage of

"casting around" for an appropriate formUlation of the sequence pattern

description.

73

6. TEMPLATE CREATION - ONE MOLD TO fIT All

Vhenever a glom is dubbed as a manifestation of some plato-type. a

Template-scout process is placed on the taskraclc. It and other processes

involved in template creation and eveJ.ue.tion operate at an intermediate level

betveen the ""rear·. data-driven cyto-level and the "perceived"".

perception-driven socrato-level. The hum.an analogue is the stage during

vhich a person ·s eyes move back end forth across the terms. as the person vai.ts

for en idea to emerge. This is a stage in vhich people cen literally observe

themselves vork. yet be unable to explain verbally vhat is happening. vhat

they are '"thinking"". People vorking on Bongard problems experience this

stage in en especially clear and forcefUl ve.y.

In Seek-Vhence. the template-level processes attempt to come up vith a

template or descriptor of the sequence. This is a preliminary step to devising a

hypothesis -- that is. a predictive model of the sequence. en encapsulation of its

structure. Templates end hypotheses have similar forms, but templates are far

less complete and exact. lacking the predictive ability and expressive pover of

hypotheses. A good, vorking template vill eventually give rise to a hypothesis.

A template is formed vhen the structure of some particular dubbed glom

is found to explain. at least roughly. all the sequence terms seen thus far. Eor

example. the template form '"(S-group 1 n)"" suffices to explain ""l 1 2 1 2 ;­

since it '"fits'" all the term groupings. even though there is no built-in notion or

even any recognition that ··n·· means ""countup'" here. The same template vould

suffice equally veu for '"1 2 1 2 3 4 5 1 1 2 J". The ability to notice

'"cross-glom ··properties. such as n <--> countup. is left to higher-level processes.

Once a template is created, it puts a pseudo-glom called the template glom

over the highest-level gloms in the cytoplasm (those that are not rubgloms of

any other glom) to prevent the disappearance of the gloms that engendered end

74

nov reflect it. A pseudo-glom cannot combine vith reel gloms. e.nd it prevents

its subgloms from glomming activity e.s veil. Some cyto-level activity ce.n still

continue - bonding being done e.s freely e.s ever. for example - but no nev

templates ere considered for the lifetime of the given template.

The template vil1 be checked by a Template-ew.luator te.sk e.nd either be

passed. or rejected e.nd al>e.ndoned. If tt is pe.ssed. it vill probably be the be.sis

for hypothesis e.nd gnoth creation. This means that until a.hypothesis exists. ell

nevterms vil1 be "filtered" pe.st the template. checked for agreement vi.th it.

Should e. term not fit the template. e. reviev is set up. vi.th reNlting modification

or rejection of the template. The filtering process is the first major top-dovn

action performed by the system; the template level he.s taken control. This is

not to say that cyto-level activity ceases or slovs; the cyto-level processes

continue in their accustomed ve.y. Vhat is added is direction from al>ove:

instructions to make or di.ssol ve gloms. to create units of a particular form.

TEMPI.ATE DIH'ICULTIES

The process of devising a template is not e.s easy e.s it might first appear.

Eor example, suppose that the sequence terms "1121 2 3" vere entered e.nd

the first "1 2" vere glommed. dubbed e.s "(S-group 1 2)". e.nd targeted bye.

Template-scout. Vhen invoked. the scout vould set out e. Template-applier task

to determine if the entire sequence seen is of that form. The applier vould

attempt to vievthe sequence e.s a repetition of "(S-group 12)" e.nd vould. of

course. fail because of the initial "1" and the trailing '"3". The applier does not

give up immediately, but rather checks to see if loosening e. parameter or tvo in

its representat~on vould help. In this case. changing the form from the original

"(S-group 1 2)" to "(S-group 1 n)" -- vhere "n" means "any nonnegative

integer" - vill do the trick. The accepted template vill then be "(S-group 1 n)".

75

If the Template-applier fails, it creates a Template-resolver task for one

final attempt. Vhen invoked, the resolver looks at glints rather than gloms to

determine vhether or not the sequence can be re-vie'Ved to fit into the given

mold. for example. if the segment "11 2 l 2 3" 'Vere glommed as (11) 2 (1 2 3).

the Template-applier voUld fail because of the first glom . .A Template-resolver

vorking vi.th the template "(S-group 1 n)", ho'Ve.ver, might be able to find the

appropriate S-groups by looking at the sequence terms rather than the gloms.

If the Template-resolver is successfU1, it "blasts" (does an immediate burst of) all

gloms and has the glints reglommed to fit the template. This is a fairly radical

action in that it ignores ell the cyto-generated glom units, but it does provide

some potential for destroying '1ocked-in" gloms, ones the system created and

can never seem to burst. If the proposed template does not vork: at term level, it

is forgotten and the engendering glom dissolved.

In practice, the Template-resolver is seldom invoked because the system

can usually devise a template early on vhich is good enough to push up a

hypothesis. Once that has happened. the higher levels take over the job of

resolving problems. It is in the spirit of Seek-Vhence processing to give each

level a little more capability than it should need to use - the ability to handle,

albeit lamely, situations that voUld be better handled by higher-level processes.

The Template-reviever process is in this category. It is invoked after a

template has been created (but no hypothesis exists) and vhen nev terms fail ta

fit the template. It can try some very simple fixes and can either:

1) cell for modification of the template and restart the creation

and evaluation processes;

2) leave the template alone;

3) target it for abandoning .

The creation and acceptance of a template causes increased activity in

76

the system, in effect "reising the temperature" in the system. Most importantly,

it sets of'ftvo tasks. aGnoth-maker and a Hypothesizer. This action pushes

processing up into the next level. the socrato-level. vhere more considered

operations are performed on the fluid but less ephemeral structures of the

socratoplasm.

7. THE SOCR.ATOPU.SM- IN THE MIDDU

The socratoplesm is the "perceived vorld" of Seek-Vhence. the place

vhere perceptions developed at the cyto-level are noticed, cateJ.ogued, and dealt

"1i.th. It can be vieved es a battleground betveen the "ideal" plate-notions and

the "reel" cyto-glimmerings - that is. betveen the semantic and the syntactic -

or - to put it one last ve.y-- betveen the cognitive and the subcognitive. In

any cese, it is the system's playground. vhere perceptions can be modified and

manipulated; in short, it is vhere slipping occurs.

For emphasis. ve should note once agein that operations carried out at

the socrato-level inevite.l>ly cause cyto-level activity. This is very desire.I> le.

Such lov-level activity may result in the noticing of a special bond or the

creation of anevglom vhich might eventueJ.lyengender a better parse .

.A single cyto-level tesk: is too lov-level to control its ovn or the system's

processing directly (although in aggregate these tasks are very influential). In

contrast. the socrato-level can and does support tasks vhich say, in essence.

"Enough! I have a hypothesis. Let's have the next term to check it our·. or

better still. "I think the ansver is Tell me if I'm vrong."

As "N'aS previously noted, the acceptance of a template signals the

system's readiness to consider creation of a hypothesis - an encapsulation of

the sequence's structure. Although this goal. may not yet be e.tteine.ble, a

correct hypothesis not forthcoming.. the highest-level processes should nov be

77

introduced into the fray. At this point, malleable, manipulable, relatively

non-ephemeral. structures are needed so that any necessary slipping can l>e

noticed e.nd carried out. Moreover, e. reformulation vocabulary must l>e

developed so that the system ce.n express clearly e.nd succinctly the actions it

needs to teke. Thus, the structures ve call ·gnoths" are created.

vays:

GNOTHS

Ee.ch gnoth, a member of the class Gnoths, is vieved in three different

1) it is e.n actualization of a Platonic class;

2) it hes an underlying glom collection from vhich it derives its

structure;

3) it represents one "hit" of the current hypothesis (if there is one).

Vhen a Gnoth-meker task, set off by the system after template creation.

is invoked, it creates one gnoth for each sUl>glom of the template-glom e.nd

notifies the associated plato-clesses of their existence.

Eor example, in the sequence "1 1 2 1 2 3". vhere ve might have gloms:

glom2: (1)

glom7: (1 2)

glom4: (123)

78

and template "(S-group 1 n)", the Gnoth-maker vould create three gnoths:

gnothl

class: Gnoths

name: gnothl

frame: 1

plate-class: S-group

this gnoth holds the first hypothesis "hit-

glom: glomlO (vhere glomlO has g1om2 as subglom)

the gnoth 's "pseudo-glom -

range: (1 1)

gnoth2

class: Gnoths

name: gnoth2

frame: 2

plate-class: S-group

the sequence terms it "covers"

glom: glomll (vhere gloml 1 has glom7 as subglom)

range: (2 3)

gnoth3

class: Gnoths

name: gnoth3

frame: 3

plate-class: S-group

glom: glom12 (vhere glom12 has glom4 as subglom)

range: (4 6)

Ee.ch gnoth places apseudo-glom (called a "gnoth-glom") over its glom

collection (vhich contains just one glom initially). A gnoth-glom, like e.

79

· tem.plate-glom.. cennot glom. vi.th other cyto-elem.ents end serves to prevent the

haphezerd dise.ppeerence of glom. structures important to the system.. In this

case. since the underlying g1om. collection gives the gnoth its chere.cter. that

collection m.wt be preserved until the gnoth itself must change. Cyto-level

bonding activitycen continue but novthe gnoth oversees the fate of its glom.s.

Cyto-level tasks ere som.evhat m. yopic, e.ble to vi.ev the sequence only in

a restricted. localized vay. They have no oyeryiey of the sequence. The

structures - the glom.s -- created at the cyto-level reflect this myopic viev. In

contrast, the hypothesis end platonic-level processes can be said to have no

"underyiey" of the sequence. no direct contact vith reality as it exists in the

cytoplasm. Gnoths ere designed to bridge the gap betveen these levels. to

provide a place vhere inconsistencies l>etveen the high-level end lov-level

vievs cen be vorked out.

8. HYPOTHESES - ENCAPSULATING PATTERNS

The overall purpose of the system is to develop a reasonable hypothesjs:

a cleen. predictive model of the rule underlying the sequence. Vhen a template

is accepted. a Hypothesizer task is set off along vi.th a Gnoth-m.aker. described

e.t>ove. Vhen invoked. the Hypothesizer is responsible for devising a hypothesis

for the sequence. based on the template and the existing gnoths (if any) and

glom.s. If. for some reason. there is a faulty template (or none at all). the

Hypothesizer can take the fe.11-back position of declering the sequence to be a

Tuple. the veakest of e.11 plato-classes.

Because the Hypothesizer's model. like those developed by hum.ans.
·'

may turn out. as more terms.errive. to fail to be predictive. or maybe judged

"clumsy" or "ugly", it must also be easy to change. Thus. hypotheses must be not

only predictive end cleen. but also om.enable to reformulation - "slippal>le •.

80

Naturally, Seek-Vhence must be e.l>le to notice vhen reformuJ.ation is ce.lled for.

to knovVhyit shoUld be done. to knovvhat changes to make. and to knovhov

to carryout these changes. It becomes obvious, then, that hypothesis structure

is critice.1. in that it can make or break the syitem 's e.l>ility to carry out these

te.sks.

The predictive nature ofahVPOthesis is asemantic rather than a

syntactic requirement. and so poses fev constraints on hypothesis form. The

other tvo goals- clean representation and slippable form - do give us

something to vork to.ve.rds. Ji. hypothesis must have sufficient expressive

pover to represent the observed regUle.rity accurately. It shoUld have a clean

virua! appearance so that it can be understood by humans - vho Vill. after e.11.

be investigating its velidity. It shoUld be modUlar, so that the reformUlation so

fluidly and nature.11 y done by humans can be carried out equally smoothly by

the system.

HYPOTHESIS :CORM

The form ve have chosen for hypotheses is, not surprisingly. closely

tied to the ideals in the platoplasm. - a natural and direct consequence of

having the syitem vievits vorld in terms of those concepts. It also closely

resembles S-e-Vhence die.grams. The fre.gment"l 11 ",for example. may veil

be vieved e.s aC-group (Constant group). Ji. hVPOthesis voUld express this in the

form "(C-group 1 3)". a list consisting of the Platonic cle.ss name. the ste.rt-ve.lue

and the (top-level) length of the grouping.

The sequence segment "4 5 6 4 5 6" coUld be expressed:

(C-group (S-group 4 3) 2).

indicating a C-group of length 2, each of Vhose entries is the S-group

(successor-group) starting vi th 4 and of length 3.

81

The segment "4 5 6 5 6 7" could be:

(S-group (Countup 4) 3).

Each "hit" or evaluation of this form vould yield e.length-3 successor group.

The first group vould start vi th 4. the next vith 5. etc ..

The segment "l 5 e 4 z 5 e 4 3 5 e 4" might be expressed:

(Cycle ((Countup 1) (Tuple (5 8 4)))).

The segment "l 1 Z l "'could be:

(Cycle ((Counrup 1) 1)) <--> (1 1) (Z 1) (3 1) ...

OR

(Cycle (1 (S-group 1 Z))) <---> (1 (1 Z)) (1 (1 Z))

The segment "l Z l" might be:

(S-group 1 Z) <--> (1 Z) (1 Z) ...

OR

(Y-group [l) [3) (1Z1)) <--> (1 Z l) (1Z1) ...

These forms ere constructed by the system es it attempts to build a

hypothesis for the pattern presented. The Hypothesizer process vill take such a

form and from it construct a Seek-Vhence hypothesis - a de.ta structure vi th

severe! fields. capabilities. and f\lnctioru.

HYPOTHESIS FEATURES

First and apparently simplest. the hypothesis can display its form. much

es 'V8S sho-wn in the lest section. It can elso predict the next term to be expected

folloving that form. In addition. it hes e.yal.idityessocie.ted vith it- a number

that gro"VS es nev. correctly-predicted terms ere encountered. The most crucial

field, hovever. and the one that supports the others. is simply c8lled the

hypothesis'~- The box is the structure vhich, vhen "hit". produces the next

run of terms predicted by the hypothesis. The box can be reset to start again.

•

•

•

82

asked to list a number of terms. or asked to predict the next term. given the

sequence's currentlyknovn terms. The hypothesis' box is amember of the

class "Boxes" and e.s such lives in the socratoplesm, the middle level of the

Seek-Vhence 't!Orld, along "rith members of the <:lesses "Printstructures" and

''Gnoths". Gnoths. es ve have seen earlier. are the central representative

structures in the socratoplesm; boxes and the closely-related printstructures

are not as visible. serving e.more private purpose. The next section details the

operation of boxes and is not central to the flov of our discussion.

BOXES .AND PRINTSTRUCTUR.ES

Ee.ch box is a repository of information e.bout an underlying

printstructure and through the.t printstructure branches out. tree-like. to

represent in an active ~ystructures "rith such forms as:

(C-groUp 1 3) or (C-group (S-group 2 3) 2) [see Figure 3].

Boxes can be "hit". prodded for their next value. Vhen implementing

box hits. I ve.nted to be sure the.t hit propea;e.tion dovn the box tree coUld be

done in e. fUlly parallel manner. "rith no reliance on the return of any

particUle.r ve.lue before any other. The follo"ring implementation 'rill vork in

this fashion. although the current version of the program tree.ts box hits es

indiVisible operations. rather than es a task series.

Vhen a box is hit. it calls upon its underlying printstructure to feed it a

value. Ee.ch printstructure has e. collection of fire-boxes, sUbboxes vhich must

be hit to give it e. value. Vhen the printstructure "fires" - the.tis, hits its

fire-boxes. ee.ch box must return e. value. Thus. e.hit iin e. top-level box

propege.tes dovn through the tree ofprintstructures and boxes belovit until

the most deeply-nested structures return their values. These are pessed up and

the upV8rds-bubbling proceeds until the top-level e.nsver appears in the top

box's "pstruc-val" field.

Box1

printstruc:

pstruc-val:

ready:

83

Pstruc1

type: C-group
boxes: (box1)

~B~o~x~2:__~..o===~~~~~----~-y-2n~-v~a~.
~ k-val:

printstruc: ---!--.

pstruc-val:

ready:

Pstruc2

'--~..---_,/

printstruc: --+-.

pstruc-val:

ready:

type: S-group
boxes: (box2)

Pstruc5

Box3

printstruc: --.i-.1
pstruc-val:

ready:

I
Pstruc3

type: Constant
boxes: (box3)
value: 2

Box4

printstruc: ---1.­

pstruc-val:

ready:

'

Pstruc4

type: Constant
boxes: (box4)
value: 3

' type:
boxes:
value:

figure 3 -- A box tree for the form (C-group (S-group 2 3) 2)

Constant
(boxS)
2

In Figure 3, for example, the "fire-boxes" for Pstrucl -- aC-group

printstructure -- are its "n-val" and "k-val" boxes, namely Box2 and BoxS.

In order for Box2 to fire, though, it must in turn receive a value from its

subordinate printstructure, Pstruc2 -- an S-group printstructure. Vhen Box2 is

•

•

84

duly filled, its "ready" field Will be set to "true", end it vi.11 report the value in its

"pstruc-val" field to Pstrucl. It is possible for tvo or more boxes to shere the

sem.e underlYfng print.structure. This happens, for example, in the sequence:

"8 1 2 8 '3 4 8 5 6 ... ",

vhich cen be described by the form "(Cycle (8 (Coun~ed))".
Modeling this form requires the creation or three boxes: one for the

''Corute.nt 8", one for the first "Countup l ",end one for the second "Countup l"

(referred to es "she.red" in the given form). The "she.red" distinguishes this

situation from the one implied by the form "(Cyc1e(8 (Coun.tup 1) (Countup l)))".

vhich e.lso requires three boxes, end vhich corresponds to the sequence

"8118228'3-'3 ... ".

In our first form, on1yone Countup printstrueture is created. Vhen that

printstrUcture fires in response to ahit on the first Countup box, it feeds both

Countup boxes, malcing both boxes "ree.dy". Later on, vhen the second Countup

box is hit the am§. printstructure Will fire, age.in reeding both boxes, but this

time ~th the nm value in sequence. In contrast, the second form causes

creation or different printstructures ror the tw Countup boxes. Those

print.structures e.re hit independently, once ee.ch in a turn e.round the Cycle.

A simpler example or the same phenomenon can be seen using Fig\lre '3.
,,,.--.._

Ir the form modeled had been "(C-group (S-group 2 3) she.red)" - rather the.n

"(C-group (S-group (2 '3)) 2)" - so that the sameness of the Z's were to be

modeled explicitly, our diagram in Fig\lre 3 wUld have been slicht1ydifl'erent.

P~'3 voUld have "(box') box5)" in its "boxes" field, and there voUld be no need

for Pstruc5. Box5 vo\.lld point to Pstruc3 es its "printstruc".

In order to handle the details of firing end box-filling. each

print.structure type (C-group, S-group, etc.) hes afint associated ~th it. a

85

process which knovs hov to fire the releV8nt fireboxes of the printstructure

and vhat to do vith the results. Vhen aprintstructure is shered bytvo or more

boxes. each box must be filled vhenever the printstructure fires. Those boxes

must then record the fact that they already have a value - set their "ready"

fields to "true" - so that they can report this ve.J.ue until the next time they ere

hit. Boxes can also be reset to stert from the beginning of the pattern described.

or asked to shov a number of terms. One proposed project for refinement of

Seelc-Vhence is to create a box-tree editor. Ve or the system could then change

the box tree associated vith a form. This vould me.lee hypothesis modification

cleaner and more sophisticated than the current technique, vhich is to scrap

the old box tree and make a nev one.

Ve feel that the chosen implementation of hypotheses goes along ve:y

tove.rd meeting our gee.ls. It gives us an active structure cape.l>le of realizing

any-ell-formed hypothesis form. It accurately represents pattern structures.

and she.red substructures can be represented explicitly in the box tree. Thus it

is expressive. It is modular so that slipping - reformulation - is supported.

D. THE END OE ST.lCiE ONE

Once the hypothesis is in place and the gnoths corresponding to it are

"up" (created by the Cinoth-m.alcer). the system has reached the culmination of

its stege-one processing. Erom nov on. activity vill te.lce place at e.11 levels of

the system simultaneously. The nev goel vill be confirmation of a predictive

model for the sequence.

