
• 

Seek-Whence: A Model of Pattern Perception 

by 

Marsha J. Ekstrom Meredith 

Computer Science Department 
Indiana University 

Bloomington, Indiana 47405 

TECHNICAL REPORT NO. 214 

Seek-Whence: A Model of Pattern Perception 
by 

Marsha J. Ekstrom Meredith 

September, 1986 

• Copyright © 1986 by Marsha J. Ekstrom Meredith 



• 

Accepted by the Graduate Faculty, Indiana University, in 

partial fulfillment of the degree of Doctor of Philosophy. 

¥'£~ 
Douglas R. Hofstadter:Ph:o::c:air 

Daniel P. Friedman, Ph.D. 

Mitchell Wand, Ph.D. 

William C. Perkins, D.B.A. 

August 20, 1936 



iv 

DEDICATION 

To Sam. for all the hours end ell the encouragement . 

• 



• 

• 

v 

ACKNOVLEDGMENTS 

The vork presented here has benefitted from years of support and 

critique bye. number of people. First and foremost is Professor Douglas R . 

Hofstadter, vithout vhose inspiration, encouragement, patience, and friendship 

over the years none of this voUld have been possible. Professor Daniel 

Friedman hes been e. constant source of encouragement. and e.lvays gave 

generously of his time. Professor Mitchell Vand's careful reading e.r>.d clear 

thinking have helped me enormous! y, and Professor Villiem. Perkins hes 

consisten t1 y gone out of his vay to be helpful. 

I voUld also like to thank two Systems Managers - David Plaisier at 

Indiana and Barbe.re. Zimany at Blackburn -- and their staffs for their help in 

getting my program on its feet. Thanks also to PaUl Reynolds and Audrey 

Vehking for their vork on human pattern perception, and to Dr. Ivan Liss and 

his CSllO class at Blackburn for serving es guinea pigs in our experiment. 

Finally, I voUld like to thank severe.! people vho have helped me on a 

personal level over the years. Thanks: to Jill Porter for her mighty efforts to 

keep e.11 my records in order; to !Caty, ICen, and Regina Ratcliff for their 

hospitality and friendship; to Ivan Liss for the pep talks; to my parents, Fred 

and Margaret Ekstrom. for encouragement and understanding; tom y sister 

Meggie for all those summers of help and support; to Kirsten and Kelsey for 

being more understanding than could be expected of children; and to Sam, for 

everything. 

Of course, in spite of the efforts of all these people, there may be errors 

of formulation or execution in this vork. For these. I take full responsibility. 



• 

• 

vi 

PREFACE 

In an era vhen programs have been written to perform medical 

diagnoses. find oil, analyze soybean diseases. and even rediscover 19th-century 

chemistry. I have written aprogre.m -and one of some size -- that seemingly 

does almost nothing. 

The program. celled Seek-Vhence, is designed to discover. model. and 

reformulate patterns presented as sequences of nonnegative integers. The 

patterns are not mathematically complicated ones -- they are based on little 

more than the successorship and sameness relations betveen pairs of integers 

- yet they can become arbitrarily complex. chellenging even for humans. Our 

'I/Ork on Seek-Vhence represents only the barest begihnings in exploring this 

domain space; the program can handle only a fev types of problems of 

moderate complexity. Nonetheless. ve believe that our goals and approach are 

sufficiently important to varrant further wrk and much concentrated study. 

But sequence extrapolation is a solved problem. handled by Pi var and 

Finkelstein [Pi var 64] tventy years ago -- is it not? Not in its full generality. 

The Pi var-Finkelstein system concentrated on extrapolating sequences vith 

underlying mathematical formulas. Hence. these sequences could often be 

solved by applying a battery of mathematical techniques until an explanatory 

formula (or collection of formulas) vas found. Their domain and approach are 

quite distant conceptuell y from ours. 
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Those vho have vorked on the formUl.ation and implementation of 

Seek-Vhence are interested in modeling the human ability to discover patterns 

and to find mUl.tiple and/or changing patterns in an evolving situation. 

Integer sequences happen to be an.excellent domain for our purposes for 

several reasons. 

First. ve can strip avayenough complicating detail to get at core issues. 

For example, by eliminating knovl.e<lge of mathematical operations (such as 

addition. mUl.tiplication. squaring, etc.). ve can divest the nonnegative integers 

of all but their most fundamental properties. They can then serve as atomic 

units - structures tjthout internal pattern -- in our pattern domain. 

In addition. by presenting sequence terms one at a time. ve can explore 

the vays in vhich perceptions about a pattern change as it evolves. Humans 

are able to move from one plausible pattern characterizaton to another tjthout 

entertaining a host of unrelated and implausible characterizations along the 

vay. Ve vant to model this ability. 

Finally, ve can test the adequacy of the system's pattern perception by 

asking for: 

1) a characterization of the pattern; 

2) an extrapolation of the sequence according to that characterization. 

In summary, although Pi var and Finkelstein explored mathematical 

sequence extrapolation, their vork -- and that of their successors - has left the 

important and <lifficUl.t problem of pattern perception in the domain of integer 

sequences unexplored. The follotjng claim tjll emphasize the importance ve 
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attach to this problem: 

Finding patterns in sequences. developing a model to describe the 

perceived pattern. e.nd reformulating the model on the be.sis of nevevidence is 

nothing less the.n scientific induction in microcosm. 

This dissertation is organized into five chapters. In the first chapter. ve 

discuss the foundations of our vork. including both underlying questions e.nd 

extant systems that influenced our idee.s e.nd approach. The subsequent tvo 

chapters document the current implementatioa of the Seek-Vhence pr~gram. 

In chapter four. ve compare the Seek-Vhence approach e.nd program to several 

related systems. Finally. in chapter five ve present implementation details, 

reviev some shortcomings of the system. and set some directions for fUture 

research. 
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ABSTRACT 

Seek-Vhence is an inductive leerning progre.m that serves as e. model of 
e.neve.pproe.ch to the programming of "intelligent" systems. This approach is 
cheracterized by: 

structural representation of concepts; 
the ability to reformulate concepts into nev. related concepts; 
a probabilistic. biologically-inspired approach to processing; 
levels of abstraction in both representation and processing. 

The program's goals ere to discover patterns. describe them as structural 
pattern concepts. and reformulate those concepts. vhen appropriate. The 
system should model human performance as closely as possible. especially in 
the sense of generating plausi!>le descriptions and ignoring implausible ones. 
Description development should be strongly de.ta-driven. Small. special-purpose 
tasks vorking at different levels of abstraction vith no overseeing agent to 
impose an ordering eventually guide the system toverd e. correct and concise 
pattern description. 

The chosen dome.in is that of non-mathematically-sophisticated patterns 
expressed es sequences of nonnegative integers. A user presents a patterned 
number sequence to the system. one term at a time. Seek-Vhence then either 
ventures e. guess at the pattern. quits. or asks for another term. Should the 
system guess e. pattern structure different from the one the user has in mind, 
the system vill attempt to reformulate its faulty perception. 

Processing occurs in tvo stages. An initial formulation must first 
evolve; this is the vork of stage one, culminating in the creation of e. 
hypothesis for the sequence pattern. During stage tvo, the hypothesis is either 
verified or refUted by nev evidence. Consistent verification vill tend to 
confirm the hypothesis, and the system vill present the user vith its 
hypothesis. An incorrect guess or refUte.tion of the hypothesis by nev evidence 
vill cause the system to reformulate or abandon the hypothesis. 

Reformulation of the hypothesis causes related changes throughout the 
several levels of Seek-Vhence structures. These changes can in turn cause the 
noticing of nev perceptions about the sequence, creating an important 
interplay e.mong the processing levels. 
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J... INTRODUCTION 

Hwnens are excellent pattern perceivers . .From. the tiny be.by learning 

to recognize its mother's face to the scientist vhose perspiration is revarded by 

a sudden inspiration. ve spend m.uch or our lives noticing patterns. Although 

ve find nothing amazing about being able to recognize e. friend ate. distance or 

three blocks - e. common ability- ve do prize the pattern-discovery ability or 

those vho are especially good at it in some dome.in . 

.For example. vhen Larry Bird has one of those special games or vhich 

he is capable. ve ve.tch in amazement. trying to capture the experience vith 

such phrases es "seing the vhole court" or "playing out or his mind". Ve can 

feel that he "understands" the court. that he kno~ vhere ever-yone is. vhere 

they vill be. end vhe.t they vill be doing. He hes e. sense or system • or hov 

things fit together. that escapes almost ever-yone else. "Playing out or his mind'" 

is litere.lly true. in the sense that he need only follov the mental structure he 

hes created to be successfUl.. 

The besketbe.11 situation outlined above strikes us es very similar to that 

of the scientist having e. "breakthrough". vhen things simply "come together" 

or "fe.11 into place" - that is. vhen important connections are me.de. Ve feel 

that both of these situations. along vi th e. multitude of the more common. 

everyday kind. are at the core of hum.en creativity. To be precise. the core or 

creativity is the ability to find unexpected relationships and to discover 

previously-unnoticed patterns. 

BONGJ..RD PROBUMS 

Bongard problems let us experience the "natural'" hwn.an ability to 

create and reformulate pattern characterizations. The problems. first posed by 

Mikhail Bongard [Bongard 70]. present the solver vi th tvelve dre.vings. six on 
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either side of e.dividing line. The object is to che.racteriZe the difference 

betveen the figures on the left end those on the right - in essence. to exple.in 

vhythe dividing line "makes sense". Severe.1 Bongard problems are reproduced 

in the Appendix. 

In solving Bongard problems. ve move from one he.tr-formed and 

t~nuowly-held idea to another. can feel notions bubbling up from somevhere 

in our minds. and arrive e.t unexpected but immediately e.ccepted 

chare.cterize.tions. for exe.mple. e.!ler a group of people vorlced fore. moment or 

tvo on problem "'21 - shovn in the Appen~ix - one person sUddenly called out 

"puppies are alloved!". and the group immedie.tely e.greed. Such ideas crystallize 

sUddenly. and feel right. This certe.inty is note. result of dealing vi th overly 

simplistic or common notions. In re.ct, the re.vored che.re.cterize.tion is often a 

phre.se rather thane.simple term. and different people vill come up vith 

different but accepte.l>le characterizations the.t she.re an underlying notion. the 

one "concepttiel skeleton" (to use Dougle.s Hofste.dter's term) the.t fi~. 

My first encounters vi th Bonge.rd problems vere in tvo cle.sses given l>y 

Dougle.s Hofstadter e.t Indiana University-one, e.seminar on his book GOdel 

Escher Be.ch· an Eterne.1 Golden Bee.id 1Hofste.dter 79]. and the other e. class in 

artificie.1 intelligence. During the seminar. ve vere me.de e.ve.re of the 

potential e.trorded by these problems e.s a vehicle for exploring human 

intelligence. and. in avider sense. vere made e.ve.re of the unexplored territory 

opened by such dome.ins e.s opposed to those typically stUdied in A.I. - the 

knovtedge-intensive. the "difficult". the rele.tion-entangled. The discussion of 

Bongard problems given in W. and the problems themselves - in Bongard's 

ovn book. Pe.nern Recognition 1Bongard 70 I- are Ve.lue.l>le ree.ding for an yane 

interested in the meche.nisms and structural depth of human intelligence. 
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In our artificial-intelligence class. ve began to explore the Bongard 

problems them.selves a bit more deeply. Ve tried to ve.tch ourselves solve the 

problems. tried to verbalize Vhe.t ve.s going on as our minds seemed to '1eave us 

behind" on some of the problems and come up ~th solutions. On other 

problems, ve consciously tried different characterizations. our attempts often 

being colored by our experience ~th previous problems. 

Hofstadter has round or created many terms to describe Vhat goes on in 

our minds as ve attempt to solve these problems. Such terms as "reformulate", 

"focus and filter", "deform.", "structural similarity", "sameness detector", "levels 

or description", "slipping", "meta-description", "tem.ple.te".and "flexibility" 

achieve special meaning in this context. Perhaps most important or all: 

"One can think of the Bongard-problem. vorld as a 
tiny place Vhere 'science' is done - that is. Vhere 
the purpose is to discern patterns in the vorld." 

[Hofstadter 79, p. 659] 

. 
BIRTH OF SEEK-VHENCE 

The intriguing perspective on intelligence presented in the Hofstadter 

courses me.de a strong case for the importance of exploring this nev uni verse of 

the non-verbe.liZal:>le. the mental undercurrent. the "subcognitive". All that 

ve.s required ves a suitable dome.in. one that captured the essence of the 

problem. ~thout being tied to too many extraneous and complicating variables. 

A fully general Bongard-problem-solver ve.s clearly beyond reach because of 

the limits of visue.1 processing systems and the overhead they vould entail. Ve 

needed quicker access to the centre! issues or perception and reformulation. It 

ve.s then that a previous project in sequence extrapolation lee.pt to the fore. 

As have many students in artificial intelligence classes. I vrote e. 
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program to extrapolate integer sequences. Typically enough, the program 

could recognize smallish primes end Fibonacci numbers. and could untangle 

interleaved sequen~es of fixed- or patterned-length period. such as: 

1133311333 ...• or 

102203330 .... 

It could finite-difference its vay to solutions of many pathological problems 

humans vould never solve (except by finite-differences. and only under 

duress) - for example: 

1 z 5 15 42 98 

(e. sequence "'hose second differences are every third prime). 

Although pleased that the program coUld solve so many intricate 

sequences. I ve.s disturbed in particular by its total le.ck of "intelligence". The 

program ve.s "mechanistic". blindly recursive. and not at e.11 sensitive to 

pattern. as vould bee. human. The same solution me.chineryve.s applied to all 

sequences. regardless of their form or content. 

The j uxte.posi tion of the tvo projects -- e. Bonge.rd-like pattern -discovery 

end reformulation program vi.th en overly mechanistic. pattern-insensitive 

sequence-extre.pole.tor -- me.de for an obvious conclusion. and so the 

Seek-Vhence project ve.s born. Sequence terms have simple descriptions. By 

ignoring "mathematical" sequences ve could concentrate on "the processes of 

recognizing patterns" [Hofstadter 1982c. p. 10 ]- the essence of both Bongard 

problems end science - vi.thout becoming mired do'nl in '1e.rge amounts of 

specialized knovtedge e.t>out me.thematics end arithmetic" (p.10). The project's 

name reflects both our dome.in interest -- ve can "seek wence" terms arise in e. 

patterned "seq-uence" -- end the muttiple perspectives one must often have ofe. 

single object - in this cese. the project's name -- in order to understand it fUlly. 
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SOME TYPICAL PROBLEMS 

In Seek-Vhence, terms of a sequence are presented one by one to the 

solver by the presenter. The solver's goal is to guess the pattern the presenter 

has in mind. Clearly, for enygiven initial segment there are multitudes of 

possible patterns; hovever, the solver usually finds the correct solution to a 

reasonable pattern after seeing relatively rev patterned groups of terms. 

In order to give a sense of vhat ve mean by "correct" solutions end 

"reasonable" patterns, ve list belov a dozen sequences. These sequences vere 

actually presented in the menner described above to each of twenty-five 

students at Blackburn College, in en experiment to determine the types of 

complications most troublesome to human pattern perceivers [Meredith 83 I. 

Their experience cen be approximated by sampling the sequences one term at a 

time. mel<:ing hypotheses es one goes along. The "parsed" sequences follov. 

THE BLACKBURN DOZEN 

1) 1 12123123412345 ... 

2) 1234567 ... 

3) 2 1 2 2 2 2 2 3 2 2 4 2 2 5 2 . . . 

4) 1 2 2 3 3 3 4 4 4 4 ... 

5) 185818581858 ... 

6) 2 1 2 2 2 3 2 4 2 5 ... 

7) 231232223333234444 ... 

8) 1223344556 ... 

9) 123344555666 ... 

10) 9 1 9 2 9 3 9 4 . . . 

11) 181218123218123 ... 

12) 185581185581. .. 
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THE PARSED DOZEN 

1) 1*12*123*1234*12345* 

2) 1 * 2 * '3 * 4 * 5 * 6 * 7 ... 

'3) 2 1 2 * 2 2 2 * 2 3 2 * 2 4 2 * 2 5 2 ... 

4) 1 * 2 2 * 3 3 3 * 4 4 4 4 * .. . 

5) 1 8 5 8 * 1 8 5 8 * 1 8 5 8 * .. . 

6) 2 1 * 2 2 * 2 3 * 2 4 * 2 5 .. . 

7) 2 3 (1) * 2 '3 (2 2) * 2 '3 (3 3 3) * 2 3 (4 4 4 4) * ... 

8) 1 2 * 2 '3 * '3 4 * 4 5 * 5 6 ... 

9) 1 * 2 * '3 3 * 4 4 * 5 5 5 * 6 6 6 ... 

10) 9 1 * 9 2 * 9 3 * 9 4 ... 

11) 1 8 1 * (2 1) 8 (1 2) * ('3 2 1) B (1 2 3) * 

12) 1 B 5 5 8 1 * 1 B 5 5 B 1 * ... 

Ve cell a run of terms t>etveen asterisks ( •) in the parsed versions a 

"'template... In order to demonstrate an understanding of the pattern. the solver 

must complete the current template e.nd fill out the next one - vhich is vhat 

people usually do anyve.y vhen presented these problems. 

B. THE SEEK:-VHENCE APPROACH 

The Seek-Vhence system. like any human problem-solver. is presented 

sequence terms one at a time by the user (presenter). As each term is 

presented. the system tries to come up vi th a hycothesis • or characterization of 

the sequence pattern. If subsequent terms confirm the hypothesis. the system 

vill venture a guess - not simply by supplying the next template (el.though it 

does this). but by shoving the user a synopsis of its model. On the other hand. 

should subsequent terms refute its model. the system attempts to reformulate 
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the model to conform to the nev de.ta as vell as to the old. If successful e.t this 

reformulation effort, the system has anevvorlcing hypothesis, open for 

confirmation or ret\lte.tion 

GETTING AT THE ESSENCE 

To be sure, there are some differences betveen Seek-Vhence and a 

full-l>lovn Bonge.rd-type progrem. Most obvious is that ve chose to deal Tlith 

one sequence, not a set of tvelve dravings. This requires w to predict 

successive terms, rather than to come up Tlith e. verbal che.r~cterization. 

Hovever, the fact that ve require construction of a predictive model mitigates 

this difference somevhe.t. in that ve are attempting to characterize the 

sequence in some explicit vay. 

Another difference is that ve chose to present the sequence to the 

system. one term at e. time, rather than as a vhole, as is the case Tlith Bonge.rd 

problems. This models the scientific method by forcing Seek-Vhence to react 

to nev evidence, to reformUlate its model of the sequence in the light of nev 

terms. Ve believe that our choices have me.de the sequence problem e.n 

appropriate dome.in for the study of the phenomena in vhich ve are interested. 

EXTRAPOLATOR LESSONS 

One lesson learned in vriting the sequence extrapolation progrem for 

our artificial-intelligence class ve.s that one must be careful not to build in too 

many clever devices. The success of that progrem ve.s direct! y proportional to 

the number of tricks and special sequences the progremmer could devise. 

In reaction to that. ve have not permitted Seelc-Vhence to vork on derived 

sequences (e.g., first differences, first ratios, even-numbered terms, etc.) of e.n y 

kind. Such manipUle.tions as separating interleaved subsequences, pUlling out 
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group lengths, and the like ere "high-level" actions the.t can only be employed 

efler the initiel. noticing of patterns has taken place. To introduce such 

operations too soon vould be to run the risk of overly directing the program's 

actions, and so of doing its vork for it. 

Vhen the programmer does get to the point of supplying e. "beg of 

tricks" such as noticing interleaving.. or vhe.tever. the progt'.am should be able 

to select tricks from that beg by itself. based on its perceptions at the time - as 

people do -- and not based on some "canned", pre-determined hierarchy of 

techniques. ~is pointed out in e.le.ter chapter, the Seek-Vhence system is just 

nov becoming ready to employ top-dovn approaches such es these. 

C. REPRESENTATION ISSUES 

The centrel. concern of the Seek-Vhence project is to explore the ability 

to discover patterns, an e.l>ility the.t requires the development and reformulation 

of pattern (concept) descriptions. Th& representation of concepts is criticel. to 

the success of the system. because the concept descriptions must express salient 

information -- vhere salience is not predefined- and so must be amenable to 

fluid and continual modification. In the folloving sections, ve vill outline our 

approach to concept representation and processing in Seek-Vhence, beginning 

vith e. discussion of our distinction betveen "complex" and "complicated" 

systems. 

COMPUX VS. COMPLICATED 

Consider this interchange betveen e.college Dean and a faculty member, 

vhich occurred in the middle of e. discussion about replacing e. just-resigned 
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member of the facUlty: 

Prof: "I guess ve shoUld advertise as soon as possible nov that it's 

official. Aehh - looks like I lost a button off this shirt.· 

Dean: "It's alve.ys se.d vhen afe.cUltymember loses his buttons." 

Prof: "Yes, but not as se.d as a Dean vho loses his faculties." 

This conversation, similar to many that occur each day, is nothing 

spectacUlar, special, or difficult to understand. Those same actors could elso 

have engaged in a complicated discussion or international lav or faculty politics 

- a discussion too complicated for many non-specielists or outsiders to 

understand. The exchange or (sad) puns is, hovever, a prime example or vhat 

ve consider to be a complex (as opposed to complicated) interchange. Fev 

elements are being related or discussed, no vet> of tangled linkages is involved, 

and no technical terms are used. Rather, the cleverness comes from finding 

and using unexpected relationships among the elements. 

Here is another complex but everyday discussion, this time betveen a 

three-year-old and her mother at 9 A.M.: 

Child: I vant to go visit Toby. 

Mom:· OK:; but You'll have to vait until after lunch. 

Child: May I have a peanut butter sandvich nov? 

Again, ve have a situation vhere nothing difficult is being 

discussed, but there are obvious important rumblings going on beneath the 

surface. One can almost see -- cartoonlike -- a little bump appear in the ground 

and travel from one place to the next. simply disturbing the surface as it passes 

along belov. Something subtle has gone on in the child"s mind, but it is 

unexpected, and it takes us a little vhile to "catch on". 

The terms ve vill be using - "complex" and "complicated" - may not be 

the best to capture the tvo underlying notions, the implementation or vhich 
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may map quite vell onto Michalski 's "structural- vs. attribute- based" 

descriptions [Dietterich 83. p.42]. Nonetheless. they vill serve as pegs on vhich 

ve can perhaps hang meanings. 

By "complicated". ve mean e. big. "busy". tangled system. of linlcages. vi th 

much date.involved- e. "tropical jungle" of concepts. Complicated systems 

include murder-mystery plots, automobile engine diagrams. and typicel 

expert-system dome.ins. In computer applications. the concept representations 

involved tend to be frame-besed, vi.th fixed slots to go vith the predefined 

linkages. The focus is on folloving the ,Proper links to get from one concept to 

another. 

In contrast, e. "complex" dome.in is deep rather than broad - more like 

an iceberg field than ajungle. There maybe some clear linlce.ges, but some 

apparent! y separate bergs are actually connected t>elov the surface of the 

ve.ter. The concept space is relatively uncluttered and the linkages often subtle. 

Complex domains include puns, some poems. and patterns. In computer 

applications. the focus vould be in finding interesting relationships among the 

fev concepts, vhich vould tend to have structural descriptions. ( Vinston 

[Vinston 75] and Ronald Brachman, vi th his KL-ONE system [Brachman 77; 85) 

have me.de some progress in the area of structural description of concepts.) Ve 

find a helpful metaphor for our distinction between "complicated" and 

"complex" in the comparison betveen unraveling a murder-mystery end 

understanding e.short but ellusive poem. 

There are certainly some dome.ins -- speech recognition and the vriting 

and understanding of stories come immediate! y to mind - that are both 

complex and complicated. In fact. there are probably elements of both in almost 

every problem. Vhe.t is of note, though, is that the complex dimension seems to 

have been virtUelly ignored so far in most AI research. 
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SEEK-VHENCE CONCEPT REPRESENTATION 

In Seek-Vhence. ve attempt to begin opening the "can ofvorms" 

outlined in the previous section. Seek-Vhence compound concepts are 

represented as netvorks or primitive concepts. The primitives are fixed. as are 

most base-level relations. That is. ve describe a compoi,md concept in terms or 

primitive concepts and links. so that a concept's structure holds much 

information about it. This "complex", structural representation of concepts vill 

permit the use of structural similarities as "virtual links" in the system. That is, 

ve c~ relate tvo concepts by noting similarities in their structures and/or 

structural building blocks. rather than simply looking at their lists of 

attributes. Moreover. a concept's representation is not unique - it can be 

"rephrased" or. as ve say, reformUlated. In fact. as nevsequence terms are 

presented to it. the system is constrained to change its pattern description in the 

light or the nev evidence. In addition. hovever. the representation can be 

changed even though the current model is accurate. simply to see if a different 

representation "looks better". These miniature paradigm-shifts are termed 

"slipping", and are crucial if the system is to model fluid movement from one 

concept to another. 

VINSTON AND STRUCTURAL DESCRIPTIONS 

The idea of using structural descriptions in a computer system is 

certainly not nev. Patrick Vinston. in his important structure-learning 

program [Vinston 75]. vas keenly interested in employing such descriptions in 

order to capture notions such as "table", ··tent", and "arch". Moreover. in . 
'1earning" these notions from a succession· of examples and near-misses. his 

program first created a concept description and then modified it to conform to 
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nev evidence. In addition. once the progrem. had learned several concepts. one 

of its goals ves: ''To com.pare some scene vi th a list of models and report the 

most acceptable match" [Vinston 75. p. 2001 

The use of positive and negative evi<lence. the construction of structural 

models. end the use of these models to categorize nev block figures all have e. 

Bongard-like flavor the.t ve find very interesting end appealing. Hovever, ve 

have had to fe.ce some additional representationel issues. vhich ve vill discuss 

after first describing our approach to structure! representation. 

D. SEEK-VHENCE DIAGRAMS 

Ase.first major step in Wlderstanding vhe.t ve vere about. our group 

(Hofste.dter, Clossmen. end Meredith) devised a set of primitives end a structural 

representation technique the.t ve called "Seek-Vhence die.grem.s". These 

expressive visuel. die.grems. vhich to some extent have been implemented in the 

current Sf'$tem. give a sense ofhovve envision reformulation to teke place end 

hov verious distinct concepts cen be seen to be related through "closeness" of 

their structural representations. 

THE PRIMITIVES 

There are eight primitive notions in Seek-Vhence die.grams, each of 

vhich is represented by a node that tekes at leost one input Value. The !Unction 

of each primitive is to return e. Value vhen queried - or bil. os ve say. A 

primitive returns no Value vhen en input lies outside of the appropriate dome.in 

or vhen the processing vould produce e. result out of the range of nested groups 

of nonnegative integers. A returned Value me.yin turn be used e.s input to 
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another primitive or maybe returned 8S a final result. The primitives are: 

Constant (k) -- returns the value k. a nonnegative integer -­

:Example: (Constant 4) --> 4; 

Countup (lc)-returns k. then k+l. then k+2 •... on successive hits -

Example: (Countup 4) -> 4, 5. 6 ... , (on successive hits); 

C-group (vetn)- a "copy-group": returns n copies of vet, grouped in 

a pair ofperentheses -

Example: (C-group 5 3)--> (5 5 5); 

S-group (k,n) - a "successorship group": returns the grouped terms 

(k. k+l. k+2 ..... k+n-1)--

Exomple: (S-group 6 4) --> (6 7 B 9); 

P-group (k,n) - a "predecessorship group": returns the grouped terms 

. (k. k-1, k-2, ... , k-n+l)-

Exem,ple: (P-group 7 3) --> (7 6 5); 

Y-group (first, mid, 18St) - a "symmetry group": returns the grouped 

elements (first. mid, 111St), vbere "18St" is a mirror image of 

"first". If "mid" is simply the vord "nil", Y-group returns 

(first, last) -

Examples: (Y-group (5 2) 3 mirror)--> (5 2 3 2 5) 

(Y-group (6 3) nil mirror)-> (6 3 3 6); 

Tuple (ergl.ist) - returns a group of its arguments' values, evaluated in 

the order given in "arglist" -

Exem,ple: (Tuple (5 3 9)) ---> (5 3 9); 

Cycle (arglist)-- returns the value of successive members in "arglist" on 

successive hits, in a cyclic fashion --

Exem,ple: (Cycle (5 3 9)) ---> 5, 3. 9, 5 .... on successive hits. 

figure 1 shovs our diagrammatic representation of all but the tvo 
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simplest primitives. In figures 1and2, ee.ch line represents one hit or query of 

the given structure. 

·The primitives can be compounded, vi.th the output of one structure 

serving as input to another. A hit on the topmost structure causes the 

propagation ()f hits throughout the netvork. The bottommost structures return 

their V8lues to their c8lling structures. vhich then use the returned V8lues to 

calculate their ovn V8lues, and so on upvards. A simple example of this is 

shovn in the first die.gram of figure 2. The top-level Y-group req\lires a V8lue 

from the Tuple, and so hits it receiving "(l 4)" from the.t structure. It then uses 

this V8lue to compute its ovn - "'(1 4 4 1 )". More examples of compounding are 

shovn in later figures. 

Seek-Vhence netvorks can e.lso employ shared structures. e.s shovn in 

the second and third die.grams in Figure 2. In the first of these, e. "Countup" 

structure is shared l>y tvo inputs to the Tuple. Vhen the Countup is hit by the 

first input, its value - 3 - is fed to both inputs, giving the Tuple a V8lue of 

"(3 1 3)". Similarly, the next hit of Tuple returns e. "'(4 1 4)", and so on. 

An analogous shared structure is shovn in the le.st diagram of Figure 2. 

This time, hovever. the sharers are tvo inputs to a Cycle, and so ve get a 

different sort of result. The first hit of Cycle causes its first input to be hit so 

Coun tup is hit in turn and feeds ~she.ring structures - the first and third 

inputs to Cycle. The Cycle then returns a 3. On the second hit of Cycle, the 

middle input is hit. and returns a 1. Then, on the third hit of Cycle, the third 

input is hit causing it to hit the Countup age.in. Countup then returns e. 4 to the 

first and third inputs of Cycle, over-witing both "3'"s e.t once vith "'4'"s, e.nd 

consequently the third input returns a V8lue of 4 to Cycle. vhich reports it. 
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(2 2 2) 

(2 3 4) 

(8 7 6 5) 

(1 4 1) 

(8 0 3) 

8 
0 
3 

Figure 1 --The major primitives 
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mirror 

(1 4 4 1) 

(3 1 3) 

3 
1 

(4 1 4) 
(5 1 5) 

4 
5 

1 
6 

Figure 2 -- Seek-Vhence diagrams vi.th some shared structures 
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Note the.t if the Cycle e.bove he.d tvo different Countups under its inputs 

instead of e. single she.red structure. the resUlts returned woUld he.ve been 

different .. Then it "l'IOUld have returned 3. L 3. 4, 1. 4 •... on successive hits. 

E. MODELING SEQUENCE PATTERNS 

People presented Vi.th the flrst rev terms or a sequence have a strong 

tendency to rormUle.te a hypothesis e.l>out the underlying pattern. One of our 

goals in creating Seek-Vhence diagrams ves to be e.l>le to model such 

hypotheses in e.n underste.nde.l>le. expressive. e.nd flexible (both modifie.l>le e.nd 

extensible) pictorial form. 

Given belov ere severe.1 possible hypotheses based on the initie.1 segment 

"1 1 2": 

(1) 1 * 1 2 * 1 2 3 * 1 2 3 4 * ... 

(2) 1 1 * 2 2 * 3 3 * 4 4 * 
(3) 1 1 * 2 2 * 1 1 * 2 2 * 
(4) 1 1 * 2 * 1 1 * 2 * 
(5) 1 * I 2 * 1 * I 2 * 
(6) 1 1 * 2 I * 3 1 * 4 1 * 
(7) 1 1 * 2 2 2 * 3 3 3 3 * 4 4 4 4 4 * 
(8) I 1 2 * 1 2 2 * 1 3 2 * 1 4 2 * 1 5 2 * .. 
(9) 1 (1 2) * 2 (I 2) * 3 (I 2) * 4 (1 2) ... 