Virtually e.11 the structures created before the gnoths and hypothesis

operate at a level that-e reel is generellyignored by most Al systems. Ve have

developed a set or gnoth operations. a language in which-e can express

86

several vays for gnoths to coml>ine and split. to share terms, and generally to

interact vi.th each other. This is the level that .AI programs tend to take as a

starting point. Ve have attempted to implement a rich "subcognitive" level to

illustrate our belief that such a substrate is critically important to truly

intelligent systems, merldng a step up from formal symbol manipulation. Many

Al programs have been created to do very sophisticated things, but rev if any

~e able to do simple, childlike things. Both abilities ere important. A program

able to com.l>ine fluidly re!ormulate.l>le, structural concepts such as ours vi.th

· the kno~edge of a sophisticated domain vould be an achievement indeed, both

kno~edgeal>le and flexible.

CHAPTER THREE

SEEK-VHENCE STAGE TVO -- REFORMULATION

•

88

A. INTRODUCTION

The current version of Seek-Whence ves designed as en illustration of

the plausibility of our approach. so I spent much time developing the paradigm

and implementing the lower levels of the system described in the previous

chapter. The highest levels ere not as completely implemented, but do serve to

illustrate the potential of our approach. Several sequence problems have been

solved by the system. These include

1 1 1 ...

1234 ...

111222333 ...

343434 .. .

373737 .. .

373373373 ...

16 15 14 17 16 15 18 17 16 .. .

16 15 141514 13 14 13 12 ... (as well as possible. given e.non-in{inite pattern)

121231234 ...

Ve vi.11 use the last of these in a running example of Seek-Vhence

processing throughout the remainder of this dissertation. A discussion ofvhat

the current version of the system cannot do is given in Chapter Eive. along vi th

some speculations as to why and some goals for the t'Uture.

B. BACKGROUND

The defining characteristic of stage two is the looming presence of the

hypothesis. Vithout it. the system surfers from a "blind men end elephants"

problem -- trying to meke global sense from multiple local perspectives. Vith

the hypothesis. the system has a "point of view". e. predictive model of the

sequence to vhich it can cling until contradictory evidence is encountered.

89

1. THE HUMAN APPROACH

Ve have presented sequence panerns to people singly and in groups.

Almost inverial>ly, and juslifiably, once they have developed a hypothesis they

insist on its correctness until it is proved incorrect l>y the production of a term

that simply vill not fit. for example, vhen shovn:

1223

many people hypothesize:

(1) (2 2) (3 3 3) (4 4 4 4)

or, in Seek-Vhence terminology:
~

(C-group (Countup 1) shared).

If ve say, "Nope, not it" and then present another 3. the usual reaction is

"Yeah 7", uttered vi th an innection of challenge and the hint of a suggestion

that the presenter he.s actually forgotten the pattern. It is only vhen the next

term is presented, a 4, making the initial sequence:

122334

that they really l>elieve another formulation is required. Then follovs a

varie.l>le-length period of reviev and reorganization. vhich is in turn folloved

t>y the generation of a nev firmly-held hypothesis (or, in difficult cases,

resignation).

This "shov me" attitude and the l>elief in a favorite hypothesis ere

modeled in Seek-Vhence. The system maintains one hypothesis at any given

time, rather than a list of possibilities. It is al> le to do this e.nd still function

reasonably veil because of its ability to "slip" from an old hypothesis to a nev

one. The hypothesis is, in effect. surrounded l>y cloud of potential hypotheses,

close variants into vhich it can be transformed vhenever appropriate.

Underlying this e.l>ility are links among the Platonic concepts and information

about the cyto-level environment favored l>y each Platonic concept.

90

2. PLATONIC RELATIONS (no pun intended)

The Platonic concepts of Seek-Vhence. C-group, Tuple. Countup.

and the like. are to l>e connected l>y a variety of links reflecting the concepts'

interrelationships. This network of connections. in conjunction '7ith a

philosophy for their use, constitutes the "Slipnet" vhich is so essential to the

system's reformulation ability. In the current version. ve have implemented a

small numl>er of undifferentiated slipping links, called s-link~. for this purpose.

The system's slipping network -- vhich is ell vi thin the platoplasm - is

supplemented l>y another." level-spanning", nerwrk vhich relates each

concept to its ovn lover-level realizations. This network inclUdes the lists each

Platonic concept me.inte.ins of its manifestations and actualizations. As

descril>ed earlier. the manifestations of a concept are cyto-level structures

vhich have l>een dubbed e.s representatives of the concept, vhich model it up to

the expressive ability of that level. The actue.lize.tioru e.re socrato-level

structures vhich have similarly l>een identified as representatives of the

concept at that level. .Also included in the level-spanning netvork are lists of

pulling and pushing bonds, bonds vhich the concept ce.n use to group or

separate sequence terms. Level-spanning links are little used as yet.

S-LINKS

As currently implemented, the s-links have direction end "slipperiness".

For example, S-group he.s s-links to Countup. C-group, Y-group, Cycle, end Tuple .

.Associated '7ith each s-link is a numl>er l>etween O (non-slippery) and 1

(perfectly slippery), vhich indicates my estimate of the system's proclivity to

move from the given concept to the neighbor. The s-link from S-group to

Countup has slipperiness 0.1, reflecting the fact that it is difficult to slip to a

stricter class. Slipperiness from. S-group to Tuple is 0.4, since Tuple can serve as

91

a generic grouping mechanism if no satisfactory stricter class is appropriate.

The slipperiness values can be changed during processing, elthough the

current system does not do so. A richer collection of linkage types end e. fUller

description of the Slip net notion is given in [Hofstadter 84].

PULL-PUSH BONDS

In addition to the s-links, each concept preserves information about the

types of bonds it finds most usefUl in grouping sequence terms. Ear example,

the C-group concept, because it involves copy or sameness groups, favors

adjacent sameness bonds most strongly, but also likes to see gloms having the

same span (number of sequence terms covered). Bonds vhich a.Platonic class

might use to hold groups together are listed as "pull-bonds"; those it tends to use

to separate groups are listed as "push-bonds". Each so-designated bond type is

given a strength from 1to10, strengths vhich agein could be, but in practice

are not. changed by the system.

3. EREEZE-DRIED HYPOTHESES

Vhen a hypothesis has been deemed inadequate, it is "freeze-dried" -- its

form is extracted and is kept on a list of old hypotheses, elong vith the number

of terms of the sequence it explained. The old hypotheses serve as e.check

against cycling in the system. Vhen Seek-Vhence has trouble coming up vith

a hypothesis, it, like most humans, keeps coming be.ck to the same incorrect

hypotheses again end again. This, ve feel, is note. be.d feature, since people are

guilty of the same "foolish" behavior. It would be disastrous, hovever, should it

go unnoticed. Gray Clossme.n and others in the Eluid Anelogies Research Group

(FARG) at Michigan have thought quite deeply about the importance of

"self-noticing" or "self-vatching" [Hofstadter 85]. No doubt the Copycat project

92

in progress there vill have a more sophisticated approach to the problem than

the small effort presented here. In any case, freeze-dried hypotheses e.t least

flag cyclic behavior at this level of granularity. On the other hand, ve do not

'Vent to prevent cycles at lov levels for several reasons. People experience

them. .Although ve may find them quite annoying at times, they are often

quite useful.in forcing us to consider once age.in a correct notion vhich ve he.d

rejected for some "high-level" but incorrect reason. Seek-Vhence has thrashed

about more than once, clinging to some Platonic class or glom, vhile

underlying layers push up another, correct, notion over e.nd over age.in.

Knoving vhen to permit these notions to take over and vhen to squelch them is

e. most difficult problem. Our current solution has been. vhen no progress has

l>een made for quite some time, to !>last avay all gnoths e.nd gloms, leaving only

the glints and their bonds to push up an inspiration . .A mathematics student and

friend ves the inspiration for this approach . .After struggling unsuccessfully

for hours vi th a problem set, she wUld toss all her papers avay, va1k around

the room, confront the problem sheet and say. in a very cheerful voice, "Oh.

look-- aprol>lem set! I wnder vhat the questions are. Shall ve try some? I bet

they'll be .o,m:· Sometimes it wrked and sometimes

C. CH.ANG ING J.. HYPOTHESIS

There are actue.11 y tw reasons for changing a hypothesis:

l) it fails to predict ;

2) it is predictive but its form is less than satisfactory.

Ve term hypothesis changes made for the former reason "medicel

reformulations" to distinguish them from the "cosmetic reformulations" made in

response to the latter. The current version of Seek-Vhence supports the more

criticel medicel reformulations l>ut has only made a beginning at handling the

93

cosmetic ones. Because our discussion of medical reformulation vi.11 of

necessity be rather lengthy, ve vi.ll cover the cosmetic reforms first.

1. COSMETIC REFORM

Once e. hypothesis he.s been formulated. it becomes important to refine

it. An "ugly", though correct, parse can be very dissatisfying to humans; there

is generally strong agreement on vhich of several candidate parses is "best" in

this heuristic sense. For example. given the sequence

2 1 2 2 2 2 2 '3 2 2 4 2 2 5 2 ...

most successf\.11 solvers vi.ll come up vi th the parse:

(212) (222) (2'32) ""

More than one person he.s parsed it e.s:

2 (1 2 2) (2 2 2) ('3 2 2) ... ,

becoming annoyed at the presenter for posing a problem vi.th such a tricky,

ugly parse, "vi.th that 2 sticking out in front."

In some instances. alternative parses are equally acceptable. but vi.11

generalize differently. For example. such sequences e.s:

(5 1 5) (5 2 5) (5 '3 5) ... and

(5 16)(52 6) (5 '3 6) .. .

e.re both considered generalizations of the sequence

(4 1 5) (4 2 5) (4 '3 5)

The difference is that in the first generalization the countup betveen the

bracketing 4 and 5 in the original (le.st-listed) sequence is either not noticed or

not considered salient. vhile in the second generalization it is maintained. For

an interesting study of the problems of analogy and generalization. see

[Hofstadter 82c !

Hypothesis refinement is e.s yet only minimally supported in

94

Seek-Vhence. It is to be carried out by internal gnoth reformers, processes that

modify the internal structure of the gnoths. Such modification 'tli.11 be done for

either of t'Wtl reasons:

1) to relieve internal pressure vi thin a gnoth, pressure deriving from

those bonds 'tli.thin the gnoth that "WOuld push it e.pert;

2) to me.ke the gnoth 's structure conform more closely to the reigning

hypothesis.

The first of these describes "bottom-up" pressures, such e.s e.n un'tli.eldy

structure or poor perenthesization. An example of this vould be the

2 1 2 2 2 2 2 3 2. . . case cited e.t>ove. vhere the first structure -- holding e. lone 2

- vould seem rather out of place. The second is e. "top-dovn" e.ttempt to insure

the.t the gnoths model the reigning hypothesis as closely e.s possible. The

driving force behind this attempt is the goal of structural equivalence betveen

each gnoth e.nd the hypothesis.

GNOTH-HYPOTHESIS EQUIVALENCE

Ve he.ve stated that each gnoth is to represent one hit of the hypothesis.

But is it sufficient that the gnoth give the same terms e.s a hypothesis hit? Or do

ve ve.nt the same terms 'tli.th the same perenthesize.tion? Or might ve also

ve.nt the gnoth to obey the same underlying f2.tm. (the.tis, have the same

peren thesize.tion for the same reason)? In the folloving sections ve 'tli.11

describe these three levels of representation, vhich ve cell "term. equivalence··,

"parse equivalence", and "structural equivalence". Ve use the term frame of e.

hypothesis to m.ee.n e.n abstractly-vieved hit of the hypothesis: the collection of

Seek-Vhence forms that vould produce the given hit.

95

TERM EQUIVALENCE

Term equivalence, the veakest of the three types of representation,

requires that each gnoth govern precisely the same terms as one frame of the

hypothesis. for example, ifthe hypothesis is: (S-group 1 '3), then 'oath gnoths

shovn in the follovi.ng diagram are term-equi'V8lent to it.

gnoth2 gnoth3

Vhen asked for its V8lue, gnoth2 produces ((1 Z) '3). vhile gnoth3 yields

(1 2 3). Both gnoths produce the three terms 1, Z, 3 in that order, so both satisfy

the requirement for term-equivalence.

PAR.SE EQUIVALENCE

Parse equivelence, the next level, requires that the gnoth print its value

vi.th the same pe.renthesization e.s the corresponding hypothesis frame. In the

above example, gnoth'3 is parse-equivalent to the given hypothesis vhile

gnoth2 is not.

STRUCTURAL EQUIV AUNCE

The third and strongest level of equivalence is structure! equivalence.

In order to display structure! equivalence vi.th the hypothesis, a gnoth must be

parse-equivalent to it and the gnoth's form must 'oe the same e.s the

96

corresponding frame of the hypothesis. But vhat form shoUld a gnoth assume if

it is to reflect the hypothesis accurately? There are tvo distinguishe.l>le

possil>ilities. vhich ve call deep structure and shallov structure.

For example. suppose that 'We have a fairly complicated hypothesis such

as "(C-group (S-group (Countup 1) 3) 2)". derived from input terms:

1 2 3 1 2 J 2 J 4 2 J 4 J 4 5 3 4 5. and parsed as:

123 123 234 234 345 345.

Vie'Wed at the term level. the first hit of this hypothesis generates "l 2 3 1 2 3".

The shaUov-structure (or deeply-hit) form of the first frame of our

hypothesis voutd l>e:

(C-group (1 2 3) 2).

The corresponding deep-structure (or shallo~y-hit) form is:

(C-group (S-group 1J)2).

More structural detail is retained in the deep-structure form. vi th only the

lo'West-level structures replaced l>yconstants or tuns. In the shallov-structure

form. all but the top-level structures are so replaced.

DEEP VS. SH.ALLOV STRUCTURE

For comparison, the first three deep-structure and shaUov-structure

frames of our hyt>Othesis "(C-group (S-group (Countup 1) 3) 2)" are:

sbolloy

(C-group (1 2 3) 2)

(C-group (2 3 4) 2)

(C-group (J 4 5) 2)

~

(C-group (S-group 1 J) 2)

(C-group (S-group 2 J) 2)

(C-group (S-group J J) 2)

Because the deep-structure form presents more structural detail and

represents a "one-step-dovn" vievofthe hypothesis. ft chose it as our goal.

Once a hypothesis is made. the system gives each gnoth its target form, the

97

deep-structure equivalent of the hypothesis frame to vhich it corresponds.

Vhen the gnoth's form matches this given one. the gnoth is said to exhibit

structural equivalence vith the hypothesis. At that time. the gnoth should be

completely "happy", having no further goals.

FORM POLISHING

In summary. all gnoths must alvays maintain~ equivalence vith the

hypothesis. Their goal vill be to achieve structure.1 equivalence by reforming

into the deep-structure form of one hypothesis frame . .Along the vay they vill

achieve the middle state of parse equivalence. indicated by the re.ct that the

gnoth's "parse-print". the parenthesized printing of its value. matches that of

the hypothesis frame.

IMPORTANCE TO GENERALIZATION

The form polishing described above vill be essential to en ability to

generalize sequences in reasonable vays and make analogies bet~en sequence

descriptions. Also required vill be the ability to notice structural samenesses •
.

such es the (Countup l) in the hypothesis "(C-group (Countup 1) (Countup l))".

vhich yields the terms:

l z z 3 3 3.

These are among the f\lture high-level goals of the Seek-Vhence project.

unimplemented as yet.

2. MEDICAL REFORM

Medical reformulation. vhich is supported in the current version of

Seek-Vhence. is done vhen the hypothesis hes been demonstrated to be invalid.

It involves a reviev of the old hypothesis and the underlying structures

98

supporting it. a decision as to vhich Platonic type should hold sve.y, a

re-evaluation of the bonds noticed by the system. the use of bonds in the

environment of the chosen Platonic type to engender gnoth reformulations.

and finally (it is hoped) the construction of anev, predictive hypothesis.

GNOTH-SETTER

The system stores hypothesis-confirming terms in a catchall gnoth a

special gnoth that simply serves as a repository for non-troublesome terms.

\Then an unexpected term is encountered, the system immediately sets the

hypothesis' velidityto O. releases sparks to encourage lov-level activity, and

places e.Gnoth-setter task on the taskrack. Vhen invoked. the CTnoth-setter

caref\llly fills out gnoths in accordance vi th the old hypothesis and calls for the

system to reconsider its parse. For example. if the old hypothesis vere

"(S-group 1 3)", and tvo gnoths. each holding ··123". vere elreadyin existence.

the catchall gnoth might be holding "1 2 3 4". The first three terms in the

segment "l 2 3 4" are in the catchall because theyvere predicted by the

hypothesis; the "4" is the lest term entered -- the troublesome one. The

crnoth-setter vould therefore create tvo nev gnoths. one to hold the initial

"1 2 3" from the catchall and the other to hold the trailing 4.

Ee.ch gnoth is marked vi.th the frame end equivalence type (term or

parse. depending on agreement vith the hypothesis" parenthesization)

appropriate for it. Any non-fitting terms are collected together in a final gnoth

and the catchall is destroyed. In the example above, the tvo pre-existing

gnoths and the first of the nev1 y-created ones wuld be marked as

parse-equivalent to the old hypothesis.

In our running example ("l 2 1 2 3"), entry of the first tvo terms -

"1 2 • - causes the system to hypothesize (Countup 1). Vhen the next term

99

entered is "l ",a Gnoth-setter puts out three gnoths. one for each term. The

first two are in accord with the discredited hypothesis and are in fact

parse-equivalent to it. The last one simply holds the non-fitting term.

Nov. vith "all the cards on the table". the Gnoth-setter calls for

reconsideration to begin.

3. RECONSIDERATION

The goal of reconsideration is the construction of a nev and valid

hiJ>Othesis. This is not a mechanical. program-directed reconstruction.

hovever, but rather a "homing in" on anevformulation from a tightening

spiral of possibilities generated by independent but interacting processes.

a. DETERMIN.ATION O:E' THE REIGNING TYPE

The first step te.ken during reconsideration iS a bookkeeping measure.

saving the form of the old hypothesis and destroying its: box. the home of its

active representation. This leaves the system vith no active structure to govern

or filter processing, only a "freeze-dried" form to remind it of its most recent

perspective. The system then decides vhether to stay ~th the reigning class -­

the Platonic class at the highest level of the (former) hypothesis -- or to slip to a

nev one. This decision is made on several considerations.

:E'irst. if a reigning class -- such as Constant - iS very strict in the sense

that it iS difficUlt to generalize vithout moving to a nev class altogether.

slipping is chosen immediately. Otherwise, some deeper investigation is made.

The old hypotheses are checked to determine the number of recent hypotheses

of this class -- hov many "tries .. the class has had since it seized paver . .All

bonds are assessed in the environment of this class -- assigned a strength vhich

depends on the class in question as vell as on the type of the bond. (Bond

100

assessment is described in some detail in the next section.) The result of this

assessment is a rough measurement of the existing "bond tension", the strength

of the bonds favoring modification of the current gnoths. Strong bond tension

implies strong pressure to change some aspect of the current parse -- either to

abandon the current reigning class or to modify the gnoths' structure vi.thin

the framevork of that class.

ASSESSING BOND PULLS

Bond assessment is a rel a ti vel y straigh tforV8rd procedure designed to

assign strengths to ell existing bonds under the assumption that aperticular

Platonic class holds svay. If, for example, S-group is the reigning class,

adjacent successor bonds ere given large positive values to indicate that they

ere strong pulling bonds vhile sameness l>onds are given negative values to

indicate that they tend to push gloms apart. Should C-group 1>e in ascendancy,

sameness bonds become strong vhereas successorship l>onds are made negative.

The information required for the system to assign these values is in the

platoplasm, vi.th each Platonic concept listing both pulling and pushing bond

types and their strengths.

Procedurally, each gnoth is processed in turn. Its interne.l l>onds, those

among the gloms it covers, are noted, and their stren&fus in the current

environment -- that of the reigning class - are assigned. Its external bonds,

those betveen its elements and those of other gnoths, are similarly assessed.

These values become instrumente.1 in determining the ''happiness" of the gnoth

- its inclination to stand pat. The collective happiness of all the gnoths is used

as a measure of the success of the reigning class in organizing the system's

perception of the sequence.

1 01

SLIPOR STAY

The pressure to stay vith the reigning class is the sum of vhat is termed

"gnoth-stabilities", a less anthropomorphic and more f'Unctionall y defined term

for the "happiness" mentioned above. The stability of e. gnoth is the difference

betveen the bond forces holding it together and those acting to tear it ape.rt.

''Holding" bonds are internal pulls and external pushes. ''Tee.ring" bonds are

external pulls and internal pushes. In our "l 2 1 2 '3" example, just after the '3 is

introduced, ve should have (S-group 1 2) es the nov-discredited hypothesis and

three gnoths as shovn in Figure l .·

In figure 1, the adjacent-successor bond betveen glint! and glint2 has

strength +10 because S-group is the reigning Platonic type e.nd S-group favors

such bonds. This particular bond f'Unctions as an "internal pull" for gnothl

since it has a positive value and both members. glintl e.nd &'.lint2, are vithin

that gnoth. In contrast, the adjacent successor bond l>etveen glint4 and glint5

also has value +10, but f'Unctions es an "external pull" betveen gnoth2 and

gnothJ. Thus, the former bond tends to uphold the status quo, tends to make

gnothl "happy", vhile the latter bond causes some unhappiness for both gnoth2

and gnothJ.

The remote sameness bond (vi th strength -5) l>etveen glint2 and glint4

f'Unctions es e.n "external push", tending to keep the parent gnoths. gnothl and

gnoth2, apart. Therefore, it contributes to the ste.l>ility or "happiness" of both

gnoths involved.

In this particular example, there are no "internal push" bonds.

STABILITY

To calculate e. gnoth's stability, ve first e.dd the strengths of the bonds

holding it together. For gnothl in Figure 1. vith S-group reigning. this sum

102

would be +10 +2.S +2.S : lS. The +10 comes from the internel pull applied by the

adjacent successor bond betveen glintl and glint2. The 2.Ys represent half the

strength of the tvo externel push bonds under gnothl. These are the remote

sameness bond betveen glintl and glint). and the remote sameness bond

bet-veen glint2 and glint4. Strength-halving is done so that external bond

values are not counted t'Vice. once for each gnoth involved.

gnoth1 gnoth2

+10 -- adjacent successor value bond

-5 - remote same value bond

gnoth3

Figure l -- Measuring gnoth stability

Once the holding strength is calculated, ve subtract the sum of the

tearing-bond strengths acting on the gnoth to come up with its stability.

Gnothl has no tearing bonds (no internal pushes or external pulls). and so its

stability is: (+10 +Z.S +2.5) -(0): 15.

1 03

Similarly, With S-group reigning, gnoth2 hes three "holding" t>onds -­

the internal pUll t>etveen glint) end glint4 from their "adjacent successor"

t>ond, the external push betveen glintl and glint) ("remote same"), and the

externel push betveen glint2 end glint4 (again, "remote same"). In addition,

gnoth2 has one "tearing" bond -- the external pull betveen glint4 and glintS

("adjacent successor"), of strength 10. Thus, ve he.ve gnoth2 stal>ility:

(+10 + 2.5 + 2.5)- (5) • 10.

fine.Uy, since gnoth'3 has only one bond -- a "tearing" external pull of

strength 10, its stability is:

(0) - (5). -5.

Ve then e.dd the individual gnoth stabilities to find a total system

stability, in this case, of 15 + 10 - 5 = +20.

Ve note that some of the. tearing pressure is due to unresolved bond

pUlls favoring the reigning type -- if not its specific realization in the current

hypothesis -- end so may be considered inappropriate for our purposes.

Nevertheless, ve are tapping a measure of internal consistency. That is, if ve

assume en environment of this class and still find much bond tension (much

gnoth unhappiness), ve mayquicklyal>endon the type, at least for a vhile.

In order fore.reigning class to t>e abandoned, hovever. some other class

hes to demonStrate strength in its ovn right. Those classes that "neighbor" the

current reigning class -- those connected to it bys-links in the platoplasm -­

are the primary "pretenders to the throne". If one of them can shov sufficient

strength (sufficient "slipping pressure", as described belov), it may

supplant the current "monarch".

by:

104

The slipping pressure from the reigning class to a neighbor is evaluated

1) adding tvo quantities - the sum of all pulling-bond strengths. and

the e.l>solute value of the sum of e.11 pushing-bond strengths - taken

over e.11 existing bonds. and assessed in the environment of the

neighboring class. and then

2) multiplying the sum by the slipperiness of the link l>etveen the

monarch and the neighbor -- the proclivity to slip in that direction.

In effect. the system tries to estimate the gnoth stability in e.n "alternative

universe" -- the environment dominated by the neighboring class - es veil as

the likelihood of moving from the current universe to the alternative one. A

very "close" neigh !>or of the current monarch vho presents fair! y strong

prospects for ste.l>ilityvould l>e a strong candidate for ascendancy to the throne.

vhereas a "diitant" neighbor -- one connected to the reigning class by a

non-slippery s-link - vhose-stal>ility prospects are lov vou!d l>e a veak

candidate.

Slipping-pressure estimates are calculated for each class that is an s-link

neighbor of the reigning class. If the largest of these values is greater than the

"staying pressure" -the current stability-- then a slip to the corresponding

class vill l>e made and the system vill have a nev reigning cless.

for example. in our "1 2 1 2 3 ·· case, the slipping pressure from S-group

to Y-group ("symmetry" group -- for, say, a parse: 121 2 3 2) is:

O.i [the s-link slipperiness l + (10 + 10) = 8,

vhere the !O's are the strengths, in a Y-group environment, of the "remote

same" bonds betveen glint! and g1int3 and betveen glint2 and glinti.

Thus Y-group, vith a slipping pressure of8, cannot seize the throne from. the

reigning S-group, vhose staying pressure is 20.

105

A similar value is calculated for each neighboring class. and if the

largest of these values is greater than the staying pressure. a slip to that class

vill be made.

b. REFORMUUTOR

At this point, a reigning class has been este.l:>lished - or reconfirmed -­

and so e.Reformulator process is placed on the taskrack. Vhen invoked, this

process vill attempt to find salient bonds and vill set out Gnoth-operator tasks

designed to act upon the bond pulls or pushes in order to change the gnoths.

The Reformulator's first act is to determine a threshold bond strength.

Bonds or bond groups exerting pressures belov this threshold vill be ignored.

Currently, the nev threshold is set to either 1 more than the existini threshold

value or. if none exists, 80.,. of the strongest pull-bond strength for the

reigning type. (This value vas chosen arbitrarily, vith some vague

remembrance ofVinston's grouping algorithm in his "l>locks-vorld" program

[Vinston 75 l It has remained because it seems to have done no harm as yet.)

Because nev bonds may have been established since the Reformulator's

creation time, its next act is to assess all bond pulls in the environment of

the reigning class, e.s described above.

Then begins the process of finding strong pulls end/or pushes, and

turning them into gnoth operations - actions the.t modify gnoths. If the

Reformule.tor finds no actions to be taken or if it he.s completed its

recommendations, it hangs a Bond-assessor task on the taskrack (to

determine system "happiness") and terminates.

106

SELECTION OF NEIGHBOR-PULLS

All inter-gnoth moves involve the rightmost (at some level) glom of

some gnoth end the leftmost (age.in, at some level) glom of the gnoth's neighbor

to the right. This is a consequence of the sequential nature of our dome.in. Ve

obviously cannot reerrange the order of sequence terms (even though such an

operation might make a "more interesting" sequence); ve can only readjust our

groupings. (Ear a study of a less restricted pulling environment, see [Hofstadter

83).)

For example, given neighboring gnoths as shovn in Eigure 2 belov,

our system vill be interested in the 1asts" of gnoth3:

(glom15 glomlO g1om7 glint4),

and the "firsts" of gnoth4:

(g1om8 g1om 3 glom 1 glin t5).

gnoth3 gnoth4°

Figure 2 - Neighboring gnoths

107

The first moves considered are those at the highest level, under the

theory that if a glom van ts to move, its subgloms should follov. It is also

possible that some glom feels relatively content but one of its subgloms is

attracted to a glom in the neighbor gnoth. In such a case. the subglom should

be popped out and over to the neighbor. Should both glom and subglom feel a

pull. the glom move shoUld take .precedence since it is structurally more

important. Subsequently, internal gnoth operations - actions vhich modify

the internal structure of a gnoth -- could be used to move the subglom if it still

feels the need to leave its parent glom.

SELECTION ORDER

In our Eigure 2 example, neighbor-driven reformulation vould be

explored in the folloving order:

level 1: gloml5 <--> glomB

lE!Vel 2: glomlO <--> glomB

glom15 <--> glomJ

glom!O <--> glomJ

(Assess the pull betveen the topmost

gloms, then betveen level t1i'O gloms

and those at levels one and t1i'O.)

level 3: glom7 <--> (glomB glom'3) (assess pull vith each in the list)

(gloml5 glomlO) <--> gloml

glom7 <--> gloml

level 4: glint4 <--> (glomB glomJ gloml)

(gloml5 glomlO glom7) <--> glint5

glin t4 <--> glin t5

As soon es some reformUlation is strong enough - the bond pulls and

pushes supporting it exceed the threshold -- the Reformulator creates an

appropriate gnoth operation or program of operations and sets a

¬h-operator on the taskrack to carry it out. The Reformulator vill not

108

suggest any further moves. since any others T/'Ould occur at a lover structural.

level and therefore vould be less important to the system. Should any

lover-level moves be important, they vill eventually be discovered by some

fUture Reformulator.

CONVERSION OF BOND-PULLS INTO GNOTH OPERATIONS

Vhen there is sUfficient strength of pull betveen tw gloms from

neighboring gnoths, agnoth operation must be devised to bring the tvo gloms

together. Simply shifting one glom into the other's gnoth may not be

sUfficient, because the decisive pull on it maybe coming from a deeply-nested

glom. one several levels dovn from the top. In Figure 2 for example, glint4 may

be pulled toverd glom3. In our "12123" example, at the time described in

Figure 1, the last term -- the "3" -- is pulled by its predecessor -- a "2" -- vhich

is nested vithin aglom vhose print-value is "(12)".

The system must decide vhich of the tT/'O attracting gloms is to move and

vhich is to stay put. This is determined by an analysis of the bonds holding the

gloms in their respective gnoths. Single gloms are the most likely to move,

leaving an empty gnoth behind, a shell vhich the system destroys.

Once the direction of the move is determined, the total move must be

constructed. J.s vill be discussed belov, gnoth operations can be quite

destructive of a gnoth 's in tern al structure, bursting gloms until the target

gloms belov are reached. Vhen a gnoth operation is performed, at least some of

this structural damage must be repaired: ve do not vent the destruction of

important nesting structures to be a side-effect of reformulation.

Finally, the strength of the operation is calculated. This strength - the

difference betveen the gloms' mutual attraction and the pull exerted by other

gloms to hold them in place - must exceed the system-determined threshold, or

109

else the move "(,IQU[d not have been generated. The strength is used by

Seek-Vhence to weight competing alternatives vhen necessary.

4. THE GNOTH OPERATIONS

Gnoth operations fall into tvo categories: external or inter-gnoth

operations, and internal or intre.-gnoth operations. The external operations

are: SHIFT-LEFT, SHIFT-RIGHT, and SPLIT. The internel operations are:

CAPTURE, ENCLOSE. FRACTURE. MERGE, and NO-OP.

All of these operations require e. bit of careful me.nipule.tion. As vas

described earlier. each gnoth has an associated "pseudo-glom". e. glom that

cannot interact vith others, serving as e.ce.p to prevent the disappearance,

through nature! glomm.ing. of useful gloms and glom groups. The pseudo-gloms

of any gnoths involved in gnoth operations must l>e destroyed to permit the true

gloms belov to interact vi th each other. Similarly. if a very deeply nested glom

is to 1>e involved in e.n operation, all gloms containing it must be destroyed so

that it ce.n rise to the top of the cytoplasm e.nd l>ecome available.

Naturally, all this glom-bursting destroys the encasing gnoth's

structure. This is permitted because neither ve nor the system can knov

vhether the destruction is the primary purpose of the operation or just e.

side-effect of its real intent. Any proposer of gnoth operations that vis hes to

preserve some of the original structure must m.e.ke the effort to do so. The burst

gloms cannot, of course. be brought be.ck. but f\lnctione.Uy similar (not

identicel. because the gnoth operation did change something) ones can be

created.

Vhen a gnoth operation is completed, e. capping procedure puts e. nev

pseudo-glom in place above the gnoth's glom.s. Often. Plato-scout tasks are

placed on the taskrack to peruse the gnoth's nevly-created gloms, searching

11 0

among them for any nev manifestations of the Platonic concepts.

EXTERNALS

The formats for the external operations are:

(SHIFT-LEFT <left-gnoth> <right-gnoth> <glomlist>),

where glomlist is a list of the gloms (which must l>e neighbors in order) to l>e

transferred from right-gnoth to left-gnoth;

(SH !FT-RIG HT <left-gnoth> <righ t-gnoth> <glomlist>),

where glomlist serves an analogous purpose, this time from left-gnoth to

right-gnoth;

(SPLIT <gnoth> <Splitlist>),

where splitlist is a list ofgloms currently under the given gnoth. A newgnoth

is to l>e formed using the splitlist gloms es its top level.

SHIFT EXAMPU

initial state:

gnoth2: [(1 1) (2 2) I

glom3 glom5

operation:

gnoth3: [(3 3) (4 4) (4 4) I

glom7 glomlO glom15

(SHIFT-WT gnoth2 gnoth'3 (glom7 glomlO))

final state:

gnoth2: [(11) (2 2) (3 3) (4 4) I gnoth} [(4 4) I

glom3 glom5 glom7 glomlO glom15

1 11

SH!fT DIAGRAM

gnoth2 gnoth3

gnoth3

(SHift-urr gnoth2 gnoth3 (glom7 glom!O))

SPLIT EXAMPU

initial state:

gnoth2: [(1 2) (2 3) (2 3)]

glom2 glom6 glomlO

operation:

(SPLIT gnoth2 (glom6 glom!O))

final state:

gnoth2: [(1 2) 1 gnoth(ney): [(2 3) (2 3)]

11 2

SPLIT DIAGRAM

gnoth2

gnoth2 gnoth

(SPLIT gnoth2 (glom6 glomlO))

INTERNALS

The formats for the internal gnoth operations are:

(CAPTURE-Un <gnoth> <glom> <captive>).

vhere the given glom vithin the given gnoth is to sve.llov its neighbor.

captive. vhole. Actually. the glom is destroyed and a nev one created vi th the

captive as its leftmost subglom and also containing ell the original glom·s

subgloms.

(C.APTURE-RIGHT <gnoth> <glom> <captive>).

analogow to the operation above;

(ENCLOSE <gnoth> <encloselist>).

vhere encloselist is a list of neigh boring gloms vi thin the gnoth to be covered

by anev glom. dubbed to be of type ··enclose"';

11 3

(FRACTURE <gnothname>).

vhere the given gnoth is to have all of its top-level gloms (the direct subgloms

of its pseu4o-glom) dissolved. bringing their subgloms to the top-level;

(MERGE <gnoth> <glomlist>),

vhere glomlist is a list of neighbor gloms in order vi thin the given gnoth. The

listed gloms are all.uncovered and their subgloms glommed into a "merge"-type

glom. vhich becomes a top-level glom in the gnoth;

(NO-OP <gnoth>).

vhich causes the gnoth to be "uncapped" -- have its pseu4o-glom suspended -

and remain that vayuntil the Capper task it sets out is invoked and recaps the

gnoth. This "slov-recap" permits natural glomming to occur vithin the

gnoth. and betveen gnoths shoUld tvo neighboring gnoths 1>e uncapped

simUltaneously. The Capper finds all current gloms vhose ranges overlap vith

the original range of the gnoth (before it vas uncapped) and claims them for

the gnoth. Should tvo different gnoths claim the same glom -- one formed.

perhaps. t>y combining gloms from the tvo gnoths -- the gnoth that recaps first

vill get the glom and the extended range.

CAPTURE EXAMPLES

initial state:

gnoth I : [(1 2) 31

gloml glint)

operation:

114

(CAPTURE-RIGHT gnoth! gloml glint))

final state:

gnothl: [(l 2 3)]

glom2

initial state:

gnothl: [((I 2) (2 3) ((2 3) (2 3))) (1 2) 1

glom5 glom7 glom8 glom9 glom18

< -- glomlO - >

< ------ glom15 ------ >

operation:

(CAPTURE-UfT gnothl glomlO glom7)

final state:

gnothl: [(1 2) ((2 3) (2 3) (2 3)) (1 2)]

glom5 glom7 gloma glom9 glom18

< ---- glom20 ------ >

CAPTURE DIAGRAM

The operation:

11 5

(CAPTURE-LEET gnothl glomlO glom7)

vill cause glom 10 to "s~lov" its neighbor to the left, glom?, vi thin gnothl.

gnoth1 gnoth1

(CAPTURE-LEFT gnothl glomlO glom?)

ENCLOSE EXAMPLES

initial ste.te:

gnotht: [12'31)

glints 1,2.'3.4

operation:

(ENCLOSE gnothl (glint! glintZ glint)))

final state:

gnothl: [(1 2 '3) 1 I

gloml glint4

116

initial state:

gnoth'3: [(2 2) (0) ((3 3) (4 4))) ((4 4) (5 5)) l

operation:

gloml g!om4 glom6 glom5

< - glomlO - >

< ------ glom 12 ------ >

(ENCLOSE gnothJ (glom5 glom7))

final state:

glom7 glom8

< --- glom9 - >

gnoth3: [(2 2) (3) (3 3) ((4 4) (4 4)) (5 5)]

g!oml glom4 g!om6 g!om5 glom7 glom8

< -- g!om20 -- >

ENCLOSE DIAGRAM

gnoth3 gnoth3

(ENCLOSE gnothJ (glom5 glom7))

FRACTURE EX.AMPLE

initial state:

1 1 7

gnoth2: [(1 2) ((3 3) (4 4)) l

gloml glom4 glom3

<----glomS---->

operation:

(FRACTURE gnoth2)

finel state:

gnoth2: [1 2 (3 3) (4 4) l

glom4 glom3

FRACTURE DI.AGRAM

gnoth2

(FRACTURE gnoth2)

gnoth2

MERGE EXAMPLES

initial state:

gnothl: [(1 1) (1 1 1)]

glom 1 glom2

operation:

1 1 8

(MERGE gnothl (gloml glom.2))

final state: gnothl: [(1 1 1 1 1)]

glom3

initial state:

i'OOthl: [((12 3) (J 4)) (((5 6) (4 5)) (6 7 6)) I

opera~on:

glom 1 gloli:l.2

< --- glom 4 --- >

glom5 glom6 glomlO

< -- glom7 -- >

< ---------- gloml 9 ------ >

(MERGE gnothl (glom4 glom7))

fine.l state:

gnotbl: [((1 2 3) (3 4) (5 6) (4 5)) (6 7 6)]

gloml glom2 glom5 glom6 glomlO

< ------ glom.20 ------- >

1 1 9

MERGE DIAGRAM

gnoth 1 gnoth1

(MERGE gnothl (glom4 g1om7))

OPERATIONS IN SERIES

The gnoth operations described above ce.n be used to reformulate the

gnoth-t>ased parse of the sequence (as opposed to the hypothesis-based parse)

vhen applied in series. Tvo examples follov.

In our "firit example, ve start out vi.th three gnoths vhich parenthesize

the sequence segment" 12JJ4J4 5" as shovn initially. After several

operations, a more "reasonable" fine.1 parenthesi.zation emerges.

Initial state:

gnoth!

1(12))]

g!om!