(10) 1 1 2 * 2 1 3 * 3 1 4 * 4 1 5 * 
(11) 1 1 2 * 3 1 4 * 5 1 6 * 7 1 8 * 
(12) 1 * 1 2 1 * 1 2 3 2 1 * 1 2 3 4 3 2 I * 

(13) (I I) * 2 * 3 ** (1 I) * 2 * 3 ** (I I) * 2 * 3 ** 

(14) (1 I) * 2 * 3 ** I * (2 2) * 3 ** I * 2 * (3 3) ** (I I) ... 
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These are e.11 reesonal>le extensions of the initial segment. although some 

are more l.ilcel y then others to come to mind immediately. The lest of these. the 

"marching doubler". is Gre.y Clossman 's invention. It poses some interesting 

representational problems. es shovn in Figure 6. The other pe.rses are given as 

die.grams in Figures 3 - 5. 

In diagram (1} of Figure 3. ve have en S-group ("successorship" group} 

structure. Its first input - the start velue -- is e. constant. 1. This means that 

each hit of the top-level structure vill be e. successorship group counting up 

from 1. The second input - vhich tells us the group iength - is here the result 

of hitting e. Countup structure. Thus. the S-group leniths vi.11 vary. increasing 

by one on each successive hit. The first length vi.11 be 1. Therefore. the first 

hit on the die.gram vi.11 return en S-group starting at 1 end of length 1- Le .• 

"1 ". The second hit's rerult again begins e.t 1. but vill be of length 2 - Le .. "l 2". 

Successive hits give us successively longer successorship runs (vi.th success}. 

In die.gram (2} of Figure 3. ve see e. top-level c-iroup ("copy" group}, 

vhose first input - the velue to be copied - changes. but vhose second input -­

the length or number of copies - remains constant at 2. Because the first input 

is fed by e.Countup structure, the velue to be copied vi.11 be successive integers 

starting at the Countup's start-velue - 1. in this cese. 

In diagram (6}. there is e. top-level Cycle. Vhen hit. it vi.11 return the 

velue of a hit to one of its inputs. Thus. the first hit of the Cycle results in "l" 

being returned -- the result of e. first hit to the Countup. The next hit of Cycle 

causes it to return "l ",but this time thanks to a hit of its second input. A third 

hit of Cycle brings us be.ck to the Countup. so e. "2" is returned. Successive hits 

vill then generate the indicated pattern. 
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(1) (2) 

(1) (1 2) (1 2 3) ... (1 1) (2 2) (3 3) ... 

(3)-

(1 1) (2 2) (1 1) (2 2)". •. (1 1) ( 2) (1 1) (2) ... 

(5) (6) 

(1) (1 2) (1) (1 2) (1) (1 2) ... 11213141 ... 

Figure 3- Some parses of "1 1 2" 
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(7b) 

(1 1) (2 2 2) (3 3 3 3) . 

Figure 4-Tvo different representations ore.single parse 

In Figure 4, ve see e.n exemple of tvo different representations of the 

same pattern concept. In this particular ease. the representations e.re not 

apparently very different. since both use "'C-group ·as the basic organizing 

notion. The only ree.1 difference is that in (b) the successorship relationship 

betveen the content e.nd length of ee.eh group is made explicit by means of the 

rectangular ""e.ddl" box. vhereas in (e.) it is not. This small difference can result 

in very different genere!izations of the pattern. however. For exemple, if asked 

to generalize from "l" to "2", e.program holding representation (a) vould give 

us the sequence : 

2 2 3 3 3 4 4 4 4 5 5 5 5 5 ... 

vhereas a program holding representation (b) vould generalize to: 

222333344444555555 .... 

No one can say vhieh is the "correct" generalization - it depends upon the 

presenter's pattern concept. Vhat ve ~say is that both e.re "reasonable··. 
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(Bb) 

112122132142. .. 

(9) (10) 

1 (1 2) 2 (1 2) 3 (1 2) . (1 1 2) (2 i 3) (3 1 4) . 

( 11 ) (12) 

Countup 

1 1 2 3 1 4 5 1 6 ... (1) (1 2 1) (1 2 3 2 1) ( 1 2 3 4 3 2 1) ... 

Figure 5 -- More parses of .. 1 1 2 .. 
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(1 1) 2 3 (1 1) 2 3 ... 

jump to next 
sib 

(1 1) 2 3 1 (2 2 ) 3 1 2 (3 3) (1 1) 2 3 ... 

figure 6 - The doubler e.nd Clossrc.e.n's "'re.arching doubler"' 

In figure 6, ~again encounter rectangular "'instruction"' boxes. 

indicating modifications to be done on the fly. In the first diagre.rc.. the ··1 .. vill 
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be replaced by a C-group of length 2 vhose value is te.ken es the "1 ". In the 

second diegram.. the same sort of replacement is done. but vhen the "jump" 

box is encountered (after each hit of the "3"). the entire replace-box structure 
. 

moves over to the next sibling belovthe Cycle. Here. it moves cyclically from. 

"1" to "2" to "3" to "1 ",and so on. 

COMP i.RISON VITH VINSTON 

J..s ve noted earlier, Vinston 's vork on structural descriptions colored 

our thinking on Seei::-Vhence. But vherees his program. had tQ find discrete 

objects and then describe the physical relationships among them., our program. 

is given the discrete objects and must describe patterns formed by neighboring 

groups of them.. Vinston·s program did use grouping es e. ve.y of simplifying 

descriptions. Hovever, block groups vere defined in a strict, algorithmic vay 

on the be.sis of shared properties. Once formed, e.group became a perm.anent 

unit in the scene description. Our grouping mechanism. is more fundamental to 

our system.. in that groups are continUallybeing created and destroyed es the 

system. attempts to form.Ulate a pattern description. Grouping goes on 

simultaneously vi th description. Our difficUlties. then, lie in finding structures 

sim.Ultaneouslyvith com.paring those structures in the "correct" vay. For 

example, in the sequence: 

2 1 2 2 2 2 2 3 2 2 4 2 . . . 

ve can eesilytell exe.ctlyvhe.t the terms are and vho is next to vhom.. Ve can 

even note that there is e. group of five "2" ·s. starting "With the third term. - e. 

Seek-Vhence "( C-group 2 5)". None of this is relevant. hovever. Vhe.t ve 

must notice in order to analyze the pattern is that the aforementioned C-group 

must not be vieved es such. It hes to be torn apart. and its pieces recombined 

vith other sequence fregm.ents in order to make a parse of the sequence 
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reflecting its underlying rUle. 

Vinston 's diagrams e.lm.ost look like the object they describe. Ve can see 

the three elements of en arch, and the re.ct that the supports serve symmetric 

1\lnctions in the vhole. In contrast. in Seek-Vhence. "e. pattern hes not been 

fully understood if the diagram representing it itself contains e. pattern. For 

that means either that some aspect or the pattern ves missed or that the notation 

lacks the pover to characterize that aspect and therefore had to copy it 

verbatim." [Hofstadter B2a. Appendix 1. p.B]. 

The implementations of the two systems bring out additional distinctions 

betveen them. The structures created byVinston's program vere essentially 

static. designed to be vieved and modified. In contrast. the Seek-Vhence 

structures have an active racet - they "e.ct" es veil es "are". They need to 

compute and return V8lues. a process that often requires some sort of memory 

in each node - or vhe.t ves hit last. of vhat V8lue ves lest computed. and so on. 

In summary. ve eve much to Vinston and his notion of modifiable 

structural descriptions. Hovever. our dome.in and interests involve us in a 

vorld vhere the objects to t>e related must t>e discovered end described 

simultaneously. and vhere the physical relationships betveen inputs are only 

fragments or the information needed to describe an underlying pattern. His 

domain is more like Bongard's in the use or positive and negative evidence to 

determine membership in a set - be it "arch" or '1eft-hand-side". Ours is more 

like Bongard's in the requirement of coming up vi th a characterization of 

perceived pattern rather thane. description or physical reality. 

F. SYSTEM ORGANIZATION 

Representation issues es discussed above are closelyintertvined "Vith 

processing and organization in Seek-Vhence. The system em.ploys simulated 



26 

parallel processing 'Iii.th non-cooperating processes vorking independently 

and under no overseeing a&ent. "Triga;ered" processes - those avekened by 

recent events - are chosen at random. to perform. their duties. the choice being 

affected (but not determined) by the weights or "urgencies • ot the candidate 

processes. 

HEAR.SAY II 

The HU.RSA Y II speech-understanding system. [Reddy 76] contributed 

much to our conception ot Seek-Vhence. Eirst. it used level-based concept 

representation. vherein the utterance under consideration vas represented 

ditteren tl y at different levels. in a lenguege appropriate to the level. Lover 

levels provide·d evidence tor a higher-level hypothesis. end vhenever a support 

ves veakened. the higher-level notion ve.s also veakened. Similarly. whenever 

a high-level construct ves called questionable by some higher-level criterion. 

the lover-level supports tor it vere also veakened. This interplay emong levels 

of representation· is. ve believe. one of the most important contributions of 

HEARSAY II. 

Certainly. the "'knoVledge source"' approach to processing ve.s another 

contribution. Self-activated. independently-acting processes operated in 

parallel. communicating only by the process trace they left behind. The 

trace of a process consisted of the structures it created or modified on the 

"'blackboard" - a global. three-dimensional date.structure -- and the triggered 

(or "e.vakened") processes left in its vake. This approach. taken to its logical 

conclusion es in Minsky's "society of mind" notion [Minsky 86]. seems to us to 

be the ve.ve of the future. 
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COMPARISON VI!H HEARSAY II 

Our system organization is similar in some ve.ys to that of HEARS.A Y II. 

but our processes ere smaller and less poverf\Jl than its ''knovl.edge sources" 

and our rloba1 de.ta structure is much simpler than its blackboard. 

Seek-Vhence does not physically maintain e. collection of alternative 

hypotheses as did HEARSAY II. Rather. it mainteins one "reigning" hypothesis 

and the ability to reformulate that hypothesis into an alternative one as the 

"evidence" - the pressure to change - mounts. The success of this approach in 

general wl depend upon the system's ability to reformulate easily and 

reasonably- e. tall order. 

E. THE HOEST ADTER CONNECTION 

Certainly, Douglas Hofstadter has deeply influenced myvork on 

Seek-Vhence, from conception through representation and organization to 

4nplemente.tion. Notions he has developed and those that ve have developed in 

innumerable discussions together and ~th Gray Clossman have become 

inextricably intertwined. and their realizations have begun to emerge (ve 

hope) in Seek-Vhence. These inclUde such notions as active symbols that are 

composed of groupings of lover-level units. vhich are in turn groupings of 

even lover-level units ... , reformulation and the importance of "natural" human 

abilities. conceptual skeletons, slipping, fluid concepts, focusing and filtering. 

the "terraced scan" approach to processing, the elusive quality of salience, roles 

and the importance and difficulty of recognizing similarity, the simultaneous 

creation and use of categories made "on the fly" as needed, the importance of 

non-cooperating processes and randomness in lieu of an overseeing 

all-poverf\Jl agent designed to make "important decisions", recognition of the 

complexity and subtlety of perception and its central place in human 
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intelligence, the importe.nce of "toy vorlds" end the frictionless universe in 

getting to the heart of a problem. 

A. clear end direct exposition of some of the central notions underlying 

Hofstadter's vorlc is &:iven in the paper "J.rtificial. Intellla:ence: Subcognition es 

Computation· [Hofstadter 82b] . This is important readin&: for en ycne deeply 

interested in exploring intelligence rather then chesin&: its shadovs. The 

paper, end some subsequent thoughts, are reprinted in the book, Metomagice1 

Themos [Hofstadter 85a] (es Chapter 26). 

SEEIC-VHENCE .A.ND ITS F.A.MILY 

The Seek-Vhence project presented here is only one of a family of 

Hofstadter-inspired vorlcs designed to address the issues of perception, 

reformulation. end similarity. Other members of the fe.milyere jumbo - e.n 

e.ne.gre.m-solver; Copycat - a pattern ene.logyproa:re.m; end Letter Spirit - a 

styie-extrapolation system operating in the dome.in of Virue.1 letterforms 

"a"-> "z". The Fluid .A.nal.ogies Research Group (F.A.RG) e.t the University of 

Michigan is currently vorking on or hos completed vork on each of these 

projects [Hofstadter 85 b] . 

JUMBO 

The eldest member of the Hofstadter-inspired family is Jumbo 

[Hofstadter 8'3 l This system explored the dome.in of vord "jumbles" (e.ne.gre.ms) . 

.A.s the ge.me is usue.ll.y played, the ene.gre.m solver is given a vord vhose letters 

have been scrambled -- ruc:h es "toonin". The solver's object is to unscramble 

the letters to reveal the unique vord that ce.n be formed from them. Jumbo 

strays from this norm in that it does not actue.Uyhave to come up vith ree.1 

vords - it hes no dictionary of the English le.ngue.ge. Rather. its object is to 
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create vord-lilce entities - things that~ be English vor<ls -- from the given 

letters. This modification goes to the heart of the matter - hov people go e.bout 

solving jumbles - vhile bypassing the side issue of dictionary lookup. The 

system must "judge its progress on purely internal criteria of coherency at 

several levels of structure at once." [Hofste.<lter 84. p.11] 

jumbo hes knovledge ofhovconsonants and vovels "lilce" to be grouped 

into clusters. hov clusters cen be me.de into reasonable syllables. end hov 

syllables can be combined into vor<ls. The system. knoving only these 

affinities and using a probabilistic. simulated-pare.llel control structure similer 

to Seek-Vhence's, consistently comes up vi.th good vord-like objects from its 

input letters. Macro-level order emerges from micro-level chaos. chaos of 

processing as vell as of input. 

In Jumbo. Hofstadter al.so began exploring the ideas of terraced scan. 

temperature and self-ntchjng. A "terraced scan" is a technique for 

progressively deepening the exploration of several di.!!erent path vays in 

parallel. The most fruitful or interesting pathve.ys tend to be explored more 

deeply, vhile less plausible pathve.ys are seldom visited. 

Briefly summarized, the .. temperature .. of a system both describes and 

emerges from the activity level in the system. Vhen the temperature is high. 

even unlike! y path ve.ys may be explored. Conversely, in lov temperatures only 

very plausible pathve.ys are explored. In jumbo. the system's temperature is 

controlled by the "happiness" of the structures it hes created. Initially, vhen 

single letters ("unhappy" because they "vent" to be combined vi.th other 

letters) ere introduced. the temperature is high, encouraging the letters to 

mingle and combine. Later. vhen a suitable vord-like entity has been created 

and all letters are included in it. temperature falls off to the freezing point. 

inhibiting eny further activity. 
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Self-vatching is an important notion in any system le.eking overseers 

that check for loopiness of behavior. In a.system such e.s Jumbo or 

Seek-Vhence. $tructures are continuelly being created and demoyed. It is 

certain! y possible that such e. system vil1 recreate e. $tructure time and a.gain. 

This sort or loopiness is note. problem unless it takes over the system - that is, 

unless it takes place e.t a.high enough level that it inhibits other processing. 

jumbo he.d no effective controls for such behavior. relying on 

externally-imposed temperature changes to de$troyrecurring $tructures. 

Seek-Vhence goes e. $tep further by remembering encapsulations or 

previously-generated hypotheses in order to prevent their re-use. More 

sophisticated self-vatching is being incorporated into the Copycat system. the 

third member of the :E'J.RG family. 

COPYCJ.T 

Copycat [Hofstadter 84; 85. ch. 24 ]is the principal current focus or 

attention e.t :E'J.RG. Like Seek-Vhence. it involves noticing patterns. but this 

time in a slightly different "idealized domain" and vi.th explicit attention to one 

of Hofstadter's major interests -- e.nelogies. The Copycat system is given three 

strings or letters. each string being one element in a four-part analogy 

problem. The system is to complete the analogy by discovering the fourth 

string. For example. if given the input: 

J.BC ••> J.BD ; PQR sa> ? 

the system should respond vi.th another alphabetic string e.s its ansver. (''PQS" 

vould be good. "PQD" vould be defensible, and "ABS" vould be strange.) 

Like Bonge.rd problems and Seek-Vhence problems. Copycat analogies 

require a good dee.1 or thought and ingenuity to solve in all generality. 

Attention mU$t be given both to the "face-value", the e.ctue.1 letters involved --
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their "exteruionel" or "syntactic" identities - and to the t21tt those letters play 

in the strings in vhich they are seen - their "interuionel "or "semantic" 

identities. The depth of difficulty in defining roles and eV8luating their 

meaning is explored in [Hofstadter 80; 85, ch. 24]. 

Not surprisingly, the notion of salience pops up in Copycat as it did in 

Seek-Vhence. In our exemple above, is it important that "J.." is the first letter of 

the elphe.bet, or is that fact just "noise", interfering vi th our ability to find a 

good solution 7 Do the lengths of the strings matter or not? Hov dove identify 

the important facets of the first half of the anelogy and then translate those 

accurately to the second half? These questions are not easy to ans"1t'er in 

generel. FAR.CT might have tried to create a letter-analogy "expert"', but instead 

opted for the usual Hofstadter system organization - simulated parallelism 

among small tasks. The tasks are non-cooperating, vi th no overseeing agent to 

direct system activity. Rather than constrU(;t alternative high-level 

hypotheses, a terraced scan [Hofstadter 84, pp. 13 - 14 ]is used to explore me{ly 

lov-level pathvays simultaneously. The most SU(;cessful and appealing paths 

vill tend to be pursued most actively. J..s in Seek-Vhence, a current hypothesis 

vill be reformulated vhen the veight of evidence turns against it. Thus, the 

process of discovery that the Copycat system must go through is very similar to 

that required of Seek-Vhence. The explicit use of analogy makes the 

connection to Bongard problems clear. 

In developing Copycat, the members of FJ..RCT have begun implementing 

a "Slipnet" similar to but more sophisticated than the one used in Seek-Vhence. 

The Slipnet strU(;ture, absent from Jumbo, is a repository of information about 

the Platonic concepts knovn to the system. Its nodes and links "form a 

storehouse of conceptual proximities (slippability links) and semanticities 

(centrality V8lues)" [Hofstadter 84, p. 20]. The Slipnet is crU(;ial in supporting 
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fluid yet controlled passage of activation from a concept to its neighbors. This 

"spreading activation" causes some of the concepts to be more "interested" in 

the ongoing problem-solving activity than others. Those that are most 

interested vill tend to come forth as potential organizing notions. "popping to 

mind" as it vere. 

>.. ve11-deve1oped and fluid Slipnet is necessary for the complete 

exploration or relationships among the atomic entities or the system -- be they 

letters or numbers - and among any perceived groupings or those entities. It is 

also difficult to implement. There must be enough activity so that l)ev ideas 

keep coming as needed. On the other hand, a "hyperactivated" Slipnet. vherein 

nearly all the concepts are active most of the time, is too confusing to be 

helpful. GrayClossm.an has become very interested in taming the Slipnet as 

veil as in creating uniform. structures ror all levels or abstraction in the system. 

[Clossm.an 85] . 

Both Seek-Vhence and Copycat are charged vi.th finding a useful 

description of their input -- a description that "wrks" in solving the problem 

posed. In Copycat. the first tw letter strings must be contrasted to shov a clean 

distinction. The first and third must provide rodder for translation. including 

the translation or the difference betveen the first tw! David Rogers at FA.RG 

has begun to attack these problems in a unique 178.y-- bycreating potentially 

schizophrenic structures [Rogers 86). For example. in the string "A.BD", the "D" 

vill feel a little uncertain about its identity, becawe the "B" and the string "A.B" 

vould like to be folloved by a "C", and vill continually ask the "D" if it is, in fact. 

a "C". Thus. the unusual elements or a string may be pointed out by the system's 

structures them.selves. 

Seek-Vhence does not have as many distinct elements as Copycat to wrk 

vi th, since it operates on a single sequence or integers. This is a boon in 
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al.loving the system to focus its attention in one ple.ce, but a be.ne in imposing 

fever constraints -- the help it could get in pe.rsing the sequence by looking at 

~structures that e.re knovn to be simile.r. Nonetheless. the tvo systems 

obviously she.re a conceptual skeleton e.nd ere deeply concerned vith 

perceptual mechanisms as the foundation for even the highest levels or 

cognition. 

LETTER SPIRIT 

The "youngest" m~mber or our project re.mil y- Letter Spirit -- involves 

vhat may be the purest domain for the exploration of perception. The task of 

this system is to extrapolate the sty1e of a given letterrorm to other letters of the 

alphabet. Some wrkers at FARG have begun to attack this problem. but ihe 

challenge is great. Perhaps the best indicator of the difficulty of this 

undertaking is to note that the final Bonge.rd problem - problem 100-

consisted or six "a"'s on one side of the dividing Une e.nd six "b"'s on the other. 

H. CONCLUSION 

In the Preface to this dissertation. ve claimed that pattern perception is 

scientific induction in microcosm. To be sure, ve recognize that scientists rely 

on a great deal of factual knov1edge e.nd that the scientific method requires 

careful. experimentation e.nd eval.uation of evidence. In this respect. ve e.re 

exploring only a sme.11 region of a vast territory. Hovever. the creative essence 

or science is the inductive pe.rt. the ability to find connections vhere none vere 

previously lcnovn. Ve believe ve ce.n explore this essential region through 

programs such as Juml>o. Seek-Vhence, Copycat. and Letter Spirit. In a topology 

vhere complexity is the metric, our sme.11 domains for the study of discovery 

and perception maybe of the same size as highly complicated scientific 
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dome.ins. Ve ere. at lee.st. certain that our problem - the perception of patterns 

- is, e.s el.most everyone notes vhen first entering Dr. Vho's Terdi:s:. ''bigger on 

the inside than on the outside". 



CHAPTER rvo 
SEEIC-VHENCE: STAGE ONE-HYPOTHESIS CREATION 
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A. INTRODUCTION 

In the previous chapter. ve presented our central problem -- finding 

patterns in sequences of nonnegative integers. Ve also developed 

"Seek-Vhence diagrams", a structural representation system for describing 

such patterns. In this chapter and the next, ve go on to describe the 

Seek-Vhence system and to document those features that have been 

implemented in the current version of the program. 

The program ree.lizes most of the features of Seek-Vhence diagrams in 

its str.ucture.1 representations of patterns -- called hYPotheses. The most 

important omission is of the rectangular instruction boxes seen in Figures 5 and 

6 of the last chapter. For many (but certainly not all) sequences, the program 

can create a hypothesis as it is presented the terms of a sequence, thereby 

building its ovn model of an unfolding pattern. Moreover. the system can often 

reformUlate its hypothesis to form a nev one vhen subsequent sequence terms 

prove the current hypothesis incorrect. 

B. OVERVIIV OF THE SEEK-VHENCE SYSTEM 

1. DOMAIN AND GOALS 

As vas mentioned in the Preface. the domain of Seek-Vhence lends itself 

to the stUdy of pattern perception. By eliminating kno'Vledge of mathematical 

operations. ve can avoid such problems as vhether "'4" should be interpreted as 

2*2. 5-1. or 100/25. This permits us to concentrate on ··4·· as an atomic element 

in a pattern. The Value of the element may or may not have other significance. 

but it cannot be seen as having any internal pattern. For example, "4" is an 

element in the segment "2 3 4 5". and it also represents the length of that 

segment; it can also be vieved as the successor of "3" or as the predecessor of 

'"5". Beyond that, it has very little structure. 
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Vhydid ve choose such a "simple" domain? Ve vented to study pattern 

perception, not finite differences or number theory. Ve can come up vi th some 

very difficult patterns in our little universe, yet the components are simple. 

This is just vhat ve "'lrere after - a domain vherein problem-solving difficulties 

clear! y arise from the vay in vhich the elements are combined and not from 

the elements themselves. 

The patterns studied. therefore. are non-mathematically-sophisticated 

rules that generate sequences of nonnegative integers. In response to a 

prompt. a user presents to the system numbers vhich presumably follov some 

pattern the user has in mind. The system receives these terms one by one and. 

after each one, either ventures a guess at the underlying pattern. quits, or asks 

for more information (another term). Should the system guess incorrect!y­

that is. guess an underlying rule different from the one the user has in mind -­

the user vill so indicate and the system vill continue. probably by asking for 

more terms. and then using those as a basis for reformulating its faulty 

perception. The patterns presented can l>e very rubtle or very simple. but in 

every case the system·s guessed rules should be "reasonal>le", acceptable as 

possible solutions to a human observer; they should elegant! y and economical! y 

explain the portion of the sequence already seen. as vell as predict an infinite 

continuation. 
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Some "typical" pattern problems might start out as follo~: 

222 ... 

112233 .. . 

122333 .. . 

121231234 ... 

1010010001... 

128 3 4 B 5 6 8 ... 

1 2 8 3 4 5 8 6 7 8 9 8 ... 

373737 ... 

8 0 8 8 0 8 8 0 8 .. . 

1 1 2 1 2 2 1 3 2 .. . 

Some non-domain problems are: 

2 3 5 7 11 ... --------- "primes"is too mathematically sophisticated a notion; 

-3 -2-1 ... -------- negative integers are "unknovn"; 

1 7 9 15 18 ... -------- ··get bigger" is too amorphous; there is no canonical 

"next term". 

In essence. ve can assume the system is like a small child vho is able to 

count and notice samenesses but vho cannot do arithmetic. count by tvos. recite 

primes. etc .. It is critical to emphasize that ve are after pattern rather than 

me.theme.tics here. 

2. THE rvo STAGES Of PROCESSING 

There are tvo stages of processing in Seek-Vhence. An initial 

formUlation must first evolve; this is the vork of stage one. cUlminating in the 

creation of a hypothesis for the underlying rUle. This '"preliminary'" stage is 

ree.11 y quite complicated and very important. The structures created during 

stage one play a critical role in later processing. since all high-level actions 
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inevitably affect them and are effected by them. As did the HEARSAY II system 

[Reddy76]. Seek-Vhence operates simu1taneouslyat several levels. from the 

most concrete - the integers input at the terminal - through the descriptive -­

the hypothesis end its supporting concept descriptions - to the most abstract -

the "ideal" primitive concepts. Lov-level structures support the creation of 

higher-level ones. and indirectly even determine the course of high-level 

processing. Vhen changed by high-level actions. as they inevitably are. the 

lover-level structures may have en unexpected effect on the higher-level ones. 

These reverberations. modeled on the "ripplings" among levels in HEARSAY II. 

are at the heart of SEEK-VHENCE's processing. and are necessary to cause the 

interplay of bottom-up and top-dovn activity required for Seek-Vhence to vork 

properly. 

During stage tvo. the hypothesis is either supported or refUted by nev 

evidence. Consistent verification, in the form of terms vhich support the 

hypothesis. vill lead the system to a confirmation of the hypothesis and the 

venturing of a public guess. An incorrect guess (one that is rejected by the 

user) or refUtation of the hypothesis by nev evidence vill cause the system to 

reformu1ate or. in rare instances. abandon the hypothesis. Hypothesis 

abandonment or "scrapping". vhich is analogous to ahuman's "let's start all 

over again". takes system processing back to the lover levels. This is not a total 

restart vi th a clean slate as though the sequence terms had never been seen. 

but rather a return to the term level. vi th all perceived groupings eradicated 

but vith accumu1ated knovledge of term samenesses and other primitive 

relations maintained. 

The major distinction betveen the tvo stages of processing is the 

existence of the hypothesis in stage tvo. Vithout it. the system has no model of 

the sequence and so cannot predict the next term to be encountered. Once a 
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hypothesis is in place, all nev evidence is "filtered" through it (checked for 

agreement vi th it) . Confirming data - nev terms that fit the hypothesis -- are 

handled rapidly, essentially just being "svatloved" by the system. In contrast. 

entry of an unexpected term makes the system "sit back and look things over". 

REFORMULATION AND THE SLIPNET 

Changing a hypothesis is done by reformulation -- modification of the 

form of the hypothesis. Reformulation is accomplished by "slipping" from one 

Seek-Vhence concept to another. The direction of change vi.11 be suggested by 

system processes, based upon the evidence gathered from that portion of the 

sequence already seen and guided by the "slipping knovtedge" possessed by the 

system. A structure called the Slipnet vhich maintains relationships among 

the primitive Seek-Vhence concepts - the "ideals" -- as vell as pointers to 

salient structures at various levels of representation. contains much of the 

information needed in the reformulation process and thus serves es an 

important reference source for the system. 

ReformUlation of the hypothesis causes related changes throughout the 

several levels of Seek-Vhence structures. changes made so that all levels of the 

system operate vith the same pattern structure "in mind". These changes can 

in turn cause the bubbling-up or noticing of nev perceptions about the 

sequence, creating an important interplay among the levels. Moreover. 

reformUlation permits changes in the representation of concepts in order to 

facilitate the discovery of "structural" similarities (similarities of form) 

betveen them. Seek-Vhence cannot as yet make such discoveries. 

In Seek-Vhence, concept descriptions are not necessarily atomic 

entities; they can be compound structures created by combining the primitive. 

atomic concept descriptions in simple or complicated va.ys. Thus, concepts can 
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be rele.ted because their descriptions share the same or related structural 

building blocks. an important feature reflecting asimilar human a.l:>ility. 

Ear example. ve can sense that there are similarities among: 

171181191 .. . 

232 242 252 .. . 

10012002 3003 ... 

even though the '"face value'" content. the actual numbers used. differs. 

Seek-Vhence's facility for making such structural similarities manifest in its 

concept descriptions could prove veryusefUl in the fUture for discovering 

analogies betveen sequence pattern concepts. 

3. PROCESSING-AND TASKS 

A vord a.bout processing technique is in order. In Seek-Vhence. all 

opere.tioru: are carried out in task series. vhich run in simule.ted parallel. The 

tasks comprising various series are chosen at random for processing. so no 

assumptions can t>e made about vhich of tvo competing tasks.vill run first. In 

fa.ct. the tasks in e. given series me.y vary. because any task me.y alter the 

environment. A particular task may create. access. or modify some data 

structure. me.y request information from the user. or me.y set out other tasks -­

place them on the taskrack vhere they vill stay until chosen and run. 

A biological metaphor -- thanks to Douglas Hofstadter -- is the model for 

this type of processing. Vi thin a cell. various enzymes are present. One of 

these may act upon a molecule. causing it to change in some vay. This action 

vill make the molecule more e.ttractive to some enzymes and less attractive to 

others. thus affecting the course of later '"processing'" in the cell. The gloms in 

Seek-Vhence's cytoplasm serve e.s molecules and the tasks as enzymes in our 

version of this biological model. 
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At certain times some cleaning is done (removing old tasks of certain 

types) but it is perfectly possible for an old task finally to be chosen and, vhen 

it runs. for it to find the Seek-Vhence vorld quite different than vhen it vas 

created. Such a task vill probably do nothing, because the structures on vhich 

it ves designed to operate no longer exist or are inaccessible to it. All tasks have 

"urgencies" (integer veights). and more urgent tasks vill have a greater 

chance of being chosen than less urgent ones do. 

Seek-Vhence, then, depends upon order to emerge from Chaos. Small 

special-purpose tasks, vorking at different levels of abstraction vith no 

overseeing agent eventually guide the system tovard convergence upon a 

vorking hypothesis. 

4. STRUCTURES AND THE ""PLASMS" 

Like most other computer systems. Seek-Vhence relies heavily on an 

assortment of data structures. Already mentioned vas the hypothesis, an active 

formulation of the system·s current viev of the evolving patt~rn. Its 

!over-level counterpart, the template. is a transitory. veaker. less expressive. 

and less nexible structure used as a first rough statement of an emerging 

formulation. Belov the template level are the central vorking structures of the 

system. namely, the glints. the gloms. and the gnoths (pronounced "knots". 

since they are used to "tie things together"). 