120

gnoth2

[((3 4) (3 4)) l

g!om2 g!om3

< --- g!om 4 --- >

(SHIFT-LEFT gnoth2 gnoth3 glintB)

[(12))] [((34)(34))5]

(C.A.PTURE-RIGHT gnoth2 glom3 glint8)

[(12))] [(34) (345)]

glom2 glom5

(FRACTURE gnothl)

[1 2 Jl [(34) ()45)]

(ENCLOSE gnothl (glint! glint2))

[(12))] [(34)()45)]

(SPLIT gnoth2 (glomS))

[(12))] [() 4) l

(SHIFT-LEFT gnoth2 gnoth3 (glint6))

[(12))] [(34))]

(ENCLOSE gnoth) (gllnt7 g!intB))

[(1 2)) l [(3 4)) l

gnoth3

[5 l

glintB

[] (disappears)

[() 4 5)] (emerges)

[4 5 l

[(4 5) l

1 21

In our second example, ve once egain have three gnoths vhich

exchange gloms and are reformulated internally to come up vi th a nev, more

coherent parenthesization -- this time of the sequence segment

"l 2 3 3 4 5 6 4 5 6 7 8".

Initiel state:

gnothl

1(123)]

gnoth2

[(3 4) (5 6) (4 5)]

gloml glom2 glom3 glom4

(SHIFT-RIGHT gnoth2 gnoth3 (glom4))

[(123)) [(34)(56))

(MERGE gnoth3 (glom4 glom5))

[(12 3)] [(3 4) (5 6))

(FRACTURE gnoth2)

[(12 3)) [3456]

(ENCLOSE gnoth2 (glint4 glint5 glint6 glint?))

[(123)) [(3456)]

glom7

BONDS INTO GNOTH OPERATIONS

gnoth3

[(6 7 8)]

glom5

[(4 5) (6 7 8))

[(45678)]

glom6

[(45678)]

[(45678)]

The conversion of bond pulls and pushes into gnoth operations simply

requires that care be taken e.l:>out vho is attracting vhom and hov deeply nested

each of the participants is in its originel gnoth.

Vhen more than astre.ightforvard top-level move is to be required, a

Reformulator must create a PROGRAM or series of moves designed to put the

proper glom in its proper place and repair as much resulting gnoth-tearing as

possible. Some examples may help explain exactlyvhat is done.

122

HIGH-UVEL MOVES

In Figure 2 (p.106). if glom8 is to be pulled e:nyfrom gnoth4 by gloml5.

this high-level e.ttre.ction is tre.nslated into the move:

(SHIFT-UFT gnoth) gnoth4 (glom8)).

If. ho'flever. gloml is to be pulled e.vay by glom7. 'fie have e. more complicated

situation.

DEEPER MOVES

In the case of such deeper moves. a PROGRA.M must be genere.ted. In the

glom7 - gloml example. e. tre.nslation of the result is:

(PROGRAM ((SHIFT-U:ET gnoth) gnoth4 (gloml)) [move gloml over]

(CA.PTURE-RIGHT gnoth) glomlO gloml) [svallovit]

(ENCLOSE gnoth4 siblings-of-gloml) [reple.ce glomJl

(ENCLOSE gnoth4 nevglomJ&sibs-of-glomJ) [reple.ce glom8]

(ENCLOSE gnoth) sibs-of-glomlO&nevglomlO) [replace gloml5]

))

AREAL MOVE

In most cases. such deep nesting is not encountered. In the case of

"l 2 1 z)" [Figure 1]. the 2 <-> J pull is resolved vie.:

(PROGRAM (((1 2)) ((1 Z)) ())

(SHI:E'T-UFT gnothZ gnoth) (glint5)) -> ((1 2)) ((1Z)3)

(CAPTURE-RIGHT gnothZ glomZ glint5) --> ((1 Z)) ((1Z3))

(ENCLOSE gnothZ nil) [no repair necessary]

(ENCLOSE gnoth) nil) [no repair necessary]

))

Reformulator processes are responsible for creating ru.::h "PROGRAM"s

1 23

es described above. For the most part, once the initial move or tvo have been

supplied. the remainder of the PROGRAM is designed simply and mechanically to

repair any concomitant structural damage. Such damage is usually caused t> y

the need to t>urst a glom in order to get at one of its subgloms. perhaps even one

nested several levels t>elov it. The damage is repaired by re-enclosing the

remaining gloms at each intermediate level-- those not directly involved in the

operation -- and setting out Plato-scouts on the neviy-enclosed gloms. This last

step is taken to determine vhether any "interesting" nev structures have been

created. It should be emphasized that PROGRAM construction is a mechanical

action. performed by a task that exists at a high enough level to possess the

necessary vocabulary. The Reformulator's activity in vriting a PROGRAM is

no more intelligent than a Glommer's or a Bon<:ler·s. or that of any other

Seek-Vhence task. Vhatever "intelligence" the Seek-Vhence system possesses

is an emergent phenomenon arising from the performance of all of these

mechanical tasks in p~allel.

DIVESTING PUSHES

In addition to neighbor pulls. there is a second potentially strong agent

for reformulation -- vhat ve call a "divesting push". There may be no real pull

betveen one a:lom in agnoth and the neighboring gnoth. but the glom's

current home may not vant it. This sort of unilateral decision to push out a

glom and either foist it off on the neighbor or create anev gnoth to hold it

could t>e the foundation for much useful reformulation. Divesting pushes

are not implemented in the current system. causing some veakness in its

performance vhen handling Tuples. for exemple. More vi11 t>e said about this

in the "Problems" chapter.

124

5. CARRYING OUT REFORMS

A Gnoth-operator task is charged vith carrying out the operation or

PROGRAM given it by aReformulator at the time of its creation. It must first

check to see that all the structures relevant to its operation e.re still in existence.

having survived the system's activityVhile the Gnoth-operator vas hanging on

the te.skrack. If the relevant structures do still exist. the Gnoth-eperator carries

out the operations; if not. it vill simply terminate. Vhen a Gnoth-opere.tor does

in fact operate, its lest action is to decrease the system's bond-strength

threshold by 1. The effect of this threshold reduction is to encourage the system

to make more reformulations by e.lloving veaker bonds to be considered. in

effect "heating up" the environment. Reformulators. by adding 1 to the

threshold. have the opposite effect. cooling things dovn. Eventually, the system

vill settle e.s the Reformulators find fever and fever relevant operations to

suggest to Gnoth-operators. reflecting the fact that the gnoths are stabilizing.

BOND-ASSESSOR

A Bond-assessor task is created each time aReformulator decides that it

has finished finding interesting gnoth operations at some particular level. The

Bond-assessor's job is to look at all current bonds and determine vhether or not

there is reason to continue reformulation. If there are sUfficiently strong

bonds to verrant f'Urther reforms. the Bond-assessor places a Reformulator on

the te.skrack. If not. it creates a Gnoth-ce.ster task instead and terminates.

C.ASTING GNOTHS

Vhen invoked, aGnoth-caster attempts to describe each gnoth in terms

of the reigning class. In more sophisticated versions of the program, there vill

be provision for casting gnoths in terms of more complicated but still

125

incomplete forms -- such es .. (C-group (S-group m n) (Cycle (1 4)))" or

" (Y-groui;> [3] ((C-group m n) B she.red))", vhere "m" and "n" have no

numerical value. This vill be necessaryvhen more comi;>licated Seek-Vhence

descrii;>tioru are required to parse target sequences.

Since each gnoth is supposed to represent one frame of the hypothesis.

such casting must be possible if the class is right and the gnoths are correctly

formed.

If e.11 the gnoths can be cast. or if e.11 but the lest can and it shows

promise, the Gnoth-caster then attempts to cree.te e. more general form common

to all the castings. for exe.mi;>le. if the term groui;>ings generated by the gnoths

are: (3 4) (3 4Y(3). then the form "(S-group 3 2)" vould be generated.

In our slightly more complicated running example. given

(1 2) (1 2 3). the form "(S-group 1 (Countup 2))" is generated.

The casting process is quite meche.nice.1, es currently implemented. and

so errors or poor castings e.re possible. A final.test -- to veed out any surviving

bad casts - is me.de of e. cast vhen it becomes e. hypothesis candidate.

TESTING HYPOTHESIS CANDIDATES

The casting form returned, if any, nov becomes e. hypothesis candidate.

A "t>ox", or predictive model. is me.de for it and is tested to see vhether it can

accurately "i;>ostdict" the knovn terms of the sequence. If so. the candidate is

instantiated es the nevhypothesis for the system. vhich ce.n novsit be.ck in

the "certainty" the.tits nevmodel is the correct one for the given sequence. At

this point. the system typice.11 y cells for the next term in order to test its nev

hypothesis.

1 26

D. FAILURE AND SLIP-SCOUTS

If the Gnoth-caster is unable to cast ell the gnoths in terms of the

reigning class. or if it cannot generalize the casts to come up vi.the. candidate.

or if the candidate fails to postdict the sequence properly, the reformulation

effort has failed. In each such case. a "Slip-scout" process is placed on the

taskrack.

Slip-scouts e.re only skeletally implemented in the current system. e.

partial explanation for its floundering in many cases vhen initiel

reformulation fails. Vhen invoked, a Slip-scout vi.11 me.ke e. more detailed study

of the potential for slipping to another reigning class. e.nd the probability of a

class change vi.11 increase. The Slip-scout vi.11 look at ell existing bonds to find

frequently-occurring types and vi.11 be especie1ly sensitive to the possibility of

an interlee.ving of tvo or more independent subsequences. It vil1 use the

knovtedge of vhich classes favor vhat bonds to help suggest e. nev reigning

class. or perhaps a subclass vi thin a reigning Cycle or Tuple.

This seems to be the point vhere Simon e.nd ICotovsky [Simon 63] begen

their program - looking for e. cycle. If so. ve he.ve nov e.lmost completed the

substre.te necessary for a system to support heuristics of their sort in e. fluid.

non-meche.nistic ve.y.

CHAPTER FOUR

COMPARISONS VITH OTHER VORK:

128

A. INTRODUCTION

Inevitably, because the domain ve he.ve chosen is that of integer

sequences end because ve are interested in exploring the process of induction.

our vork must be compared vi th that of several predecessors. These include

Pi var end Finkelstein. Sim.on end ICotovsky, Persson. and Dietterich. There are

also comparisons and contrasts to be me.de vi th vork by Evans and by Lene.t.

B. COMPARISON VITH PIV AR & FINICELSTEIN

Pi var and Finkelstein [Piver 64] vere interested in "the problem of

programming a computer to perform induction on certain general kinds of data

in a manner superior to the majority ofhumen beings" (p. 125). Their program

ve.s capable of building models of certain rypes of sequences and of

extrapolatin& from these models more quickly and more accure.tel y than most

people. The program coUld recognize certain vell-knovn sequences. such as

the prim.es. e.nd coQJ.d devise models vith exceptions for non-fitting terms. The

target sequence types ...-ere cyclic. constant skip. or an intertvining of the tvo.

Thus. the program. could "solve" (represent as e. LISP fUnction) such sequences

as:

246 8 ...

2 1 '.3 2 5 '.3 7 4 11 5 ... (primes and positive integers intertvined)

1 4 9 16 25 . . . (squares of positive integers)

Hovever. the process of induction. as done by people. vas not explored.

Their program. relied heavily on finite-differencing methods to model

polynomial end other highly mathematice.l sequences. in effect substituting the

"l>lack box" of differencing for that of induction.

129

In fact. they note a difference in thrust l>et"fleen their program and that

of Sim.on and Kotovsky:

"The program vas vritten as a result of seeing a
previous program developed by Simon. Simon's
program vas developed for the purpose of
simulating the observed behavior of people vhen
trying to solve problems of predicting letter
sequences from an intelligence test. The program
PERTEST. on the other he.nd, vas oriented tovards
the automation of inductive thinking rather than
the simulation of hum.an beings; therefore. "fie
developed somevhat simpler though perhaps more
mathematical vays of dealing vi.th the problem."
(p. 131).

Ve feel that in trying to "automate" the process, they"flere, in fact,

looking for a shortcut, a vayofobte.ining the result of inductive thought-- in

this case, a model of the sequence - vithout having to go through or

understand the inductive process itself. In contrast, our me.jor interest is in the

process of induction. Sequences of interest to us tend to represent patterns.

such as:

121231234 or

1123122312331123

rather than n~egree polynomials or every third Fibonacci number. Ve vant

to explore inductive processes that might be similar to those used by hum.ans as

they notice e.nd represent patterns; ve do not simply van t to extrapolate

sequences. To pare.phrase the me.thematicien Atiyah (on the NOV A program

"Mathematical Mystery Tour"), "ve are not simply in the business of getting

e.nsvers; "fie vant to understand". This. then, "TIOuld seem to put us in the

company of Simon end Kotovsky, but there are distinctions to be dre.""Vn here as

veil.

130

C. REL.AT ION TO SIMON-KOTOVSKY

In their 1963 paper (Simon 63]. Simon and Kotovsky presented

convincing eVidence to support their theory that:

1) people build a mental model of a sequence from the terms they have

seen, and

2) they use this model to extrapolate the sequence. to generate successive

terms.

In addition. they demonstrated that the most salient features noticed before and

during model-construction vere sameness and successorship-predecessorship.

Ve heertil y agree vi th all these points. Our differences vi th Simon and

Kotovsky ere matters of direction and emphasis and can be described along

several dimensions.

Simon and Kotovsky vere primarily interested in demonstrating that

people do build and use mental models Vhich are developed through a process of

induction. In contrast to their 't/Ork, ve simply assume that this is the case.

Hovever. ve believe that it is important to explore model construction fer more

deeply.

The Simon-ICotovsky program vas presented several terms of a target

sequence in a list and proceeded by looking first for periodicity in the data

[Simon 6 31. Then. once a period vas discovered. equal and successor relations

betveen neighboring terms of a period vere explored, to finalize the pattern

description. In fact, all fifteen of their target sequences vere cyclical vi th

fixed-length period. For example. problem 9 vss the sequence:

urtustuttu_

The resUlting formUlation vas judged either correct or incorrect.

Our approach differs in asut>tle but important ve.y; the Seek-Whence

system is presented terms of a sequence one at a time. This apparently small

131

difference is the visit>le tip of a verite.t>le icel>erg of processing differences

l>etveen the t~ systems. In Seek-Vhence. each nevterm not only inspires e.

good deal of noticing of samenesses. successorships, and the like t>ut also drives

the system to revise its model of the sequence. That is, the processes of model

construction e.nd revision go on in parallel vi.th those of noticing. In contrast,

to quote Simon end ICotovsky [ICotov:sky 73] :

''The Ss' [human sul>jects'] l>ehe.vior departs in one
respect from the model. Periodicity is determined
t>y noticing I e.nd N [identity and next - same and
successor]relations. In the computer program,
information e.t>out relations that a.re noticed at this
stage is not retained, l>ut is regenerated during the
second ste.ge, 'Vb.en the pattern description is
l>eing l>uilt up. Ss clee.rlyr~tein much or e.11 of
this information, and use it Vhile building the
pattern description. Thus, the current program
separates the tvo phases of problem-solving
activity- detection of periodicity e.nd pattern
description -- more she.rpl y the.n do the Ss."
(p. 410).

Because of the ve.y in 'Vh.ich Seek-Vhence goes e.t>out its modeling job, it

is very likely to come up vi.th ee.rlyformUlations of the sequence that e.re

"vrong" in that they vi.11 l>e contra.dieted by fUture terms. Vhen this happens.

vhen e. contradictory term is entered, the system must react to the failure of its

model. It does so by attempting to reformUle.te the model on the l>esis of the nev

evidence (the nevterm). Thus, Seek-Vhence's formUlation changes during the

course of processing, based upon the "evidence" - sequence terms - it has seen

so far. Ve feel that this approach more accurately models hum an induction. a

viev supported by the ICotovsky quote e.l>ove.

Einally, the requirements imposed on the system by its use of

reformUle.tion include the need fore. different type of model. The

Simon-ICotovskymodel had to express e.ccure.telye.description of the sequence.

132

But. because the description vas developed only once and then simply checked

for correctness. it could be essentially static in nature. Our model, or

hypothesis, as ve call it, must be modifiable end reactive to failure. The system.

does not simply go be.ck end apply a machine to the "nev'' sequence consisting

of the old one 'rith one more term at the end in order to generate a nev

hypothesis. Rather. it ene.lyzes the current hypothesis in the light of the nev

term's evidence end attempts to change the hypothesis' form to encompass the

nevterm.

In summary, Seek-Vhence is directly concerned 'rith the inductive.

model-bUilding aspect of the extrapolation of patterned (e.s opposed to

mathematical) sequences. This reqUires the noticing of relationships among

terms end term groupings sim.ulteneously 'rith model creation. Our system,

then. needs a different sort of model then did Sim.on end ICotovsky's. Our model

is not simply en end-product defining en extrapolation. but a structure 'rith

expressive fluidity, one that is reformule.te.t>le on the basis ofnevevi.dence. one

that evolves as the sequence terms are presented one by one.

D. COMPA.RISON VITHPERSSON

In 1966, Staffen Persson vrote a series of programs - "machines", as he

called them - to solve sequence-extrapolation pcot>lems [Persson 66]. His main

interest appears to have been in extrapolating end identifying "noisy"

sequences 'rith underlying generating polynomials. me.king his domain much

like that of Piver end Finkelstein. This similarity of domain ve.s pare.llelled by a

similarity of approach. Persson. like Piver end Finkelstein. relied hee.vi.1 yon

differencing. He also devised a special me.chine to extrapolate intert'rined

sequences. Here age.in. though, the cycles in vestige.ted vere e.lvays of fixed

length.

133

Persson ·s interest in error-correction vas realized by having the

program interpolate correct terms based on the values of the surrounding ones.

For example, given as input the segment:

9 16 21 24 blank 24 21 16 9

Persson 's program attempts to come up "fli.th an explanatory polynomial. Its

result is: -x2 + lOx + 0, vhich it then finds venting because of the "blank" at the

fi~h term. It rechecks the polynomial and, finding it explanatory in ell other

cases (and having been forevarned that there might be one error in the input

data), uses the polynomial to interpolate the missing term. a 25. end then

extrapolate the sequence [Persson 66, p .126]

Persson recognized that computers solving sequence-extrapolation

problems by SU(:h methods might 1>e seen as having more capability than they

actual! y possess:

".A.t first glance. sequence-extrapolation vil1
seem to-require application of genUine induction,
i.e .. to start out from a pattern. represented by an
input-sequence, and eventU8llyarrive at a more
general representation from vhich the
input-sequence maybe deduced. Hovever. true
inductive reasoning is not necessarily required.
In many cases. apparent inductive behavior
should rather 1>e described as 'deduction disguised
as induction'.· (sec. 4.)

" ... the risk of contusing 'inductive pover' "fli.th
efficient algorithms for exploring very narrov
domains must also be realized." (p. 66)

In fact, Persson mentions [Persson 66. pp. 66-7] both Piver and

Finkelstein [Pivar 641 and Sim.on end ICotovsky [Simon 63] as having claimed

inductive behavior in programs vhich are actu!l.ly purely deductive in design.

Ve agree vi th this criticism. and believe that none of the systems thus far

discussed addressed the central issue of modeling inductive reasoning.

134

E. DIEIIERICH .AND MICHALSKI

"Given a sequence of events (or objects). each
characterized bye. set of attributes. the problem
considered is to discover e. rUle che.re.cterizing the
sequence e.nd able to predict e.ple.usible
continuation." [Dietterich as . .Abstract]

Clearly, given the e.t>ove quote e.nd the preceding discussion of

Seek-Vhence, our interests lie very close to those of Thomas Dietterich and

Ryszard Michalski. The questions they ask. the domein explored. and even some

of the terminology they use -- e.g .. "structural descriptions", "conceptual

clUstering", "constructive induction" - bee.re.striking resemblance to our ovn.

They, too. obviously reject the idea that sequence pattern induction is a solved

problem. Hovever. ve e.nd theyte.ke e. very different approach to processing.

They rely on a logic-based formUlation e.nd an algorithmic solution technique.

Ve employ structural pattern descriptions and e. "terraced scan" [Hofstadter aJ;

a4] in order to approximate the actual processes of induction.

"SP .ARC/E", the program discussed in [Dietterich as]. is e.n advisor to a

hume.n vho is playing the card game "Eleusis". In this game the dealer. "With a

card-pattern-generating le.vin mind. puts dovn ace.rd. In turn. each player

places on the table e. card they believe to be in the class of possible next terms.

If e. player is correct the card is left on the "mein line"; it incorrect. the card is

ple.ced on the "side line" t>elov the le.st correct (main line) card. The positive

evidence on the mein line in conjunction "With the negative evidence on the

side lines is used by players in their formUle.tion of e. description of the

underlying rUle. The player vho ce.n first formUle.te the dealer's rule is the

vinner.

135

for example, the dealer might put dovn the Ace of Spades, vi th the

pattern "alternate black and red cards" in mind. If the first player puts dovn

the deuce of Spades (thinking "sequential spades"), the dealer vill put the deuce

on the side line belov the Ace. Should the next player put dovn the Ace of

Clubs, it too vill be placed on the side line. If, finally, a player puts dovn the
'•

Ace of Hearts, it vil.1 be placed on the me.in line next to the Ace of Spades. Play

vill continue until one of the participants guesses the "correct" rule.

The Eleusis advisor program vill eventually be called in by its user to

analyze a given situation and to try to come up vi th the "best" generating rule

for that situation. Given the board ve have described, it might guess

"alternating red and t>lack Aces", for instance.

The descriptors for playing cards are initially just suit end rank. Other

descriptors, such e.s color or primeness of rank. ce.n be added later by the user

and employed by the system in its analysis. This addition of attributes is one of

the four vays in vhich a game situation, can be transformed "in order to

facilitate the discovery of sequence-generating rules" [Dietterich 85, p. ZOO 1

The others e.re:

segmenting - dividing the sequence into non-overlapping segments.

each of vhich ce.n be described separately;

splitting -- dividing the original into separate subsequences (seeing the

original es 'Vhat ve have been calling "interleaved" sequences);

blocking-- creating overlapping segments, called ''blocks", and giving

attributes to each separately.

In order to devise its rule, the program uses the card descriptions given

it as positive and negative evidence in parametrizing each of three different

potential models of the sequence (decomposition, periodic, and disjunctive

normal form). This model construction is done in stages, using five "rings" or

136

processing levels. Each model is then tidied up as it is passed back up through

the rings. assessed for plausibility, and the vinning rule or rules are presented

to the user as potential organizing notions [Dietterich BS. p. 22'3]

SPARC/E can solve some fairly intricate problems. situations vith rules

such e.s: "strings of the same color ... strings mUst alve.ys have odd length''

[Dietterich BS, p.22S l. or "a higher-rank card in the next 'higher' suit (recell

that the suits are cyclicel.ly ordered) or a lover-rank card in the next 'lover'

suit" [Dietterich BS. p227 l

In spite of the impressive performance ofSPARC/E in vhe.t is, to us. a

very appropriate domain. ve have some serious differences of opinion vi th

Dietterich and Michalski on the structure of computer systems designed to

perform in inductive domains.

The underlying structures and processing techniques in SPAR.C/E ere

logic-besed. For example.~ the case of the DNF (disjunctive normel. form)

model. a logical description of the cards on the te.l>le is constructed in

disjunctive normal form and is fed into the A q algorithm. This el.gorithm

constructs a "cover" - a logical description that includes ell positive instances

and excludes all negative ones -- having the fevest conjunctive terms. The

result is pessed be.ck up through the processing rings to be presented e.s a

candidate rule. This process has more of a "black box" flavor than ve vould

like; it skirts the centre! issue (to us) of the process of induction.

Moreover, in SPAR.C/E processing, ell three potential models are alve.ys

used to construct pattern descriptions; virtually the entire processing structure

is brought to bear on each problem. regardless of its "difficulty". Ve vould

prefer a system that uses the evidence presented to select a model and to vork

vith that model until it proves fruitless or another seems more appropriate.

Notice that in SPARC/E, an entire situation is given to the system.

137

vhereas Seek-Vhence continually react.s: to nev evidence. In SPARC/E, the

entire sy.s:tem voUld have to t>e restarted for a nev game situation; there is no

sense of ftov or continuity. This means that another central i.s:sue, that of

reformUlation. does not enter into SPARC/E processing. A game analysis. a rUle

or collection of potential rUles. is either "right"or "vrong"; there is no reaction

to nev data. no response if the generated rUles are iii.correct.

In spite of these criticisms - or, more accurately, differences of opinion

on vhat is important - "IN'e have a great deal of respect for Michalski and his

group. They have had some real success in cons~ructing useful programs. such

as Michalski's so~ean-<lisease classifier, vhile still maintaining an interest in

the core issues of learning and induction. Ve attempt to concentrate on the

"core", but have so far built only a toy.

Dietterich and Michalski have developed some very appealing notions.

These include the distinction bet"IN'een "attribute descriptions'' -- those vhich

"specify only global properties of an object" -- and "structural descriptions" -

those vhich "portray objects as composite structures consisting of various

components" [Dietterich BJ, p. 42]. Certainly, as they note, Pe.trick Vinston's

"blocks-vorld" program [Vinston 75] vas a ground-breaker in the use of

muctural. descriptions.

The pattern descriptions constructed by Seek-Vhence are also structural

descriptions. In addition, they can t>e summarized neatly in their "freeze-dried"

form. and so can become part of an attribute-based description. That is. once a

concept has been formUle.ted. it can t>e .. captured" in an attribute-<!escription

fre.mevork. The freeze-dried summary of the concept's structure could be

recorded as one of many attributes. and the enclosing frame used in a pure! y

syntactic ve.y. Hoftver. anytime the concept ve.s used in a semantic vay, its

underlying structure coUld be "reconstituted" so that it could have its very

138

critical structural component.

Another appealing Dietterich-Michalski notion. e.nd one that ve believe

Seek-Vhence addresses directly. is that of "constructive induction" .

"Constructive induction is e.n y form of induction
that generates nev descriptors not present in the
input date.. It is important for learning programs
to be e.l>le to perform constructive induction. since
it is veU knovn that me.ny AI problems ce.nnot be
solved vithout a che.nge of representation."

[Dietterich 83. p. 47]

Certe.inlyin Seek-Vhence ve at lee.st me.ke a velie.nt attempt to employ a form of

constructive induction to come up vi.th a structural description of the input

sequence pattern. Eventue.Uy, ve hope to keep these descriptions (or at lee.st

their "freeze-dried" summaries) around to help in the solution of nevpattern

problems. thus supporting a pattern-remembering system.

F. SOME REU.TED SYSTEMS

In addition to the vork described above, there have been other programs

related to Seek-Vhence in spirit. if not in dome.in. These include Thomas Evens'

ANALOGY program [Eve.ns 68] e.nd Douglas Lenat's AM and EURISKO [Lenat 82; 83

a.b.c; 84 l

1. EV ANS AND AN J.LOG Y

Evans' ANALOGY programve.s designed to solve pictorial analogy

problems. me.nyof vhich vere te.ken from examinations given to college-bound

high-school students by the American Council on Education. They are of the

form "A is to B e.s C is to vhich of (•t-z. • 3. • 4. • 5)?". vhere •1 ... •5 are five .
candidate pictures. The testee is to choose the candidate that. in its relation to

picture c. is most like B's relation to A.

139

The program ve.s vritten int~ major pieces (primarily bees.use the

vhole system could not fit into the availe.l>le computer). Data structures

describing the figures in each picture e.nd their positions vere fed to the first

pa.rt of the program. This information vas used to form relationships betveen

pictures A and ~· as vell as betveen picture C and each of the five candidate

pictures. The vocabulary used in describing the relationships consisted of some

fixed notions (e.g .• "above", '1eft-of") along vith any descriptors the user might

decide to e.dd for e.pe.rticule.r run (e.g .• "shaded", "overlap").

Once the descriptions vere me.de, the system he.d to choose the "C t~

candidate" description the.t ve.s most like the "A to B" description. This vas

accomplished by assigning veights (importance) to the vuious types of

tre.nsforme.tions and formulating "rules" to describe hovpicture A could be

transformed into B, and hov C could be transformed into each of the candidates.

The A : B rule set ves then comps.red to each C : candidate set. Ee.ch A : B rule

vas "reduced". if possible. to fit a given C: candidate rule. Then the rules vere

assigned veights based on the transformations they used, the veights vere

assessed, and the vinning candidate - the one vi th the highest score - vas

chosen. The program accomplished its task vi th wrying degrees of success.

dependent to a great extent on the adequacy of the supplied descriptors to

capture the salient relationships in e. given problem.

The ANALOGY program ve.s an impressive piece of~rk. but ve believe

that it is a misteke to attribute to the program. povers of "induction" and "theory

formation". Here. e.s in the Pi vu and Finkel.stein sequence program.. ve again

have a program. the.t can do very vell- probably better than humans -- in a

veil-defined domain that is really smaller than it vould e.ppee.r at first glance.

Although Evans claimed that the program could probably handle fifteen

out of the thirty problems typically given on an ACE exam. ve e.re not given

140

systematic eVidence to support that claim. All the problems solved by the system.

vere numbered 12 or lover. It coUld not handle the only "problem 20" given it.

Moreover, the problems vere ta.ken from different exams, rather than

systematicell y from one exam. This in itself might simply meen that the

program has the inductive paver of a sixth-grader rather then that of a

high-schooler. Hovever, there are very simple analogy problems from the

same ACE exams that the system cannot do [Evans 68, p.325 l indicating perhaps a

less then human inductive ability, or at lee.st one very different from humans·.

In summary,·then, ve do not believe that the Evans program cen be

credited vi.th e.chieVing inductive "concept formation" [Lenat 83a. pJS l becaus:e

the "concepts" formUlated are too brittle. too "attribute-based" (to us:_e the

Michalski terminology). Ve echo the Persson comment (me.de about Pi var end

Finkelstein's sequence-extrapolation program) that the processing technique

employed here is reelly "deduction disguised e.s induction". Nonetheless, the

ANALOGY program is remarkable for its ability to operate in a "core" domain.

one that has potential for lee.ding us to central issues in intelligence. It voUld

bee. treat to see the program redone in the light of recent thinking about

induction, concept formation, end analogy. The domain is one to vhich

artificial intelligence researchers shoUld return "until ve get it right".

2. UNAT AND HEURISTICS

Douglas Lenat is deeply concerned vi.th inductive thought. He has

explored vhe.t he calls "theory formation" in several domains through his

programs AM and EURISICO. In particUlar, he is interested in the development -

end use of heuristics in discovering end exploring nev concepts.

Certainly, both AM end EURISICO have been enormouslysuccessfUl

programs. AM is famous for its rediscovery of arithmetic operations, prime

1 41

numbers, and some important conjectures in number theory. Next to this, vhe.t

does Seek-Vhence have to offer? The ansver: roots.

The "accretion model of theory formation", developed by Lenat for the

EURISKO system [Lenat 8'3al. is a program of seven steps to be folloved by the

system in forming theories about :s:ome underlying domain. The model maps out

broad sveeps of territory for the system to cover. for example, step 2 of the

seven is "to try to notice regularities, patterns, e.nd exceptions to patterns, in

the de.ta" [Lenat 8'3e. p. '37 l Lenat himself recognizes that his program, being

concerned vi.th the "big picture", can only approximate a solution to the

problems posed in !\illy implementing step2:

"Step 2 in the model innocuouslyre<ltJ!S'tS the
leerner to be observant for recognizable patterns.
That a:s:rum.e:s: that he/she/it ha:s: a large store of
known patterns to recognize, or i:s: vorking in a
vorld vnere an adequate set ce.n be learned very
quickly. " ... the process of 'recognizing' !>lends
continuously into 'analogizing'."
(p.38)

Domains in vhich Lenat can best employ his heuristics methods have

:s:uch characteristics a:s:: many objects and operators and many types of both;

several types of rele.tion:s: among objects and among operators; lots of heuriS'tics

l>ut rev algorithms to follov in exploring the domain. These domains shoUld

he.ve been little explored preViously, and shoUld proVide a vay to conduct or

:s:imUle.te experiments [Lenat 8'3b, pp. 91-941 He advocates studying diff'icUlt or

complicated domains, ones that are '1ush vi.th structure" [Lenat 8'3c, p.2851

In contrast, the Seek-Vhence domain ha:s: fevol>jects and is simple in

structure. Nonethele:s::s:, it represents a complex. if not complicated (to use our

terminology from Chapter One). domain in the sense that the central problems

of indUt:tive thought can be encountered here. It m.e.y be that the broad sveeps

and structurally rich domains Lenat favors ce.n be served e.dequatel y by e.n

'

142

attribute-based representation system. because the concepts grov te.11 rather

than deep. Vi th the accretion model. nev ideas a.re built upon old ones. giving a

tover-like effect as the system explores ""interesting"" ideas to the fU!lest. Rich

underlying structures are not necessary to the type of upve.rd-thrusting

concept generation that goes on in these programs; the approximations offered

by attribute-based representations are good enough to P.ermit good upve.rd

progress. Vhen. hovever. ve stop to explore deeply the small portions -- the

nooks and crannies -- of the broe.dly-svept territory. ve need to capture

underlying structure!. descriptions. It may very veil t>e that there is. at present.

not enough computing pover in a single system to be both broad and deep.

But AM developed its ideas from first principles. from very primitive

roots. Hov can it nor t>e deep as vell as broad? The ansver to this is that AM

ve.s accretive. It formulated many ideas. some good and some less fruitfUl.

In e. sense. it is akin to a story-generating program as opposed to a

story-understander. It could construct vhatever ideas it liked; someone -­

in fact. Lene.t himself - ve.s bound to notice the ""vinners"". An anel.ogous

understander vould have to find a ve.y to represent concepts vith vhich it

ve.s presented vithout losing any important facets. The difference betveen

programs of these tvo types is like the difference betveen the charges:

"Find something interesting and

"Here is an interesting idea. Do you get it?"".

Neither problem is particularly easy; they are just different. each vith its ovn

difficulties.

Fine.Uy. one problem ve attempted to address in Seek-Vhence ve.s

identified very clearly in [Lenat 8Jc): ""The carrying el.ong of multiple

representations simultaneously. and the concomitant need to shift from one to

another. has not t>een much studied. or attempted. in AI to date (p. 283) Ve

143

hope that our efforts to implement a system that supports reformulation vi.11 be

the first step in attacking this problem.

CHAPTER FIVE

PERIORMANCE. PROBLEMS. AND EUTURE DIRECTIONS

•

145

J... IMPU:MENTJ..TION J..ND PERFORMANCE

The Seek-Vhence program currently consists of approximately 5400

lines of Franz Lisp code. Because it is still under development. the program. is

running interpreted rather than compiled. This, comt>ined vith the fact that it

runs on a V J..X 11 /?SO vhich also serves an entire sme.11-college computing

operation, slo-vs Seek-Vhence dovn a bit. Nonetheless, successfUl runs are

gener!lly completed in under ten minutes of reel time. UnsuccessfUl runs take

a bit longer (potentially forever), as the progre.m threshes at>out for a solution.

1. SYSTEM PER.FORMJ..NCE

In order to get some perspective on the current program's streng~hs and

weaknesses, let us go through the "Blackburn dozen" -- the tvelve sequences

ve presented to tventy-five college students- and enaJ:yze the system's

performance on those problems.

(1) 1 1 2 1 2 3 1 2 3 4

The program threshes hopeless! yon this one, although it readily solves

"1 2 1 2 3 l · 2 3 · 4 ... "[see J..ppendix I. The problem seems to be that the

initi!l C-group interferes vith the system's ability to find the lengthening

S-groups. Vhen it does find them, it seems unable to push the correct notion

beyond the template level. Lingering high-level interest in C-groups and

lov-level rediscovery of C-groups combine to cause this unhappy state of

at'fairs.

(2) 1 2 3 4 ...

Fortunately, the program can solve this one - end quite readily, in just

under one minute.

(3) 2 1 2 2 2 2 2 3 2 2 4 2 ...

This is hopeless as yet; ve have not even attempted it. There is far too

146

much interference -- terms having multiple potential roles. (for example, in

the segment "l 2 2", the middle 2 could be part of a C-group or part of a Countup.)

This particular sequence is one of our favorite examples. It has been, end

continues to be, a distant goal.

(4) l 2 2 3 3 3 4 4 4 4

Turnabout is fair play. Here, the initial S-groups -- (1 2) and (2 3) -­

interfere vi.th the bUdding C-group notion. The central problem here is

analogous to that in sequence (1) - the correct notion is discovered, but cannot

seem to break through into a hypothesis. Not surprisingly, in vievof the

sequence (l) commentary, the system~ solve the sequence problems

"2 2 3 3 3 4 4 4 4 ... " and "1 1 2 2 2 3 3 3 3

(5) 1 8 5 8 1 8 5 8 ...

In this sequence, the program finds the Y-group "1 8 5 8 1" and·

doggedly clings to it. Ve stopped it after a fifteen-minute attempt, since it

seemed to make little progress. Note that it can, hovever, solve the sequence

"1 8 5 8 1 1 8 5 8 1

(6) 2 l 2 2 2 3 2 4 2 5

Age.in. there is too much interference here, combined vi.th an

alternation or terms. This is beyond the current system.

(7) 2 3 1 2 3 2 2 2 3 3 3 3 2 3 4 4 4 4 ...

This is fer beyond the current system. It combines interference.

interleaving, and graving group lengths - all features that meke a sequence

problem more difficult.

(8) 1 2 2 3 3 4 4 5

The system solves this vi.thin three minutes.

(9) 1 2 3 3 4 4 5 5 5 6 6 6 ...

This wl prove difficult for a vhile yet. The sUbtle pattern ofgrovth in

•

1 47

group lengths vill tex the system's representation scheme.

(10) 9 1 9 2 9 '3 9 4 ' ..

The only problem here is the elternation of terms of vhich at lee.st one is

non-constant. This vill probably be the next sequence solved by the system.

(11) 1 8 1 2 1 8 1 2 '3 2 1 8 1 2 '3 4 '3 2 1 8 1 2 '3 4 ...

This sequence is he.rd. There is interference betveen the groups, vhich

grov at both ends. The expressive pover is available, but the system gets

bogged dovn in spurious relationships.

(12) 1 8 5 5 8 1 1 8 5 5 8 1

The system solves this, but can take up to tventy minutes to do so. It

finds a Y-group, but often it is the Y-group "(l 8 (5 (5 8 1 1 8 5) 5) 8 1)",

rather than the one ve vould like. The need for "cosmetic reform" becomes

evident in cases such e.s this.

In summary, then, the current Seek-Vhence program. can solve only

three of the Blackburn dozen - problems 2, B. and 12. Vi th slight extension, it

should solve problem 10 e.s vell. It vill have to cling less forcefully to its

original formulation in order for it to solve problems 1. 4. 5. and 6. The system's

interference handling vill need improvement before it can handle problems '3.

7. and 11. The solution of problem 9 vill probably require that group lengths be

used e.s manifestations (they are not, currently). In addition. the system vill

need the e.bilityto use its representational pover more effectively.

2. HUMAN PERIORM.ANCE

Vhen ve presented these sequence problems to our human subjects

[Meredith 83]. ve permitted them to take e.s much time e.s theyve.nted on each

sequence. A subject could "pass" on a particular sequence if it proved insoluble.

The subject could not return to a passed sequence.

148

Ve kept a record of the number of people vho passed on each of the

sequences. Ve also timed the subjects, in order to determine vhich sequences

took the longest time to parse. Ve assume that these vill tend to be the most

difficUlt for human solvers.

Problem (7) vas definitely the most difficult for our subjects. Seven

people passed on it (no more than t'li'O people passed on any other sequence),

and those vho did solve it took far ·more time on it than on any other sequence.

Problem (11) vas also clearly more time-consuming than most others. The

."easiest" problems vere (2) and (10), folloved by (8), then (4) and (5). then (6)

and (12). and then (1), (3), and (9).

Ve find it heartening that the problems Seek-Vhence has been able to

solve, and those vhich ve feel it is closest to soiving, are among the easier

problems for humans, vhile those our system finds difficult are also difficult

for humans.

B. PROBUMS

The original goals set for the Seek-Vhence program vere and still are:

1) to discover non-mathematically-sophisticated patterns in sequences

of nonnegative integers;

2) to represent those patterns as concepts constructed from eight

"primitive" concepts -- Constant, Countup, C-group, S-group,

P-group, Y-group, Cycle, and Tuple;

J) to be able to reformUlate the pattern descriptions fluidly, by the

technique of "slipping", vhen the description is non-predictive

or non-optimal.