Briefly, glints are Seek-Vhence representations of input terms, 

members of the class "Glints". The Glints form a distinguished subclass of the 

"G!oms·· class. vi.th glint structures being atomic and undissolvable. Gloms are 

structures representing collections of adjacent glints. hierarchically grouped 

for a variety of reasons. "Glomming" is the process byvhich tvo or more 

existing gloms combine to form a nev g!om. All g!oms reside in the cvto1>lasm. 
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Ve viev the Seek-Vhence vorld as consisting of three levels, vith tvo 

potential intermediating structures -- the hypothesis and the template. Our 

level.$ correspond to the Socratic vision of a "real vorld", a Platonic "ideal 

vorld". and a "perceived vorld" betveen them. At the lovest level is the 
~ 

cytoplasm, vhich represents our "real vorld" -- representations of the input 

integers and relations among them. The "purest" notions, corresponding to the 

Seek-Vhence diagram "primitives", are housed in (of course) the platoplasm_ 

finally. the intermediate level - our socratoplasm - houses the system·s 

representation of its parse of the sequence. 

In order to represent its parse of a target sequence. the system needed 

structures vi.th some permanence. so that a parse vould remain intact, yet vith 

the ability to interact vith each other. so that the parse could be changed at the 

request of higher-level processes. 

Gloms could not perform this parse-representation function for several 

reasons. first. they vere designed to combine readily vi.th each other, the 

combination occurring only because of "bottom-up" pressures. Secondly, vhen 

glomming occurs. the participants do not survive the operation. Rather, they 

are destroyed and a nev glom is created from their subgloms. Therefore. the 

system cannot attach information to gloms and rely on its being available at any 

fUture time. Finally, gloms cannot change their basic structure in any vay 

from the moment of their creation -- they cannot absorb other gloms or give 

avay or recombine any of their subgloms vithout themselves being destroyed. 

Thus. gloms are too ephemeral and unpredictable to represent a sequence parse. 

Our solution to the parse-representation problem vas to create a vhole 

nevlevel in the Seek-Vhence vorld -- the socratoplasm. or "perceived vorld". 

and to populate it vith more stable structures than gloms. called "gnoths". 

amenable to "top-dovn" change. Gnoths, like gloms. represent groupings of 
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gloms, but they ere more permanent and a.single gnoth can represent different 

glom clusters e.t different times. A gnoth can pass gloms to its neighbors, can 

vi.thstand reformulation of its rubgloms, and can even become e. representative 

of concepts different from those associated vi.th it e.t the time of its creation. 

The entire nature of e. gnoth may change several times during its lifetime. A 

gnoth ceases to exist only vhen its subglom collection is empty. (for e.n 

interesting discussion of intensionality and the "meaning" of e. representation 

structure, see [Hofstadter 80) .) 

Gnoths, then, ere vhe.t the system uses to represent and restructure its 

current viev of the sequence. They live in the socratoplasm, the middle level of 

Seek-Vhence structures, and serve as bridges among the gloms, the hypothesis, 

and the "ideal notions" of the ple.toplasm [see figure 1 ). 

I 
HYPOTHESIS 

Gnalhs 

Boxes 
Printstructures 

PLATOPLASM 

TEMPLATE 

CYTOPLASM 

Ideal-repeaters 

Ideal-groups 

Ideals-seen 

GI oms 
GI ints 

Sparks 
Bonds 

figure 1 - The Seek-Vhence vorld 



THE PLATOPLASM AND IDEALS 

As noted above. the platoplasm is the home of the "pure Platonic notions" 

or "ideals" of the Seek-Vhence system. These include idealized versions 

("types". if you vill) of the input integers ("tokens" represented in the 

cytoplasm). the grouping structures knovn a priori, and some relations among 

them. Ideals are connected to the "real vorld" or cytoplasm through 

manifestation links and to the "perceived vorld" or socratoplasm through 

actualization links. For example, if the system groups three 2's, the glom 

representing this grouping in the cytoplasm becomes a "manifestation" of the 

ideal sameness notion (called "C-group"). If the glom is also crucial to the 

system's hypothesis for the sequence and so has a gnoth devoted to it. that gnoth 

becomes an "actualization" of the ideal [see Figure 2]. 

HYPOTHESIS PLATOPLASM 

I 
SOCRATOPLASM 

Ideal-groups 

C-group 

Gnolh·s:..,~~----~\:::::;;:::~~--~ ~ .actu.alization 
.... ... ... 

" . 

TEMPLATE 

., ·· .. pseudo-
·· ...... glom · ... .. , 

CYTOPLASM 

figure 2 -- Some links l>etveen plasms 



46 

THE SOCR.ATOPL.ASM AND PERCEPTIONS 

The socratoplasm is a vorking area end sometime battleground betveen 

the cytoplasm end the ple.toplasm. Its most important structures are the gnoths 

(from "gnothi see.uton ",the motto - "knov thyself'"- or the Socratic school or 

philosophy), roughly the socrato-level equivalents of the cytoplasm's gloms. 

Hovever, vhereas the hellmark or gloms is their ephemerel nature, their 

proclivity to combine and split, the main fUnction of gnoths is to capture the 

current "viev" - parse or parenthesization- of the sequence. The first gnoths 

are created contemporaneously vith the first hypothesis and reflect its pattern 

description. Erom then on. gnoths must elvays be in agreement vith the 

hypothesis (as described later in our sections on gnoth-hypothesis 

equivalence). Thus, gnoths are not as free as gloms to rim.ply combine at vill. 

They feel the "top-dovn" pressure of the hypothesis as vell es the "bottom-up" 

pressure coming from lover-level activities. Conflicts betveen these pressures 

must be resolved through the gnoths. Each gnoth hes a collection of subgloms 

from vhich it derives its structure. its viev of the sequence . .Any change to the 

gnoth's structure is realized by changing the subglom collection. 

Much bubbling and pushing-up of groupings goes on in the cytoplasm. 

The requirement of conforming to the current hypothesis, vith the related 

subsequent dovnvard pushing and glom destruction. is added in the 

socratoplasm. ReformUlation is imi;>lemented. el.so to be reflected in cyto-level 

activity. Mindlessness ceases here. 

THE CYTOPLASM AND GLIMMERINGS 

The cytoi;>lasm is the bottom level of the Seek-Vhence system. All 

changes to higher-level structures filter dovn here, are reflected here, and 

cause reactions vhich may "bubble U!? .. nev structures. All processing here is 
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automatic and myopic - no global Vievs of the sequence are maintained. Any 

nev structures, such as a neVl y-formed glom. or the glint made vhen e. nev 

term is entered, are immedie.tel y made centers of interest called active foci end 

heightened actiVity takes place around them. 

The main goal of this level is to hit upon a pattern of gloms vhich can 

l>e taken as e. template for the sequence. Once a template is in place, a "cap" is, 

in effect placed over the the top-level gloms to prevent their disappearance. 

This cap is in the form of a pseudo-glom a glom that has subgloms but that is 

inert unable to interact vi th other gloms. Vhen such a cap is in place, nev 

terms' glints still l>ond and even glom vith other gloms but no changes that 

contradict the template can l>e me.de. Should a nev term not fit the template, a 

reviev is begun vhich may lead to template modification or destruction. 

If, meanvhile, the template has caused the formation of a hypothesis, . 

nev terms are filtered through the hypothesis rather than the template, and 

·the template is Virtually al>andoned in deference to the more malleable, more 

expressive structure. The filtering process, l>y vhich nev terms are checked 

for consistency vith the hypothesis. can question the hypothesis' validity. This. 

in turn. can cause gnoth changes vhich may precipitate glom-. template-. and 

even hypothesis-modification or rejection. 

5. SUMMARY 

In summary, Seek-Vhence is a program vhich attempts to discover and 

represent rules underlying nonme.thematicel sequences of nonnegative 

integers. It is not e.lve.ys successfUl. Vhen it is successfUl, the complex l>ut 

subliminal first stage of processing develops e. hypothesis, e.n encapsutation of 

the perceived underlying pattern. The hypothesis is represented in such a ve.y 

as to me.ke the reformUlation often found necessary in the second stage of 
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processing not only possible but also simple to carry out in many cases. 

Processing occurs in simUlated parallel on several levels of abstraction 

at once . .At the lovest level of the Seek-Vhence vorld. the cytoplasm. 

glimmerings of grouping-ideas (glom.s) derived from comparisons among the 

system's representation of the input terms (glints) are "pushed up· to l>e 

recognized es perceptions (gnoths) in the socratoplesm. the middle level. 

Recognition of usefUl cyto-groupings is aided by reference to the ideal notions 

of the platoplesm. the most abstract level. Suggestions continually l>ul>l>le up, 

either to l>e pushed up f\lrther or to l>e rejected, sent !>~ck dovn. The interplay 

of bottom-up and top-dovn processing is central to the system's fUnctioning. 

C. SEEK-VHENCE IN DETAIL 

1. THE PL.A TOP USM - ABSTRACT NOT IONS 

Currently, the platoplesm houses the ideal types - the primitive. 

l>Uilt-in notions available to the system for use in constructing its viev of a 

sequence. These can be seen es its vocabulary for the veil-structured "phrases" 

it constructs. Nev notions. the nevty-constructed phrases. may eventually 

come to l>e housed in the platoplesm es first-class citizens. Ve are developing a 

netvork of relations among the ideal types to aid the system's reformUlation 

efforts. 

ATOMIC IDEAL TYPES 

The ideol-atoms are Seek-Vhence analogues to the integers entered at 

the keyboard. An ideal-atom hes predecessor and successor Vol.ues. its ovn 

Velue. and manifestations in the cytoplasm. for example. the "idea15" hes 

predecessor "ideol.4" and successor "ideal6", vhile "idealO" hes no predecessor 
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t>ut has "idee.11" as successor. Glints ere certainly manifestations 

(cytoplasm-level instances) of these ideals, because they are the system's 

representations of the terms of the sequence. For example, in the sequence 

fragment "5 O 5 ", the first and last terms are manifestations of idee.15. vhile the 

middle term is a manifestation of idealO. Certain other integer-valued 

quantities. such es group length, may also be important to the development of a 

good representation of a given sequence pattern. and so should also be vieved as 

manifestations. For example. the length of the group "(4 4 4 4 4)" might prove 

to be an important manifestation of ideal5. In the current version of the 

system. hovever. only glints are referenced as manifestations of ideal atoms - a 

simplifying (and vee.kening) design decision. In the f\lture, ve hope to address 

the problem of vhat other quantities should be vieved as manifestations and 

under vhat circumstances they become important. 

NON-ATOMIC IDEAL TYPES 

There ere eight non-atomic ideal types. each of vhich is associated vi th 

a format having one or more active parameters: 

(typenam.e start-value length actual-value). 

In our descriptions, optional parameters vhich have been inclUded 'Vill be 

given in brackets ("[]''). In each of the examples belov, ve shov a fQrm. an 

instantiation of the given format. When such a form is queried-- or "hit", as 

ve say- it returns a value. The results of successive hits are shovn on separate 

lines. Note that these types and their formats correspond quite closely (but not 

exactly) to the Seek-Whence diagram primitives introduced in Chapter One. 
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Constant --- a structure that always returns one value, its argument, 

vhen queried. 

format: (Constant arg) 

examples: 

(Constant 3) ---> 3 

---> 3 

---> 3 

etc. 

Countup --- a structure that returns nonnegative integers in 

succession, starting vi.th its argument, vhen queried. 

format: (Countup n) 

examples: 

(Countup 3)---> 3 

---> 4 

---> 5 

etc. 

(Countup 8) ---> 8 

---> 9 

---> 10 

etc. 
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C-group (Copy-group) --- a structure that returns anuml:>er of copies of 

a given argument. 

format: (C-group start length) 

examples: 

(C-group 2 3) -> (2 2 2) 

-> (2 2 2) 

etc. 

(C-group (Countup l) 2) -> (l l) 

-> (2 2) 

--> (3 3) 

etc. 

S-group (Successor-group) --- a structure that returns a given-length 

run of successive integers, starting ~th a given value. 

format: (S-group start length) 

examples: 

(S-group 2 3) --> (2 3 4) 

-> (2 3 4) 

etc. 

(S-group 5 4) --> (5 6 7 8) 

--> (5678) 

etc. 

(S-group (Countup l) 2) -> (l 2) 

-> (2 3) 

--> (3 4) 

etc. 
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P-group (Predecessor group) -- e. structure that returns a given-length 

dovn""'8rd progression of nonnegative integers. starting vi.the. 

given value. 

format: 

examples: 

(P-group start length) 

(P-group 8 4) -> (8 7 6 5) 

--> (8 7 6 5) 

etc. 

(P-group 2 4) -->undefined ('Wuld run to 

negative numbers). 

Y-grow (Symmetry group) --- a structure that returns a given group of 

nonnegative integers, symmetric about the center. 

format: (Y-group [start] [length] actual) 

examples: 

(Y-group 1 5 (1 8 3 8 l)) --> (1 8 3 8 1) 

--> (1 8 3 8 1) 

etc. 

(Y-group ((Countup 1) 8 (Countup 1))) 

--> (1 8 1) 

--> (2 8 2) 

--> (3 8 3) 

etc. 
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~ a structure that cycles through its actual parem.eter's 

value. returning one top-level element each time queried. 

format: (Cycle actual) 

exem.ples: 

(Cycle (2 1 8)) --> 2 

-> 1 

-> 8 

--> 2 

--> 1 

etc. 

(Cycle (3 (Countup 1 ))) --> 3 

--> 1 

--> 3 

--> 2 

--> 3 

--> 3 

--> 3 

--> 4 

etc. 

~ - a structure that returns its actual parameter's value each 

time queried. 

format: (Tuple actual) 

examples: 

(Tuple (184))--> (184) 

--> (1 8 4) 

etc. 
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(Tuple (2 2)) ---> (2 2) 

---> (2 2) 

etc. 

THE HIERARCHY OF IDEAL TYPES 

These non-atomic ideal-types (or Platonic classes) fall into a hierarchy 

of categories. each of vhich captures an important organizing notion for the 

Seek-Vhence 17tlrld. The realizatio.ns of the types at different levels of the 

system have differing attributes but alvays reflect this basic organization. 

Briefly, the categories can be distinguished es follovs: 

repeater type - These are one-parameter generate types; given the 

single parameter (and the state). the next value can be generated. 

memt>ers: Constant. Countup 

generate type - Given a typename and the start and length parameters 

(e.g . .(C-group 1 3) ). the actual value (e.g .• (1 11) ) can be 

generated by the associated "'generating !Unction"' . 

.Any generate type possesses a process es described belov. 

members: C-group. S-group. P-group 

process type -- Possesses a "process", a method of determining vhether 

or not some actual group is a representative of the class vithout 

reference to any information external to the group and the class 

in question. 

member: Y-group 

fence type -- Has no generator. no process; Virtually any collection 

of neighboring terms can be called a group by Virtue of these 

types. Typically, such groups exist because of external pressure 

from neighboring terms or groups rather than internal 
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cohesion. In effect. the terms are ""fenced off .. into e. group by 

their neighbors. 

members: Cycle, Tuple 

At the bottom of the hierarchy are the fence types. the least restrictive 

types. The ne.me derives from the fact that groups are usually identified as 

being of this type vhen the system: 

1) cannot classify them as being higher-level types and 

2) can set up e. "fence", identifying the group as e. group. 

For example, in the parsed sequence 1 5 8 3 2 5 8 3 3 5 8 3 4 5 8 3 ... , 

the terms "5 8 3· are grouped, not because of any mutue.1 attraction or shared 

characteristic, but simply because of the interleaved 1, 2. 3 •... and the re.ct that 

the group repeats. It is important to note that in order to see the repetition of 

the group, it is necessary to identify it as a group, and such recognition of 

repetition in effect confirms the budding notion the.t e. group is there to be 

found. The group vould probably be represented as "(Tuple (5 8 3))". 

An entire sequence can have a fence-type representation: 

4 7 4 7 ... can be represented as (Cycle (4 7)). vith an understood 

repetition. 

At the next-highest level of the hi er arch y are the process types. The 

only entry here is Y-group, a symmetry group. The characteristic of this class 

is the.tit possesses e. "process", a method for identifying representatives of the 

class, if not for generating them. The form "CY-group 1 5)", e. Y-group of length 

5 starting vith a 1 (ve have given this form the optional start and length 

pare.meters). is not sufficient to generate a unique symmetry group, but is 

sufficient to determine that (1 7 4 7 1) is such a Y-group vhereas (1 8 2 5 1 ). 

(1 7 1 ). and (2 O O O 1) are not. 

The generate types, the next-highest in our hierarchy, can use tvo 
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parameters. the starting value and length. to generate e.particuJ.ar grouping 

representative of the given type. Eor example. 

(C-group 1 5) <-> (11111). e.constant group of five 1 's; 

(S-group 2 '3) <-> (2 '3 4). e.successorship group of length three. 

starting vith 2; 

(P-group 9 4) <-> (9 8 7 6). e. predecessorship group of length four 

starting e.t 9. 

Ee.ch repeater type takes one parameter. The form "(Constant Z)" 

represents e.structure that e.lvays returns Z e.s its value. vhile "(Countup '.3)" 

represents e. structure the.t e.l vays returns a '.3 upon first request. then a 4. a 5. 

and so on. 

COMBINING IDEALS 

Ideal types can l>e combined to create structures vhich ence.psuJ.ate 

fairlyintrice.te patterns. In the examples l>elov, ee.ch line again represents one 

hit of the given form. Shared structures e.re indicated l>y the \i'Ord "shared". 

vi.th an e.rrov pointing to the first instance of the structure to l>e shared. 

(S-group 1 (Countup 2)) --> 1 Z 

--> 1 z J 

--> 1 z J 4 

etc .. 

thus giving the sequence: 

1212'312'34 ... 



(C-group (S-group 1 (Countup 1); 2) --> (11) 

-> ((1 2) (1 2)) 

--> ((1 2 '3) (1 2 '3)) 

etc .• 

giving: 

11121212'312'3 ... 

~ 
(Cycle( 8 (Countup 1) shared)) --> 8 

--> 1 

--> 2 

giving: 

8128'34856 ... 

(Tuple (2 (Countup 1) 2)) --> 2 I 2 

--> 2 2 2 

--> 2., 2 

etc .. 

giving: 

212222232242252 ... 

--> 8 

-->., 
->4 

etc .• 
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~ 
(Tuple (2 (Countup 1) shared)) --> 2 I 2 

--> 2 2 2 

--> 2 3 2 

etc .• 

giving: 

212222232242252 ... 

The difference l>etveen the latter tvo representations is subtle but can be 

important. In the lest one. the sameness of the "bracketing" 2's is made explicit. 

Notice hov this can effect generalizations of the sequence: 

(Tuple (5 (Countup 1) 2)) is a possible generalization of the first 

representation because the !>racketing integers are seen es distinct. having no 

necessary sameness. Querying it three times vill give us: 

--> 5 1 2 

--> 5 2 2 

--> 5 3 2 

etc .. 

In the second form. ve generalize to 5 as follovs: --------(Tuple (5 (Countup 1) shared)) --> 51 5 

--> 5 2 5 

--> 5 3 5 

etc .. 

The ability to combine the Platonic notions as demonstrated gives the 

system the flexibility and expressive paver needed to model sequence patterns 

and create a hypothesis. 
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2. THE HYPOTHESIS 

The major goal of the Seek-Vhence system is to formulate a hypothesis -

a strUCture that descrit>es e.nd can extrapolate the perceived pattern. The 

hypothesis. vhich is derived from the information at hand- the sequence 

terms seen and any relationships the program he.s t>een able to establish among 

them - is expressed in terms of the Platonic classes descrit>ed above. for 

example, 

1 1 2 1 2 3 1 2 3 4 can t>e expressed e.s the form: 

(S-group 1 (Countup 1 )), vhile 

2 1 2 2 2 3 2 4 ... can t>e expressed e.s the form: 

(Cycle (2 (Countup 1 ))). 

Should ah ypothesis fail to predict properly, the tendency of Seek-Vhence 

vill t>e: 

a) to generalize pare.meters, maintaining the Platonic class 

structure; 

t>) to slip to a less strict class ("vertical" slippage) or 

to a related class ("lateral" slippage). 

In the fUture, the system vill have an implicit imperative to modify the 

hypothesis so that in all instances the strictest appropriate class is used in the 

representation. For example, vhile ··1 1 1" can t>e vieved e.s a Tuple, it is also a 

C-group e.nd should generally t>e so characterized. There are of course times 

vhen "1 1 1" should t>e vieved e.s a Tuple; for this reason there vill t>e no 

prohit>ition age.inst doing so, but it is very unlikely to be the first vievadopted. 

Both generalization and specification are required in Seek-Vhence and 

both require knoVledge of the grouping types described above and any 

relations among the Platonic types. Such relations vi11 t>e stored in the 

platoplasm e.s "Ideal-relations" and vi11 include lateral. links (t>etveen C-group 
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and S-group. say. for "groups" of length one) as veil as vertical ones (as 

l>etveen Countup end S-group) in the plato-class hiere.rchy. 

3. THE CYTOPLASM-THE BASE 

The cytoplasm has the role or "reel vorld" in our ''Socratic model·. in 

vhich the platoplesm houses the ane!ogues of Plato's Ideals and the 

socratoplasm is the analogue or Socrates' "perceived vorld". It houses the 

lovest-level structures in the system -- the sparks. l>onds. glints and gloms -­

and is the site of much upverd-thrusting. rele.tivelyuncritical activity. 

Suggestions for pattern formulation t>ul>l>le up from cytoplasm-level 

(hereinafter shortened to "cyto-level") activity to l>e tested at higher. more 

"cognitive" levels. Ve believe that the prol>al>ilistic. undirected cyto-1eve1 

activity mimics lov-1eve1 human perception processes to some extent. 

Groupings e.re continUally l>eing generated and regenerated at this level. Just 

as people cannot prevent themselves from reinventing an idea. reperceiving e. 

pattern. or reperforming an action. l>ut compensate for such repetition l>y an 

ability to notice that they e.re cycling or looping in their behavior. ve vi1l 

leave it to higher-level processes to notice e.nd handle eny unproductive 

looping in cyto-level activity. 

The cyto-level shoUld l>oml>ard the upper levels 'Vith suggestions. noted 

simile.rities. and groupings or terms. It is up to the processes al>ove to curl> this 

enthusiasm and to consider the suggestions more carefUllyand critice!ly. 

CYTO-LEVEL STRUCTURES 

The four date. types residing in the cytoplasm are Spe.rks. Bonds. Glints. 

and Gloms. The former tvo classes e.re for finding. proposing. and later 

eve!uating glom groupings. The latter tvo classes. the Glints and Gloms. are 
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used for representing the sequence terms and any term groupings of current 

interest. 

GLINTS AND GLOMS 

In Seek-Vhence, glints ere the cyto-level representations of the 

integers entered e.t the keyboerd. Ee.ch glint is e.structure vi.th severe.l fields: 

cle.ss, ne.me, print-velue, position, span, pred (or left-nbr), succ (or right-nbr), 

and bonds-in, the le.st one being optional. Eor example, if the terms .. l z 2 r had 

been entered, the second 2 might be represented e.s follovs: 

cle.ss: Glints 

ne.me: glint3 

print-velue: 2 

position: 3 

span: l 

left-nbr: glintZ 

right-nbr: glint4 

The .. span .. field is really unnecessary in glints. but is a consequence of 

the fact that the Glints cle.ss is a subclass of the Gloms. It indicates that this glom. 

is of length l. This glinfs left-nbr. its neighbor to the left, vould be the glint 

representing the preceding 2. called .. glintZ .. here. Similarly, its right-nbr. its 

neighbor to the ria;ht. vould be the glint representing the succeeding 3. The 

other fields ere self-explanatory. 

Vhen e.sequence term is entered. the system creates e.glint for it and then 

lists that glint e.s e. manifestation, or cyto-level analogue, of the appropriate 

ideal-atom. in the platoplasm. In our example, glint) vould become a 

manifestation of idealZ because its value is 2 and it represents an input integer. 
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The glint is then examined by cyto-level tasks as described belov to determine 

hov it is related to other cyto-level structures. 

The class "Glints" is e. distinguished subclass of the class "Gloms". Ee.ch 

glint is indestructible - an "atomic" glom. Non-glint gloms are cohesive units, 

me.de of adjacent atoms bound by "bonds" of one type or another. It should be 

noted that chains of atoms linked by bonds e.re not necess~ily converted to 

gloms; some bond types (e.g., one indicating the.t gloms (8 1 4) and (1 2 3) e.re of 

the same length) e.re generally not considered strong enough to cause 

glomming, but e.re facts of note preserved for use by higher-level processes. 

Non-glint gloms he.ve es fields: class, name, type, print-ve.lue, 

start-position, span, positions-covered, sut>gloms. structure. and bonds-in. The 

lest tvo e.re optional, and are filled in vhen appropriate by cyto-level processes. 

For example. in the sequence segment "8 2 2 2 8", the three 2's might be 

represented jointlye.s e.glom, as follo~: 

class: Glom: 

name: glom7 

type: (Se.me print-value group) 

print-value: (2 2 2) 

start-position: 2 

span: 3 

positions-covered: (2 4) 

subgloms: (glint2 glint3 glint4) 

Such gloms e.re ephemeral and can disappear e.t any time. Disappearance by 

dissolVing (being destroyed e.s a unit. but vith e.11 rubgloms surviving intact), 

burstjng: (being destroyed e.s e. unit and having e.11 non-glint subgloms burst e.s 

vell--leaving only the underlying glints), or glomming (being combined vith 

another glom) is fluid and continUe.1. The cytoplasm might be vieved e.s a soup 
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bubbling vith gloms, the bubbles vhich rise to the top being the system's 

current viev of the sequence. If neighboring bubbles have enough mutual 

attraction (strong enough bonds) theyvill combine; othervise theyvill either 

exist independently or burst to permit nev bubbles to take their place. 

BONDmG AND GLOMMING 

The identification end creation of usefUl gloms is the primary fUnction 

of the tasks operating at the cytoplasm level. To see hov this is done, ve mi.1st 

stert at the bottom end follov the process of "pushing up" gloms. 

SPARKS AND BONDS 

Sperks e.nd Bonds, tvo more cyto-level classes (the others being the 

Glints end Gloms discussed above), are used during the eerly stages of group 

discovery. A spark is created betveen tvo gloms vhen a Sparkler task pulls 

those gloms at re.ndom from the cytoplasm end determines in a very cursory 

vay that the tvo structures might be amenable to bonding. The Sparkler 

simply looks for gloms that ere not subgloms of each other. It does not look for 

en y common features -- this is the vork of other tasks. For example. the glints 

"l" e.nd "1 ··might very vell be bondable, since they have the same print-value. 

Gloms "(l 2)" and "(1 2)" might be bondable for the same reason, or because 

they have the same ··span" (length in sequence terms covered). The glint "l" 

might be bonded to the glom "(2 '3)" by reason of adjacent successorship -- 2 is 

the successor of l, and the structures in question are adjacent. Hovever. no 

glom cen be bonded to one of its O"{(l'l. subgloms, so the glom "(1 (1 1 ))"cannot 

be bonded to the subglom "(l I)" in any vay. 
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BEYOND SPARKLING 

Vhen a spark is created betveen two glow, a horde of' "Testers" is 

placed on the taskrack. Vhen invoked (chosen to run) at some later time. each 

Tester chooses some spark:, not necessarily the one vhose creation cawed the 

tester's creation. The spark's members (the tvo gloms betveen vhich the spark 

is flying) are tested to ascertain if' they are currently in existence (recel.1 that 

gloms are ephemeral). If' both glow exist. their bond-fields - the 

characteristics such as print-Value or spen vhich e.re important enough to be 

used as a rationale for l:>onding -- are intersected, and these fields' Values are 

tested for similarities. The system uses several types of' bonds - sameness. 

successorship, predecessorship, adjacency, end meeting (e.g., "(8 1 4)" end 

"(4 7)" "meet" at 4) - grouped into families. to link: gloms. The most important 

of' these e.re. not surprising! y, sameness end successor-predecessorship. If' a 

bonding test is passed, a "Bonder" task is created vi th the intent of' performing 

the actUe.1 bonding. One Bonder task vill be created for each bon~ng test passed 

by the tvo gloms. so several Bonders might actUe.lly be created for any given 

glom pair. For example. gloms "(1 2)"" and "(1 2)" might engender l:>oth "same 

print-Value" end "same span" Bonders. 

BONDING 

Vhen invoked, a Bonder 

1) checks to see that both glow still exist. and 

2) checks to see that they are not already bonded in this vay. 

If' these conditions e.re satisfied. then the Bonder creates a Bond-class structure. 

vhich ve refer to simply as a~. This bond. vhich exists in the cytoplasm. 

links the tvo glow end has a strength associated vi th it. Bond strength is 

derived from the l:>ond type (e.g., "sameness"), enybond modifiers (adjacent 
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terms are more strongly bonded than non-adjacent ones. for example) and the 

glom characteristic (e.g., "print-value") that is the subject of the bond. Creation 

of a bond causes the release of more Sparklers. stimUlating the system to carry 

out more lov-level search and bond creation. and causes the release of some 

Glom-scouts - tasks designed to look for and push up glom groupings. 

GLOMMING 

Bonds are created in order to provide some basis for the grouping of 

sequence terms (glints) and term groups (gloms). The act of bonding simply 

reflects the fact that tvo gloms are related in some ve.y. Glomming, hovever. is 

performed only vhen the bonds among tvo or more gloms are sufficiently 

strong that the system shoUld viev the items comprising the bond-chain as a 

unit. The system distinguishes betveen the "bond-fields" of a glom and its 

"glom-fields". Bond-field$ are those characteristics ofgloms that are to be 

compared-for the purpose of bonding. Typically, the print-value and span are 

usefUl bond-fields. Thus. tvo gloms such as "'(l 2 3)" and "(7 8 9)" or "(1 2 3)" 

and "(8 1 4)" vill genere.lly be bonded. But. although knoVledge of the fact 

that tvo gloms have the same span is "interesting", it is generally not 

compelling enough to varrant glomming them in and of itself. In an early 

version of this system. ve did auov such gloms. The resUlt vas a plethora of 

uninteresting gloms that seemed to get in the vay of the system's real vork. In 

fact. this vas one of the main reasons for introducing the ''bond-field"/"glom­

field" distinction. Glom-fields are the glom characteristics that are important 

enough to use for glomming purposes. Only print-value is used as a glom-field 

in the current system. The system can make chosen glom characteristics more 

salient by designating them as bond-qelds or glom-fields, or less salient by 

removing these designations; in practice this ability is not yet used. 
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As vas noted earlier. l>ond creation causes the release ofGlom-scouts 

onto the taskrack. These tasks look for glommable bond-chains. They also serve 

to introduce e. good example of a terraced scan in Seek-Vhence. The tasks 

introduced betveen this point in the dissertation and our discussion of 

'"Plato-evaluator'" tasks perform. increasingly extensive tests on target gloms. 

screening the gloms as potential representatives of various Platonic classes. If 

a glom. passes one test. it is targeted for fUrther eve.luatiop. Should a glom fail a 

test. it may be re-evaluated by other tasks. Glom.s that are not discerne.l>ly 

Platonic are either ignored or destroyed. 

Vhen invoked. a Glom-scout chooses a cyto-elem.ent (a glint or glom 

vhich is not a subglom of any other glom) and attempts to group it vi.th its 

neighbors. Actually, three auicktests tests are made for anybond-femilyin 

vhich the glom. is involved: 

1) is it group able? (bonded to any neighbors in this ve.y?) 

2) is it coverable? (bonded into asymmetry group?) 

J) is it fenceable? (are there remote gloms to vhich it is bonded?) 

Note that these tests are the precursors of the plato-level notions of generate. 

process. and fence classes. Any tests passed cause creation of aGlomtester task 

to make a more extensive test of the glom. The Glomtester's veight (urgency) is 

dependent on the test ('"groupable'" being strongest) and the bond-type involved 

(sameness being stronger than successorship. and so on). For example. if the 

terms "l 6 6 5 2" have been entered. the system may notice several relationships 

among various terms. The tw neighboring e·s might be seen as a budding 

"sameness group" because of their adjacent sameness. Hovever. the remote 

successorship betveen the 1 and the 2 might also be noted and used to propose a 

'"successorship fence'" group. one that wu1d separate the given segment into 

gloms "(166 5)'" and "(2)". Such groupings are potentially very important 
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especiell y if the sequence is: 

1885 2885 3885 

or the like. but are not as immediate! y compelling as such groupings es the pair 

of S's. Therefore. aGlomtester for a sameness group is given a higher veight 

then a predecessor fence Glomtester. The system is thus biased tove.rd noticing 

certain similarities first. yet it is not compelled to do so. 

Vhen invoked. a Glomtester task must first l>e certain that the glom it is 

supposed to test is still in the cytoplasm. If so. it must then determine the extent 

of the evolving glom. The thrust here is to get maximally-sized gloms. 

for example. 

1) in "2 1 1 l r. vi.th the second "l" targeted and "sameness" the 

bond-type, the Glomtester voUld suggest that "1 11" be grouped. 

2) in "9 l 2 5 9", vi.th the first "9" targeted end "fence" the reason. 

"9 1 2 5" voUld be suggested. 

3) in "5 3 1 6 1 3 4" . vi th "6 "·targeted and "symmetry" the reason. 

"3 1 6 1 3" voUld be suggested. 

4) in "123 2 3". vi.th the first "2" the target and the "pred-succ" bond 

family the reason. "l 2 3 2 3" vould be suggested. 

The Glomtester either rejects the group as a glom or creates a Glommer task to 

refine the group and perform the final glomming. 

Vhen invoked. the Glommer vi.11 do a bit of "bookkeeping". It creates the 

nev glom and makes it an active focus -- a site of increased system activity. It 

also creates aGlom-inspector task to continue pushing the glom up to higher 

levels. 
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4. PLATO-CYTO RELATIONS 

The Seek-Vhence system has an imperative to find analogues of its 

plato-classes. At the lov levels of processing discussed thus far in this 

dissertation. that drive has been realized. in a procedural and uncritical vay. by 

the nature of the system's tasks. Above these levels. some declarative !cnoVledge 

is used; some manifest reference is made directly to the ideal-types to begin. if 

not rejecting gloms. then favoring those that seem the purest analogues of the 

ideals. Vhen found. these special gloms vill be "dubbed". All others vill be 

put on a track tovards destruction. Plato-scouts perform the first step in this 

process. 

A Glom-inspector determines vhich. if any. plato-classes might find 

the given glom "interesting" - vhich classes might possibly consider. 

it a "manifestation" of themselves. If there are any such classes. the 

Glom-inspector then creates a Plato-scout task. giving it the a;lom in question 

and the names of the "interested" (candidate) plato-classes. If the glom still 

exists vhen the Plato-scout is invoked, the scout begins its vork. 

During the glomming stage. maxim.ally-sized groups of gloms - all 

"chains" that consist of gloms related to their neighbors by some element of a 

bond family- are collected. Eor example. "1 Z J Z J" could be a 

"pred-succ-family" glom. The Plato-scout stage vill novfocus on "purifying" 

these groups. 

Recall that all but the fence-type plato-classes (Tuple and Cycle) possess 

a "process" -- afUnction vhich. vhen given anumber string. determines 

vhether or not the string is an instantiation of the class. A Plato-scout is given 

a glom and a list of candidate plate-classes. It applies the process !'Unction for 

each candidate class to the glom's print-value. If the glom passes the test then 

the glom is pure and vi.11 be dubbed a manifestation of the candidate class. A 
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glom can be dubbed more than once. The glom "(1 1 1 )".for example, might be 

dubbed as both e. C-group ("copy-group") and a Y-group ("$'flll.!D.etry-group"). 

If the plate-class is e.fence type (and so has no process). and if the glom 

is "fiat"--has only glints as subgloms -- a "pass by default" occurs. This 

permits flat potential Tuple and Cycle gloms to be dubbed as such. 

Any glom that does not pass even one of its process tests is cause for the 

creation of e.Plato-eVe.lue.tor task. Vhen invoked. the Ple.to-eVe.lue.torexemines 

the glom e. bit further, looking for dubbable gloms of secondary purity 

(non-flat) and for pure subcollections cf gloms within the proposed target glom. 

Thus "12 3 2 3" might "Wll be sent to aPlato-eVe.lue.tor. vhich might break it 

into the tvo pure successorship groups "1 2 T and ''2 3", e.nd send on the gloms 

for these tvo groups to be dubbed. If the Plato-eVe.lue.tor has no success and the 

glom has not already been dubbed as a manifestation of some other platotype, 

the scene is set for its destruction. A Burster task is created to destroy the glom 

and all its non-glint subgloms. 

DUBBING THE PURE 

If some glom is deemed "pure .. by a Plato-scout, the Plato-scout calls for 

the glom to be "dubbed". This is a tvo-step process: 

1) the glom 's structure field is modified to indicate 

e.) nev structure: (platotype [start-val] [length] [value]) 

e g .. (C-group 1 3) or (Cycle (2 9 8 1)) 

b) purity: pure<-> an exact manifestation; flat; e.g., (1 1 1) 

secondary<--> not flat; e.g., ( (1 5) (1 5) (1 5)) 

2) the Platonic ideal has this glom added to its list of manifestations. 

Dubbing causes creation of a Template-scout process, indicating that the 

glom is strong enough to verrant a check to determine vhether or not its 
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structure, as described in the structure field added during dubbing, might yield 

a pattern for the entire sequence. 

Those gloms the.t do not pass e.ny of the tests lee.ding to dubbing are 

targeted for destruction by a Burster or a Dissolver task. .A. Dissolver is a task 

that destroys a glom. lee.ving its highest-level rubgloms to noe.t independently 

in the cytoplasm. For exemple. if the glom. "((l 1) (2 2))" vere to l>e dissolved. 

the underlying gloms "(l 1 )" e.nd "(2 2)" vould survive. but vould. of course. no 

longer l>e glommed vith each other . .A. Burster task is even more destructive of 

glom structure. If a Burster vere set on the glom "( (1 1) (2 2) )", e.11 levels of 

glomming vould be destroyed, leaving only the glints "l ", "l •. "2", "2" in the 

cytoplasm. 

Once a Burster or Dissolver has been created on aglom. the 1tlom's only 

escape route is to become invisible in the cytoplasm by glomming vith another 

glom. Thus. after reaching the point of peruse.1 by a Ple.to-evalue.tor. a glom vill 

either e.) be dubbed; b) be destroyed e.nd have some sut>gloms dubbed; or c) be 

targeted for destruction. The Plato-evaluator cree.tes no other tasks. Our 

terraced scan has come to e.n end. 

5. REVIEV AND PREVIEV 

Thus far in this thesis ve he.ve discussed e.11 the major cyto-level tasks 

e.nd structures. Before moving on toe. discussion of other levels. it might be 

vell to get an overviev of vhe.t remains e.nd hov it relates to vhe.t ve he.ve 

already done. 

Vhen people vork on sequence or Bonge.rd problems. they usue.11 y 

progress through severe.1 stages. At first. they see and recognize nev terms as 

the terms are revee.led. Then they me.ke linkages betveen nev e.nd 

previously-encountered terms. and begin to me.ke tentative groupings of terms 
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in an effort to "come up vi th something". This essentielly data-driven activity 

is modeled in the cyto-1eve1 processing that ve have just discussed. Actual. terms 

and reel, undispute.1>1e relationships (e.g .. "adjacent successor") are used as the 

basis for creating, rather haphazardly and nondeterm.inisticelly. the ephemeral 

structures. "held tremblingly in the hand", knovn to See.k-Vhence as "g1om.s". 

The next step in human sequence-solution activity is to answer the 

question. "Vhat is it I've seen?", or better still. "Vhat is it I t1tink I've seen?". 

The corresponding processing level of Seek-Vhence, the template level makes 

a similar attempt to realize or identify vhat the system. "perceives" that it has 

seen. In the process of doing this, it tries to create a "template" for the sequence 

- a first rough approximation of the developing sequence pattern-description. 

This is a stage vhere ve try "to get a handle" on the pattern for internel 

processing purposes. People operating at this stage vil1 often say something 

like, "Ve.it - I think I've got it ... no. maybe not." The description is a tentative 

one, not believed too firm1 y, but nonetheless a sort of crystallization of current 

perception. The happiest possible outcome from. this stage is a parenthesization 

of the sequence in accord vi th the developing and nov more firm1 y held and 

more explicit pattern description. In Seek:-Vhence, this happy outcome means 

the creation of a hypothesis - the m.ore-firm1y-he1d description - and the 

creation of gnoths - the parenthesization. 

A Seek-Vhence hypothesis is the closest analogue the system has to a 

verbalization of the sequence pattern. A hum.an sequence solver. perhaps after 

one or more false starts, vil1 eventually announce triumphantly, "I think I've 

got it!". At this point, or certainly by the time the description is verbalized, the 

subject's pattern description has probe.1>1ycrysta11ized completely. This 

description is (usually) firmly held, is predictive, and can be communicated 

clearly to others - either by some encapsulation method (e.g. ,"three 1 'sand a 
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2") or by reciting the terms in a patterned or sing-song manner. Seek-Vhence 

hypotheses (vhich are described in detail later in this paper) have similar 

features: the system has not yet l>egun to sing them. though. 

As mentioned earlier. w vievthe gnoths -collectively. our 

parenthesization or the sequence - as existing in a place "f/'e ce.11 the 

"socratople.sm ". somevhere betwen the "reel vorld" of the cytoplasm and the 

"ideal vorld" of the platoplasm. If w viev the cytoplasm as data-driven and its 

structures as "real". and the platople.sm as theory-driven vith "ideal" structures, 

then the socratoplasm is vhat w vill call "perception-driven - and its 

structures "perceived". In the socratople.sm. Seek-Vhence must reconcile 

theory vith reality. and thus must in effect ansver the question. "Does vhat I 

think I've seen me.lee sense?". The gnoths vill e.lvays egree vith the hypothesis 

to some extent. but may fail to be f\Jllyconsistent vith it. Similarly. there may 

also be some temporary disegreement betveen the gnoths and the gloms that 

they in effect "represent" . This rather unplee.sant•sounding state of affairs is a 

consequence of the necessary state ornux at this level. If the hypothesis is 

changed -- if, for example, the system nov van ts the segment "1 2 2" 

parenthesized as "1 (2 2)", vheree.s it used to be parenthesized as "(1 2) 2" -

the system vill have to propegate that change dovn through the various 

processing levels. The socrato-level is the level possessing the vocat>Ulary in 

vhich to express those necessary changes. It is the level at vhich 

reformUlation begins to be brought e.bout. 

Nov that ve have some foreshadoving of future developments, it is time 

to return to our more systematic discussion ofSeek-Vhence processing. Ve left 

off at the point vhen template-level processing ve.s about to begin, the stage of 

"casting around" for an appropriate formUlation of the sequence pattern 

description. 
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6. TEMPLATE CREATION - ONE MOLD TO fIT All 

Vhenever a glom is dubbed as a manifestation of some plato-type. a 

Template-scout process is placed on the taskraclc. It and other processes 

involved in template creation and eveJ.ue.tion operate at an intermediate level 

betveen the ""rear·. data-driven cyto-level and the "perceived"". 

perception-driven socrato-level. The hum.an analogue is the stage during 

vhich a person ·s eyes move back end forth across the terms. as the person vai.ts 

for en idea to emerge. This is a stage in vhich people cen literally observe 

themselves vork. yet be unable to explain verbally vhat is happening. vhat 

they are '"thinking"". People vorking on Bongard problems experience this 

stage in en especially clear and forcefUl ve.y. 

In Seek-Vhence. the template-level processes attempt to come up vith a 

template or descriptor of the sequence. This is a preliminary step to devising a 

hypothesis -- that is. a predictive model of the sequence. en encapsulation of its 

structure. Templates end hypotheses have similar forms, but templates are far 

less complete and exact. lacking the predictive ability and expressive pover of 

hypotheses. A good, vorking template vill eventually give rise to a hypothesis. 

A template is formed vhen the structure of some particular dubbed glom 

is found to explain. at least roughly. all the sequence terms seen thus far. Eor 

example. the template form '"(S-group 1 n)"" suffices to explain ""l 1 2 1 2 ;­

since it '"fits'" all the term groupings. even though there is no built-in notion or 

even any recognition that ··n·· means ""countup'" here. The same template vould 

suffice equally veu for '"1 2 1 2 3 4 5 1 1 2 J". The ability to notice 

'"cross-glom ··properties. such as n <--> countup. is left to higher-level processes. 

Once a template is created, it puts a pseudo-glom called the template glom 

over the highest-level gloms in the cytoplasm (those that are not rubgloms of 

any other glom) to prevent the disappearance of the gloms that engendered end 
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nov reflect it. A pseudo-glom cannot combine vith reel gloms. e.nd it prevents 

its subgloms from glomming activity e.s veil. Some cyto-level activity ce.n still 

continue - bonding being done e.s freely e.s ever. for example - but no nev 

templates ere considered for the lifetime of the given template. 

The template vil1 be checked by a Template-ew.luator te.sk e.nd either be 

passed. or rejected e.nd al>e.ndoned. If tt is pe.ssed. it vill probably be the be.sis 

for hypothesis e.nd gnoth creation. This means that until a.hypothesis exists. ell 

nevterms vil1 be "filtered" pe.st the template. checked for agreement vi.th it. 

Should e. term not fit the template. e. reviev is set up. vi.th reNlting modification 

or rejection of the template. The filtering process is the first major top-dovn 

action performed by the system; the template level he.s taken control. This is 

not to say that cyto-level activity ceases or slovs; the cyto-level processes 

continue in their accustomed ve.y. Vhat is added is direction from al>ove: 

instructions to make or di.ssol ve gloms. to create units of a particular form. 

TEMPI.ATE DIH'ICULTIES 

The process of devising a template is not e.s easy e.s it might first appear. 

Eor example, suppose that the sequence terms "1121 2 3" vere entered e.nd 

the first "1 2" vere glommed. dubbed e.s "(S-group 1 2)". e.nd targeted bye. 

Template-scout. Vhen invoked. the scout vould set out e. Template-applier task 

to determine if the entire sequence seen is of that form. The applier vould 

attempt to vievthe sequence e.s a repetition of "(S-group 12)" e.nd vould. of 

course. fail because of the initial "1" and the trailing '"3". The applier does not 

give up immediately, but rather checks to see if loosening e. parameter or tvo in 

its representat~on vould help. In this case. changing the form from the original 

"(S-group 1 2)" to "(S-group 1 n)" -- vhere "n" means "any nonnegative 

integer" - vill do the trick. The accepted template vill then be "(S-group 1 n)". 
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If the Template-applier fails, it creates a Template-resolver task for one 

final attempt. Vhen invoked, the resolver looks at glints rather than gloms to 

determine vhether or not the sequence can be re-vie'Ved to fit into the given 

mold. for example. if the segment "11 2 l 2 3" 'Vere glommed as (11) 2 (1 2 3). 

the Template-applier voUld fail because of the first glom . .A Template-resolver 

vorking vi.th the template "(S-group 1 n)", ho'Ve.ver, might be able to find the 

appropriate S-groups by looking at the sequence terms rather than the gloms. 

If the Template-resolver is successfU1, it "blasts" (does an immediate burst of) all 

gloms and has the glints reglommed to fit the template. This is a fairly radical 

action in that it ignores ell the cyto-generated glom units, but it does provide 

some potential for destroying '1ocked-in" gloms, ones the system created and 

can never seem to burst. If the proposed template does not vork: at term level, it 

is forgotten and the engendering glom dissolved. 

In practice, the Template-resolver is seldom invoked because the system 

can usually devise a template early on vhich is good enough to push up a 

hypothesis. Once that has happened. the higher levels take over the job of 

resolving problems. It is in the spirit of Seek-Vhence processing to give each 

level a little more capability than it should need to use - the ability to handle, 

albeit lamely, situations that voUld be better handled by higher-level processes. 

The Template-reviever process is in this category. It is invoked after a 

template has been created (but no hypothesis exists) and vhen nev terms fail ta 

fit the template. It can try some very simple fixes and can either: 

1) cell for modification of the template and restart the creation 

and evaluation processes; 

2) leave the template alone; 

3) target it for abandoning . 

The creation and acceptance of a template causes increased activity in 
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the system, in effect "reising the temperature" in the system. Most importantly, 

it sets of'ftvo tasks. aGnoth-maker and a Hypothesizer. This action pushes 

processing up into the next level. the socrato-level. vhere more considered 

operations are performed on the fluid but less ephemeral structures of the 

socratoplasm. 

7. THE SOCR.ATOPU.SM- IN THE MIDDU 

The socratoplesm is the "perceived vorld" of Seek-Vhence. the place 

vhere perceptions developed at the cyto-level are noticed, cateJ.ogued, and dealt 

"1i.th. It can be vieved es a battleground betveen the "ideal" plate-notions and 

the "reel" cyto-glimmerings - that is. betveen the semantic and the syntactic -

or - to put it one last ve.y-- betveen the cognitive and the subcognitive. In 

any cese, it is the system's playground. vhere perceptions can be modified and 

manipulated; in short, it is vhere slipping occurs. 

For emphasis. ve should note once agein that operations carried out at 

the socrato-level inevite.l>ly cause cyto-level activity. This is very desire.I> le. 

Such lov-level activity may result in the noticing of a special bond or the 

creation of anevglom vhich might eventueJ.lyengender a better parse . 

.A single cyto-level tesk: is too lov-level to control its ovn or the system's 

processing directly (although in aggregate these tasks are very influential). In 

contrast. the socrato-level can and does support tasks vhich say, in essence. 

"Enough! I have a hypothesis. Let's have the next term to check it our·. or 

better still. "I think the ansver is .... Tell me if I'm vrong." 

As "N'aS previously noted, the acceptance of a template signals the 

system's readiness to consider creation of a hypothesis - an encapsulation of 

the sequence's structure. Although this goal. may not yet be e.tteine.ble, a 

correct hypothesis not forthcoming.. the highest-level processes should nov be 
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introduced into the fray. At this point, malleable, manipulable, relatively 

non-ephemeral. structures are needed so that any necessary slipping can l>e 

noticed e.nd carried out. Moreover, e. reformulation vocabulary must l>e 

developed so that the system ce.n express clearly e.nd succinctly the actions it 

needs to teke. Thus, the structures ve call ·gnoths" are created. 

vays: 

GNOTHS 

Ee.ch gnoth, a member of the class Gnoths, is vieved in three different 

1) it is e.n actualization of a Platonic class; 

2) it hes an underlying glom collection from vhich it derives its 

structure; 

3) it represents one "hit" of the current hypothesis (if there is one). 

Vhen a Gnoth-meker task, set off by the system after template creation. 

is invoked, it creates one gnoth for each sUl>glom of the template-glom e.nd 

notifies the associated plato-clesses of their existence. 

Eor example, in the sequence "1 1 2 1 2 3". vhere ve might have gloms: 

glom2: (1) 

glom7: (1 2) 

glom4: (123) 
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and template "(S-group 1 n)", the Gnoth-maker vould create three gnoths: 

gnothl 

class: Gnoths 

name: gnothl 

frame: 1 

plate-class: S-group 

this gnoth holds the first hypothesis "hit-

glom: glomlO (vhere glomlO has g1om2 as subglom) 

the gnoth 's "pseudo-glom -

range: ( 1 1 ) 

gnoth2 

class: Gnoths 

name: gnoth2 

frame: 2 

plate-class: S-group 

the sequence terms it "covers" 

glom: glomll (vhere gloml 1 has glom7 as subglom) 

range: (2 3) 

gnoth3 

class: Gnoths 

name: gnoth3 

frame: 3 

plate-class: S-group 

glom: glom12 (vhere glom12 has glom4 as subglom) 

range: (4 6) 

Ee.ch gnoth places apseudo-glom (called a "gnoth-glom") over its glom 

collection (vhich contains just one glom initially). A gnoth-glom, like e. 
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· tem.plate-glom.. cennot glom. vi.th other cyto-elem.ents end serves to prevent the 

haphezerd dise.ppeerence of glom. structures important to the system.. In this 

case. since the underlying g1om. collection gives the gnoth its chere.cter. that 

collection m.wt be preserved until the gnoth itself must change. Cyto-level 

bonding activitycen continue but novthe gnoth oversees the fate of its glom.s. 

Cyto-level tasks ere som.evhat m. yopic, e.ble to vi.ev the sequence only in 

a restricted. localized vay. They have no oyeryiey of the sequence. The 

structures - the glom.s -- created at the cyto-level reflect this myopic viev. In 

contrast, the hypothesis end platonic-level processes can be said to have no 

"underyiey" of the sequence. no direct contact vith reality as it exists in the 

cytoplasm. Gnoths ere designed to bridge the gap betveen these levels. to 

provide a place vhere inconsistencies l>etveen the high-level end lov-level 

vievs cen be vorked out. 

8. HYPOTHESES - ENCAPSULATING PATTERNS 

The overall purpose of the system is to develop a reasonable hypothesjs: 

a cleen. predictive model of the rule underlying the sequence. Vhen a template 

is accepted. a Hypothesizer task is set off along vi.th a Gnoth-m.aker. described 

e.t>ove. Vhen invoked. the Hypothesizer is responsible for devising a hypothesis 

for the sequence. based on the template and the existing gnoths (if any) and 

glom.s. If. for some reason. there is a faulty template (or none at all). the 

Hypothesizer can take the fe.11-back position of declering the sequence to be a 

Tuple. the veakest of e.11 plato-classes. 

Because the Hypothesizer's model. like those developed by hum.ans. 
·' 

may turn out. as more terms.errive. to fail to be predictive. or maybe judged 

"clumsy" or "ugly", it must also be easy to change. Thus. hypotheses must be not 

only predictive end cleen. but also om.enable to reformulation - "slippal>le •. 
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Naturally, Seek-Vhence must be e.l>le to notice vhen reformuJ.ation is ce.lled for. 

to knovVhyit shoUld be done. to knovvhat changes to make. and to knovhov 

to carryout these changes. It becomes obvious, then, that hypothesis structure 

is critice.1. in that it can make or break the syitem 's e.l>ility to carry out these 

te.sks. 

The predictive nature ofahVPOthesis is asemantic rather than a 

syntactic requirement. and so poses fev constraints on hypothesis form. The 

other tvo goals- clean representation and slippable form - do give us 

something to vork to.ve.rds. Ji. hypothesis must have sufficient expressive 

pover to represent the observed regUle.rity accurately. It shoUld have a clean 

virua! appearance so that it can be understood by humans - vho Vill. after e.11. 

be investigating its velidity. It shoUld be modUlar, so that the reformUlation so 

fluidly and nature.11 y done by humans can be carried out equally smoothly by 

the system. 

HYPOTHESIS :CORM 

The form ve have chosen for hypotheses is, not surprisingly. closely 

tied to the ideals in the platoplasm. - a natural and direct consequence of 

having the syitem vievits vorld in terms of those concepts. It also closely 

resembles S-e-Vhence die.grams. The fre.gment"l 11 ",for example. may veil 

be vieved e.s aC-group (Constant group). Ji. hVPOthesis voUld express this in the 

form "(C-group 1 3)". a list consisting of the Platonic cle.ss name. the ste.rt-ve.lue 

and the (top-level) length of the grouping. 

The sequence segment "4 5 6 4 5 6" coUld be expressed: 

(C-group (S-group 4 3) 2). 

indicating a C-group of length 2, each of Vhose entries is the S-group 

(successor-group) starting vi th 4 and of length 3. 
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The segment "4 5 6 5 6 7" could be: 

(S-group (Countup 4) 3). 

Each "hit" or evaluation of this form vould yield e.length-3 successor group. 

The first group vould start vi th 4. the next vith 5. etc .. 

The segment "l 5 e 4 z 5 e 4 3 5 e 4" might be expressed: 

(Cycle ((Countup 1) (Tuple (5 8 4)))). 

The segment "l 1 Z l "'could be: 

(Cycle ((Counrup 1) 1)) <--> (1 1) (Z 1) (3 1) ... 

OR 

(Cycle ( 1 (S-group 1 Z))) <---> (1 (1 Z)) (1 (1 Z)) .... 

The segment "l Z l" might be: 

(S-group 1 Z) <--> (1 Z) (1 Z) ... 

OR 

(Y-group [l) [3) (1Z1)) <--> (1 Z l) (1Z1) ... 

These forms ere constructed by the system es it attempts to build a 

hypothesis for the pattern presented. The Hypothesizer process vill take such a 

form and from it construct a Seek-Vhence hypothesis - a de.ta structure vi th 

severe! fields. capabilities. and f\lnctioru. 

HYPOTHESIS FEATURES 

First and apparently simplest. the hypothesis can display its form. much 

es 'V8S sho-wn in the lest section. It can elso predict the next term to be expected 

folloving that form. In addition. it hes e.yal.idityessocie.ted vith it- a number 

that gro"VS es nev. correctly-predicted terms ere encountered. The most crucial 

field, hovever. and the one that supports the others. is simply c8lled the 

hypothesis'~- The box is the structure vhich, vhen "hit". produces the next 

run of terms predicted by the hypothesis. The box can be reset to start again. 
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asked to list a number of terms. or asked to predict the next term. given the 

sequence's currentlyknovn terms. The hypothesis' box is amember of the 

class "Boxes" and e.s such lives in the socratoplesm, the middle level of the 

Seek-Vhence 't!Orld, along "rith members of the <:lesses "Printstructures" and 

''Gnoths". Gnoths. es ve have seen earlier. are the central representative 

structures in the socratoplesm; boxes and the closely-related printstructures 

are not as visible. serving e.more private purpose. The next section details the 

operation of boxes and is not central to the flov of our discussion. 

BOXES .AND PRINTSTRUCTUR.ES 

Ee.ch box is a repository of information e.bout an underlying 

printstructure and through the.t printstructure branches out. tree-like. to 

represent in an active ~ystructures "rith such forms as: 

(C-groUp 1 3) or (C-group (S-group 2 3) 2) [see Figure 3]. 

Boxes can be "hit". prodded for their next value. Vhen implementing 

box hits. I ve.nted to be sure the.t hit propea;e.tion dovn the box tree coUld be 

done in e. fUlly parallel manner. "rith no reliance on the return of any 

particUle.r ve.lue before any other. The follo"ring implementation 'rill vork in 

this fashion. although the current version of the program tree.ts box hits es 

indiVisible operations. rather than es a task series. 

Vhen a box is hit. it calls upon its underlying printstructure to feed it a 

value. Ee.ch printstructure has e. collection of fire-boxes, sUbboxes vhich must 

be hit to give it e. value. Vhen the printstructure "fires" - the.tis, hits its 

fire-boxes. ee.ch box must return e. value. Thus. e.hit iin e. top-level box 

propege.tes dovn through the tree ofprintstructures and boxes belovit until 

the most deeply-nested structures return their values. These are pessed up and 

the upV8rds-bubbling proceeds until the top-level e.nsver appears in the top 
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Box1 

printstruc: 

pstruc-val: 

ready: 
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Pstruc1 

type: C-group 
boxes: (box1) 

~B~o~x~2:__~..o===~~~~~----~-y-2n~-v~a~. 
~ k-val: 

printstruc: ---!--. 

pstruc-val: 

ready: 

Pstruc2 

'--~..---_,/ 

printstruc: --+-. 

pstruc-val: 

ready: 

type: S-group 
boxes: (box2) 

Pstruc5 

Box3 

printstruc: --.i-.1 
pstruc-val: 

ready: 

I 
Pstruc3 

type: Constant 
boxes: (box3) 
value: 2 

Box4 

printstruc: ---1.­

pstruc-val: 

ready: 

' 

Pstruc4 

type: Constant 
boxes: (box4) 
value: 3 

' type: 
boxes: 
value: 

figure 3 -- A box tree for the form (C-group (S-group 2 3) 2) 

Constant 
(boxS) 
2 

In Figure 3, for example, the "fire-boxes" for Pstrucl -- aC-group 

printstructure -- are its "n-val" and "k-val" boxes, namely Box2 and BoxS. 

In order for Box2 to fire, though, it must in turn receive a value from its 

subordinate printstructure, Pstruc2 -- an S-group printstructure. Vhen Box2 is 

• 

• 
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duly filled, its "ready" field Will be set to "true", end it vi.11 report the value in its 

"pstruc-val" field to Pstrucl. It is possible for tvo or more boxes to shere the 

sem.e underlYfng print.structure. This happens, for example, in the sequence: 

"8 1 2 8 '3 4 8 5 6 ... ", 

vhich cen be described by the form "(Cycle (8 (Coun~ed))". 
Modeling this form requires the creation or three boxes: one for the 

''Corute.nt 8", one for the first "Countup l ",end one for the second "Countup l" 

(referred to es "she.red" in the given form). The "she.red" distinguishes this 

situation from the one implied by the form "(Cyc1e(8 (Coun.tup 1) (Countup l)))". 

vhich e.lso requires three boxes, end vhich corresponds to the sequence 

"8118228'3-'3 ... ". 

In our first form, on1yone Countup printstrueture is created. Vhen that 

printstrUcture fires in response to ahit on the first Countup box, it feeds both 

Countup boxes, malcing both boxes "ree.dy". Later on, vhen the second Countup 

box is hit the am§. printstructure Will fire, age.in reeding both boxes, but this 

time ~th the nm value in sequence. In contrast, the second form causes 

creation or different printstructures ror the tw Countup boxes. Those 

print.structures e.re hit independently, once ee.ch in a turn e.round the Cycle. 

A simpler example or the same phenomenon can be seen using Fig\lre '3. 
,,,.--.._ 

Ir the form modeled had been "(C-group (S-group 2 3) she.red)" - rather the.n 

"(C-group (S-group (2 '3)) 2)" - so that the sameness of the Z's were to be 

modeled explicitly, our diagram in Fig\lre 3 wUld have been slicht1ydifl'erent. 

P~'3 voUld have "(box') box5)" in its "boxes" field, and there voUld be no need 

for Pstruc5. Box5 vo\.lld point to Pstruc3 es its "printstruc". 

In order to handle the details of firing end box-filling. each 

print.structure type (C-group, S-group, etc.) hes afint associated ~th it. a 
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process which knovs hov to fire the releV8nt fireboxes of the printstructure 

and vhat to do vith the results. Vhen aprintstructure is shered bytvo or more 

boxes. each box must be filled vhenever the printstructure fires. Those boxes 

must then record the fact that they already have a value - set their "ready" 

fields to "true" - so that they can report this ve.J.ue until the next time they ere 

hit. Boxes can also be reset to stert from the beginning of the pattern described. 

or asked to shov a number of terms. One proposed project for refinement of 

Seelc-Vhence is to create a box-tree editor. Ve or the system could then change 

the box tree associated vith a form. This vould me.lee hypothesis modification 

cleaner and more sophisticated than the current technique, vhich is to scrap 

the old box tree and make a nev one. 

Ve feel that the chosen implementation of hypotheses goes along ve:y 

tove.rd meeting our gee.ls. It gives us an active structure cape.l>le of realizing 

any ....-ell-formed hypothesis form. It accurately represents pattern structures. 

and she.red substructures can be represented explicitly in the box tree. Thus it 

is expressive. It is modular so that slipping - reformulation - is supported. 

D. THE END OE ST.lCiE ONE 

Once the hypothesis is in place and the gnoths corresponding to it are 

"up" (created by the Cinoth-m.alcer). the system has reached the culmination of 

its stege-one processing. Erom nov on. activity vill te.lce place at e.11 levels of 

the system simultaneously. The nev goel vill be confirmation of a predictive 

model for the sequence. 

Virtually e.11 the structures created before the gnoths and hypothesis 

operate at a level that ....-e reel is generellyignored by most Al systems. Ve have 

developed a set or gnoth operations. a language in which ....-e can express 
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several vays for gnoths to coml>ine and split. to share terms, and generally to 

interact vi.th each other. This is the level that .AI programs tend to take as a 

starting point. Ve have attempted to implement a rich "subcognitive" level to 

illustrate our belief that such a substrate is critically important to truly 

intelligent systems, merldng a step up from formal symbol manipulation. Many 

Al programs have been created to do very sophisticated things, but rev if any 

~e able to do simple, childlike things. Both abilities ere important. A program 

able to com.l>ine fluidly re!ormulate.l>le, structural concepts such as ours vi.th 

· the kno~edge of a sophisticated domain vould be an achievement indeed, both 

kno~edgeal>le and flexible. 



CHAPTER THREE 

SEEK-VHENCE STAGE TVO -- REFORMULATION 

• 
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A. INTRODUCTION 

The current version of Seek-Whence ves designed as en illustration of 

the plausibility of our approach. so I spent much time developing the paradigm 

and implementing the lower levels of the system described in the previous 

chapter. The highest levels ere not as completely implemented, but do serve to 

illustrate the potential of our approach. Several sequence problems have been 

solved by the system. These include 

1 1 1 ... 