Each of these goals has been met to some extent, but more "VOrk vill be required

to implement a system that realizes them in full. From our discussion above, it

149

becomes clear that the Seek-Vhence program

1) fails to notice interleaved sequences of any complexity;

2) is unable to handle interference vell;

3) clings too tenaciously to its first organizing notion.

In the folloving sections. ve "Ifill discuss these and other problems e.nd "Ifill

present our current though ts as to hov to solve them.

1. IMPLEMENTATION FAUX PAS

As in e.nyfairlysubste.ntial system vritten over a period of years. there

are no doubt some inconsistencies and quirks in the current implementation of

Seek-Vhence. The present system vas programmed by one person. and so

reflects the veaknesses and idiosyncracies of a particular style. These include a

fairly conservative. but readable. expr-based approach to Lisp programming

and some disregard for "neatness" in cleaning up old. unve.nted structures.

Seek-Vhence is unabashedly "ad hoc". There has been no focus on

separating domain-dependent from domain-independent processing, structures.

or approaches. The only excuse for this is that the program is aproto-effort in

the development of a generic processing structure and approach. People "lfi.th

similar ideas have been programming and continue to program systems for

Jumbo (vord unscrambling). Letter Spirit (style extrapolation). and Copycat

(letter-sequence analogies). Vhen all the systems are completed. ve vill

hopefully be able to abstract out common. domain-independent features vhich

vill be generally useful. This is a "high-risk. high-gain" strategy. Ve hope it

vorks.

If all of our problems vere ones of programming style. ve vould be

delighted. Unfortunately, there are some more fundamental vorries. not the

150

leest of which is that there are some non-difficult sequences that the system

cannot parse.

2. UNCONQUERED SEQUENCES

.Although Seek-Vhence does a good job in e.ne.lyzi.ng the simplest

of sequences and can do some medium-difficulty ones. it fails on some

not-very-he.rd ones. It is unable to handle independent interleaved sequences

vhen the components are anymore complicated than constants. That is, it can

do '"37:37:37 ... "butitcannotesyetdo "1210:34105610 ... ".

J. me.jar reeson for this problem is the ve.y bonds are used by the system.

Currently, bonds are used only in a bottom-up feshion, to push up gloms.

Hovever. there is knowledge in the platoplesm of the bond types favored by the

various Platonic classes. For example, the existence of many "adjacent

sameness" bonds might be a clue that C-group is astroni candidate es an

organizing notion. because C-groups are closely associated vi th such bonds . .As

yet, the system makes no direct use of this information. It is important to note

that such information must be used cautiously, since it may lead to false

conclusions. In the sequence "2 1 2 2 2 2 2 J 2 2 1 2 ... -. for example, there

e.re many adjacent se.messes betveen 2's, but the ·c-,roup" notion is not

involved in the correct parse.

ICnovl.edge about manifestations and actue.lizations. vhich could be

useful in suggesting e.lternati ve organizing notions or in indicating the

existence of interleaved sequences. is virtually unused by the current system.

Slip-scouts, described later. vi.11 begin to make some use of this information.

The Seek-Vhence system cannot analyze sequences that display a good

dee.1 of interference - such es "2 1 2 2 2 2 2 J 2 2 1 2 ... "or

"111 121 I J 1. . .". People seem to overcome interference by looking for a

1 51

place in the sequence vhere there is little conf\lsion -- a place vhere the

interference is minim.al. Seek-Vhence may need to look more closely at terms

that have rev bonds and use these a guideposts for organizing the sequence.

This strategy. like looking for interleaved sequences. is a relatively high-level

one. suitable at the Slip-scout level and beyond.

The system's inclination to cling to early organizing notions is related

to the other tvo problems. and probe.bl y stems from the same root causes. In

addition. ve may have to tinker vith our slipping mechanisms. to see if ve can

get a bit more movement avayfrom failed ideas.

3. LOV-LEVEL MYOPIA

The lov-level processes of Seek-Vhence operate vi th a micro-level

vocat>Ulary. dealing vith localized stru.::tures and providing no overvievofthe·

sequence pattern as a vhole. This naturally leads to the phenomenon that ve

ce.11 "lov-level mycpia". There can be some micro-level rigidity as aresUlt. vi.th

the lover-level processes clinging to certain favorite groupings (usuallygloms

formed early in the processing). This can get in the vayofpushingup neatly

balanced structures -- ve can get" ((1 2) 3)" handed up instead of a preferred

"(1 2 3)" - but it is not a devastating problem. Its effects vi11 be mitigated vhen

divesting pushes. cosmetic reform. and "form-polishing" are implemented.

4. HIGH-UVEL HAUGHTINESS

The higher levels of Seek-Vhence seem to suffer as ~U from some

basic rigidity. Once the high levels teke over. the imposition of top-dovn.

model-driven processing does not appear to leave quite enough room for

lover-level coercion of change. This leads the system to stick vi th a

formUlation type or platonic class longer than it shoUld. to be optimally

152

effective. It becomes too difficUlt for lover-level processes to push up a notion

vi th sufficient force to stage a "coup".

Ve have often "Vatched in frustration as a good notion has come up

repeatedly to become a template, and then to disappear. never to reach

hypothesis status. Ve plan to investigate this unfortunate phenomenon.

vhich ve call the "Little Prince Problem":

Lovlevels: "See my pretty bond-chain?"

High levels: ''Not nov-- I'm trying to parse this sequence."

DIVESTING- PUSHES

A "divesting push" wl occur vhen a gnoth contains a glom that causes

it "unhappiness" in the sense of deereesing its stability, but the neighboring

gnoth does not have any particUlar attraction for the glom either. In this ease,

the parent gnoth may push the glom out to the neighbor or may simply call for

the creation of an intervening gnoth to hold the unve.nted glom. These pushes

wl permit gnoths to vork on conforming to the hypothesis, or suggesting

veaknesses in it. Implementation of divesting pushes vill be aflrst step in

giving more credence to lov-level suggestions, thereby decree.sing the degree

of ''high-level haughtiness". They vill also serve es a safety V8l ve for the

current reigning class. by increasing gnoth stability vithout calling for a nev

monarch.

S. COORDINATION PROBUMS

Although Seek-Vhenee relies on independent, parallel processes to

carry out its vork, there is nonetheless some need for coordination of resUlts.

For instance. the hypothesis and the gnoths must be in agreement (at lee.st to

some extent) on the current viev or parse of the sequence. Devising a

1 53

technique for insuring this coordination has been a major problem. and one

vhich ve are not certain is solved at present. !he levels of h ypothesis-gnoth

equivalence give us something of a handle on the problem, but it voU!d be nice

not to he.veto vorry al:>out it at all. !hat is. it voU!d be nice simply to change

either the gnoths or the hypothesis and be certain that the other voUld

automatice.llyfe.11 into agreement. Ve he.ve not.yet devised such a mechanism.

nor are ve sure that one exists.

6. HER.KY-JERKY

One goal of Seek-Vhence vas fluid reformU!ation. the e.l>ility to move

easily from one concept representation to another. !he current system is only

pe.rtie.lly succeS$f\.ll in meeting this goal. Its reforms. at the highest level. can

seem a little rough. Instead of the smooth transition ve vent, ve get something

more e.kin to the jerky motion felt vhen one rides to the top of the Gateve.y

.Arch in St. Louis -- one g~ts there. but the ride is not as continuous as one voU!d

like it to be. !his me.y point to the need for another or level or tvo of processing

to ease the transitions. or it may simply require more ce.re in programming.

Belov. ve suggest the possibility that a richer system of linkages in the

platoplasm might help mitigate this problem.

DIFFERENTIATING PLATO-LINKS

!he platoplasm ·s link system current! y consists of undifferentiated

"slipping links" - the s-links. It is very likely that in using differentiated links,

ve voU!d be e.l>le to give the system a more rational collection of slipping

alternatives e.nd the e.l>ility to e.ppl y more constraints on slippage possibilities

in pe.rticU!e.r situations. !hat is, instead of having to consider slippage

possibilities on the relative! y gross grounds of s-llnk slipperiness in

154

conjunction "'N'i.th "absolute bond pulls", the system may be able to use e.

finer-grained decision strategy. Ve therefore need to investigate more deeply

vhat types of links belong in the ple.toplasm and hov best to incorporate them

in to the system's processing. This is a very t>ig question in e.n abstract sense,

'cut implementation in Seek-Vhence shoUld not t>e too difficUlt, e.nd may go a

long ve.ytovard conquering the "herky-jerky" problem.

C. THEEUTURE

Ve plan to revise and extend the Seek-Vhence system in several vays in

the f\lture, and at many levels of e.t>straction. There are some relatively minor

details that need to t>e addressed, some major additions to be me.de, and Ultimately

ve "'N'i.11 have to redo the system in e.more structured, dome.in-independent

fashion.

1. MINOR DETAILS

Some of the minor reforms "l'lill t>e feirl y simple to include, 'cut one

or tvo "'N'i.11 require some ce.refUl thought before implementation can t>e

considered.

GREASING PLATO-LINKS

As vas previously mentioned, it is possible that various platonic classes

vill t>e "closer" toe. given class at different times. This means that the s-links

between concepts should have different slipperiness values at different times.

The current system does not provide any mechanism for changing s-link

slipperiness. nor does it explore the notion of "relative closeness" in anyvay. It

voUld be interesting to investigate this question e. bit further in later versions

of the program. This is an example of an addition that vill be fairly easy to

'

155

implement once we decide exactly what we want to do.

CHANGING PLATONIC BOND STRENGTHS

Simile.rl y, the degree to which a given platonic class favors certain types

of bonds may change during the course of processing. Changing the bond

strengths would not be he.rd to implement. but the central question -- not a ·

particularly easy one -- would be hovto have the system decide vhen it should

be done and hov much to change the strengths.

ADDING AND REMOVING BOND-EIELDS

An interesting problem is the central one of "salience". Vhe.t features of

a sequence are of central importance? Vhe.t should be used to describe it? Ve

have built into Seelc-Vhence the cape.city to use any field of e. glom for bonding

or glomming purposes. but as ve.s mentioned earlier. "Ve currently use only

"value" for glomming and "value" or" span" for bonding. BUilding in areal

cape.city to add to or subtract from these fields is critical in e.ccure.telype.rsing

some sequences - such as " 1 2 2 3 J 3 4 4 4 4 ... • - vhere the length ore.

group and its content or position in the sequence are intimately connected.

Ve certainly hope to bUild this cape.city into f\Jture versions of the system.

BOX STRUCTURE EDITOR

A nice little project associated vi.th Seek-Vhence, but outside or the

mainstream of its processing. is the construction ore. "box-tree· editor. The

system coUld use this to model its ovn reformulation actions by editing e.

hypothesis' box to reflect e. nev modification of the hypothesis. The current

(heavy-handed) technique is to completely scrap and replace the box.

156

2. MAJOR GOALS

Ve have some major plans for future revisions of Seek-Vhence, in

addition to the "fix-ups" mentioned above. These deal vith broader issues vi thin

the dome.in of our project, issues vi th perhaps more "global" significance.

FORM POLISHING

"Form polishing" is the term ve use to cover the notions of cosmetic

reform - reformulation done to improve the look of a hypothesis - and

interne.1 gnoth reformulation in order to achieve structural equivalence vi th

the hypothesis. A gnoth displays structural equivalence vi.th the hypothesis

vhen its e.ctue.1, glom-be.sed form agrees vith the deep-structure form given it

e.s e. model. The deep-structure form is that of one frame of the hypothesis -- the

frame corresponding to the gnoth. These reforms vill probably not be easy to

carry out, because they are not central to having a "correct" parse of the

sequehce, but rather the "best" parse, and for the "right" reason. That is.

form-polishing is more heuristic than is pe.renthesization of the sequence, end

so its implementation vill probably be even less deterministic than normal

Seek-Vhence processing.

USING MANIFESTATIONS - SLIP-SCOUTS

One of our major goals for the future vi1l be to implement "Slip-scouts",

processes that vi.11 begin to use information that the system has gathered about

the sequence, but has e.s yet not used. Slip-scouts vi1l be looking at bonds,

manifestations, and actualizations, in order to suggest vays in vhich the

sequence could be parsed. They vill l>e especial! y sensitive to interleaved

independent sequences, such as "1210 '3 4 10 5 6 10 ... ",and vill suggest parses

vith deeper nesting of structures than is required for the simpler types of

,

•

157

sequences. The e.ddition of Slip-scouts is extremely important if the system is

going to move on to parse more difficUlt sequences, e.nd so vill be one of the

first gee.ls ve e.tte.ck.

FINIR-GR.AINED REFORMS

Vhen reform uJ.ation is required, ve nov use a rather heavy-handed

approach -- reform at the top. Vhat the s~tem nov needs is the ability to

perform finer-greined reformUlations. perhaps retaining the reigning class as

monarch, but e.dding some "epicycles" to the hypothesis. The reigning class

may be the right one, but because there are deeply-nested structures vhich the

s~tem does not perceive e.s such, there may l:>e a good deal of "unhappiness" in

the s~tem - the ste.l>ility me.y t>e lov. Rather than toss the monarch out, the

s~tem shoUld sometimes investigate other reforms, reforms geared tove.rd

finding a deeper exple.ne.tory structure.

LE.ARNING

There are tvo essential requirements for a successful "inductive

learning" progre.m. First, it must discover that vhich it is to learn. Second, it

must remember vhe.t it has discovered. The Seek-Vhence program has made

some progress in the area of discovery. Unfortunately, as currently structured.

Seek-Vhence does not "remember" a parsed sequence in order to aid in parsing

another, or for purposes of comparison.

Ve vould like to build upon our idea of "freeze-dried" hypotheses to

implement a facility vhereby old, remembered hypotheses could, in essence,

offer themselves up e.s models for parsing nev sequences. That is, the old

hypotheses coUld be loosely "plugged in" at various.levels of the sy:stem, and

vhen asimilar structure is created coUld interrupt the proceedings to present

158

themselves as potential models. This, and the ability to do Bongard-like analogy

and generelize.tion problems 'With collections of sequences, ere more removed,

but potential goals for fUture research.

D. CONCLUSION

Seek-Vhence is not a perfect program. It sutrers from problems at

several levels and of several types. Nonetheless, it does serve as an example of a

nev approach to the programming of "intelligent" systems, a sample of a nev

paradigm. The hallmarks of this e.pproach ere: concepts 'With underlying

levels of rep re sen te.tion; e. representation scheme the.t encourages n uid

reformule.tion; the e.l>ility to accept e.nd react to evidence; e.nd a

nondeterministic, pe.re.llel system orge.ni.ze.tion. Ve believe that these ere

important notions. ones the.t should be explored fUrther e.nd in many domains.

They may prove useful -- and even critical -- in the development of systems that

possess "common sen~e" and the ability to relate concepts in unexpected and

novel vays.

•

APPENDIX

'. '"" ---------_,,,

~11
~-JI
r·---~

i':> '- 01

/
"'-.... 1 I

!~'.i
\ ... /!

r--i
I ., .

'·-; i...... I I . ·- ,
1 r.., I
L .._.. I

r--~

1 ,-- I

'"r '' /'-'. I!
I "'----'' .
I I , ___ _

160

--·-, ~ ,-----"

I
,-, I••,---'
! : l ~ I ' ' - i "., I'.', ____ , . -~ "-- • 1 ' '; !

'....... • '''· •\. ! I \ l : ' 1' •,,....· ..._ '

I <..-f' ~I ' '
I I: I .•.... ,,,- I
_ __..,; .. L--------'

-----' ; .

! \----~·1
' ~-... .._1_. •

J ;,. _ _; J
,----
i ('"'"' i .,__....·:
i ~ - '

;\~~

~--· ; c--. ~
• _..., t
' ' I . I

,..-·-, I
II • f f ... ___ , !
'-----'

' _,._ I
; -,, \ I

I ~ ,, , . I '.I ·-1.' !
I·. \\...,J

~_j

I r- -·1 i-:::---,,
1 1. ', ,·-·-.. ,- I'' ,. '-"~' :: : • \/ :! r ... 't
j ~ ~_) f I 1 \ ~
'! --· I I ~- - I
L:'~- __ J -

r :::==-1
I'\ ' j

' I .
I I _! I
! -- I
I :> C I
_, - __J

r-~

;,~ -.~ .. \I
1, • • .J i j
~ , ,... ' I '
i'· ' (" i ·-· ,j'

r .
i Cl
I,~.. I
" I :>1 L':--" '

1 61

The program's equivalent of the form

~
(C-group (Count up I) shared):

- > (build-box
' (C-group (same pstruc I) (same pstruc I))

' ((pstrucl (Countup 1))))

boxS
-> (show-box 'boxS)

(1)
-) (show-box 'boxSl

(2 2)
-) (show-box 'boxSJ

(3 3 3)
-) (show-box 'boxS)

(4 4 4 4)

'

162

The program's equivalent of che form ---------(Tuple I 3 I (Count up I) 8 shared I)):

-> (build-box
'(Tuple I 3 ((same

' (I pstruc2

boxl 2
-) (show-box 'box12)

(I 8 I)
-) (show-box 'box I 2)

I 2 8 2)
-) (show-box 'box12)

I 3 8 3)
-) (show-box 'box12)

(4 8 4)

pstruc2) 8 (same pstruc2)))
I Count up I I I))

163

The program's equivalent of the form ---------...
(Cycle 1 3 ((Count up I) 8 shared)):

-> (build-box
'(Cycle I 3 ((same

' ((pstr:uc3

boxl9
-> (show-box 'box19)

1
-> (show-box 'boxl9l

8
-> (show-box 'boxl9)

2
-> (show-box 'boxl9)

3
-> (show-box 'boxl9)

8
-) (show-box 'boxl9)

4
-) (show-box 'boxl9)

5
-) (show-box 'box19)

8
-> ("show-box 'boxl9)

6

pstruc3) 8 (same pstruc3)))
(Count up I))))

164

The Sequence 3 7 3 7 3 7

-> (startup)

please enter a term: 3
doing task Sparkler-plus on (glint! glint! 2)
doing task Dissolver

please enter a term: 7
doing task Sparkler
sparkl --- between glintlglint2
doing task Tester
doing task Dissolver on (glintl)
doing task Sparkler
spark2 --- between glintlglint2
doing task Sparkler-plus on (glint2 glintl 10)
spark3 --- between glint2glint1
doing task Sparkler-plus on (glint2 glint2 2)
doing task Sparkler-plus on (glint2 glintl 10)
spark4 --- between glint2glintl
doing task Tester
doing task Tester
doing task Sparkler-plus on (glint2 glintl 2)
sparks --- between glint2glintl
doing task Tester
doing task Tester

please enter a term: 3
doing task Sparkler-plus on (glint3 glintl 2)
spark6 --- between glint3glint1
doing task Dissolver on (glint2)
doing task Sparkler
doing task Sparkler-plus on (glint3 glint2 10)
spark? --- between glint3glint2
doing task Sparkler-plus on (glint3 glint3 2)
doing task Sparkler-plus on (glint3 glint2 2)
sparks --- between glint3glint2
doing task Tester
doing task Tester
doing task Sparkler
doing task Sparkler-plus on (glint3 glint2 10)
spark9 --- between glint3glint2
doing task Tester
doing task Tester
doing task Bonder on

(Sarne print-value (remote) glintl glint3)
bondl --- between glint1glint3
doing task Sparkler
doing task Sparkler
spark10 --- between glint3glint1
doing task Glorn-scout

165

Sarne -cover proposed--> glint1
Sarne -fence proposed --> glint1
doing task Glomtester on (Same cover glint 1)
doing task Glomtester on (Same fence glint1)

The system now gloms the first two terms,
givingaparseof (37)3.

doing task Glommer on
(Same print-value fence (glintl glint2ll

Glommer for Same print-value fence
members: (glint1 glint2)

doing task Sparkler-plus on (glom1 glom1 10)
doing task Glom-inspector on (glom1)
doing task Glommer on

(Same print-value cover (glintl glint2 glint3))
failed to glom (glint1 glint2 glint3)
doing task Plato-scout on (Cycle gloml J
doing task Tester
doing task Sparkler
doing task Bonder on .