1234 ... 

111222333 ... 

343434 .. . 

373737 .. . 

373373373 ... 

16 15 14 17 16 15 18 17 16 .. . 

16 15 141514 13 14 13 12 ... (as well as possible. given e.non-in{inite pattern) 

121231234 ... 

Ve vi.11 use the last of these in a running example of Seek-Vhence 

processing throughout the remainder of this dissertation. A discussion ofvhat 

the current version of the system cannot do is given in Chapter Eive. along vi th 

some speculations as to why and some goals for the t'Uture. 

B. BACKGROUND 

The defining characteristic of stage two is the looming presence of the 

hypothesis. Vithout it. the system surfers from a "blind men end elephants" 

problem -- trying to meke global sense from multiple local perspectives. Vith 

the hypothesis. the system has a "point of view". e. predictive model of the 

sequence to vhich it can cling until contradictory evidence is encountered. 
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1. THE HUMAN APPROACH 

Ve have presented sequence panerns to people singly and in groups. 

Almost inverial>ly, and juslifiably, once they have developed a hypothesis they 

insist on its correctness until it is proved incorrect l>y the production of a term 

that simply vill not fit. for example, vhen shovn: 

1223 

many people hypothesize: 

(1) (2 2) (3 3 3) (4 4 4 4) 

or, in Seek-Vhence terminology: 
~ 

(C-group (Countup 1) shared). 

If ve say, "Nope, not it" and then present another 3. the usual reaction is 

"Yeah 7", uttered vi th an innection of challenge and the hint of a suggestion 

that the presenter he.s actually forgotten the pattern. It is only vhen the next 

term is presented, a 4, making the initial sequence: 

122334 

that they really l>elieve another formulation is required. Then follovs a 

varie.l>le-length period of reviev and reorganization. vhich is in turn folloved 

t>y the generation of a nev firmly-held hypothesis (or, in difficult cases, 

resignation). 

This "shov me" attitude and the l>elief in a favorite hypothesis ere 

modeled in Seek-Vhence. The system maintains one hypothesis at any given 

time, rather than a list of possibilities. It is al> le to do this e.nd still function 

reasonably veil because of its ability to "slip" from an old hypothesis to a nev 

one. The hypothesis is, in effect. surrounded l>y cloud of potential hypotheses, 

close variants into vhich it can be transformed vhenever appropriate. 

Underlying this e.l>ility are links among the Platonic concepts and information 

about the cyto-level environment favored l>y each Platonic concept. 
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2. PLATONIC RELATIONS (no pun intended) 

The Platonic concepts of Seek-Vhence. C-group, Tuple. Countup. 

and the like. are to l>e connected l>y a variety of links reflecting the concepts' 

interrelationships. This network of connections. in conjunction '7ith a 

philosophy for their use, constitutes the "Slipnet" vhich is so essential to the 

system's reformulation ability. In the current version. ve have implemented a 

small numl>er of undifferentiated slipping links, called s-link~. for this purpose. 

The system's slipping network -- vhich is ell vi thin the platoplasm - is 

supplemented l>y another." level-spanning", nerwrk vhich relates each 

concept to its ovn lover-level realizations. This network inclUdes the lists each 

Platonic concept me.inte.ins of its manifestations and actualizations. As 

descril>ed earlier. the manifestations of a concept are cyto-level structures 

vhich have l>een dubbed e.s representatives of the concept, vhich model it up to 

the expressive ability of that level. The actue.lize.tioru e.re socrato-level 

structures vhich have similarly l>een identified as representatives of the 

concept at that level. .Also included in the level-spanning netvork are lists of 

pulling and pushing bonds, bonds vhich the concept ce.n use to group or 

separate sequence terms. Level-spanning links are little used as yet. 

S-LINKS 

As currently implemented, the s-links have direction end "slipperiness". 

For example, S-group he.s s-links to Countup. C-group, Y-group, Cycle, end Tuple . 

.Associated '7ith each s-link is a numl>er l>etween O (non-slippery) and 1 

(perfectly slippery), vhich indicates my estimate of the system's proclivity to 

move from the given concept to the neighbor. The s-link from S-group to 

Countup has slipperiness 0.1, reflecting the fact that it is difficult to slip to a 

stricter class. Slipperiness from. S-group to Tuple is 0.4, since Tuple can serve as 
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a generic grouping mechanism if no satisfactory stricter class is appropriate. 

The slipperiness values can be changed during processing, elthough the 

current system does not do so. A richer collection of linkage types end e. fUller 

description of the Slip net notion is given in [Hofstadter 84]. 

PULL-PUSH BONDS 

In addition to the s-links, each concept preserves information about the 

types of bonds it finds most usefUl in grouping sequence terms. Ear example, 

the C-group concept, because it involves copy or sameness groups, favors 

adjacent sameness bonds most strongly, but also likes to see gloms having the 

same span (number of sequence terms covered). Bonds vhich a.Platonic class 

might use to hold groups together are listed as "pull-bonds"; those it tends to use 

to separate groups are listed as "push-bonds". Each so-designated bond type is 

given a strength from 1to10, strengths vhich agein could be, but in practice 

are not. changed by the system. 

3. EREEZE-DRIED HYPOTHESES 

Vhen a hypothesis has been deemed inadequate, it is "freeze-dried" -- its 

form is extracted and is kept on a list of old hypotheses, elong vith the number 

of terms of the sequence it explained. The old hypotheses serve as e.check 

against cycling in the system. Vhen Seek-Vhence has trouble coming up vith 

a hypothesis, it, like most humans, keeps coming be.ck to the same incorrect 

hypotheses again end again. This, ve feel, is note. be.d feature, since people are 

guilty of the same "foolish" behavior. It would be disastrous, hovever, should it 

go unnoticed. Gray Clossme.n and others in the Eluid Anelogies Research Group 

(FARG) at Michigan have thought quite deeply about the importance of 

"self-noticing" or "self-vatching" [Hofstadter 85]. No doubt the Copycat project 
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in progress there vill have a more sophisticated approach to the problem than 

the small effort presented here. In any case, freeze-dried hypotheses e.t least 

flag cyclic behavior at this level of granularity. On the other hand, ve do not 

'Vent to prevent cycles at lov levels for several reasons. People experience 

them. .Although ve may find them quite annoying at times, they are often 

quite useful.in forcing us to consider once age.in a correct notion vhich ve he.d 

rejected for some "high-level" but incorrect reason. Seek-Vhence has thrashed 

about more than once, clinging to some Platonic class or glom, vhile 

underlying layers push up another, correct, notion over e.nd over age.in. 

Knoving vhen to permit these notions to take over and vhen to squelch them is 

e. most difficult problem. Our current solution has been. vhen no progress has 

l>een made for quite some time, to !>last avay all gnoths e.nd gloms, leaving only 

the glints and their bonds to push up an inspiration . .A mathematics student and 

friend ves the inspiration for this approach . .After struggling unsuccessfully 

for hours vi th a problem set, she wUld toss all her papers avay, va1k around 

the room, confront the problem sheet and say. in a very cheerful voice, "Oh. 

look-- aprol>lem set! I wnder vhat the questions are. Shall ve try some? I bet 

they'll be .o,m:· Sometimes it wrked and sometimes .... 

C. CH.ANG ING J.. HYPOTHESIS 

There are actue.11 y tw reasons for changing a hypothesis: 

l) it fails to predict ; 

2) it is predictive but its form is less than satisfactory. 

Ve term hypothesis changes made for the former reason "medicel 

reformulations" to distinguish them from the "cosmetic reformulations" made in 

response to the latter. The current version of Seek-Vhence supports the more 

criticel medicel reformulations l>ut has only made a beginning at handling the 
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cosmetic ones. Because our discussion of medical reformulation vi.11 of 

necessity be rather lengthy, ve vi.ll cover the cosmetic reforms first. 

1. COSMETIC REFORM 

Once e. hypothesis he.s been formulated. it becomes important to refine 

it. An "ugly", though correct, parse can be very dissatisfying to humans; there 

is generally strong agreement on vhich of several candidate parses is "best" in 

this heuristic sense. For example. given the sequence 

2 1 2 2 2 2 2 '3 2 2 4 2 2 5 2 ... 

most successf\.11 solvers vi.ll come up vi th the parse: 

(212) (222) (2'32) "" 

More than one person he.s parsed it e.s: 

2 (1 2 2) (2 2 2) ('3 2 2) ... , 

becoming annoyed at the presenter for posing a problem vi.th such a tricky, 

ugly parse, "vi.th that 2 sticking out in front." 

In some instances. alternative parses are equally acceptable. but vi.11 

generalize differently. For example. such sequences e.s: 

(5 1 5) (5 2 5) (5 '3 5) ... and 

(5 16)(52 6) (5 '3 6) .. . 

e.re both considered generalizations of the sequence 

(4 1 5) (4 2 5) (4 '3 5) .... 

The difference is that in the first generalization the countup betveen the 

bracketing 4 and 5 in the original (le.st-listed) sequence is either not noticed or 

not considered salient. vhile in the second generalization it is maintained. For 

an interesting study of the problems of analogy and generalization. see 

[Hofstadter 82c ! 

Hypothesis refinement is e.s yet only minimally supported in 
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Seek-Vhence. It is to be carried out by internal gnoth reformers, processes that 

modify the internal structure of the gnoths. Such modification 'tli.11 be done for 

either of t'Wtl reasons: 

1) to relieve internal pressure vi thin a gnoth, pressure deriving from 

those bonds 'tli.thin the gnoth that "WOuld push it e.pert; 

2) to me.ke the gnoth 's structure conform more closely to the reigning 

hypothesis. 

The first of these describes "bottom-up" pressures, such e.s e.n un'tli.eldy 

structure or poor perenthesization. An example of this vould be the 

2 1 2 2 2 2 2 3 2. . . case cited e.t>ove. vhere the first structure -- holding e. lone 2 

- vould seem rather out of place. The second is e. "top-dovn" e.ttempt to insure 

the.t the gnoths model the reigning hypothesis as closely e.s possible. The 

driving force behind this attempt is the goal of structural equivalence betveen 

each gnoth e.nd the hypothesis. 

GNOTH-HYPOTHESIS EQUIVALENCE 

Ve he.ve stated that each gnoth is to represent one hit of the hypothesis. 

But is it sufficient that the gnoth give the same terms e.s a hypothesis hit? Or do 

ve ve.nt the same terms 'tli.th the same perenthesize.tion? Or might ve also 

ve.nt the gnoth to obey the same underlying f2.tm. (the.tis, have the same 

peren thesize.tion for the same reason)? In the folloving sections ve 'tli.11 

describe these three levels of representation, vhich ve cell "term. equivalence··, 

"parse equivalence", and "structural equivalence". Ve use the term frame of e. 

hypothesis to m.ee.n e.n abstractly-vieved hit of the hypothesis: the collection of 

Seek-Vhence forms that vould produce the given hit. 
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TERM EQUIVALENCE 

Term equivalence, the veakest of the three types of representation, 

requires that each gnoth govern precisely the same terms as one frame of the 

hypothesis. for example, ifthe hypothesis is: (S-group 1 '3), then 'oath gnoths 

shovn in the follovi.ng diagram are term-equi'V8lent to it. 

gnoth2 gnoth3 

Vhen asked for its V8lue, gnoth2 produces ((1 Z) '3). vhile gnoth3 yields 

(1 2 3). Both gnoths produce the three terms 1, Z, 3 in that order, so both satisfy 

the requirement for term-equivalence. 

PAR.SE EQUIVALENCE 

Parse equivelence, the next level, requires that the gnoth print its value 

vi.th the same pe.renthesization e.s the corresponding hypothesis frame. In the 

above example, gnoth'3 is parse-equivalent to the given hypothesis vhile 

gnoth2 is not. 

STRUCTURAL EQUIV AUNCE 

The third and strongest level of equivalence is structure! equivalence. 

In order to display structure! equivalence vi.th the hypothesis, a gnoth must be 

parse-equivalent to it and the gnoth's form must 'oe the same e.s the 
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corresponding frame of the hypothesis. But vhat form shoUld a gnoth assume if 

it is to reflect the hypothesis accurately? There are tvo distinguishe.l>le 

possil>ilities. vhich ve call deep structure and shallov structure. 

For example. suppose that 'We have a fairly complicated hypothesis such 

as "(C-group (S-group (Countup 1) 3) 2)". derived from input terms: 

1 2 3 1 2 J 2 J 4 2 J 4 J 4 5 3 4 5. and parsed as: 

123 123 234 234 345 345. 

Vie'Wed at the term level. the first hit of this hypothesis generates "l 2 3 1 2 3". 

The shaUov-structure (or deeply-hit) form of the first frame of our 

hypothesis voutd l>e: 

(C-group (1 2 3) 2). 

The corresponding deep-structure (or shallo~y-hit) form is: 

(C-group (S-group 1J)2). 

More structural detail is retained in the deep-structure form. vi th only the 

lo'West-level structures replaced l>yconstants or tuns. In the shallov-structure 

form. all but the top-level structures are so replaced. 

DEEP VS. SH.ALLOV STRUCTURE 

For comparison, the first three deep-structure and shaUov-structure 

frames of our hyt>Othesis "(C-group (S-group (Countup 1) 3) 2)" are: 

sbolloy 

(C-group (1 2 3) 2) 

(C-group (2 3 4) 2) 

(C-group (J 4 5) 2) 

~ 

(C-group (S-group 1 J) 2) 

(C-group (S-group 2 J) 2) 

(C-group (S-group J J) 2) 

Because the deep-structure form presents more structural detail and 

represents a "one-step-dovn" vievofthe hypothesis. ft chose it as our goal. 

Once a hypothesis is made. the system gives each gnoth its target form, the 
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deep-structure equivalent of the hypothesis frame to vhich it corresponds. 

Vhen the gnoth's form matches this given one. the gnoth is said to exhibit 

structural equivalence vith the hypothesis. At that time. the gnoth should be 

completely "happy", having no further goals. 

FORM POLISHING 

In summary. all gnoths must alvays maintain~ equivalence vith the 

hypothesis. Their goal vill be to achieve structure.1 equivalence by reforming 

into the deep-structure form of one hypothesis frame . .Along the vay they vill 

achieve the middle state of parse equivalence. indicated by the re.ct that the 

gnoth's "parse-print". the parenthesized printing of its value. matches that of 

the hypothesis frame. 

IMPORTANCE TO GENERALIZATION 

The form polishing described above vill be essential to en ability to 

generalize sequences in reasonable vays and make analogies bet~en sequence 

descriptions. Also required vill be the ability to notice structural samenesses • 
. 

such es the (Countup l) in the hypothesis "(C-group (Countup 1) (Countup l ))". 

vhich yields the terms: 

l z z 3 3 3. 

These are among the f\lture high-level goals of the Seek-Vhence project. 

unimplemented as yet. 

2. MEDICAL REFORM 

Medical reformulation. vhich is supported in the current version of 

Seek-Vhence. is done vhen the hypothesis hes been demonstrated to be invalid. 

It involves a reviev of the old hypothesis and the underlying structures 
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supporting it. a decision as to vhich Platonic type should hold sve.y, a 

re-evaluation of the bonds noticed by the system. the use of bonds in the 

environment of the chosen Platonic type to engender gnoth reformulations. 

and finally (it is hoped) the construction of anev, predictive hypothesis. 

GNOTH-SETTER 

The system stores hypothesis-confirming terms in a catchall gnoth a 

special gnoth that simply serves as a repository for non-troublesome terms. 

\Then an unexpected term is encountered, the system immediately sets the 

hypothesis' velidityto O. releases sparks to encourage lov-level activity, and 

places e.Gnoth-setter task on the taskrack. Vhen invoked. the CTnoth-setter 

caref\llly fills out gnoths in accordance vi th the old hypothesis and calls for the 

system to reconsider its parse. For example. if the old hypothesis vere 

"(S-group 1 3)", and tvo gnoths. each holding ··123". vere elreadyin existence. 

the catchall gnoth might be holding "1 2 3 4". The first three terms in the 

segment "l 2 3 4" are in the catchall because theyvere predicted by the 

hypothesis; the "4" is the lest term entered -- the troublesome one. The 

crnoth-setter vould therefore create tvo nev gnoths. one to hold the initial 

"1 2 3" from the catchall and the other to hold the trailing 4. 

Ee.ch gnoth is marked vi.th the frame end equivalence type (term or 

parse. depending on agreement vith the hypothesis" parenthesization) 

appropriate for it. Any non-fitting terms are collected together in a final gnoth 

and the catchall is destroyed. In the example above, the tvo pre-existing 

gnoths and the first of the nev1 y-created ones wuld be marked as 

parse-equivalent to the old hypothesis. 

In our running example ("l 2 1 2 3"), entry of the first tvo terms -

"1 2 • - causes the system to hypothesize (Countup 1 ). Vhen the next term 
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entered is "l ",a Gnoth-setter puts out three gnoths. one for each term. The 

first two are in accord with the discredited hypothesis and are in fact 

parse-equivalent to it. The last one simply holds the non-fitting term. 

Nov. vith "all the cards on the table". the Gnoth-setter calls for 

reconsideration to begin. 

3. RECONSIDERATION 

The goal of reconsideration is the construction of a nev and valid 

hiJ>Othesis. This is not a mechanical. program-directed reconstruction. 

hovever, but rather a "homing in" on anevformulation from a tightening 

spiral of possibilities generated by independent but interacting processes. 

a. DETERMIN.ATION O:E' THE REIGNING TYPE 

The first step te.ken during reconsideration iS a bookkeeping measure. 

saving the form of the old hypothesis and destroying its: box. the home of its 

active representation. This leaves the system vith no active structure to govern 

or filter processing, only a "freeze-dried" form to remind it of its most recent 

perspective. The system then decides vhether to stay ~th the reigning class -­

the Platonic class at the highest level of the (former) hypothesis -- or to slip to a 

nev one. This decision is made on several considerations. 

:E'irst. if a reigning class -- such as Constant - iS very strict in the sense 

that it iS difficUlt to generalize vithout moving to a nev class altogether. 

slipping is chosen immediately. Otherwise, some deeper investigation is made. 

The old hypotheses are checked to determine the number of recent hypotheses 

of this class -- hov many "tries .. the class has had since it seized paver . .All 

bonds are assessed in the environment of this class -- assigned a strength vhich 

depends on the class in question as vell as on the type of the bond. (Bond 
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assessment is described in some detail in the next section.) The result of this 

assessment is a rough measurement of the existing "bond tension", the strength 

of the bonds favoring modification of the current gnoths. Strong bond tension 

implies strong pressure to change some aspect of the current parse -- either to 

abandon the current reigning class or to modify the gnoths' structure vi.thin 

the framevork of that class. 

ASSESSING BOND PULLS 

Bond assessment is a rel a ti vel y straigh tforV8rd procedure designed to 

assign strengths to ell existing bonds under the assumption that aperticular 

Platonic class holds svay. If, for example, S-group is the reigning class, 

adjacent successor bonds ere given large positive values to indicate that they 

ere strong pulling bonds vhile sameness l>onds are given negative values to 

indicate that they tend to push gloms apart. Should C-group 1>e in ascendancy, 

sameness bonds become strong vhereas successorship l>onds are made negative. 

The information required for the system to assign these values is in the 

platoplasm, vi.th each Platonic concept listing both pulling and pushing bond 

types and their strengths. 

Procedurally, each gnoth is processed in turn. Its interne.l l>onds, those 

among the gloms it covers, are noted, and their stren&fus in the current 

environment -- that of the reigning class - are assigned. Its external bonds, 

those betveen its elements and those of other gnoths, are similarly assessed. 

These values become instrumente.1 in determining the ''happiness" of the gnoth 

- its inclination to stand pat. The collective happiness of all the gnoths is used 

as a measure of the success of the reigning class in organizing the system's 

perception of the sequence. 
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SLIPOR STAY 

The pressure to stay vith the reigning class is the sum of vhat is termed 

"gnoth-stabilities", a less anthropomorphic and more f'Unctionall y defined term 

for the "happiness" mentioned above. The stability of e. gnoth is the difference 

betveen the bond forces holding it together and those acting to tear it ape.rt. 

''Holding" bonds are internal pulls and external pushes. ''Tee.ring" bonds are 

external pulls and internal pushes. In our "l 2 1 2 '3" example, just after the '3 is 

introduced, ve should have (S-group 1 2) es the nov-discredited hypothesis and 

three gnoths as shovn in Figure l .· 

In figure 1, the adjacent-successor bond betveen glint! and glint2 has 

strength +10 because S-group is the reigning Platonic type e.nd S-group favors 

such bonds. This particular bond f'Unctions as an "internal pull" for gnothl 

since it has a positive value and both members. glintl e.nd &'.lint2, are vithin 

that gnoth. In contrast, the adjacent successor bond l>etveen glint4 and glint5 

also has value +10, but f'Unctions es an "external pull" betveen gnoth2 and 

gnothJ. Thus, the former bond tends to uphold the status quo, tends to make 

gnothl "happy", vhile the latter bond causes some unhappiness for both gnoth2 

and gnothJ. 

The remote sameness bond (vi th strength -5) l>etveen glint2 and glint4 

f'Unctions es e.n "external push", tending to keep the parent gnoths. gnothl and 

gnoth2, apart. Therefore, it contributes to the ste.l>ility or "happiness" of both 

gnoths involved. 

In this particular example, there are no "internal push" bonds. 

STABILITY 

To calculate e. gnoth's stability, ve first e.dd the strengths of the bonds 

holding it together. For gnothl in Figure 1. vith S-group reigning. this sum 
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would be +10 +2.S +2.S : lS. The +10 comes from the internel pull applied by the 

adjacent successor bond betveen glintl and glint2. The 2.Ys represent half the 

strength of the tvo externel push bonds under gnothl. These are the remote 

sameness bond betveen glintl and glint). and the remote sameness bond 

bet-veen glint2 and glint4. Strength-halving is done so that external bond 

values are not counted t'Vice. once for each gnoth involved. 

gnoth1 gnoth2 

+10 -- adjacent successor value bond 

-5 - remote same value bond 

gnoth3 

Figure l -- Measuring gnoth stability 

Once the holding strength is calculated, ve subtract the sum of the 

tearing-bond strengths acting on the gnoth to come up with its stability. 

Gnothl has no tearing bonds (no internal pushes or external pulls). and so its 

stability is: (+10 +Z.S +2.5) -(0): 15. 
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Similarly, With S-group reigning, gnoth2 hes three "holding" t>onds -­

the internal pUll t>etveen glint) end glint4 from their "adjacent successor" 

t>ond, the external push betveen glintl and glint) ("remote same"), and the 

externel push betveen glint2 end glint4 (again, "remote same"). In addition, 

gnoth2 has one "tearing" bond -- the external pull betveen glint4 and glintS 

("adjacent successor"), of strength 10. Thus, ve he.ve gnoth2 stal>ility: 

(+10 + 2.5 + 2.5)- (5) • 10. 

fine.Uy, since gnoth'3 has only one bond -- a "tearing" external pull of 

strength 10, its stability is: 

(0) - (5). -5. 

Ve then e.dd the individual gnoth stabilities to find a total system 

stability, in this case, of 15 + 10 - 5 = +20. 

Ve note that some of the. tearing pressure is due to unresolved bond 

pUlls favoring the reigning type -- if not its specific realization in the current 

hypothesis -- end so may be considered inappropriate for our purposes. 

Nevertheless, ve are tapping a measure of internal consistency. That is, if ve 

assume en environment of this class and still find much bond tension (much 

gnoth unhappiness), ve mayquicklyal>endon the type, at least for a vhile. 

In order fore.reigning class to t>e abandoned, hovever. some other class 

hes to demonStrate strength in its ovn right. Those classes that "neighbor" the 

current reigning class -- those connected to it bys-links in the platoplasm -­

are the primary "pretenders to the throne". If one of them can shov sufficient 

strength (sufficient "slipping pressure", as described belov), it may 

supplant the current "monarch". 
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The slipping pressure from the reigning class to a neighbor is evaluated 

1) adding tvo quantities - the sum of all pulling-bond strengths. and 

the e.l>solute value of the sum of e.11 pushing-bond strengths - taken 

over e.11 existing bonds. and assessed in the environment of the 

neighboring class. and then 

2) multiplying the sum by the slipperiness of the link l>etveen the 

monarch and the neighbor -- the proclivity to slip in that direction. 

In effect. the system tries to estimate the gnoth stability in e.n "alternative 

universe" -- the environment dominated by the neighboring class - es veil as 

the likelihood of moving from the current universe to the alternative one. A 

very "close" neigh !>or of the current monarch vho presents fair! y strong 

prospects for ste.l>ilityvould l>e a strong candidate for ascendancy to the throne. 

vhereas a "diitant" neighbor -- one connected to the reigning class by a 

non-slippery s-link - vhose-stal>ility prospects are lov vou!d l>e a veak 

candidate. 

Slipping-pressure estimates are calculated for each class that is an s-link 

neighbor of the reigning class. If the largest of these values is greater than the 

"staying pressure" -the current stability-- then a slip to the corresponding 

class vill l>e made and the system vill have a nev reigning cless. 

for example. in our "1 2 1 2 3 ·· case, the slipping pressure from S-group 

to Y-group ("symmetry" group -- for, say, a parse: 121 2 3 2) is: 

O.i [the s-link slipperiness l + (10 + 10) = 8, 

vhere the !O's are the strengths, in a Y-group environment, of the "remote 

same" bonds betveen glint! and g1int3 and betveen glint2 and glinti. 

Thus Y-group, vith a slipping pressure of8, cannot seize the throne from. the 

reigning S-group, vhose staying pressure is 20. 
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A similar value is calculated for each neighboring class. and if the 

largest of these values is greater than the staying pressure. a slip to that class 

vill be made. 

b. REFORMUUTOR 

At this point, a reigning class has been este.l:>lished - or reconfirmed -­

and so e.Reformulator process is placed on the taskrack. Vhen invoked, this 

process vill attempt to find salient bonds and vill set out Gnoth-operator tasks 

designed to act upon the bond pulls or pushes in order to change the gnoths. 

The Reformulator's first act is to determine a threshold bond strength. 

Bonds or bond groups exerting pressures belov this threshold vill be ignored. 

Currently, the nev threshold is set to either 1 more than the existini threshold 

value or. if none exists, 80.,. of the strongest pull-bond strength for the 

reigning type. (This value vas chosen arbitrarily, vith some vague 

remembrance ofVinston's grouping algorithm in his "l>locks-vorld" program 

[Vinston 75 l It has remained because it seems to have done no harm as yet.) 

Because nev bonds may have been established since the Reformulator's 

creation time, its next act is to assess all bond pulls in the environment of 

the reigning class, e.s described above. 

Then begins the process of finding strong pulls end/or pushes, and 

turning them into gnoth operations - actions the.t modify gnoths. If the 

Reformule.tor finds no actions to be taken or if it he.s completed its 

recommendations, it hangs a Bond-assessor task on the taskrack (to 

determine system "happiness") and terminates. 
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SELECTION OF NEIGHBOR-PULLS 

All inter-gnoth moves involve the rightmost (at some level) glom of 

some gnoth end the leftmost (age.in, at some level) glom of the gnoth's neighbor 

to the right. This is a consequence of the sequential nature of our dome.in. Ve 

obviously cannot reerrange the order of sequence terms (even though such an 

operation might make a "more interesting" sequence); ve can only readjust our 

groupings. (Ear a study of a less restricted pulling environment, see [Hofstadter 

83 ).) 

For example, given neighboring gnoths as shovn in Eigure 2 belov, 

our system vill be interested in the 1asts" of gnoth3: 

(glom15 glomlO g1om7 glint4), 

and the "firsts" of gnoth4: 

(g1om8 g1om 3 glom 1 glin t5). 

gnoth3 gnoth4° 

Figure 2 - Neighboring gnoths 
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The first moves considered are those at the highest level, under the 

theory that if a glom van ts to move, its subgloms should follov. It is also 

possible that some glom feels relatively content but one of its subgloms is 

attracted to a glom in the neighbor gnoth. In such a case. the subglom should 

be popped out and over to the neighbor. Should both glom and subglom feel a 

pull. the glom move shoUld take .precedence since it is structurally more 

important. Subsequently, internal gnoth operations - actions vhich modify 

the internal structure of a gnoth -- could be used to move the subglom if it still 

feels the need to leave its parent glom. 

SELECTION ORDER 

In our Eigure 2 example, neighbor-driven reformulation vould be 

explored in the folloving order: 

level 1: gloml5 <--> glomB 

lE!Vel 2: glomlO <--> glomB 

glom15 <--> glomJ 

glom!O <--> glomJ 

(Assess the pull betveen the topmost 

gloms, then betveen level t1i'O gloms 

and those at levels one and t1i'O.) 

level 3: glom7 <--> (glomB glom'3) (assess pull vith each in the list) 

(gloml5 glomlO) <--> gloml 

glom7 <--> gloml 

level 4: glint4 <--> (glomB glomJ gloml) 

(gloml5 glomlO glom7) <--> glint5 

glin t4 <--> glin t5 

As soon es some reformUlation is strong enough - the bond pulls and 

pushes supporting it exceed the threshold -- the Reformulator creates an 

appropriate gnoth operation or program of operations and sets a 

&noth-operator on the taskrack to carry it out. The Reformulator vill not 
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suggest any further moves. since any others T/'Ould occur at a lover structural. 

level and therefore vould be less important to the system. Should any 

lover-level moves be important, they vill eventually be discovered by some 

fUture Reformulator. 

CONVERSION OF BOND-PULLS INTO GNOTH OPERATIONS 

Vhen there is sUfficient strength of pull betveen tw gloms from 

neighboring gnoths, agnoth operation must be devised to bring the tvo gloms 

together. Simply shifting one glom into the other's gnoth may not be 

sUfficient, because the decisive pull on it maybe coming from a deeply-nested 

glom. one several levels dovn from the top. In Figure 2 for example, glint4 may 

be pulled toverd glom3. In our "12123" example, at the time described in 

Figure 1, the last term -- the "3" -- is pulled by its predecessor -- a "2" -- vhich 

is nested vithin aglom vhose print-value is "(12)". 

The system must decide vhich of the tT/'O attracting gloms is to move and 

vhich is to stay put. This is determined by an analysis of the bonds holding the 

gloms in their respective gnoths. Single gloms are the most likely to move, 

leaving an empty gnoth behind, a shell vhich the system destroys. 

Once the direction of the move is determined, the total move must be 

constructed. J.s vill be discussed belov, gnoth operations can be quite 

destructive of a gnoth 's in tern al structure, bursting gloms until the target 

gloms belov are reached. Vhen a gnoth operation is performed, at least some of 

this structural damage must be repaired: ve do not vent the destruction of 

important nesting structures to be a side-effect of reformulation. 

Finally, the strength of the operation is calculated. This strength - the 

difference betveen the gloms' mutual attraction and the pull exerted by other 

gloms to hold them in place - must exceed the system-determined threshold, or 
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else the move "(,IQU[d not have been generated. The strength is used by 

Seek-Vhence to weight competing alternatives vhen necessary. 

4. THE GNOTH OPERATIONS 

Gnoth operations fall into tvo categories: external or inter-gnoth 

operations, and internal or intre.-gnoth operations. The external operations 

are: SHIFT-LEFT, SHIFT-RIGHT, and SPLIT. The internel operations are: 

CAPTURE, ENCLOSE. FRACTURE. MERGE, and NO-OP. 

All of these operations require e. bit of careful me.nipule.tion. As vas 

described earlier. each gnoth has an associated "pseudo-glom". e. glom that 

cannot interact vith others, serving as e.ce.p to prevent the disappearance, 

through nature! glomm.ing. of useful gloms and glom groups. The pseudo-gloms 

of any gnoths involved in gnoth operations must l>e destroyed to permit the true 

gloms belov to interact vi th each other. Similarly. if a very deeply nested glom 

is to 1>e involved in e.n operation, all gloms containing it must be destroyed so 

that it ce.n rise to the top of the cytoplasm e.nd l>ecome available. 

Naturally, all this glom-bursting destroys the encasing gnoth's 

structure. This is permitted because neither ve nor the system can knov 

vhether the destruction is the primary purpose of the operation or just e. 

side-effect of its real intent. Any proposer of gnoth operations that vis hes to 

preserve some of the original structure must m.e.ke the effort to do so. The burst 

gloms cannot, of course. be brought be.ck. but f\lnctione.Uy similar (not 

identicel. because the gnoth operation did change something) ones can be 

created. 

Vhen a gnoth operation is completed, e. capping procedure puts e. nev 

pseudo-glom in place above the gnoth's glom.s. Often. Plato-scout tasks are 

placed on the taskrack to peruse the gnoth's nevly-created gloms, searching 
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among them for any nev manifestations of the Platonic concepts. 

EXTERNALS 

The formats for the external operations are: 

(SHIFT-LEFT <left-gnoth> <right-gnoth> <glomlist>), 

where glomlist is a list of the gloms (which must l>e neighbors in order) to l>e 

transferred from right-gnoth to left-gnoth; 

(SH !FT-RIG HT <left-gnoth> <righ t-gnoth> <glomlist> ), 

where glomlist serves an analogous purpose, this time from left-gnoth to 

right-gnoth; 

(SPLIT <gnoth> <Splitlist> ), 

where splitlist is a list ofgloms currently under the given gnoth. A newgnoth 

is to l>e formed using the splitlist gloms es its top level. 

SHIFT EXAMPU 

initial state: 

gnoth2: [ (1 1) (2 2) I 

glom3 glom5 

operation: 

gnoth3: [ (3 3) (4 4) (4 4) I 

glom7 glomlO glom15 

(SHIFT-WT gnoth2 gnoth'3 (glom7 glomlO)) 

final state: 

gnoth2: [ (11) (2 2) (3 3) (4 4) I gnoth} [ (4 4) I 

glom3 glom5 glom7 glomlO glom15 
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SH!fT DIAGRAM 

gnoth2 gnoth3 

gnoth3 

(SHift-urr gnoth2 gnoth3 (glom7 glom!O)) 

SPLIT EXAMPU 

initial state: 

gnoth2: [ (1 2) (2 3) (2 3) ] 

glom2 glom6 glomlO 

operation: 

(SPLIT gnoth2 (glom6 glom!O)) 

final state: 

gnoth2: [ (1 2) 1 gnoth(ney): [ (2 3) (2 3) ] 
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SPLIT DIAGRAM 

gnoth2 

gnoth2 gnoth 

(SPLIT gnoth2 (glom6 glomlO)) 

INTERNALS 

The formats for the internal gnoth operations are: 

(CAPTURE-Un <gnoth> <glom> <captive>). 

vhere the given glom vithin the given gnoth is to sve.llov its neighbor. 

captive. vhole. Actually. the glom is destroyed and a nev one created vi th the 

captive as its leftmost subglom and also containing ell the original glom·s 

subgloms. 

(C.APTURE-RIGHT <gnoth> <glom> <captive>). 

analogow to the operation above; 

(ENCLOSE <gnoth> <encloselist> ). 

vhere encloselist is a list of neigh boring gloms vi thin the gnoth to be covered 

by anev glom. dubbed to be of type ··enclose"'; 
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(FRACTURE <gnothname> ). 

vhere the given gnoth is to have all of its top-level gloms (the direct subgloms 

of its pseu4o-glom) dissolved. bringing their subgloms to the top-level; 

(MERGE <gnoth> <glomlist>), 

vhere glomlist is a list of neighbor gloms in order vi thin the given gnoth. The 

listed gloms are all.uncovered and their subgloms glommed into a "merge"-type 

glom. vhich becomes a top-level glom in the gnoth; 

(NO-OP <gnoth>). 

vhich causes the gnoth to be "uncapped" -- have its pseu4o-glom suspended -

and remain that vayuntil the Capper task it sets out is invoked and recaps the 

gnoth. This "slov-recap" permits natural glomming to occur vithin the 

gnoth. and betveen gnoths shoUld tvo neighboring gnoths 1>e uncapped 

simUltaneously. The Capper finds all current gloms vhose ranges overlap vith 

the original range of the gnoth (before it vas uncapped) and claims them for 

the gnoth. Should tvo different gnoths claim the same glom -- one formed. 

perhaps. t>y combining gloms from the tvo gnoths -- the gnoth that recaps first 

vill get the glom and the extended range. 



CAPTURE EXAMPLES 

initial state: 

gnoth I : [ ( 1 2) 31 

gloml glint) 

operation: 

114 

(CAPTURE-RIGHT gnoth! gloml glint)) 

final state: 

gnothl: [(l 2 3)] 

glom2 

initial state: 

gnothl: [((I 2) (2 3) ( (2 3) (2 3))) (1 2) 1 

glom5 glom7 glom8 glom9 glom18 

< -- glomlO - > 

< ------ glom15 ------ > 

operation: 

(CAPTURE-UfT gnothl glomlO glom7) 

final state: 

gnothl: [ (1 2) ( (2 3) (2 3) (2 3) ) (1 2)] 

glom5 glom7 gloma glom9 glom18 

< ---- glom20 ------ > 



CAPTURE DIAGRAM 

The operation: 

11 5 

(CAPTURE-LEET gnothl glomlO glom7) 

vill cause glom 10 to "s~lov" its neighbor to the left, glom?, vi thin gnothl. 

gnoth1 gnoth1 

(CAPTURE-LEFT gnothl glomlO glom?) 

ENCLOSE EXAMPLES 

initial ste.te: 

gnotht: [ 12'31) 

glints 1,2.'3.4 

operation: 

(ENCLOSE gnothl (glint! glintZ glint))) 

final state: 

gnothl: [ (1 2 '3) 1 I 

gloml glint4 
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initial state: 

gnoth'3: [ (2 2) ( 0) ( (3 3) ( 4 4) ) ) ( ( 4 4) (5 5) ) l 

operation: 

gloml g!om4 glom6 glom5 

< - glomlO - > 

< ------ glom 12 ------ > 

(ENCLOSE gnothJ (glom5 glom7)) 

final state: 

glom7 glom8 

< --- glom9 - > 

gnoth3: [ (2 2) (3) (3 3) ( (4 4) (4 4) ) (5 5) ] 

g!oml glom4 g!om6 g!om5 glom7 glom8 

< -- g!om20 -- > 

ENCLOSE DIAGRAM 

gnoth3 gnoth3 

(ENCLOSE gnothJ (glom5 glom7)) 



FRACTURE EX.AMPLE 

initial state: 

1 1 7 

gnoth2: [ (1 2) ( (3 3) (4 4) ) l 

gloml glom4 glom3 

<----glomS----> 

operation: 

(FRACTURE gnoth2) 

finel state: 

gnoth2: [ 1 2 (3 3) (4 4) l 

glom4 glom3 

FRACTURE DI.AGRAM 

gnoth2 

(FRACTURE gnoth2) 

gnoth2 



MERGE EXAMPLES 

initial state: 

gnothl: [ (1 1) (1 1 1)] 

glom 1 glom2 

operation: 

1 1 8 

(MERGE gnothl (gloml glom.2)) 

final state: gnothl: [ (1 1 1 1 1) ] 

glom3 

initial state: 

i'OOthl: [ ( (12 3) (J 4) ) ( ( (5 6) (4 5) ) (6 7 6) ) I 

opera~on: 

glom 1 gloli:l.2 

< --- glom 4 --- > 

glom5 glom6 glomlO 

< -- glom7 -- > 

< ---------- gloml 9 ------ > 

(MERGE gnothl (glom4 glom7)) 

fine.l state: 

gnotbl: [ ( ( 1 2 3) (3 4) (5 6) (4 5) ) (6 7 6)] 

gloml glom2 glom5 glom6 glomlO 

< ------ glom.20 ------- > 
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MERGE DIAGRAM 

gnoth 1 gnoth1 

(MERGE gnothl (glom4 g1om7)) 

OPERATIONS IN SERIES 

The gnoth operations described above ce.n be used to reformulate the 

gnoth-t>ased parse of the sequence (as opposed to the hypothesis-based parse) 

vhen applied in series. Tvo examples follov. 

In our "firit example, ve start out vi.th three gnoths vhich parenthesize 

the sequence segment" 12JJ4J4 5" as shovn initially. After several 

operations, a more "reasonable" fine.1 parenthesi.zation emerges. 



Initial state: 

gnoth! 

1(12))] 

g!om! 

120 

gnoth2 

[ ((3 4) (3 4)) l 

g!om2 g!om3 

< --- g!om 4 --- > 

(SHIFT-LEFT gnoth2 gnoth3 glintB) 

[(12))] [((34)(34))5] 

(C.A.PTURE-RIGHT gnoth2 glom3 glint8 ) 

[(12))] [(34) (345)] 

glom2 glom5 

(FRACTURE gnothl ) 

[ 1 2 Jl [(34) ()45)] 

(ENCLOSE gnothl (glint! glint2) ) 

[(12))] [(34)()45)] 

(SPLIT gnoth2 (glomS)) 

[(12) )] [ () 4) l 

(SHIFT-LEFT gnoth2 gnoth3 (glint6)) 

[(12))] [(34))] 

(ENCLOSE gnoth) (gllnt7 g!intB)) 

[ (1 2) ) l [ (3 4) ) l 

gnoth3 

[ 5 l 

glintB 

[] (disappears) 

[() 4 5)] (emerges) 

[ 4 5 l 

[ (4 5) l 
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In our second example, ve once egain have three gnoths vhich 

exchange gloms and are reformulated internally to come up vi th a nev, more 

coherent parenthesization -- this time of the sequence segment 

"l 2 3 3 4 5 6 4 5 6 7 8". 

Initiel state: 

gnothl 

1(123)] 

gnoth2 

[(3 4) (5 6) (4 5)] 

gloml glom2 glom3 glom4 

(SHIFT-RIGHT gnoth2 gnoth3 (glom4)) 

[(123)) [(34)(56)) 

(MERGE gnoth3 (glom4 glom5)) 

[(12 3)] [(3 4) (5 6)) 

(FRACTURE gnoth2) 

[(12 3)) [3456] 

(ENCLOSE gnoth2 (glint4 glint5 glint6 glint?)) 

[(123)) [(3456)] 

glom7 

BONDS INTO GNOTH OPERATIONS 

gnoth3 

[(6 7 8)] 

glom5 

[(4 5) (6 7 8)) 

[(45678)] 

glom6 

[(45678)] 

[(45678)] 

The conversion of bond pulls and pushes into gnoth operations simply 

requires that care be taken e.l:>out vho is attracting vhom and hov deeply nested 

each of the participants is in its originel gnoth. 

Vhen more than astre.ightforvard top-level move is to be required, a 

Reformulator must create a PROGRAM or series of moves designed to put the 

proper glom in its proper place and repair as much resulting gnoth-tearing as 

possible. Some examples may help explain exactlyvhat is done. 
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HIGH-UVEL MOVES 

In Figure 2 (p.106). if glom8 is to be pulled e:nyfrom gnoth4 by gloml5. 

this high-level e.ttre.ction is tre.nslated into the move: 

(SHIFT-UFT gnoth) gnoth4 (glom8) ). 

If. ho'flever. gloml is to be pulled e.vay by glom7. 'fie have e. more complicated 

situation. 

DEEPER MOVES 

In the case of such deeper moves. a PROGRA.M must be genere.ted. In the 

glom7 - gloml example. e. tre.nslation of the result is: 

(PROGRAM ((SHIFT-U:ET gnoth) gnoth4 (gloml)) [move gloml over] 

(CA.PTURE-RIGHT gnoth) glomlO gloml) [svallovit] 

(ENCLOSE gnoth4 siblings-of-gloml) [reple.ce glomJl 

(ENCLOSE gnoth4 nevglomJ&sibs-of-glomJ) [reple.ce glom8] 

(ENCLOSE gnoth) sibs-of-glomlO&nevglomlO) [replace gloml5] 

)) 

AREAL MOVE 

In most cases. such deep nesting is not encountered. In the case of 

"l 2 1 z )" [Figure 1]. the 2 <-> J pull is resolved vie.: 

(PROGRAM ( ((1 2)) ((1 Z)) ()) 

(SHI:E'T-UFT gnothZ gnoth) (glint5)) -> ((1 2)) ((1Z)3) 

(CAPTURE-RIGHT gnothZ glomZ glint5) --> ((1 Z)) ((1Z3)) 

(ENCLOSE gnothZ nil) [no repair necessary] 

(ENCLOSE gnoth) nil) [no repair necessary] 

)) 

Reformulator processes are responsible for creating ru.::h "PROGRAM"s 
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es described above. For the most part, once the initial move or tvo have been 

supplied. the remainder of the PROGRAM is designed simply and mechanically to 

repair any concomitant structural damage. Such damage is usually caused t> y 

the need to t>urst a glom in order to get at one of its subgloms. perhaps even one 

nested several levels t>elov it. The damage is repaired by re-enclosing the 

remaining gloms at each intermediate level-- those not directly involved in the 

operation -- and setting out Plato-scouts on the neviy-enclosed gloms. This last 

step is taken to determine vhether any "interesting" nev structures have been 

created. It should be emphasized that PROGRAM construction is a mechanical 

action. performed by a task that exists at a high enough level to possess the 

necessary vocabulary. The Reformulator's activity in vriting a PROGRAM is 

no more intelligent than a Glommer's or a Bon<:ler·s. or that of any other 

Seek-Vhence task. Vhatever "intelligence" the Seek-Vhence system possesses 

is an emergent phenomenon arising from the performance of all of these 

mechanical tasks in p~allel. 

DIVESTING PUSHES 

In addition to neighbor pulls. there is a second potentially strong agent 

for reformulation -- vhat ve call a "divesting push". There may be no real pull 

betveen one a:lom in agnoth and the neighboring gnoth. but the glom's 

current home may not vant it. This sort of unilateral decision to push out a 

glom and either foist it off on the neighbor or create anev gnoth to hold it 

could t>e the foundation for much useful reformulation. Divesting pushes 

are not implemented in the current system. causing some veakness in its 

performance vhen handling Tuples. for exemple. More vi11 t>e said about this 

in the "Problems" chapter. 
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5. CARRYING OUT REFORMS 

A Gnoth-operator task is charged vith carrying out the operation or 

PROGRAM given it by aReformulator at the time of its creation. It must first 

check to see that all the structures relevant to its operation e.re still in existence. 

having survived the system's activityVhile the Gnoth-operator vas hanging on 

the te.skrack. If the relevant structures do still exist. the Gnoth-eperator carries 

out the operations; if not. it vill simply terminate. Vhen a Gnoth-opere.tor does 

in fact operate, its lest action is to decrease the system's bond-strength 

threshold by 1. The effect of this threshold reduction is to encourage the system 

to make more reformulations by e.lloving veaker bonds to be considered. in 

effect "heating up" the environment. Reformulators. by adding 1 to the 

threshold. have the opposite effect. cooling things dovn. Eventually, the system 

vill settle e.s the Reformulators find fever and fever relevant operations to 

suggest to Gnoth-operators. reflecting the fact that the gnoths are stabilizing. 

BOND-ASSESSOR 

A Bond-assessor task is created each time aReformulator decides that it 

has finished finding interesting gnoth operations at some particular level. The 

Bond-assessor's job is to look at all current bonds and determine vhether or not 

there is reason to continue reformulation. If there are sUfficiently strong 

bonds to verrant f'Urther reforms. the Bond-assessor places a Reformulator on 

the te.skrack. If not. it creates a Gnoth-ce.ster task instead and terminates. 

C.ASTING GNOTHS 

Vhen invoked, aGnoth-caster attempts to describe each gnoth in terms 

of the reigning class. In more sophisticated versions of the program, there vill 

be provision for casting gnoths in terms of more complicated but still 



125 

incomplete forms -- such es .. (C-group (S-group m n) (Cycle (1 4)))" or 

" (Y-groui;> [3] ( ( C-group m n) B she.red) )", vhere "m" and "n" have no 

numerical value. This vill be necessaryvhen more comi;>licated Seek-Vhence 

descrii;>tioru are required to parse target sequences. 

Since each gnoth is supposed to represent one frame of the hypothesis. 

such casting must be possible if the class is right and the gnoths are correctly 

formed. 

If e.11 the gnoths can be cast. or if e.11 but the lest can and it shows 

promise, the Gnoth-caster then attempts to cree.te e. more general form common 

to all the castings. for exe.mi;>le. if the term groui;>ings generated by the gnoths 

are: (3 4) (3 4Y(3). then the form "(S-group 3 2)" vould be generated. 

In our slightly more complicated running example. given 

(1 2) (1 2 3). the form "(S-group 1 (Countup 2))" is generated. 

The casting process is quite meche.nice.1, es currently implemented. and 

so errors or poor castings e.re possible. A final.test -- to veed out any surviving 

bad casts - is me.de of e. cast vhen it becomes e. hypothesis candidate. 

TESTING HYPOTHESIS CANDIDATES 

The casting form returned, if any, nov becomes e. hypothesis candidate. 

A "t>ox", or predictive model. is me.de for it and is tested to see vhether it can 

accurately "i;>ostdict" the knovn terms of the sequence. If so. the candidate is 

instantiated es the nevhypothesis for the system. vhich ce.n novsit be.ck in 

the "certainty" the.tits nevmodel is the correct one for the given sequence. At 

this point. the system typice.11 y cells for the next term in order to test its nev 

hypothesis. 
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D. FAILURE AND SLIP-SCOUTS 

If the Gnoth-caster is unable to cast ell the gnoths in terms of the 

reigning class. or if it cannot generalize the casts to come up vi.the. candidate. 

or if the candidate fails to postdict the sequence properly, the reformulation 

effort has failed. In each such case. a "Slip-scout" process is placed on the 

taskrack. 

Slip-scouts e.re only skeletally implemented in the current system. e. 

partial explanation for its floundering in many cases vhen initiel 

reformulation fails. Vhen invoked, a Slip-scout vi.11 me.ke e. more detailed study 

of the potential for slipping to another reigning class. e.nd the probability of a 

class change vi.11 increase. The Slip-scout vi.11 look at ell existing bonds to find 

frequently-occurring types and vi.11 be especie1ly sensitive to the possibility of 

an interlee.ving of tvo or more independent subsequences. It vil1 use the 

knovtedge of vhich classes favor vhat bonds to help suggest e. nev reigning 

class. or perhaps a subclass vi thin a reigning Cycle or Tuple. 

This seems to be the point vhere Simon e.nd ICotovsky [Simon 63] begen 

their program - looking for e. cycle. If so. ve he.ve nov e.lmost completed the 

substre.te necessary for a system to support heuristics of their sort in e. fluid. 

non-meche.nistic ve.y. 



CHAPTER FOUR 

COMPARISONS VITH OTHER VORK: 
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A. INTRODUCTION 

Inevitably, because the domain ve he.ve chosen is that of integer 

sequences end because ve are interested in exploring the process of induction. 

our vork must be compared vi th that of several predecessors. These include 

Pi var end Finkelstein. Sim.on end ICotovsky, Persson. and Dietterich. There are 

also comparisons and contrasts to be me.de vi th vork by Evans and by Lene.t. 

B. COMPARISON VITH PIV AR & FINICELSTEIN 

Pi var and Finkelstein [Piver 64] vere interested in "the problem of 

programming a computer to perform induction on certain general kinds of data 

in a manner superior to the majority ofhumen beings" (p. 125). Their program 

ve.s capable of building models of certain rypes of sequences and of 

extrapolatin& from these models more quickly and more accure.tel y than most 

people. The program coUld recognize certain vell-knovn sequences. such as 

the prim.es. e.nd coQJ.d devise models vith exceptions for non-fitting terms. The 

target sequence types ...-ere cyclic. constant skip. or an intertvining of the tvo. 

Thus. the program. could "solve" (represent as e. LISP fUnction) such sequences 

as: 

246 8 ... 

2 1 '.3 2 5 '.3 7 4 11 5 ... (primes and positive integers intertvined) 

1 4 9 16 25 . . . (squares of positive integers) 

Hovever. the process of induction. as done by people. vas not explored. 

Their program. relied heavily on finite-differencing methods to model 

polynomial end other highly mathematice.l sequences. in effect substituting the 

"l>lack box" of differencing for that of induction. 
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In fact. they note a difference in thrust l>et"fleen their program and that 

of Sim.on and Kotovsky: 

"The program vas vritten as a result of seeing a 
previous program developed by Simon. Simon's 
program vas developed for the purpose of 
simulating the observed behavior of people vhen 
trying to solve problems of predicting letter 
sequences from an intelligence test. The program 
PERTEST. on the other he.nd, vas oriented tovards 
the automation of inductive thinking rather than 
the simulation of hum.an beings; therefore. "fie 
developed somevhat simpler though perhaps more 
mathematical vays of dealing vi.th the problem." 
(p. 131 ). 

Ve feel that in trying to "automate" the process, they"flere, in fact, 

looking for a shortcut, a vayofobte.ining the result of inductive thought-- in 

this case, a model of the sequence - vithout having to go through or 

understand the inductive process itself. In contrast, our me.jor interest is in the 

process of induction. Sequences of interest to us tend to represent patterns. 

such as: 

121231234 .... or 

1123122312331123 .... 

rather than n~egree polynomials or every third Fibonacci number. Ve vant 

to explore inductive processes that might be similar to those used by hum.ans as 

they notice e.nd represent patterns; ve do not simply van t to extrapolate 

sequences. To pare.phrase the me.thematicien Atiyah (on the NOV A program 

"Mathematical Mystery Tour"), "ve are not simply in the business of getting 

e.nsvers; "fie vant to understand". This. then, "TIOuld seem to put us in the 

company of Simon end Kotovsky, but there are distinctions to be dre.""Vn here as 

veil. 
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C. REL.AT ION TO SIMON-KOTOVSKY 

In their 1963 paper (Simon 63]. Simon and Kotovsky presented 

convincing eVidence to support their theory that: 

1) people build a mental model of a sequence from the terms they have 

seen, and 

2) they use this model to extrapolate the sequence. to generate successive 

terms. 

In addition. they demonstrated that the most salient features noticed before and 

during model-construction vere sameness and successorship-predecessorship. 

Ve heertil y agree vi th all these points. Our differences vi th Simon and 

Kotovsky ere matters of direction and emphasis and can be described along 

several dimensions. 

Simon and Kotovsky vere primarily interested in demonstrating that 

people do build and use mental models Vhich are developed through a process of 

induction. In contrast to their 't/Ork, ve simply assume that this is the case. 

Hovever. ve believe that it is important to explore model construction fer more 

deeply. 

The Simon-ICotovsky program vas presented several terms of a target 

sequence in a list and proceeded by looking first for periodicity in the data 

[Simon 6 31. Then. once a period vas discovered. equal and successor relations 

betveen neighboring terms of a period vere explored, to finalize the pattern 

description. In fact, all fifteen of their target sequences vere cyclical vi th 

fixed-length period. For example. problem 9 vss the sequence: 

urtustuttu_ 

The resUlting formUlation vas judged either correct or incorrect. 

Our approach differs in asut>tle but important ve.y; the Seek-Whence 

system is presented terms of a sequence one at a time. This apparently small 
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difference is the visit>le tip of a verite.t>le icel>erg of processing differences 

l>etveen the t~ systems. In Seek-Vhence. each nevterm not only inspires e. 

good deal of noticing of samenesses. successorships, and the like t>ut also drives 

the system to revise its model of the sequence. That is, the processes of model 

construction e.nd revision go on in parallel vi.th those of noticing. In contrast, 

to quote Simon end ICotovsky [ICotov:sky 73 ] : 

''The Ss' [human sul>jects'] l>ehe.vior departs in one 
respect from the model. Periodicity is determined 
t>y noticing I e.nd N [identity and next - same and 
successor ]relations. In the computer program, 
information e.t>out relations that a.re noticed at this 
stage is not retained, l>ut is regenerated during the 
second ste.ge, 'Vb.en the pattern description is 
l>eing l>uilt up. Ss clee.rlyr~tein much or e.11 of 
this information, and use it Vhile building the 
pattern description. Thus, the current program 
separates the tvo phases of problem-solving 
activity- detection of periodicity e.nd pattern 
description -- more she.rpl y the.n do the Ss." 
(p. 410). 

Because of the ve.y in 'Vh.ich Seek-Vhence goes e.t>out its modeling job, it 

is very likely to come up vi.th ee.rlyformUlations of the sequence that e.re 

"vrong" in that they vi.11 l>e contra.dieted by fUture terms. Vhen this happens. 

vhen e. contradictory term is entered, the system must react to the failure of its 

model. It does so by attempting to reformUle.te the model on the l>esis of the nev 

evidence (the nevterm). Thus, Seek-Vhence's formUlation changes during the 

course of processing, based upon the "evidence" - sequence terms - it has seen 

so far. Ve feel that this approach more accurately models hum an induction. a 

viev supported by the ICotovsky quote e.l>ove. 

Einally, the requirements imposed on the system by its use of 

reformUle.tion include the need fore. different type of model. The 

Simon-ICotovskymodel had to express e.ccure.telye.description of the sequence. 
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But. because the description vas developed only once and then simply checked 

for correctness. it could be essentially static in nature. Our model, or 

hypothesis, as ve call it, must be modifiable end reactive to failure. The system. 

does not simply go be.ck end apply a machine to the "nev'' sequence consisting 

of the old one 'rith one more term at the end in order to generate a nev 

hypothesis. Rather. it ene.lyzes the current hypothesis in the light of the nev 

term's evidence end attempts to change the hypothesis' form to encompass the 

nevterm. 

In summary, Seek-Vhence is directly concerned 'rith the inductive. 

model-bUilding aspect of the extrapolation of patterned (e.s opposed to 

mathematical) sequences. This reqUires the noticing of relationships among 

terms end term groupings sim.ulteneously 'rith model creation. Our system, 

then. needs a different sort of model then did Sim.on end ICotovsky's. Our model 

is not simply en end-product defining en extrapolation. but a structure 'rith 

expressive fluidity, one that is reformule.te.t>le on the basis ofnevevi.dence. one 

that evolves as the sequence terms are presented one by one. 

D. COMPA.RISON VITHPERSSON 

In 1966, Staffen Persson vrote a series of programs - "machines", as he 

called them - to solve sequence-extrapolation pcot>lems [Persson 66]. His main 

interest appears to have been in extrapolating end identifying "noisy" 

sequences 'rith underlying generating polynomials. me.king his domain much 

like that of Piver end Finkelstein. This similarity of domain ve.s pare.llelled by a 

similarity of approach. Persson. like Piver end Finkelstein. relied hee.vi.1 yon 

differencing. He also devised a special me.chine to extrapolate intert'rined 

sequences. Here age.in. though, the cycles in vestige.ted vere e.lvays of fixed 

length. 
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Persson ·s interest in error-correction vas realized by having the 

program interpolate correct terms based on the values of the surrounding ones. 

For example, given as input the segment: 

9 16 21 24 blank 24 21 16 9 

Persson 's program attempts to come up "fli.th an explanatory polynomial. Its 

result is: -x2 + lOx + 0, vhich it then finds venting because of the "blank" at the 

fi~h term. It rechecks the polynomial and, finding it explanatory in ell other 

cases (and having been forevarned that there might be one error in the input 

data), uses the polynomial to interpolate the missing term. a 25. end then 

extrapolate the sequence [Persson 66, p .126] 

Persson recognized that computers solving sequence-extrapolation 

problems by SU(:h methods might 1>e seen as having more capability than they 

actual! y possess: 

".A.t first glance. sequence-extrapolation vil1 
seem to-require application of genUine induction, 
i.e .. to start out from a pattern. represented by an 
input-sequence, and eventU8llyarrive at a more 
general representation from vhich the 
input-sequence maybe deduced. Hovever. true 
inductive reasoning is not necessarily required. 
In many cases. apparent inductive behavior 
should rather 1>e described as 'deduction disguised 
as induction'.· (sec. 4.) 

" ... the risk of contusing 'inductive pover' "fli.th 
efficient algorithms for exploring very narrov 
domains must also be realized." (p. 66) 

In fact, Persson mentions [Persson 66. pp. 66-7] both Piver and 

Finkelstein [Pivar 641 and Sim.on end ICotovsky [Simon 63] as having claimed 

inductive behavior in programs vhich are actu!l.ly purely deductive in design. 

Ve agree vi th this criticism. and believe that none of the systems thus far 

discussed addressed the central issue of modeling inductive reasoning. 
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E. DIEIIERICH .AND MICHALSKI 

"Given a sequence of events (or objects). each 
characterized bye. set of attributes. the problem 
considered is to discover e. rUle che.re.cterizing the 
sequence e.nd able to predict e.ple.usible 
continuation." [Dietterich as . .Abstract] 

Clearly, given the e.t>ove quote e.nd the preceding discussion of 

Seek-Vhence, our interests lie very close to those of Thomas Dietterich and 

Ryszard Michalski. The questions they ask. the domein explored. and even some 

of the terminology they use -- e.g .. "structural descriptions", "conceptual 

clUstering", "constructive induction" - bee.re.striking resemblance to our ovn. 

They, too. obviously reject the idea that sequence pattern induction is a solved 

problem. Hovever. ve e.nd theyte.ke e. very different approach to processing. 

They rely on a logic-based formUlation e.nd an algorithmic solution technique. 

Ve employ structural pattern descriptions and e. "terraced scan" [Hofstadter aJ; 

a4] in order to approximate the actual processes of induction. 

"SP .ARC/E", the program discussed in [Dietterich as]. is e.n advisor to a 

hume.n vho is playing the card game "Eleusis". In this game the dealer. "With a 

card-pattern-generating le.vin mind. puts dovn ace.rd. In turn. each player 

places on the table e. card they believe to be in the class of possible next terms. 

If e. player is correct the card is left on the "mein line"; it incorrect. the card is 

ple.ced on the "side line" t>elov the le.st correct (main line) card. The positive 

evidence on the mein line in conjunction "With the negative evidence on the 

side lines is used by players in their formUle.tion of e. description of the 

underlying rUle. The player vho ce.n first formUle.te the dealer's rule is the 

vinner. 
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for example, the dealer might put dovn the Ace of Spades, vi th the 

pattern "alternate black and red cards" in mind. If the first player puts dovn 

the deuce of Spades (thinking "sequential spades"), the dealer vill put the deuce 

on the side line belov the Ace. Should the next player put dovn the Ace of 

Clubs, it too vill be placed on the side line. If, finally, a player puts dovn the 
'• 

Ace of Hearts, it vil.1 be placed on the me.in line next to the Ace of Spades. Play 

vill continue until one of the participants guesses the "correct" rule. 

The Eleusis advisor program vill eventually be called in by its user to 

analyze a given situation and to try to come up vi th the "best" generating rule 

for that situation. Given the board ve have described, it might guess 

"alternating red and t>lack Aces", for instance. 

The descriptors for playing cards are initially just suit end rank. Other 

descriptors, such e.s color or primeness of rank. ce.n be added later by the user 

and employed by the system in its analysis. This addition of attributes is one of 

the four vays in vhich a game situation, can be transformed "in order to 

facilitate the discovery of sequence-generating rules" [Dietterich 85, p. ZOO 1 

The others e.re: 

segmenting - dividing the sequence into non-overlapping segments. 

each of vhich ce.n be described separately; 

splitting -- dividing the original into separate subsequences (seeing the 

original es 'Vhat ve have been calling "interleaved" sequences); 

blocking-- creating overlapping segments, called ''blocks", and giving 

attributes to each separately. 

In order to devise its rule, the program uses the card descriptions given 

it as positive and negative evidence in parametrizing each of three different 

potential models of the sequence (decomposition, periodic, and disjunctive 

normal form). This model construction is done in stages, using five "rings" or 
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processing levels. Each model is then tidied up as it is passed back up through 

the rings. assessed for plausibility, and the vinning rule or rules are presented 

to the user as potential organizing notions [Dietterich BS. p. 22'3] 

SPARC/E can solve some fairly intricate problems. situations vith rules 

such e.s: "strings of the same color ... strings mUst alve.ys have odd length'' 

[Dietterich BS, p.22S l. or "a higher-rank card in the next 'higher' suit (recell 

that the suits are cyclicel.ly ordered) or a lover-rank card in the next 'lover' 

suit" [Dietterich BS. p227 l 

In spite of the impressive performance ofSPARC/E in vhe.t is, to us. a 

very appropriate domain. ve have some serious differences of opinion vi th 

Dietterich and Michalski on the structure of computer systems designed to 

perform in inductive domains. 