(Same print-value (remote) glint1 glint3)
doing task Template-scout on (glorn1 J
doing task Template-applier on

(gloml (Cycle 3 2 (3 7)))
create-ternplate-glom (Cycle 3 2 (3 7))(glom1)
top-down glom glom2

A template is made. ·

template made : (form (Cycle 3 2 (3 7))
doing task Template-evaluator
check-cycle template (Cycle 3 2 ((3 7)))

A hypothesis is created.

doing task Hypothesizer
(Cycle 3 2 (3 7))
doing task Glom-scout
doing task Sparkler
sparkl1 --- between glint1glint2
doing task Sparkler-plus on (glorn1 glint3 10)
sparkl2 --- between glom1glint3
doing task Sparkler
doing task Gnoth-maker
top-down glom glorn3
gnoths constructed
doing task Tester
doing task Tester
doing task Call-term

166

please enter a term: show-hypothesis
(Cycle 3 2 (3 7))

The next term will confirm the hypothesis.

please enter a term: 7
doing task Hfilter
new term being hypothesis-filtered

through (Cycle 3 2 (3 7))
top-down glom glom4

I have a guess!

The system ventures a guess.

hypothesis: (Cycle 3 2 (3 7))
3 7 3 7

It is correct -- this time.

enter no if wrong, ok if right ok
bye

167

The Sequence 3 7 3 3 7 3

please enter a term: 3

please
sparkl
spark2
spark3
spark4
sparks

enter a term: 7
between glintlglint2
between glintlglint2
between glint2glint1
between glint2glint1
between glint2glint1

please enter a term: 3
spark6 between glint3glint1
spark? --- between glint3glint2
sparks --- between glint3glint2
spark9 --- between glint3glint2
bondl --- between glintlglint3
sparklO --- between glint3glint1
Same -cover proposed --> glintl
Same -fence proposed --> glintl
Glommer for Same print-value fence

members: (glintl glint2)
failed to glom (glintl glint2 glint3)
create-template-glom (Cycle 3 2 (3 7))(glom1)
top-down glom glom2

A template is created after three terms,

template made: (form (Cycle 3 2 (3 7))
state working coverage (1 2) glom glom2)

check-cycle template (Cycle 3 2 ((3 7)))
sparkll --- between glintlglint2
spark12 --- between glomlglint~
top-down glom glom3
gnoths constructed

We ask the system to "show" us its structures.

please enter a term: show
terms of the sequence:
3 7 3

bonds:
bondl Same print-value (remote)

gloms:

(glintl glint3)

gloml (Same print-value fence) --> (3 7) terms 1 to 2
glom3 pseudo--> ((3 7)) terms 1 to 2

gnoths:

class: Gnoths
name: gnoth 1
frame: O
plato-class: Cycle
glom: glom3
notes: nil

168

form: (((Cycle 3 2 (3 7)) pure))
state: stable
range: (1 2)

A hypothesis was made. We ask to see it

please enter a term: show-hypothesis
(Cycle 3 2 (3 7))

The next term will deny the hypothesis.

please enter a term: 3
new term being hypothesis-filtered
through (Cycle 3 2 (3 7))

spark13 between glint4glint2
spark14 between glint4glint3
spark15 between glint4glint3
spark16 between glint4glintl
spark17 between glint4glint3
set-out -- validity: 0
top-down glom glom4
groups: ((glintl glint2))
glom: (glintl glint2)
top-down glom glomS
top-down glom glom6
top-down glom glom71
top-down glom glom8
gnoths: (gnothl gnoth2 gnoth3)

The system will continue to)et ''Cycle" reign.

slip-check: stayval: o.o
best: nil

spark18 --- between glint3glint4
bond2 --- between glint3glint4
spark19 --- between glint3glint4
spark20 --- between glint4glint3
bond3 --- between glintlglint4
spark21 --- between glint4glint1
casts: ((Cycle 3 1 (3)) (Cycle 7 1 (7) J

(Cycle 3 1 (3))) (Cycle 3 3 (3 7 3))

169

A new hypothesis is made.

new hypoth candidate (Cycle 3 3 (3 7 3))
spark22 --- between glintlglint2

please enter a term: show-seq
3 7 3 3

The next term will confirm the new hypothesis.

please enter a term: 7
spark23 --- between glintSglintl
new term being hypothesis-filtered

through (Cycle 3 3 (3 7 3))
top-down glom glom9

I have a guess!

hypothesis: (Cycle 3 3 (3 7 3))
3 7 3 3 7

The hypothesis is correct.

enter no if wrong, ok if right ok
bye

170

The Sequence 1 2 I 2 3 1 2 3 4

-> (startup)

please enter a term: 1
doing task Sparkler-plus on (glint! glint1 2)
doing task Dissolver
doing task empty-task

please enter a term: 2
doing task Sparkler
spark1 --- between glint1glint2
doing task Tester
doing task Sparkler-plus on (glint2 glint 1 1 O)
spark2 --- between glint2glint1
doing task Sparkler-plus on (glint2 glint I 1 0 J
spark3 --- between glint2glint1
doing task Dissolver on (glint1)
doing task Bonder on

(Succ print-value (adjacent) glint1 glint2)
bond1 --- between glint1glint2
doing task Tester
doing task Glorn-scout
Fred -group proposed --> glint2
doing task Glom-scout
Fred -group proposed --> glint2
doing task Glomtester on (Fred group glint2)
doing task Tester
doing task Glomrner on

(Fred print-value group (glint1 glint2))
Glomrner for Fred print-value group members: (glint 1
glint2)
doing task Glomtester on (Fred group glint2)
Glomtester failed glint2
doing task Sparkler
doing task Bonder on

(Succ print-value (adjacent) glint! glint2)
doing task Bonder on

(Succ print-value (ad~acent) glint! glint2)
doing task Glorn-inspector on (glom1)
doing task Sparkler-plus on (glint2 glint1 2)
spark4 --- between glint2glint1
doing task Tester
doing task Plato-scout on ((S-group F-group) glom1)
doing task Bonder on

(Succ print-value (adjacent) glint1 glint2)
doing task Plato-evaluator on (F-group glom1)
doing task Sparkler-plus on (glint2 glint2 2)
doing task Sparkler
doing task Template-scout on (glorn1 J
create-ternplate-glom (S-group 1 2)(gloml)
top-down glom glom2

1 71

A template is made.

template: (form (S-group 1 2)
doing task Sparkler
spark5 --- between glintlglint2
doing task Template-evaluator on nil
doing task Sparkler-plus on (gloml gloml l 0)
doing task Gnoth-maker
top-down glom glom3
gnoths constructed
doing task Sparkler

Now comes the first hypothesis.

doing task Hypothesizer
(Countup l)
doing task Tester
doing task Call-term

please enter a term: show-hypothesis
(Countup 1 l

please enter a term: show
terms of the sequence:
l 2

bonds:
bondl Succ print-value (adjacent) -- (glintl glint2)

gloms:
gloml (Pred print-value group)--> (1 2) terms l to 2
glom3 pseudo--> ((1 2)) terms l to 2

gnoths:

class: Gnoths
name: gnothl
frame: 0
plato-class: S-group
glom: glom3
notes: nil
form: (((S-group l 2) pure))
state: stable
range: (1 2)

The next term denies the hypothesis

please enter a term: 1
doing task Hfilter
new term being hypothesis-filtered
through (Countup l)

•

172

doing task Bonder on
(Succ print-value (adjacent) glintl glint2)

doing task Sparkler-plus on (glint3 glintl 10)
spark6 --- between glint3glint1
doing task Sparkler-plus on (glint3 glint2 10)
spark7 --- between glint3glint2
doing task Sparkler-plus on (glint3 glom3 2)
doing task Sparkler-plus on (gloml glint3 10)
sparks --- between glomlglint3
doing task Sparkler-plus on (glint3 glint2 10)
spark9 --- between glint3glint2
doing task Tester
doing task Sparkler-plus on (glint3 glom3 10)
doing task Bonder on

(Pred print-value (adjacent) glint2 glint3)
bond2 --- between glint2glint3
doing task Sparkler-plus on (glint3 glint3 2)
doing task Sparkler-plus on (glint3 glomJ 2)
doing task Tester
doing task Dissolver on (glomJ)
glom3 is not in cytoplasm
doing task Tester
doing task Sparkler-plus on (glint3 glintl 10)
sparklO --- between glint3glintl
doing task Sparkler-plus on (glint3 glint2 10)
sparkll --- between glint3glint2
doing task Tester
doing task Tester
doing task Sparkler-plus on (gloml glintl 10)
doing task Sparkler-plus on (glint3 glint3 2)
doing task Bonder on

(Pred print-value (adjacent) glint2 glint3)
doing task Bonder on •

(Same print-value (remote) glintl glint3)
bond3 --- between glintlglint3
doing task Bonder on

(Sarne print-value (remote) glintl glint3)
doing task Glom-scout
doing task Glorn-scout
doing task Bonder on

(Pred print-value (adjacent) glint2 glint3)
doing task Sparkler
spark12 --- between glintlglint3
doing task Sparkler
doing task Glorn-scout
Same -cover proposed --> glint3
Sarne -fence proposed --> glint3
doing task Sparkler
spark13 --- between glintlglint2

173

doing task Tester
doing task Glomtester on (Same cover glint3)
doing task Tester
doing task Glomtester on (Same fence glint31
doing task Sparkler
doing task Tester
doing task Bonder on

(Succ print-value (adjacent) glintl glint2)
doing task Bonder on

(Same print-value (remote) glintl glint3)
doing task Sparkler
doing task Sparkler
spark14 --- between glintlglint3
doing task Sparkler-plus on (gloml gloml 101
doing task Sparkler
doing task Bonder on

(Pred print-value (adjacent) gloml glint3)
bond4 --- between glomlglint3
doing task Sparkler
sparklS --- between glint2glintl
doing task Glom-scout
Same -cover proposed --> glint3
Same -fence proposed --> glint3
doing task Glomtester on (Same fence glint3)
doing task Tester
doing task Bonder on

(Same print-value (remote) glintl glint3)
doing task Glomtester on (Same cover glint3)
doing task Sparkler
doing task Gnoth-setter
top-down glom glom4
top-down glom glomS
top-down glorn glorn6
top-down glorn glom7
top-down glom glom8
gnoths: (gnothl gnoth2 gnoth3)
doing task Glom-scout
doing task Tester
doing task Bonder on

(Succ print-value (adjacent) glintl glint2)
doing task Plat0-scout on

((C-group S-group P-group Y-group Cycle Tuple)
glom6)

doing task Template-scout on (glom6)
doing task Template-scout on (glom6)
doing task Sparkler
doing task Template-scout on (glom6)
doing task Sparkler
doing task Template-scout on (glom6)
doing task Sparkler
spark16 --- between glintlglint2
doing task Template-scout on (glom6)

•

174

doing task Template-scout on (glom6)
doing task Sparkler
doing task Reformulator

Changing to a new reigning class.
Countup --> S-group

doing task Bond-assessor on (S-group 8.0)

Reformulation is performed.

doing task Gnoth-operator
((PROGRAM ((SHIFT-RIGHT gnothl gnoth2 (glint I))

(ENCLOSE gnothl nil))))
top-down glom glom9
doing task Glom-scout
doing task Ref ormulator
doing task Tester
doing task Bonder on

(Succ print-value (adjacent) glintl glint2)
doing task Sparkler
doing task Sparkler
doing task Bond-assessor on (S-group 8.0)
doing task Reformulator
doing task Bond-assessor on (S-group 9.0)
doing task Reformulator
doing task Bond-assessor on (S-group 10.0)
doing task Gnoth-caster
casts: ((S-group 1 2) (S-group I 1))
(S-group 1 2)
new hypoth candidate (S-group 1 2)
doing task Call-term

A second hypothesis has been devised.

please enter a term: show-hypothesis
(S-group 1 2)

please enter a term: show-parse
((1 2) (1))

please enter a term: show
terms of the sequence:
1 2 1

bonds:
bondl Succ print-value (adjacent) -- (glintl glint2l
bond2 Fred print-value (adjacent) -- (glint2 glint3)
bond3 Same print-value (remote) -- (glintl glint3)

175

gloms:
glom8 pseudo --> (1) terms 3 to 3
glom9 pseudo--> (1 2) terms 1 to 2

gnoths:

external-bonds: ((bond2 O) (bond3 -5))
internal-bonds: ((bond1 10))
equivalence-type: parse
groups: nil
class: Gnoths
name: gnoth2
frame: 1
plato~class: S-group
glom: glom9
notes: nil
form: (S-group 1 2)
state: stable
range: (1 2)
external-bonds: ((bond2 O) (bond3 -5))
internal-bonds: nil
class: Gnoths
name: gnoth3
frame: 2
plato-class: S-group
g lorn: g lorn8
notes: nil
form: (S-group 1 1)
state: stable
range: (3 3)

; The next term confirms the hypothesis,
; although it is incorrect.

please enter a term: 2
doing task Hfilter
new term being hypothesis-filtered through (S-group 1
2)
top-down glorn glorn10

The system ventures a guess.

I have a guess!

hypothesis: (S-group 1 2)
(1 2)(1 2)(1 2)

It is wrong this time.

enter no if wrong, ok if right nope

•

•

176

please enter a term: show-seq
1 2 1 2

A new term is entered.

please enter a term: 3
doing task Hfilter
new .term being hypothesis-filtered through
(1 2) 1
doing task Sparkler-plus on (glints glint4 10)
spark17 --- between glintSglint4
doing task Sparkler-plus on (glints glom8 2)
doing task Sparkler-plus on (glint4 glint 1 1 0)
doing task Sparkler-plus on (glint4 glint3 10)
spark18 --- between glint4glint3
doing task Dissolver on (glom8l
glom8 is not in cytoplasm
doing task Sparkler-plus on (glint4
spark19 --- between glint4glint3
doing task Sparkler-plus on (glints
spark20 --- between glintSglint1
doing task Sparkler-plus on (glints
doing task Sparkler-plus on (glints
spark21 --- between glintSglint3
doing task Sparkler-plus on (glints
doing task Sparkler-plus on (glints
spark22 --- between glintSglint2
doing task Dissolver on (glomlO)
glom10 is not in cytoplasm

glint3 1 0)

glint1 1 0)

glom10 2)
glint3 1 0)

glints 2)
glint2 1 0)

doing task Sparkler-plus on (glint4 glint2 10)
spark23 --- between glint4glint2
doing task Sparkler-plus on (glint4 glom8 2)
doing task Sparkler-plus on (g~intS glint2 10)
spark24 --- between glintSglint2
doing task Gnoth-setter
top-down glom glom11
top-down glom glom12
top-down glom glom13
gnoths: (gnoth2 gnoth3 gnothS)

; We will stay with the reigning class -- S-group.

slip-check: stayval: 1s.o
best: (Y-group 4.0)

doing task Tester
doing task Bonder on

(Same print-value (remote) glint2 glint4)
bonds --- between glint2glint4
doing task Tester
doing task Tester
doing task Sparkler-plus on (glints glint3 10)
spark25 --- between glintSglint3
doing task Tester

177

doing task Bonder on
(Succ print-value (remote) glint2 glintS)

bond6 --- between glint2glintS
doing task Sparkler
doing task Bonder on

(Succ print-value (adjacent) glintJ glint4)
bond? --- between glint3glint4
doing task Sparkler
doing task Sparkler-plus on (glints glom10 10)
doing task Sparkler-plus on (glints glom10 2)
doing task Tester
doing task Sparkler-plus on (glints glomB 2)
doing task Reformulator
doing task Sparkler-plus on (glints glint4 10)
spark26 --- between glintSglint4

; More reformulation is performed.

doing task Gnoth-operator on
((SHIFT-RIGHT gnothJ gnothS (glintJ)))

top-down glom glom14
doing task Tester
doing task Bond-assessor on (S-group 8.0)
doing task Sparkler-plus on (glints glint4 10)
spark27 --- between glintSglint4
doing task Sparkler
doing task Tester
doing task Sparkler
spark28 --- between glint4glintS
doing task Bonder on

(Succ print-value (adjacent) glint4 glints)
bondB --- between·glint4glintS
doing task Sparkler-plus on (glints glint1 10)
spark29 --- between glintSglint1
doing task Tester
doing task Tester
doing task Sparkler
doing task Sparkler-plus on (glint4 glint4 2)
doing task Bonder on

(Succ print-value (adjacent) glintJ glint4)
doing task Sparkler-plus on (glints glints 2)
doing task Sparkler-plus on (glint4 glom9 2)
doing task Bonder on

(Succ print-value (adjacent) glint4 glints)
doing task Sparkler-plus on (glint4 glomB 10)
doing task Bonder on

(Succ print-value (remote) glint2 glintS)
doing task Sparkler-plus on (glints glom9 2)
doing task Reformulator
doing task Tester
doing task Sparkler

r

•

•

178

doing task Bonder on
(Succ print-value (adjacent) glint4 glintS)

doing task Sparkler
doing task Tester
doing task Sparkler-plus on (glints glom9 2)
doing task Tester
doing task Bonder on

(Succ print-value (adjacent) glint4 glintS)
doing task Bond-assessor on (S-group 8.0)
doing task Reformulator
doing task Tester
doing task Sparkler
spark30 --- between glintSglintl
doing task Bond-assessor on (S-group 9.0)
doing task Tester
doing task Reformulator
doing task Bond-assessor on (S-group 10.0)
doing task Gnoth-caster
casts: ((S-group 1 2) (S-_group 1 3))
(S-group 1 (Countup 2))
new hypoth candidate (S-group 1 (Countup 2))
doing task Call-term

; A third hypothesis is formulated.

please enter a term: show-hypothesis
(S-group 1 (Countup 2))

please enter a term: show-parse
((1 2) (1 2 3))

please enter a term: show
terms of the sequence:
1 2 1 2 3

bonds:
bondl Succ print-value (adjacent) -- (glintl glint2)
bond2 Pred print-value (adjacent) -- (glint2 glint3)
bond3 Same print-value (remote) -- (glintl glint3)
bonds Same print-value (remote) -- (glint2 glint4)
bond6 Succ print-value (remote) -- (glint2 glints)
bond7 Succ print-value (adjacent) (glint3 glint4)
bond8 Succ print-value (adjacent) -- (glint4 glintS)

gloms:
glom9 pseudo--> (1 2)
glom14 pseudo--> (1 2

terms 1 to 2
3) terms 3 to S

179

gnoths:

external-bonds:
((bond2 O) (bonds -5) (bond6 0) (bond3 -5)1

internal-bonds: ((bondl 10))
equivalence-type: parse
groups: nil
class: Gnoths
name: gnoth2
frame: 1
plato-class: S-group
glom: glom9
notes: nil
form: (S-group 1 21
state: stable
range: (1 2)

external-bonds:
((bond6 0) (bonds -51 (bond2 O) (bond3 -511

internal-bonds: ((bond8 10) (bond7 10))
groups: nil
class: Gnoths
name: gnothS
frame: 2
plato-class: S-group
glom: glom14
notes: nil
form: (S-group 1 3)
state: stable
range: (3 51

The next term confirms the ~ypothesis.

please enter a term: show-seq
1 2 1 2 3

please enter a term: 1
doing task Hfilter
new term being hypothesis-filtered through (S-group 1
(Count up 2))
top-down glom glom15

I have a guess!

hypothesis: (S-group 1 (Countup 2))
(1 2)(1 2 3)(1 2 3 4)

This time the guess is correct.

enter no if wrong, ok if right ok
bye

•

180

GLOSSARY

actualization - A. gnoth that exhibits the properties of some Platonic class is e.n
e.ctue.Hze.tion of the.t class e.t the socre.toplasm level.

attribute-based description -- a concept representation scheme the.t vie"C'$ e.
concept e.s a unit "1th only globe.1 properties. rather the.n as e. structure
(see "structure.1 description").

bond - e. cytoplasm-level structure that defines e. relationship (e.g .. sameness.
successorship) betveen tvo gloms (or glints).

box - the active portion of the structure.1 representation of e.Seek-Vhence
concept. e.nd e. repository of information e.bout the value of the.t structure.

bursting - e.n operation the.t destroys a glom e.nd its subgloms. leaving only
underlying glints behind.

ce.tche.11 gnoth - a rightmost or"tre.iler" gnoth the.t simply holds input terms

the.t agree 'With the hypothesis 'Without pe.renthesizin' them.
cosmetic reform - the reformulation of a predictive h'Yl>Othesis for aesthetic

reasons - to 'ive it e.clee.ner form - or to make its strueture conform.
more closely to that dictated by the reigning hypothesis.

cytoplasm -- the lovest level of the Seek-Vhence wrld: home of bonds. glints.
e.nd gloms.

dissolving-- e.n operation the.t destroys e.glom. freeing its top-level subgloms
into the cytoplasm.

divesting push -- a unile.tere.1 move bye. gnoth to rid itself of e.n interne.1 glom

that decreases its ste.l>llity. Vhether or not a neighboring gnoth he.s e.ny
e.ttre.ction for the glom.

dut> bing - the marking of a glom e.s a manifestation of a particular Pie.tonic
class. :For example, Vhen the system recognizes the.t the glom (1 11) he.s
the properties of a C-group, it will be "dubbed" e.s a C-group

manifestation.
frame - e.n e.bstre.ctly-vieved hit of a hypothesis: the collection of

Seek-Vhence forms the.t vould produce the given hit.

freeze-dried hypothesis - the form of ah ypothesis Vi th out its e.cti ve. structural

description.

1 81

glint -- Seek-Vhence's cytoplasm-level representation of an input-sequence
term.

glom -- a cytoplasm-level structure representing a plausibly groupe.ble

collection of neighboring glints (and/or gloms).
gnoth -- asocratople.sm-level structure representing alogice.1 grouping of

terms in the system's parenthesization or parse of a sequence.
gnoth operation -one of severe.I veil-defined actions - SHIET-UET.

SHIET-RIGHT. SPLIT. CAPTURE, ENCLOSE . .FRACTURE, MERGE. NO-OP -- for

modifying agnoth or neighboring gnoths.

gnoth-hypothesis equivalence -- the representation by a gnoth of one frame of

a hypothesis. There are three levels of equivalence -- term, parse. and
structure.I (see pp. 94-97).

hit -- a query of aSeek-Vhence die.gram or of a box for its next value -- a term
or grouping of terms.

hypothesis - areformulate.ble structure that models and can extrapolate a
sequence pattern, and is constructed from one or more of the eight

primitive Platonic concepts.

hypothesis filtering -- a process vhere by nev input terms are checked for
conformity.vith the reigning hypothesis. Should anevterm not
conform to the hypothesis, reformulation begins.

ideal types -- the Platonic concepts -- ideal atoms and ideal groups.
manifestation - A glom that exhibits the properties of some Platonic class is a

menifestati<>n of that class at the cytoplasm level.
medical reform - the reformulation. using the evidence presented l>y a nev

term or terms, of a hypothesis because it fells to l>e predictive.
parenthesization- an expression of a perceived sequence parse. made by

putting gnoths over certain gloms and glom collections . .E'or example. the
parenthesization (1 2) (I 2 "3) is achieved by putting the first tvo terms

into one gnoth and the last three into another.

parse - a patterned viev of a sequence.

Platonic class (concept) - an idealized version of an integer. or one of the eight
primitives (Constant, Countup. C-group. S-group, P-group, Y-group, Cycle,

Tuple) from vhich Seek-Vhence concepts are constructed.

i

182

platople.sm - the highest level of the Seek-Vhence vorld. vhich houses the
Platonic concepts and information about them.

PROGRAM - a series of gnoth operations proposed by a Reformulator tesk in
order to modify the system's perenthesization of a sequence.

pseudo-glom - an inert glom. in that it cannot combine vith other gloms.
generally used e.s a cap to prevent the disappearance of a given glom
cluster (one glom or a collection of neighboring gloms).

reformulation -- the conversion of one concept into another. related. concept in
a "reasonable" vay; a synonym for slippage.

s-link- A "slipping link" bet-veen tw Platonic classes. The slipperiness of
such a link indicates the system's procliVityto slip from one class to
another.

Seek-Vhence diagram. - a set of prim.i ti ve node types and a structural
representation technique wed to give a Visual sense of our concept
representation scheme and of the effects of reformulation.

Slipnet -- a repository of the information about the Platonic concepts and their
interrelationships needed for reformUlation.

slipperiness -- (see "s-link")
socre.toplesm ..:_the middle level of the Seek-Vhence vorld. vhicn howes the

gnoths.
structural description - a concept representation that portrays a concept as

haVing separately-describable components, rather than es a single entity
vi th only global attributes (see "attribute-based description").

task - an uninterruptible (and generally small) segment of a computational
process. Te.sks are capable of creating or modifying structures. setting
off other te.sks. or querying the wer.

template -- a "proto-hypothesis", developed e.s the first rough statement of an
emerging formulation.

terraced scan - a technique for progressively deepening the exploration of
several pathways in parallel. vhereby the most plausible pathvays are
explored more extensively than the less plausible ones.

"

BIBLIOGRAPHY

184

1. Anderson. James A .. end Hinton, Geoffrey E .. Models of information processing in
the brain. in: G.E. Hinton and J Anderson (Eds.) Parallel Models or
Associative Memory (La"M"ence Erlbaum Associates. Hillsdale. NJ. 1981) 9-48.

2. Anderson. John R .. Cognitive Skills and Their Acquisition (La"Vrence Erlbaum.
Hillsdale NJ. 1981).

3. Anderson. John R .. Acquisition of proof skills in geometry, in: R.S. Michalski. JG.
Carbonell. end T .M. Mitchell (Eds.). M4Chine Learning: An Artit"ide.1
Intelligence Approach (Tioga Publishing Company, Palo Alto. CA. 1983)
191-219.

4 . .A.nzei. Y., end Sim.on. H .. The theory of learning by doing, Psychologice.1 Review
36(2) (1979) 124-140.

5. Berkeley, E.C. end Bobrov. D. (Eds.), The Programming Language LISP: Its
Operation and Applications (Information International. Inc. Cambridge MA.
1964). .

6. Bierre. Pierre. The professor's challenge, The AI Magezine 5(4) (Vinter. 1985)
60-70.

7. Bobrov, Daniel CT., and Collins, .A.. (Eds.). Representation and Understanding
(.Academic Press, Nev York. 1975).

8. Bongard, Mikhail. Pattern Recognition (Spartan Books. Nev York. 1970).

9. Brachman, Ronald J. Vhat's in a concept: structural foundations for semen tic
ne~rks. International journal ol' Man-Mac_hine Studies 9 (1977) 127-152.

10. . On the epistemological status of semantic nenrorks. in: N. v.
Findler(Ed.), ..A#ociative Ne~ks: Representation and Use ol' Knovtedge
byCompurers (Academic Press. NevYork, 1979) 3-50.

11. end Schmolze. James. An overviev of the KL-ONE kno~edge
representation system., Cognitive Science 9(2) (1985).

12. Buchanan. Bruce G .• end Mitchell. T. M .. Model-directed learning of production
rules. in: D..A.. Ve.term.an and F:. Haves-Roth (Eds.), Pattern-directed
InrerenceSynems (Academic Press. NevYork:.1978).

13. Carbonell, JCT .• Learning l>y analogy: formulating and generalizing plans from
past experience, in: R.S. Michalski, JCT. Carbonell. end T .M. Mitchell (Eds.).
Machine Learning: An Artil'icial Intelligence Approach (Tioga Publishing
Company. Palo .Alto. CA.,1983) 137-161.

14. Clossman. CTray A .• A model of the encoding of perceptuel features according to
the concepts implicit in a set of essociatioru. internal memo. Fluid .Analogies
Research CTroup. University of Michigan, Ann Arbor. 1985.

15. Darden. Lindley, Reasoning by analogy in scientific theory construction. in: R.
S. Michalski (Ed.), Proceedings o.fthe Inrernatione.1 Machine Leartµng
Vor.kshop • .A.llerton House. University of Illinois at Urbana-Champeign
(June, 1983) 32-40.

185

16. De.vis. Philip J.. e.nd Hersh. R .. The Mathematical Experience (Houghton Mifflin.
Boston. 1981).

17. Dejong, Gere.id, An e.pproe.ch to learning from. observation. in: R. S. Michalski
(Ed.). Proceedings of the International Machine Learning Workshop,
Allerton House. University of Illinois at Urbana-Champaign (June.1983)
171-176.

18. Dennett. Daniel C .. Brainstorms (Bradford Books. Montgomery VT, 1978).

19. Dietterich. Thom.as G .. M.S. Thesis. Depe.rtm.ent of Computer Science. University of
Illinois e.t U rbe.na-Champaign.1979.

20. e.nd Miche.1ski. R.S .. A compe.re.tive reviev of selected methods for
learning from. examples. in: R.S. Michalski. JG.Carbonell. end T.M. Mitchell
(Eds.). Machine Learning: An Artificial Intelligence Approach (Tioge.
Publishing Company, Pe.lo Alto. CA. 1983) 41 - 81.

21. e.nd Miche.1ski. R..S .. Discovering patterns in sequences of events.
Arfificial Intelligence 25(2) (1985) 187-232.

22. Evans. Thom.as G .. A program. for the solution of e. class of geom.etric-e.ne.1ogy
intelligence-test questions. in: M. Minsky (Ed.). Semantic Information
Processing (MIT Press. Cam.bridge, MA. 1968) 271-353.

23. Eeigenbe.um.. E. A. and Eeldmen.]. (Eds.). Computers and Thought (McGre.v-Hill.
NevYork.1963).

24. Eredkin. Edvard. Techniques using LISP for e.utom.e.tice.11ydiscovering
· interesting relations in de.ta. in: E.C. Berkeley and D. Bobrov (Eds.). The

Programming Languege LISP: Its Operation and .Applications. (Information
Interne.tione.1. Inc. Cambridge MA.1964) 108-124.

25. Gentner. Dedre. Structure-m.e.pfing: e. theoretical fre.m.evork for e.ne.1ogy,
Cognitive Science 7 (1983 155-170.

26. Gregg. L. V. (Ed.). Knovtedge and Cognition (Le.vrence Erlbaum.. Nev York.
1974).

27. Groner. R .• Groner. M .• end Bischof. V. (Eds.) Methods of Heuristics (Lavrence
Erlbe.um.. Hillsdale NJ.1983).

28. Hinton. GeoffreyE .• e.nd Anderson.]. (Eds.). Parallel Models of Associative
Memory (Lavrence Erlbaum.. Hillsdale NJ. 1981).

29. Hofstadter. Douglas R. .• GOdel. Escher. Bach: an Eternal Golden Braid (Be.sic Books.
NevYork.1979).

30. • Clossm.e.n. G. A. e.nd Meredith. M. J .• Shekespee.re's plays veren·t
vritten by him. but by someone else of the se.m.e ne.m.e. Technice.1 R.epQrt No.
96. Depertm.ent of Computer Science. Indiana University. Bloomington. JU1y,
1980.

31. Hofstadter. D.R. e.nd Dennett. D.C .. The Mind's I (Basic Books. Nev York. 1981).

•

186

32. Hofstadter. D.R .. Clossman. G. A. and Meredith. M. J.. SV: A computer model of
perception. abstraction. and induction. internal memo. Department of
Computer Science. Indiana University, Bloomington. 1982a.

33. Hofstadter. D. R:. Artificial intelligence: subcognition es computation, Technical
Report No. 132. Department of Computer Science. Indiana University,
Bloomington. November. 1982b.

34. • On Seeking Vhence. unpublished manuscript, 1982c.

35. • The architecture of .]uml>o, in: R. S. Michalski (Ed.). Proceedings
of the International Macllb1e Learning Vorkshop. Allerton House,
University of Illinois at Urbana-Champaign (June. 1983') 161-170.

36. • The Copycat project: an experiment in nondeterminism and
creative analogies, A.I. Memo 755. Massachusetts Institute of Technology,
The Artificial Intelligence Laboratory, January, 1984.

37. • Metamagical Themas: Questing for the Essence of Mmd and
Pattern (Besic Books. NevYorlc.1985a).

38. . Clossman. G .• Rorers. D., Mitchell. M .. HUl>er. G. and Leban, R .•
Research on fluid analogies. Fluid J.nalogies Research Group Charter.
Department of Psycholoey. University of Michigan, Ann Arbor, April. 1985b.

39. Holland. John H .• Escaping brittleness. in: R. S. Michalski (Ed.). Proceedi.ngs of
the International Machine Learning Vork.rhop • .Allerton House. University
of Illinois at Urbana-Champaign (June. 1983) 92-95.

40. Kotovstcv. Kenneth, and Simon. H. A .. Empirical tests of a theory of hum.an
acquisition of concepts for sequential patterns. Cognitive Psychology 4
(1973) 399-424.

41. Kuhn. T .• The Structure ofScient1!1c Revolutions. (University of Chicago Press.
1962).

42. Langley, Pat. Bre.dshav. G. L .• and Simon. H .. Rediscovering chemistry~ th the
BACON system, in: R.S. Michalski, JG. Carbonell and T .M. Mitchell (£ds.).
Mac.bille Lttarnin~: An Artincial Inte11igence .Approach (Tioga Publishing
Company, Palo Alto, CA, 1983) 307-329.

43. • Lee.ming to search: from weak methods to dome.in-specific
heuriSti.cs. ~nitiveScience 9 (1985) 217-260 .

44. Lenat. Douglas B .• The nature of heuristics . .Artificial IntelJigence 19(2) (1982)
189-249.

45. .Theory formation by heuristic search: the nature of heuristics
II: background and examples. Artificial Intelligence 21(1,2) (1983a) 31-59.

46. • EURISKO: a program that learns nevheuristics and dome.in
concepts: the nature of heuristics III: program design and results .
.Artificial Intelligence 21(1.2)(19831>) 61-98.

187

47. Lene.t. Douglas B .. The role of heuristics in learning by discovery: three case
studies. in: R.S. Michwki. JG. Carbonell and T.M. Mitchell (Eds.). Ma.chine
Learning: An .Anificiel Inrelligence .Approach (Tioge.Publishing Company,
Pe.lo .Al to.· CA. .198'3c) 24 '3-'306.

48. ______ and Brovn. John Seely. Vhy .AM end EURISKO e.ppeer to vork.
Artificial Intelligence 2'3('3) (1984). 269-294.

49. Meredith, MarshaJ. Reynolds. Paul end Vehking, A.udrey. Pattern perception
experiment. presentation to the Illinois State A.cademyof Sciences.
Computer Science Section. A.pri1. 198'3.

50. Meredith, Marsha J.. The code for Seek-Vhence. Technical Report. Department or
Computer Science. Indiana University (forthcoming), 1986.

51. Michalski. Ryszard s .. Carbonell, J.G. end Mitchell. T.M. (Eds.). Machine Learning:
An Artificial Intelligence .Approach (Tioga Publishing Company, Pe.lo .Alto.
CA.. l 983a).

52. Michalski. Rysze.rd S. (Ed.). Procee<li.ngs of the In terna.tional Machine Learning
Vor.lc"shop. A.llerton House.University of Illinis at Urbane.-Chempe.ign
(June. 1983b).

5'3. ------·A theory and methodology of inductive learning. Artificial
Intelligence 20(2) (1983<:) 111-161.

54. ______ and Stepp, R..E .• Lee.ming from observation: conceptual
clustering, in: RS. Michelsld, j.G. Carbonell and T .M. Mitchell (Eds.).
Machine Learning; .An .Artificial Intelligence .Approach (Tioga Publishing
Company, Pe.lo Alto. CA, 1983d) 331- 363.

55. Minsky, Marvin (Ed.), Se.man Uc Information Processing (MIT Press, Cambridge,
MJ.. 1968).

56. . A. fre.m.e"VDrlc for representing knovl.edge, in: P.H. Viruton
(Ed.), ThePsycbo1ogyot'Co.mputer Vision (McGrav-Hill. Nev York. 1975)
211-277.

57. • Jokes and the logic of the cognitive unconscious. in: R. Groner.
M. Groner end V. £.Bischoff (Eds.), Methods of Heuristics (Lavrence
Erlbaum. Associe,tes, HillSde.le, NJ, 1983) 171-193.

58. . The society of mind, lecture presented at Southern Illinois
University at Edvardnille, April. 1986.

59. Mitchell. Thomas M .• Uta:off. Paul end Banerji. Renan. Learning by
experimentation: acquiring end refining problem-solving heuristics. in:
R.S. Michalski. j.G.terbonell e.nd T.M. Mitchell (Eds.). Machine Learning:
An Artificial Intelligence .Approach (Tioga Publishing Company, Pe.lo .Alto.
C.A..1983) 16'3-190.

60. Moore. J. e.nd Neveu. A .• Hovcan Merlin understand?. in: L. Gregg (Ed.).
Knovtedge and Cognition (Lavrence Erlbaum. Potomac. MA. 1973).

r

188

61. Norman. Donald J... (Ed.). Perspectives on Cognitive Science (J..blex. Norvood NJ.
1981).

62. Peerl. Judea (Ed.). ~arch and Heuristics (North-Holland, J..m.sterde.m. 1983).

63. Persson. Sta!fan. Some sequence extrapolating programs: a study of
representation and modeling in inquiring systems. Report No.
STJ..N-CS-66-050. Department of Computer Science. Stanford University,
Stanford. CA. 1966.

64. Pi var. M. and :Finkelstein. M .• .Automation. using LISP. of inductive inference on
sequences. in: E.C. Berkeley end D.Bobrov (Eds.). The Program.ming
LIJtlguage LISP: Its Operation and .Applications, (Information International.
Inc. Ce.mbridge MA.1964) 125-136.

65. Reddy, Raj. Ermen. L., Hayes-Roth. E' .. Lesser. V. end Shockey, L .• Vorking papers
in speech recognition -- IV - the HEARS.A Y II system. Cernegie-Mellon
University Computer Science Department Technical Report. :February, 1976.

66. Rogers. DaVid. personel memorandum. 1986.

67. Schenk. Roger c .. end Colby, IC. M. (Eds.). Computer Models of Thought and
LIJtlguage (:Freemen. San E'rencisco. 1973).

68. Schenk. Roger C .. Language end memory, Cognitive Science 4(3) (1980) 243-284.

69. Dynamfo Memory: .A theoryofrem.inding and learning in
comp uteri and people (Ce.mbridge University Press. Cambridge. 1982).

70. The Cognitive Computer (Addison-Vesley, Ree.ding MA. 1984).

71. Searle. John. Minds. breins. end programs. The BehaVioral and Brain Sciences 3
. (September.1980)417-457.

72. Simon. Herbert A. and ICotovsky, J: .• Hum.en acquisition or concepts for
sequential patterns. Psychological Reviev 70(6) (1963) 534-546.

73. Simon. Herbert A .• Complexity end the representation or patterned sequences of
symbols. Psychological Revtev 79(5) (1972) 369-382.

74. _____ ,ModeJsof'Discovery (Reidel.Dordrecht.1977).

75. Stepp, R. E .• end Michalski. R. s .. Conceptual Clustering or Structured Objects: A
Goal-Oriented .Approach. Artificial Intelligence, 28(1) (1986), 43-69.

76. Ulam. Stenislav • .Adven tut"&' of a Mathematician (Charles Scribner's, Nev York.
1976).

77. Ve.term.en. D. A .. end Hayes-Roth. E'. (Eds.). Pattern-directed Inference Systems
(Academic Press. Nev York. 1978).

78. Vickelgren. Vavne A .. Hovto Solve Problems (V. H. :Freemen end Company. San
E'rencisco, 1974).

189

79. Vinston, Patrick H., Learning structural descriptions from examples, in: P.H.
Vinston (Ed.), The Psychology of' Computer Vision (McGre.v-Hill, Nev
York, 1975) 157-209.

80. , Learning end reasoning by analogy, Commutlications of' the
Association tor Computing Machinery, 23(12) (December,1980).

81. Vinston, P.H., Learning by augmenting rules and accumulating censors, in: R.
S.Michalski (Ed.), Proceedings of' the International Machine Learning
Vorkshop, .A.llerton House, University of Illinois at Urbana-Champaign
(June, 1983) 2-11.

l