The underlying structures and processing techniques in SPAR.C/E ere 

logic-besed. For example.~ the case of the DNF (disjunctive normel. form) 

model. a logical description of the cards on the te.l>le is constructed in 

disjunctive normal form and is fed into the A q algorithm. This el.gorithm 

constructs a "cover" - a logical description that includes ell positive instances 

and excludes all negative ones -- having the fevest conjunctive terms. The 

result is pessed be.ck up through the processing rings to be presented e.s a 

candidate rule. This process has more of a "black box" flavor than ve vould 

like; it skirts the centre! issue (to us) of the process of induction. 

Moreover, in SPAR.C/E processing, ell three potential models are alve.ys 

used to construct pattern descriptions; virtually the entire processing structure 

is brought to bear on each problem. regardless of its "difficulty". Ve vould 

prefer a system that uses the evidence presented to select a model and to vork 

vith that model until it proves fruitless or another seems more appropriate. 

Notice that in SPARC/E, an entire situation is given to the system. 
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vhereas Seek-Vhence continually react.s: to nev evidence. In SPARC/E, the 

entire sy.s:tem voUld have to t>e restarted for a nev game situation; there is no 

sense of ftov or continuity. This means that another central i.s:sue, that of 

reformUlation. does not enter into SPARC/E processing. A game analysis. a rUle 

or collection of potential rUles. is either "right"or "vrong"; there is no reaction 

to nev data. no response if the generated rUles are iii.correct. 

In spite of these criticisms - or, more accurately, differences of opinion 

on vhat is important - "IN'e have a great deal of respect for Michalski and his 

group. They have had some real success in cons~ructing useful programs. such 

as Michalski's so~ean-<lisease classifier, vhile still maintaining an interest in 

the core issues of learning and induction. Ve attempt to concentrate on the 

"core", but have so far built only a toy. 

Dietterich and Michalski have developed some very appealing notions. 

These include the distinction bet"IN'een "attribute descriptions'' -- those vhich 

"specify only global properties of an object" -- and "structural descriptions" -

those vhich "portray objects as composite structures consisting of various 

components" [Dietterich BJ, p. 42]. Certainly, as they note, Pe.trick Vinston's 

"blocks-vorld" program [Vinston 75] vas a ground-breaker in the use of 

muctural. descriptions. 

The pattern descriptions constructed by Seek-Vhence are also structural 

descriptions. In addition, they can t>e summarized neatly in their "freeze-dried" 

form. and so can become part of an attribute-based description. That is. once a 

concept has been formUle.ted. it can t>e .. captured" in an attribute-<!escription 

fre.mevork. The freeze-dried summary of the concept's structure could be 

recorded as one of many attributes. and the enclosing frame used in a pure! y 

syntactic ve.y. Hoftver. anytime the concept ve.s used in a semantic vay, its 

underlying structure coUld be "reconstituted" so that it could have its very 
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critical structural component. 

Another appealing Dietterich-Michalski notion. e.nd one that ve believe 

Seek-Vhence addresses directly. is that of "constructive induction" . 

"Constructive induction is e.n y form of induction 
that generates nev descriptors not present in the 
input date.. It is important for learning programs 
to be e.l>le to perform constructive induction. since 
it is veU knovn that me.ny AI problems ce.nnot be 
solved vithout a che.nge of representation." 

[Dietterich 83. p. 47] 

Certe.inlyin Seek-Vhence ve at lee.st me.ke a velie.nt attempt to employ a form of 

constructive induction to come up vi.th a structural description of the input 

sequence pattern. Eventue.Uy, ve hope to keep these descriptions (or at lee.st 

their "freeze-dried" summaries) around to help in the solution of nevpattern 

problems. thus supporting a pattern-remembering system. 

F. SOME REU.TED SYSTEMS 

In addition to the vork described above, there have been other programs 

related to Seek-Vhence in spirit. if not in dome.in. These include Thomas Evens' 

ANALOGY program [Eve.ns 68] e.nd Douglas Lenat's AM and EURISKO [Lenat 82; 83 

a.b.c; 84 l 

1. EV ANS AND AN J.LOG Y 

Evans' ANALOGY programve.s designed to solve pictorial analogy 

problems. me.nyof vhich vere te.ken from examinations given to college-bound 

high-school students by the American Council on Education. They are of the 

form "A is to B e.s C is to vhich of (•t-z. • 3. • 4. • 5)?". vhere •1 ... •5 are five . 
candidate pictures. The testee is to choose the candidate that. in its relation to 

picture c. is most like B's relation to A. 



139 

The program ve.s vritten int~ major pieces (primarily bees.use the 

vhole system could not fit into the availe.l>le computer). Data structures 

describing the figures in each picture e.nd their positions vere fed to the first 

pa.rt of the program. This information vas used to form relationships betveen 

pictures A and ~· as vell as betveen picture C and each of the five candidate 

pictures. The vocabulary used in describing the relationships consisted of some 

fixed notions (e.g .• "above", '1eft-of") along vith any descriptors the user might 

decide to e.dd for e.pe.rticule.r run (e.g .• "shaded", "overlap"). 

Once the descriptions vere me.de, the system he.d to choose the "C t~ 

candidate" description the.t ve.s most like the "A to B" description. This vas 

accomplished by assigning veights (importance) to the vuious types of 

tre.nsforme.tions and formulating "rules" to describe hovpicture A could be 

transformed into B, and hov C could be transformed into each of the candidates. 

The A : B rule set ves then comps.red to each C : candidate set. Ee.ch A : B rule 

vas "reduced". if possible. to fit a given C: candidate rule. Then the rules vere 

assigned veights based on the transformations they used, the veights vere 

assessed, and the vinning candidate - the one vi th the highest score - vas 

chosen. The program accomplished its task vi th wrying degrees of success. 

dependent to a great extent on the adequacy of the supplied descriptors to 

capture the salient relationships in e. given problem. 

The ANALOGY program ve.s an impressive piece of~rk. but ve believe 

that it is a misteke to attribute to the program. povers of "induction" and "theory 

formation". Here. e.s in the Pi vu and Finkel.stein sequence program.. ve again 

have a program. the.t can do very vell- probably better than humans -- in a 

veil-defined domain that is really smaller than it vould e.ppee.r at first glance. 

Although Evans claimed that the program could probably handle fifteen 

out of the thirty problems typically given on an ACE exam. ve e.re not given 
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systematic eVidence to support that claim. All the problems solved by the system. 

vere numbered 12 or lover. It coUld not handle the only "problem 20" given it. 

Moreover, the problems vere ta.ken from different exams, rather than 

systematicell y from one exam. This in itself might simply meen that the 

program has the inductive paver of a sixth-grader rather then that of a 

high-schooler. Hovever, there are very simple analogy problems from the 

same ACE exams that the system cannot do [Evans 68, p.325 l indicating perhaps a 

less then human inductive ability, or at lee.st one very different from humans·. 

In summary,·then, ve do not believe that the Evans program cen be 

credited vi.th e.chieVing inductive "concept formation" [Lenat 83a. pJS l becaus:e 

the "concepts" formUlated are too brittle. too "attribute-based" (to us:_e the 

Michalski terminology). Ve echo the Persson comment (me.de about Pi var end 

Finkelstein's sequence-extrapolation program) that the processing technique 

employed here is reelly "deduction disguised e.s induction". Nonetheless, the 

ANALOGY program is remarkable for its ability to operate in a "core" domain. 

one that has potential for lee.ding us to central issues in intelligence. It voUld 

bee. treat to see the program redone in the light of recent thinking about 

induction, concept formation, end analogy. The domain is one to vhich 

artificial intelligence researchers shoUld return "until ve get it right". 

2. UNAT AND HEURISTICS 

Douglas Lenat is deeply concerned vi.th inductive thought. He has 

explored vhe.t he calls "theory formation" in several domains through his 

programs AM and EURISICO. In particUlar, he is interested in the development -

end use of heuristics in discovering end exploring nev concepts. 

Certainly, both AM end EURISICO have been enormouslysuccessfUl 

programs. AM is famous for its rediscovery of arithmetic operations, prime 
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numbers, and some important conjectures in number theory. Next to this, vhe.t 

does Seek-Vhence have to offer? The ansver: roots. 

The "accretion model of theory formation", developed by Lenat for the 

EURISKO system [Lenat 8'3al. is a program of seven steps to be folloved by the 

system in forming theories about :s:ome underlying domain. The model maps out 

broad sveeps of territory for the system to cover. for example, step 2 of the 

seven is "to try to notice regularities, patterns, e.nd exceptions to patterns, in 

the de.ta" [Lenat 8'3e. p. '37 l Lenat himself recognizes that his program, being 

concerned vi.th the "big picture", can only approximate a solution to the 

problems posed in !\illy implementing step2: 

"Step 2 in the model innocuouslyre<ltJ!S'tS the 
leerner to be observant for recognizable patterns. 
That a:s:rum.e:s: that he/she/it ha:s: a large store of 
known patterns to recognize, or i:s: vorking in a 
vorld vnere an adequate set ce.n be learned very 
quickly. " ... the process of 'recognizing' !>lends 
continuously into 'analogizing'." 
(p.38) 

Domains in vhich Lenat can best employ his heuristics methods have 

:s:uch characteristics a:s:: many objects and operators and many types of both; 

several types of rele.tion:s: among objects and among operators; lots of heuriS'tics 

l>ut rev algorithms to follov in exploring the domain. These domains shoUld 

he.ve been little explored preViously, and shoUld proVide a vay to conduct or 

:s:imUle.te experiments [Lenat 8'3b, pp. 91-941 He advocates studying diff'icUlt or 

complicated domains, ones that are '1ush vi.th structure" [Lenat 8'3c, p.2851 

In contrast, the Seek-Vhence domain ha:s: fevol>jects and is simple in 

structure. Nonethele:s::s:, it represents a complex. if not complicated (to use our 

terminology from Chapter One). domain in the sense that the central problems 

of indUt:tive thought can be encountered here. It m.e.y be that the broad sveeps 

and structurally rich domains Lenat favors ce.n be served e.dequatel y by e.n 
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attribute-based representation system. because the concepts grov te.11 rather 

than deep. Vi th the accretion model. nev ideas a.re built upon old ones. giving a 

tover-like effect as the system explores ""interesting"" ideas to the fU!lest. Rich 

underlying structures are not necessary to the type of upve.rd-thrusting 

concept generation that goes on in these programs; the approximations offered 

by attribute-based representations are good enough to P.ermit good upve.rd 

progress. Vhen. hovever. ve stop to explore deeply the small portions -- the 

nooks and crannies -- of the broe.dly-svept territory. ve need to capture 

underlying structure!. descriptions. It may very veil t>e that there is. at present. 

not enough computing pover in a single system to be both broad and deep. 

But AM developed its ideas from first principles. from very primitive 

roots. Hov can it nor t>e deep as vell as broad? The ansver to this is that AM 

ve.s accretive. It formulated many ideas. some good and some less fruitfUl. 

In e. sense. it is akin to a story-generating program as opposed to a 

story-understander. It could construct vhatever ideas it liked; someone -­

in fact. Lene.t himself - ve.s bound to notice the ""vinners"". An anel.ogous 

understander vould have to find a ve.y to represent concepts vith vhich it 

ve.s presented vithout losing any important facets. The difference betveen 

programs of these tvo types is like the difference betveen the charges: 

"Find something interesting .... and 

"Here is an interesting idea. Do you get it?"". 

Neither problem is particularly easy; they are just different. each vith its ovn 

difficulties. 

Fine.Uy. one problem ve attempted to address in Seek-Vhence ve.s 

identified very clearly in [Lenat 8Jc): ""The carrying el.ong of multiple 

representations simultaneously. and the concomitant need to shift from one to 

another. has not t>een much studied. or attempted. in AI to date ...... (p. 283) Ve 
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hope that our efforts to implement a system that supports reformulation vi.11 be 

the first step in attacking this problem. 



CHAPTER FIVE 

PERIORMANCE. PROBLEMS. AND EUTURE DIRECTIONS 
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J... IMPU:MENTJ..TION J..ND PERFORMANCE 

The Seek-Vhence program currently consists of approximately 5400 

lines of Franz Lisp code. Because it is still under development. the program. is 

running interpreted rather than compiled. This, comt>ined vith the fact that it 

runs on a V J..X 11 /?SO vhich also serves an entire sme.11-college computing 

operation, slo-vs Seek-Vhence dovn a bit. Nonetheless, successfUl runs are 

gener!lly completed in under ten minutes of reel time. UnsuccessfUl runs take 

a bit longer (potentially forever), as the progre.m threshes at>out for a solution. 

1. SYSTEM PER.FORMJ..NCE 

In order to get some perspective on the current program's streng~hs and 

weaknesses, let us go through the "Blackburn dozen" -- the tvelve sequences 

ve presented to tventy-five college students- and enaJ:yze the system's 

performance on those problems. 

(1) 1 1 2 1 2 3 1 2 3 4 

The program threshes hopeless! yon this one, although it readily solves 

"1 2 1 2 3 l · 2 3 · 4 ... "[see J..ppendix I. The problem seems to be that the 

initi!l C-group interferes vith the system's ability to find the lengthening 

S-groups. Vhen it does find them, it seems unable to push the correct notion 

beyond the template level. Lingering high-level interest in C-groups and 

lov-level rediscovery of C-groups combine to cause this unhappy state of 

at'fairs. 

(2) 1 2 3 4 ... 

Fortunately, the program can solve this one - end quite readily, in just 

under one minute. 

(3) 2 1 2 2 2 2 2 3 2 2 4 2 ... 

This is hopeless as yet; ve have not even attempted it. There is far too 
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much interference -- terms having multiple potential roles. (for example, in 

the segment "l 2 2", the middle 2 could be part of a C-group or part of a Countup.) 

This particular sequence is one of our favorite examples. It has been, end 

continues to be, a distant goal. 

(4) l 2 2 3 3 3 4 4 4 4 

Turnabout is fair play. Here, the initial S-groups -- (1 2) and (2 3) -­

interfere vi.th the bUdding C-group notion. The central problem here is 

analogous to that in sequence (1) - the correct notion is discovered, but cannot 

seem to break through into a hypothesis. Not surprisingly, in vievof the 

sequence (l) commentary, the system~ solve the sequence problems 

"2 2 3 3 3 4 4 4 4 ... " and "1 1 2 2 2 3 3 3 3 

(5) 1 8 5 8 1 8 5 8 ... 

In this sequence, the program finds the Y-group "1 8 5 8 1" and· 

doggedly clings to it. Ve stopped it after a fifteen-minute attempt, since it 

seemed to make little progress. Note that it can, hovever, solve the sequence 

"1 8 5 8 1 1 8 5 8 1 .... 

(6) 2 l 2 2 2 3 2 4 2 5 

Age.in. there is too much interference here, combined vi.th an 

alternation or terms. This is beyond the current system. 

(7) 2 3 1 2 3 2 2 2 3 3 3 3 2 3 4 4 4 4 ... 

This is fer beyond the current system. It combines interference. 

interleaving, and graving group lengths - all features that meke a sequence 

problem more difficult. 

(8) 1 2 2 3 3 4 4 5 

The system solves this vi.thin three minutes. 

(9) 1 2 3 3 4 4 5 5 5 6 6 6 ... 

This wl prove difficult for a vhile yet. The sUbtle pattern ofgrovth in 

• 
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group lengths vill tex the system's representation scheme. 

(10) 9 1 9 2 9 '3 9 4 ' .. 

The only problem here is the elternation of terms of vhich at lee.st one is 

non-constant. This vill probably be the next sequence solved by the system. 

(11) 1 8 1 2 1 8 1 2 '3 2 1 8 1 2 '3 4 '3 2 1 8 1 2 '3 4 ... 

This sequence is he.rd. There is interference betveen the groups, vhich 

grov at both ends. The expressive pover is available, but the system gets 

bogged dovn in spurious relationships. 

(12) 1 8 5 5 8 1 1 8 5 5 8 1 

The system solves this, but can take up to tventy minutes to do so. It 

finds a Y-group, but often it is the Y-group "(l 8 ( 5 ( 5 8 1 1 8 5) 5) 8 1 )", 

rather than the one ve vould like. The need for "cosmetic reform" becomes 

evident in cases such e.s this. 

In summary, then, the current Seek-Vhence program. can solve only 

three of the Blackburn dozen - problems 2, B. and 12. Vi th slight extension, it 

should solve problem 10 e.s vell. It vill have to cling less forcefully to its 

original formulation in order for it to solve problems 1. 4. 5. and 6. The system's 

interference handling vill need improvement before it can handle problems '3. 

7. and 11. The solution of problem 9 vill probably require that group lengths be 

used e.s manifestations (they are not, currently). In addition. the system vill 

need the e.bilityto use its representational pover more effectively. 

2. HUMAN PERIORM.ANCE 

Vhen ve presented these sequence problems to our human subjects 

[Meredith 83 ]. ve permitted them to take e.s much time e.s theyve.nted on each 

sequence. A subject could "pass" on a particular sequence if it proved insoluble. 

The subject could not return to a passed sequence. 



148 

Ve kept a record of the number of people vho passed on each of the 

sequences. Ve also timed the subjects, in order to determine vhich sequences 

took the longest time to parse. Ve assume that these vill tend to be the most 

difficUlt for human solvers. 

Problem (7) vas definitely the most difficult for our subjects. Seven 

people passed on it (no more than t'li'O people passed on any other sequence), 

and those vho did solve it took far ·more time on it than on any other sequence. 

Problem (11) vas also clearly more time-consuming than most others. The 

."easiest" problems vere (2) and (10), folloved by (8), then (4) and (5). then (6) 

and (12). and then (1), (3), and (9). 

Ve find it heartening that the problems Seek-Vhence has been able to 

solve, and those vhich ve feel it is closest to soiving, are among the easier 

problems for humans, vhile those our system finds difficult are also difficult 

for humans. 

B. PROBUMS 

The original goals set for the Seek-Vhence program vere and still are: 

1) to discover non-mathematically-sophisticated patterns in sequences 

of nonnegative integers; 

2) to represent those patterns as concepts constructed from eight 

"primitive" concepts -- Constant, Countup, C-group, S-group, 

P-group, Y-group, Cycle, and Tuple; 

J) to be able to reformUlate the pattern descriptions fluidly, by the 

technique of "slipping", vhen the description is non-predictive 

or non-optimal. 

Each of these goals has been met to some extent, but more "VOrk vill be required 

to implement a system that realizes them in full. From our discussion above, it 
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becomes clear that the Seek-Vhence program 

1) fails to notice interleaved sequences of any complexity; 

2) is unable to handle interference vell; 

3) clings too tenaciously to its first organizing notion. 

In the folloving sections. ve "Ifill discuss these and other problems e.nd "Ifill 

present our current though ts as to hov to solve them. 

1. IMPLEMENTATION FAUX PAS 

As in e.nyfairlysubste.ntial system vritten over a period of years. there 

are no doubt some inconsistencies and quirks in the current implementation of 

Seek-Vhence. The present system vas programmed by one person. and so 

reflects the veaknesses and idiosyncracies of a particular style. These include a 

fairly conservative. but readable. expr-based approach to Lisp programming 

and some disregard for "neatness" in cleaning up old. unve.nted structures. 

Seek-Vhence is unabashedly "ad hoc". There has been no focus on 

separating domain-dependent from domain-independent processing, structures. 

or approaches. The only excuse for this is that the program is aproto-effort in 

the development of a generic processing structure and approach. People "lfi.th 

similar ideas have been programming and continue to program systems for 

Jumbo (vord unscrambling). Letter Spirit (style extrapolation). and Copycat 

(letter-sequence analogies). Vhen all the systems are completed. ve vill 

hopefully be able to abstract out common. domain-independent features vhich 

vill be generally useful. This is a "high-risk. high-gain" strategy. Ve hope it 

vorks. 

If all of our problems vere ones of programming style. ve vould be 

delighted. Unfortunately, there are some more fundamental vorries. not the 
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leest of which is that there are some non-difficult sequences that the system 

cannot parse. 

2. UNCONQUERED SEQUENCES 

.Although Seek-Vhence does a good job in e.ne.lyzi.ng the simplest 

of sequences and can do some medium-difficulty ones. it fails on some 

not-very-he.rd ones. It is unable to handle independent interleaved sequences 

vhen the components are anymore complicated than constants. That is, it can 

do '"37:37:37 ... "butitcannotesyetdo "1210:34105610 ... ". 

J. me.jar reeson for this problem is the ve.y bonds are used by the system. 

Currently, bonds are used only in a bottom-up feshion, to push up gloms. 

Hovever. there is knowledge in the platoplesm of the bond types favored by the 

various Platonic classes. For example, the existence of many "adjacent 

sameness" bonds might be a clue that C-group is astroni candidate es an 

organizing notion. because C-groups are closely associated vi th such bonds . .As 

yet, the system makes no direct use of this information. It is important to note 

that such information must be used cautiously, since it may lead to false 

conclusions. In the sequence "2 1 2 2 2 2 2 J 2 2 1 2 ... -. for example, there 

e.re many adjacent se.messes betveen 2's, but the ·c-,roup" notion is not 

involved in the correct parse. 

ICnovl.edge about manifestations and actue.lizations. vhich could be 

useful in suggesting e.lternati ve organizing notions or in indicating the 

existence of interleaved sequences. is virtually unused by the current system. 

Slip-scouts, described later. vi.11 begin to make some use of this information. 

The Seek-Vhence system cannot analyze sequences that display a good 

dee.1 of interference - such es "2 1 2 2 2 2 2 J 2 2 1 2 ... "or 

"111 121 I J 1. . .". People seem to overcome interference by looking for a 
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place in the sequence vhere there is little conf\lsion -- a place vhere the 

interference is minim.al. Seek-Vhence may need to look more closely at terms 

that have rev bonds and use these a guideposts for organizing the sequence. 

This strategy. like looking for interleaved sequences. is a relatively high-level 

one. suitable at the Slip-scout level and beyond. 

The system's inclination to cling to early organizing notions is related 

to the other tvo problems. and probe.bl y stems from the same root causes. In 

addition. ve may have to tinker vith our slipping mechanisms. to see if ve can 

get a bit more movement avayfrom failed ideas. 

3. LOV-LEVEL MYOPIA 

The lov-level processes of Seek-Vhence operate vi th a micro-level 

vocat>Ulary. dealing vith localized stru.::tures and providing no overvievofthe· 

sequence pattern as a vhole. This naturally leads to the phenomenon that ve 

ce.11 "lov-level mycpia". There can be some micro-level rigidity as aresUlt. vi.th 

the lover-level processes clinging to certain favorite groupings (usuallygloms 

formed early in the processing). This can get in the vayofpushingup neatly 

balanced structures -- ve can get" ((1 2) 3)" handed up instead of a preferred 

"(1 2 3)" - but it is not a devastating problem. Its effects vi11 be mitigated vhen 

divesting pushes. cosmetic reform. and "form-polishing" are implemented. 

4. HIGH-UVEL HAUGHTINESS 

The higher levels of Seek-Vhence seem to suffer as ~U from some 

basic rigidity. Once the high levels teke over. the imposition of top-dovn. 

model-driven processing does not appear to leave quite enough room for 

lover-level coercion of change. This leads the system to stick vi th a 

formUlation type or platonic class longer than it shoUld. to be optimally 
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effective. It becomes too difficUlt for lover-level processes to push up a notion 

vi th sufficient force to stage a "coup". 

Ve have often "Vatched in frustration as a good notion has come up 

repeatedly to become a template, and then to disappear. never to reach 

hypothesis status. Ve plan to investigate this unfortunate phenomenon. 

vhich ve call the "Little Prince Problem": 

Lovlevels: "See my pretty bond-chain?" 

High levels: ''Not nov-- I'm trying to parse this sequence." 

DIVESTING- PUSHES 

A "divesting push" wl occur vhen a gnoth contains a glom that causes 

it "unhappiness" in the sense of deereesing its stability, but the neighboring 

gnoth does not have any particUlar attraction for the glom either. In this ease, 

the parent gnoth may push the glom out to the neighbor or may simply call for 

the creation of an intervening gnoth to hold the unve.nted glom. These pushes 

wl permit gnoths to vork on conforming to the hypothesis, or suggesting 

veaknesses in it. Implementation of divesting pushes vill be aflrst step in 

giving more credence to lov-level suggestions, thereby decree.sing the degree 

of ''high-level haughtiness". They vill also serve es a safety V8l ve for the 

current reigning class. by increasing gnoth stability vithout calling for a nev 

monarch. 

S. COORDINATION PROBUMS 

Although Seek-Vhenee relies on independent, parallel processes to 

carry out its vork, there is nonetheless some need for coordination of resUlts. 

For instance. the hypothesis and the gnoths must be in agreement (at lee.st to 

some extent) on the current viev or parse of the sequence. Devising a 
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technique for insuring this coordination has been a major problem. and one 

vhich ve are not certain is solved at present. !he levels of h ypothesis-gnoth 

equivalence give us something of a handle on the problem, but it voU!d be nice 

not to he.veto vorry al:>out it at all. !hat is. it voU!d be nice simply to change 

either the gnoths or the hypothesis and be certain that the other voUld 

automatice.llyfe.11 into agreement. Ve he.ve not.yet devised such a mechanism. 

nor are ve sure that one exists. 

6. HER.KY-JERKY 

One goal of Seek-Vhence vas fluid reformU!ation. the e.l>ility to move 

easily from one concept representation to another. !he current system is only 

pe.rtie.lly succeS$f\.ll in meeting this goal. Its reforms. at the highest level. can 

seem a little rough. Instead of the smooth transition ve vent, ve get something 

more e.kin to the jerky motion felt vhen one rides to the top of the Gateve.y 

.Arch in St. Louis -- one g~ts there. but the ride is not as continuous as one voU!d 

like it to be. !his me.y point to the need for another or level or tvo of processing 

to ease the transitions. or it may simply require more ce.re in programming. 

Belov. ve suggest the possibility that a richer system of linkages in the 

platoplasm might help mitigate this problem. 

DIFFERENTIATING PLATO-LINKS 

!he platoplasm ·s link system current! y consists of undifferentiated 

"slipping links" - the s-links. It is very likely that in using differentiated links, 

ve voU!d be e.l>le to give the system a more rational collection of slipping 

alternatives e.nd the e.l>ility to e.ppl y more constraints on slippage possibilities 

in pe.rticU!e.r situations. !hat is, instead of having to consider slippage 

possibilities on the relative! y gross grounds of s-llnk slipperiness in 
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conjunction "'N'i.th "absolute bond pulls", the system may be able to use e. 

finer-grained decision strategy. Ve therefore need to investigate more deeply 

vhat types of links belong in the ple.toplasm and hov best to incorporate them 

in to the system's processing. This is a very t>ig question in e.n abstract sense, 

'cut implementation in Seek-Vhence shoUld not t>e too difficUlt, e.nd may go a 

long ve.ytovard conquering the "herky-jerky" problem. 

C. THEEUTURE 

Ve plan to revise and extend the Seek-Vhence system in several vays in 

the f\lture, and at many levels of e.t>straction. There are some relatively minor 

details that need to t>e addressed, some major additions to be me.de, and Ultimately 

ve "'N'i.11 have to redo the system in e.more structured, dome.in-independent 

fashion. 

1. MINOR DETAILS 

Some of the minor reforms "l'lill t>e feirl y simple to include, 'cut one 

or tvo "'N'i.11 require some ce.refUl thought before implementation can t>e 

considered. 

GREASING PLATO-LINKS 

As vas previously mentioned, it is possible that various platonic classes 

vill t>e "closer" toe. given class at different times. This means that the s-links 

between concepts should have different slipperiness values at different times. 

The current system does not provide any mechanism for changing s-link 

slipperiness. nor does it explore the notion of "relative closeness" in anyvay. It 

voUld be interesting to investigate this question e. bit further in later versions 

of the program. This is an example of an addition that vill be fairly easy to 
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implement once we decide exactly what we want to do. 

CHANGING PLATONIC BOND STRENGTHS 

Simile.rl y, the degree to which a given platonic class favors certain types 

of bonds may change during the course of processing. Changing the bond 

strengths would not be he.rd to implement. but the central question -- not a · 

particularly easy one -- would be hovto have the system decide vhen it should 

be done and hov much to change the strengths. 

ADDING AND REMOVING BOND-EIELDS 

An interesting problem is the central one of "salience". Vhe.t features of 

a sequence are of central importance? Vhe.t should be used to describe it? Ve 

have built into Seelc-Vhence the cape.city to use any field of e. glom for bonding 

or glomming purposes. but as ve.s mentioned earlier. "Ve currently use only 

"value" for glomming and "value" or" span" for bonding. BUilding in areal 

cape.city to add to or subtract from these fields is critical in e.ccure.telype.rsing 

some sequences - such as " 1 2 2 3 J 3 4 4 4 4 ... • - vhere the length ore. 

group and its content or position in the sequence are intimately connected. 

Ve certainly hope to bUild this cape.city into f\Jture versions of the system. 

BOX STRUCTURE EDITOR 

A nice little project associated vi.th Seek-Vhence, but outside or the 

mainstream of its processing. is the construction ore. "box-tree· editor. The 

system coUld use this to model its ovn reformulation actions by editing e. 

hypothesis' box to reflect e. nev modification of the hypothesis. The current 

(heavy-handed) technique is to completely scrap and replace the box. 
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2. MAJOR GOALS 

Ve have some major plans for future revisions of Seek-Vhence, in 

addition to the "fix-ups" mentioned above. These deal vith broader issues vi thin 

the dome.in of our project, issues vi th perhaps more "global" significance. 

FORM POLISHING 

"Form polishing" is the term ve use to cover the notions of cosmetic 

reform - reformulation done to improve the look of a hypothesis - and 

interne.1 gnoth reformulation in order to achieve structural equivalence vi th 

the hypothesis. A gnoth displays structural equivalence vi.th the hypothesis 

vhen its e.ctue.1, glom-be.sed form agrees vith the deep-structure form given it 

e.s e. model. The deep-structure form is that of one frame of the hypothesis -- the 

frame corresponding to the gnoth. These reforms vill probably not be easy to 

carry out, because they are not central to having a "correct" parse of the 

sequehce, but rather the "best" parse, and for the "right" reason. That is. 

form-polishing is more heuristic than is pe.renthesization of the sequence, end 

so its implementation vill probably be even less deterministic than normal 

Seek-Vhence processing. 

USING MANIFESTATIONS - SLIP-SCOUTS 

One of our major goals for the future vi1l be to implement "Slip-scouts", 

processes that vi.11 begin to use information that the system has gathered about 

the sequence, but has e.s yet not used. Slip-scouts vi1l be looking at bonds, 

manifestations, and actualizations, in order to suggest vays in vhich the 

sequence could be parsed. They vill l>e especial! y sensitive to interleaved 

independent sequences, such as "1210 '3 4 10 5 6 10 ... ",and vill suggest parses 

vith deeper nesting of structures than is required for the simpler types of 

, 



• 

157 

sequences. The e.ddition of Slip-scouts is extremely important if the system is 

going to move on to parse more difficUlt sequences, e.nd so vill be one of the 

first gee.ls ve e.tte.ck. 

FINIR-GR.AINED REFORMS 

Vhen reform uJ.ation is required, ve nov use a rather heavy-handed 

approach -- reform at the top. Vhat the s~tem nov needs is the ability to 

perform finer-greined reformUlations. perhaps retaining the reigning class as 

monarch, but e.dding some "epicycles" to the hypothesis. The reigning class 

may be the right one, but because there are deeply-nested structures vhich the 

s~tem does not perceive e.s such, there may l:>e a good deal of "unhappiness" in 

the s~tem - the ste.l>ility me.y t>e lov. Rather than toss the monarch out, the 

s~tem shoUld sometimes investigate other reforms, reforms geared tove.rd 

finding a deeper exple.ne.tory structure. 

LE.ARNING 

There are tvo essential requirements for a successful "inductive 

learning" progre.m. First, it must discover that vhich it is to learn. Second, it 

must remember vhe.t it has discovered. The Seek-Vhence program has made 

some progress in the area of discovery. Unfortunately, as currently structured. 

Seek-Vhence does not "remember" a parsed sequence in order to aid in parsing 

another, or for purposes of comparison. 

Ve vould like to build upon our idea of "freeze-dried" hypotheses to 

implement a facility vhereby old, remembered hypotheses could, in essence, 

offer themselves up e.s models for parsing nev sequences. That is, the old 

hypotheses coUld be loosely "plugged in" at various.levels of the sy:stem, and 

vhen asimilar structure is created coUld interrupt the proceedings to present 
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themselves as potential models. This, and the ability to do Bongard-like analogy 

and generelize.tion problems 'With collections of sequences, ere more removed, 

but potential goals for fUture research. 

D. CONCLUSION 

Seek-Vhence is not a perfect program. It sutrers from problems at 

several levels and of several types. Nonetheless, it does serve as an example of a 

nev approach to the programming of "intelligent" systems, a sample of a nev 

paradigm. The hallmarks of this e.pproach ere: concepts 'With underlying 

levels of rep re sen te.tion; e. representation scheme the.t encourages n uid 

reformule.tion; the e.l>ility to accept e.nd react to evidence; e.nd a 

nondeterministic, pe.re.llel system orge.ni.ze.tion. Ve believe that these ere 

important notions. ones the.t should be explored fUrther e.nd in many domains. 

They may prove useful -- and even critical -- in the development of systems that 

possess "common sen~e" and the ability to relate concepts in unexpected and 

novel vays. 

• 
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The program's equivalent of the form 

~ 
( C-group (Count up I ) shared): 

- > (build-box 
' ( C-group (same pstruc I ) (same pstruc I ) ) 

' ( (pstrucl (Countup 1)))) 

boxS 
-> (show-box 'boxS) 

( 1 ) 
-) (show-box 'boxSl 

( 2 2) 
-) (show-box 'boxSJ 

( 3 3 3) 
-) (show-box 'boxS) 

( 4 4 4 4 ) 

' 
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The program's equivalent of che form ---------(Tuple I 3 I (Count up I ) 8 shared I)): 

-> (build-box 
'(Tuple I 3 ( (same 

' ( I pstruc2 

boxl 2 
-) (show-box 'box12) 

(I 8 I ) 
-) (show-box 'box I 2 ) 

I 2 8 2) 
-) (show-box 'box12) 

I 3 8 3 ) 
-) (show-box 'box12) 

( 4 8 4) 

pstruc2) 8 (same pstruc2))) 
I Count up I I I)) 
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The program's equivalent of the form ---------... 
(Cycle 1 3 ( (Count up I ) 8 shared)): 

-> (build-box 
'(Cycle I 3 ((same 

' ( ( pstr:uc3 

boxl9 
-> (show-box 'box19) 

1 
-> (show-box 'boxl9l 

8 
-> (show-box 'boxl9) 

2 
-> (show-box 'boxl9) 

3 
-> (show-box 'boxl9) 

8 
-) (show-box 'boxl9) 

4 
-) (show-box 'boxl9) 

5 
-) (show-box 'box19) 

8 
-> ("show-box 'boxl9) 

6 

pstruc3) 8 (same pstruc3))) 
(Count up I ) ) ) ) 
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The Sequence 3 7 3 7 3 7 

-> (startup) 

please enter a term: 3 
doing task Sparkler-plus on (glint! glint! 2) 
doing task Dissolver 

please enter a term: 7 
doing task Sparkler 
sparkl --- between glintlglint2 
doing task Tester 
doing task Dissolver on (glintl) 
doing task Sparkler 
spark2 --- between glintlglint2 
doing task Sparkler-plus on (glint2 glintl 10) 
spark3 --- between glint2glint1 
doing task Sparkler-plus on (glint2 glint2 2) 
doing task Sparkler-plus on (glint2 glintl 10) 
spark4 --- between glint2glintl 
doing task Tester 
doing task Tester 
doing task Sparkler-plus on (glint2 glintl 2) 
sparks --- between glint2glintl 
doing task Tester 
doing task Tester 

please enter a term: 3 
doing task Sparkler-plus on (glint3 glintl 2) 
spark6 --- between glint3glint1 
doing task Dissolver on (glint2) 
doing task Sparkler 
doing task Sparkler-plus on (glint3 glint2 10) 
spark? --- between glint3glint2 
doing task Sparkler-plus on (glint3 glint3 2) 
doing task Sparkler-plus on (glint3 glint2 2) 
sparks --- between glint3glint2 
doing task Tester 
doing task Tester 
doing task Sparkler 
doing task Sparkler-plus on (glint3 glint2 10) 
spark9 --- between glint3glint2 
doing task Tester 
doing task Tester 
doing task Bonder on 

(Sarne print-value (remote) glintl glint3) 
bondl --- between glint1glint3 
doing task Sparkler 
doing task Sparkler 
spark10 --- between glint3glint1 
doing task Glorn-scout 
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Sarne -cover proposed--> glint1 
Sarne -fence proposed --> glint1 
doing task Glomtester on (Same cover glint 1 ) 
doing task Glomtester on (Same fence glint1) 

The system now gloms the first two terms, 
givingaparseof (37)3. 

doing task Glommer on 
(Same print-value fence (glintl glint2ll 

Glommer for Same print-value fence 
members: (glint1 glint2) 

doing task Sparkler-plus on (glom1 glom1 10) 
doing task Glom-inspector on (glom1) 
doing task Glommer on 

(Same print-value cover (glintl glint2 glint3)) 
failed to glom (glint1 glint2 glint3) 
doing task Plato-scout on (Cycle gloml J 
doing task Tester 
doing task Sparkler 
doing task Bonder on . 

(Same print-value (remote) glint1 glint3) 
doing task Template-scout on (glorn1 J 
doing task Template-applier on 

(gloml (Cycle 3 2 (3 7))) 
create-ternplate-glom (Cycle 3 2 (3 7))(glom1) 
top-down glom glom2 

A template is made. · 

template made : (form (Cycle 3 2 (3 7)) 
doing task Template-evaluator 
check-cycle template (Cycle 3 2 ((3 7))) 

A hypothesis is created. 

doing task Hypothesizer 
(Cycle 3 2 (3 7)) 
doing task Glom-scout 
doing task Sparkler 
sparkl1 --- between glint1glint2 
doing task Sparkler-plus on (glorn1 glint3 10) 
sparkl2 --- between glom1glint3 
doing task Sparkler 
doing task Gnoth-maker 
top-down glom glorn3 
gnoths constructed 
doing task Tester 
doing task Tester 
doing task Call-term 
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please enter a term: show-hypothesis 
(Cycle 3 2 (3 7)) 

The next term will confirm the hypothesis. 

please enter a term: 7 
doing task Hfilter 
new term being hypothesis-filtered 

through (Cycle 3 2 (3 7)) 
top-down glom glom4 

I have a guess! 

The system ventures a guess. 

hypothesis: (Cycle 3 2 (3 7)) 
3 7 3 7 

It is correct -- this time. 

enter no if wrong, ok if right ok 
bye 
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The Sequence 3 7 3 3 7 3 

please enter a term: 3 

please 
sparkl 
spark2 
spark3 
spark4 
sparks 

enter a term: 7 
between glintlglint2 
between glintlglint2 
between glint2glint1 
between glint2glint1 
between glint2glint1 

please enter a term: 3 
spark6 between glint3glint1 
spark? --- between glint3glint2 
sparks --- between glint3glint2 
spark9 --- between glint3glint2 
bondl --- between glintlglint3 
sparklO --- between glint3glint1 
Same -cover proposed --> glintl 
Same -fence proposed --> glintl 
Glommer for Same print-value fence 

members: (glintl glint2) 
failed to glom (glintl glint2 glint3) 
create-template-glom (Cycle 3 2 (3 7))(glom1) 
top-down glom glom2 

A template is created after three terms, 

template made: (form (Cycle 3 2 (3 7)) 
state working coverage (1 2) glom glom2) 

check-cycle template (Cycle 3 2 ((3 7))) 
sparkll --- between glintlglint2 
spark12 --- between glomlglint~ 
top-down glom glom3 
gnoths constructed 

We ask the system to "show" us its structures. 

please enter a term: show 
terms of the sequence: 
3 7 3 

bonds: 
bondl Same print-value (remote) 

gloms: 

(glintl glint3) 

gloml (Same print-value fence) --> (3 7) terms 1 to 2 
glom3 pseudo--> ((3 7)) terms 1 to 2 



gnoths: 

class: Gnoths 
name: gnoth 1 
frame: O 
plato-class: Cycle 
glom: glom3 
notes: nil 
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form: (((Cycle 3 2 (3 7)) pure)) 
state: stable 
range: (1 2) 

A hypothesis was made. We ask to see it 

please enter a term: show-hypothesis 
(Cycle 3 2 ( 3 7 ) ) 

The next term will deny the hypothesis. 

please enter a term: 3 
new term being hypothesis-filtered 
through (Cycle 3 2 (3 7)) 

spark13 between glint4glint2 
spark14 between glint4glint3 
spark15 between glint4glint3 
spark16 between glint4glintl 
spark17 between glint4glint3 
set-out -- validity: 0 
top-down glom glom4 
groups: ((glintl glint2)) 
glom: (glintl glint2) 
top-down glom glomS 
top-down glom glom6 
top-down glom glom71 
top-down glom glom8 
gnoths: (gnothl gnoth2 gnoth3) 

The system will continue to )et ''Cycle" reign. 

slip-check: stayval: o.o 
best: nil 

spark18 --- between glint3glint4 
bond2 --- between glint3glint4 
spark19 --- between glint3glint4 
spark20 --- between glint4glint3 
bond3 --- between glintlglint4 
spark21 --- between glint4glint1 
casts: ((Cycle 3 1 ( 3)) (Cycle 7 1 ( 7) J 

(Cycle 3 1 (3))) (Cycle 3 3 (3 7 3)) 
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A new hypothesis is made. 

new hypoth candidate (Cycle 3 3 (3 7 3)) 
spark22 --- between glintlglint2 

please enter a term: show-seq 
3 7 3 3 

The next term will confirm the new hypothesis. 

please enter a term: 7 
spark23 --- between glintSglintl 
new term being hypothesis-filtered 

through (Cycle 3 3 (3 7 3)) 
top-down glom glom9 

I have a guess! 

hypothesis: (Cycle 3 3 (3 7 3)) 
3 7 3 3 7 

The hypothesis is correct. 

enter no if wrong, ok if right ok 
bye 
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The Sequence 1 2 I 2 3 1 2 3 4 

-> (startup) 

please enter a term: 1 
doing task Sparkler-plus on (glint! glint1 2) 
doing task Dissolver 
doing task empty-task 

please enter a term: 2 
doing task Sparkler 
spark1 --- between glint1glint2 
doing task Tester 
doing task Sparkler-plus on ( glint2 glint 1 1 O) 
spark2 --- between glint2glint1 
doing task Sparkler-plus on ( glint2 glint I 1 0 J 
spark3 --- between glint2glint1 
doing task Dissolver on (glint1) 
doing task Bonder on 

(Succ print-value (adjacent) glint1 glint2) 
bond1 --- between glint1glint2 
doing task Tester 
doing task Glorn-scout 
Fred -group proposed --> glint2 
doing task Glom-scout 
Fred -group proposed --> glint2 
doing task Glomtester on (Fred group glint2) 
doing task Tester 
doing task Glomrner on 

(Fred print-value group (glint1 glint2)) 
Glomrner for Fred print-value group members: (glint 1 
glint2) 
doing task Glomtester on (Fred group glint2) 
Glomtester failed glint2 
doing task Sparkler 
doing task Bonder on 

(Succ print-value (adjacent) glint! glint2) 
doing task Bonder on 

(Succ print-value (ad~acent) glint! glint2) 
doing task Glorn-inspector on (glom1) 
doing task Sparkler-plus on (glint2 glint1 2) 
spark4 --- between glint2glint1 
doing task Tester 
doing task Plato-scout on ( (S-group F-group) glom1) 
doing task Bonder on 

(Succ print-value (adjacent) glint1 glint2) 
doing task Plato-evaluator on (F-group glom1) 
doing task Sparkler-plus on (glint2 glint2 2) 
doing task Sparkler 
doing task Template-scout on (glorn1 J 
create-ternplate-glom (S-group 1 2)(gloml) 
top-down glom glom2 
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A template is made. 

template: (form (S-group 1 2) 
doing task Sparkler 
spark5 --- between glintlglint2 
doing task Template-evaluator on nil 
doing task Sparkler-plus on (gloml gloml l 0) 
doing task Gnoth-maker 
top-down glom glom3 
gnoths constructed 
doing task Sparkler 

Now comes the first hypothesis. 

doing task Hypothesizer 
(Countup l) 
doing task Tester 
doing task Call-term 

please enter a term: show-hypothesis 
(Countup 1 l 

please enter a term: show 
terms of the sequence: 
l 2 

bonds: 
bondl Succ print-value (adjacent) -- (glintl glint2) 

gloms: 
gloml (Pred print-value group)--> (1 2) terms l to 2 
glom3 pseudo--> ((1 2)) terms l to 2 

gnoths: 

class: Gnoths 
name: gnothl 
frame: 0 
plato-class: S-group 
glom: glom3 
notes: nil 
form: (((S-group l 2) pure)) 
state: stable 
range: ( 1 2) 

The next term denies the hypothesis 

please enter a term: 1 
doing task Hfilter 
new term being hypothesis-filtered 
through (Countup l) 
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doing task Bonder on 
(Succ print-value (adjacent) glintl glint2) 

doing task Sparkler-plus on (glint3 glintl 10) 
spark6 --- between glint3glint1 
doing task Sparkler-plus on (glint3 glint2 10) 
spark7 --- between glint3glint2 
doing task Sparkler-plus on (glint3 glom3 2) 
doing task Sparkler-plus on (gloml glint3 10) 
sparks --- between glomlglint3 
doing task Sparkler-plus on (glint3 glint2 10) 
spark9 --- between glint3glint2 
doing task Tester 
doing task Sparkler-plus on (glint3 glom3 10) 
doing task Bonder on 

(Pred print-value (adjacent) glint2 glint3) 
bond2 --- between glint2glint3 
doing task Sparkler-plus on (glint3 glint3 2) 
doing task Sparkler-plus on (glint3 glomJ 2) 
doing task Tester 
doing task Dissolver on (glomJ) 
glom3 is not in cytoplasm 
doing task Tester 
doing task Sparkler-plus on (glint3 glintl 10) 
sparklO --- between glint3glintl 
doing task Sparkler-plus on (glint3 glint2 10) 
sparkll --- between glint3glint2 
doing task Tester 
doing task Tester 
doing task Sparkler-plus on (gloml glintl 10) 
doing task Sparkler-plus on (glint3 glint3 2) 
doing task Bonder on 

(Pred print-value (adjacent) glint2 glint3) 
doing task Bonder on • 

(Same print-value (remote) glintl glint3) 
bond3 --- between glintlglint3 
doing task Bonder on 

(Sarne print-value (remote) glintl glint3) 
doing task Glom-scout 
doing task Glorn-scout 
doing task Bonder on 

(Pred print-value (adjacent) glint2 glint3) 
doing task Sparkler 
spark12 --- between glintlglint3 
doing task Sparkler 
doing task Glorn-scout 
Same -cover proposed --> glint3 
Sarne -fence proposed --> glint3 
doing task Sparkler 
spark13 --- between glintlglint2 
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doing task Tester 
doing task Glomtester on (Same cover glint3) 
doing task Tester 
doing task Glomtester on (Same fence glint31 
doing task Sparkler 
doing task Tester 
doing task Bonder on 

(Succ print-value (adjacent) glintl glint2) 
doing task Bonder on 

(Same print-value (remote) glintl glint3) 
doing task Sparkler 
doing task Sparkler 
spark14 --- between glintlglint3 
doing task Sparkler-plus on (gloml gloml 101 
doing task Sparkler 
doing task Bonder on 

(Pred print-value (adjacent) gloml glint3) 
bond4 --- between glomlglint3 
doing task Sparkler 
sparklS --- between glint2glintl 
doing task Glom-scout 
Same -cover proposed --> glint3 
Same -fence proposed --> glint3 
doing task Glomtester on (Same fence glint3) 
doing task Tester 
doing task Bonder on 

(Same print-value (remote) glintl glint3) 
doing task Glomtester on (Same cover glint3) 
doing task Sparkler 
doing task Gnoth-setter 
top-down glom glom4 
top-down glom glomS 
top-down glorn glorn6 
top-down glorn glom7 
top-down glom glom8 
gnoths: (gnothl gnoth2 gnoth3) 
doing task Glom-scout 
doing task Tester 
doing task Bonder on 

(Succ print-value (adjacent) glintl glint2) 
doing task Plat0-scout on 

((C-group S-group P-group Y-group Cycle Tuple) 
glom6) 

doing task Template-scout on (glom6) 
doing task Template-scout on (glom6) 
doing task Sparkler 
doing task Template-scout on (glom6) 
doing task Sparkler 
doing task Template-scout on (glom6) 
doing task Sparkler 
spark16 --- between glintlglint2 
doing task Template-scout on (glom6) 
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doing task Template-scout on (glom6) 
doing task Sparkler 
doing task Reformulator 

Changing to a new reigning class. 
Countup --> S-group 

doing task Bond-assessor on (S-group 8.0) 

Reformulation is performed. 

doing task Gnoth-operator 
((PROGRAM ((SHIFT-RIGHT gnothl gnoth2 (glint I)) 

(ENCLOSE gnothl nil)))) 
top-down glom glom9 
doing task Glom-scout 
doing task Ref ormulator 
doing task Tester 
doing task Bonder on 

(Succ print-value (adjacent) glintl glint2) 
doing task Sparkler 
doing task Sparkler 
doing task Bond-assessor on (S-group 8.0) 
doing task Reformulator 
doing task Bond-assessor on (S-group 9.0) 
doing task Reformulator 
doing task Bond-assessor on (S-group 10.0) 
doing task Gnoth-caster 
casts: ( ( S-group 1 2) ( S-group I 1 ) ) 
(S-group 1 2) 
new hypoth candidate (S-group 1 2) 
doing task Call-term 

A second hypothesis has been devised. 

please enter a term: show-hypothesis 
(S-group 1 2) 

please enter a term: show-parse 
((1 2) (1)) 

please enter a term: show 
terms of the sequence: 
1 2 1 

bonds: 
bondl Succ print-value (adjacent) -- (glintl glint2l 
bond2 Fred print-value (adjacent) -- (glint2 glint3) 
bond3 Same print-value (remote) -- (glintl glint3) 
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gloms: 
glom8 pseudo --> ( 1) terms 3 to 3 
glom9 pseudo--> ( 1 2) terms 1 to 2 

gnoths: 

external-bonds: ( (bond2 O) (bond3 -5)) 
internal-bonds: ((bond1 10)) 
equivalence-type: parse 
groups: nil 
class: Gnoths 
name: gnoth2 
frame: 1 
plato~class: S-group 
glom: glom9 
notes: nil 
form: (S-group 1 2) 
state: stable 
range: (1 2) 
external-bonds: ((bond2 O) (bond3 -5)) 
internal-bonds: nil 
class: Gnoths 
name: gnoth3 
frame: 2 
plato-class: S-group 
g lorn: g lorn8 
notes: nil 
form: (S-group 1 1) 
state: stable 
range: ( 3 3) 

; The next term confirms the hypothesis, 
; although it is incorrect. 

please enter a term: 2 
doing task Hfilter 
new term being hypothesis-filtered through (S-group 1 
2 ) 
top-down glorn glorn10 

The system ventures a guess. 

I have a guess! 

hypothesis: (S-group 1 2) 
(1 2)(1 2)(1 2) 

It is wrong this time. 

enter no if wrong, ok if right nope 

• 
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please enter a term: show-seq 
1 2 1 2 

A new term is entered. 

please enter a term: 3 
doing task Hfilter 
new .term being hypothesis-filtered through 
( 1 2 ) 1 
doing task Sparkler-plus on (glints glint4 10) 
spark17 --- between glintSglint4 
doing task Sparkler-plus on (glints glom8 2) 
doing task Sparkler-plus on ( glint4 glint 1 1 0) 
doing task Sparkler-plus on (glint4 glint3 10) 
spark18 --- between glint4glint3 
doing task Dissolver on (glom8l 
glom8 is not in cytoplasm 
doing task Sparkler-plus on (glint4 
spark19 --- between glint4glint3 
doing task Sparkler-plus on (glints 
spark20 --- between glintSglint1 
doing task Sparkler-plus on (glints 
doing task Sparkler-plus on (glints 
spark21 --- between glintSglint3 
doing task Sparkler-plus on (glints 
doing task Sparkler-plus on (glints 
spark22 --- between glintSglint2 
doing task Dissolver on (glomlO) 
glom10 is not in cytoplasm 

glint3 1 0 ) 

glint1 1 0 ) 

glom10 2 ) 
glint3 1 0 ) 

glints 2) 
glint2 1 0 ) 

doing task Sparkler-plus on (glint4 glint2 10) 
spark23 --- between glint4glint2 
doing task Sparkler-plus on (glint4 glom8 2) 
doing task Sparkler-plus on (g~intS glint2 10) 
spark24 --- between glintSglint2 
doing task Gnoth-setter 
top-down glom glom11 
top-down glom glom12 
top-down glom glom13 
gnoths: (gnoth2 gnoth3 gnothS) 

; We will stay with the reigning class -- S-group. 

slip-check: stayval: 1s.o 
best: (Y-group 4.0) 

doing task Tester 
doing task Bonder on 

(Same print-value (remote) glint2 glint4) 
bonds --- between glint2glint4 
doing task Tester 
doing task Tester 
doing task Sparkler-plus on (glints glint3 10) 
spark25 --- between glintSglint3 
doing task Tester 
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doing task Bonder on 
(Succ print-value (remote) glint2 glintS) 

bond6 --- between glint2glintS 
doing task Sparkler 
doing task Bonder on 

(Succ print-value (adjacent) glintJ glint4) 
bond? --- between glint3glint4 
doing task Sparkler 
doing task Sparkler-plus on (glints glom10 10) 
doing task Sparkler-plus on (glints glom10 2) 
doing task Tester 
doing task Sparkler-plus on (glints glomB 2) 
doing task Reformulator 
doing task Sparkler-plus on (glints glint4 10) 
spark26 --- between glintSglint4 

; More reformulation is performed. 

doing task Gnoth-operator on 
((SHIFT-RIGHT gnothJ gnothS (glintJ))) 

top-down glom glom14 
doing task Tester 
doing task Bond-assessor on (S-group 8.0) 
doing task Sparkler-plus on (glints glint4 10) 
spark27 --- between glintSglint4 
doing task Sparkler 
doing task Tester 
doing task Sparkler 
spark28 --- between glint4glintS 
doing task Bonder on 

(Succ print-value (adjacent) glint4 glints) 
bondB --- between·glint4glintS 
doing task Sparkler-plus on (glints glint1 10) 
spark29 --- between glintSglint1 
doing task Tester 
doing task Tester 
doing task Sparkler 
doing task Sparkler-plus on (glint4 glint4 2) 
doing task Bonder on 

(Succ print-value (adjacent) glintJ glint4) 
doing task Sparkler-plus on (glints glints 2) 
doing task Sparkler-plus on (glint4 glom9 2) 
doing task Bonder on 

(Succ print-value (adjacent) glint4 glints) 
doing task Sparkler-plus on (glint4 glomB 10) 
doing task Bonder on 

(Succ print-value (remote) glint2 glintS) 
doing task Sparkler-plus on (glints glom9 2) 
doing task Reformulator 
doing task Tester 
doing task Sparkler 

r 

• 
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doing task Bonder on 
(Succ print-value (adjacent) glint4 glintS) 

doing task Sparkler 
doing task Tester 
doing task Sparkler-plus on (glints glom9 2) 
doing task Tester 
doing task Bonder on 

(Succ print-value (adjacent) glint4 glintS) 
doing task Bond-assessor on (S-group 8.0) 
doing task Reformulator 
doing task Tester 
doing task Sparkler 
spark30 --- between glintSglintl 
doing task Bond-assessor on (S-group 9.0) 
doing task Tester 
doing task Reformulator 
doing task Bond-assessor on (S-group 10.0) 
doing task Gnoth-caster 
casts: ( ( S-group 1 2 ) ( S-_group 1 3 ) ) 
(S-group 1 (Countup 2)) 
new hypoth candidate (S-group 1 (Countup 2)) 
doing task Call-term 

; A third hypothesis is formulated. 

please enter a term: show-hypothesis 
(S-group 1 (Countup 2)) 

please enter a term: show-parse 
((1 2) (1 2 3)) 

please enter a term: show 
terms of the sequence: 
1 2 1 2 3 

bonds: 
bondl Succ print-value (adjacent) -- (glintl glint2) 
bond2 Pred print-value (adjacent) -- (glint2 glint3) 
bond3 Same print-value (remote) -- (glintl glint3) 
bonds Same print-value (remote) -- (glint2 glint4) 
bond6 Succ print-value (remote) -- (glint2 glints) 
bond7 Succ print-value (adjacent) (glint3 glint4) 
bond8 Succ print-value (adjacent) -- (glint4 glintS) 

gloms: 
glom9 pseudo--> ( 1 2) 
glom14 pseudo--> (1 2 

terms 1 to 2 
3) terms 3 to S 
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gnoths: 

external-bonds: 
((bond2 O) (bonds -5) (bond6 0) (bond3 -5)1 

internal-bonds: ((bondl 10)) 
equivalence-type: parse 
groups: nil 
class: Gnoths 
name: gnoth2 
frame: 1 
plato-class: S-group 
glom: glom9 
notes: nil 
form: (S-group 1 21 
state: stable 
range: ( 1 2) 

external-bonds: 
((bond6 0) (bonds -51 (bond2 O) (bond3 -511 

internal-bonds: ((bond8 10) (bond7 10)) 
groups: nil 
class: Gnoths 
name: gnothS 
frame: 2 
plato-class: S-group 
glom: glom14 
notes: nil 
form: (S-group 1 3) 
state: stable 
range: (3 51 

The next term confirms the ~ypothesis. 

please enter a term: show-seq 
1 2 1 2 3 

please enter a term: 1 
doing task Hfilter 
new term being hypothesis-filtered through (S-group 1 
(Count up 2) ) 
top-down glom glom15 

I have a guess! 

hypothesis: (S-group 1 (Countup 2)) 
(1 2)(1 2 3)(1 2 3 4) 

This time the guess is correct. 

enter no if wrong, ok if right ok 
bye 

• 
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GLOSSARY 

actualization - A. gnoth that exhibits the properties of some Platonic class is e.n 
e.ctue.Hze.tion of the.t class e.t the socre.toplasm level. 

attribute-based description -- a concept representation scheme the.t vie"C'$ e. 
concept e.s a unit "1th only globe.1 properties. rather the.n as e. structure 
(see "structure.1 description"). 

bond - e. cytoplasm-level structure that defines e. relationship (e.g .. sameness. 
successorship) betveen tvo gloms (or glints). 

box - the active portion of the structure.1 representation of e.Seek-Vhence 
concept. e.nd e. repository of information e.bout the value of the.t structure. 

bursting - e.n operation the.t destroys a glom e.nd its subgloms. leaving only 
underlying glints behind. 

ce.tche.11 gnoth - a rightmost or"tre.iler" gnoth the.t simply holds input terms 

the.t agree 'With the hypothesis 'Without pe.renthesizin' them. 
cosmetic reform - the reformulation of a predictive h'Yl>Othesis for aesthetic 

reasons - to 'ive it e.clee.ner form - or to make its strueture conform. 
more closely to that dictated by the reigning hypothesis. 

cytoplasm -- the lovest level of the Seek-Vhence wrld: home of bonds. glints. 
e.nd gloms. 

dissolving-- e.n operation the.t destroys e.glom. freeing its top-level subgloms 
into the cytoplasm. 

divesting push -- a unile.tere.1 move bye. gnoth to rid itself of e.n interne.1 glom 

that decreases its ste.l>llity. Vhether or not a neighboring gnoth he.s e.ny 
e.ttre.ction for the glom. 

dut> bing - the marking of a glom e.s a manifestation of a particular Pie.tonic 
class. :For example, Vhen the system recognizes the.t the glom (1 11) he.s 
the properties of a C-group, it will be "dubbed" e.s a C-group 

manifestation. 
frame - e.n e.bstre.ctly-vieved hit of a hypothesis: the collection of 

Seek-Vhence forms the.t vould produce the given hit. 

freeze-dried hypothesis - the form of ah ypothesis Vi th out its e.cti ve. structural 

description. 
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glint -- Seek-Vhence's cytoplasm-level representation of an input-sequence 
term. 

glom -- a cytoplasm-level structure representing a plausibly groupe.ble 

collection of neighboring glints (and/or gloms). 
gnoth -- asocratople.sm-level structure representing alogice.1 grouping of 

terms in the system's parenthesization or parse of a sequence. 
gnoth operation -one of severe.I veil-defined actions - SHIET-UET. 

SHIET-RIGHT. SPLIT. CAPTURE, ENCLOSE . .FRACTURE, MERGE. NO-OP -- for 

modifying agnoth or neighboring gnoths. 

gnoth-hypothesis equivalence -- the representation by a gnoth of one frame of 

a hypothesis. There are three levels of equivalence -- term, parse. and 
structure.I (see pp. 94-97). 

hit -- a query of aSeek-Vhence die.gram or of a box for its next value -- a term 
or grouping of terms. 

hypothesis - areformulate.ble structure that models and can extrapolate a 
sequence pattern, and is constructed from one or more of the eight 

primitive Platonic concepts. 

hypothesis filtering -- a process vhere by nev input terms are checked for 
conformity.vith the reigning hypothesis. Should anevterm not 
conform to the hypothesis, reformulation begins. 

ideal types -- the Platonic concepts -- ideal atoms and ideal groups. 
manifestation - A glom that exhibits the properties of some Platonic class is a 

menifestati<>n of that class at the cytoplasm level. 
medical reform - the reformulation. using the evidence presented l>y a nev 

term or terms, of a hypothesis because it fells to l>e predictive. 
parenthesization- an expression of a perceived sequence parse. made by 

putting gnoths over certain gloms and glom collections . .E'or example. the 
parenthesization (1 2) (I 2 "3) is achieved by putting the first tvo terms 

into one gnoth and the last three into another. 

parse - a patterned viev of a sequence. 

Platonic class (concept) - an idealized version of an integer. or one of the eight 
primitives (Constant, Countup. C-group. S-group, P-group, Y-group, Cycle, 

Tuple) from vhich Seek-Vhence concepts are constructed. 

i 
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platople.sm - the highest level of the Seek-Vhence vorld. vhich houses the 
Platonic concepts and information about them. 

PROGRAM - a series of gnoth operations proposed by a Reformulator tesk in 
order to modify the system's perenthesization of a sequence. 

pseudo-glom - an inert glom. in that it cannot combine vith other gloms. 
generally used e.s a cap to prevent the disappearance of a given glom 
cluster (one glom or a collection of neighboring gloms). 

reformulation -- the conversion of one concept into another. related. concept in 
a "reasonable" vay; a synonym for slippage. 

s-link- A "slipping link" bet-veen tw Platonic classes. The slipperiness of 
such a link indicates the system's procliVityto slip from one class to 
another. 

Seek-Vhence diagram. - a set of prim.i ti ve node types and a structural 
representation technique wed to give a Visual sense of our concept 
representation scheme and of the effects of reformulation. 

Slipnet -- a repository of the information about the Platonic concepts and their 
interrelationships needed for reformUlation. 

slipperiness -- (see "s-link") 
socre.toplesm ..:_the middle level of the Seek-Vhence vorld. vhicn howes the 

gnoths. 
structural description - a concept representation that portrays a concept as 

haVing separately-describable components, rather than es a single entity 
vi th only global attributes (see "attribute-based description"). 

task - an uninterruptible (and generally small) segment of a computational 
process. Te.sks are capable of creating or modifying structures. setting 
off other te.sks. or querying the wer. 

template -- a "proto-hypothesis", developed e.s the first rough statement of an 
emerging formulation. 

terraced scan - a technique for progressively deepening the exploration of 
several pathways in parallel. vhereby the most plausible pathvays are 
explored more extensively than the less plausible ones. 
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