
Octobcr 28 - 3 I , Rcijiiig. Clllnd 1997 I I X E Intcrnational Coiitcrcncc on Intclllecnt Pioccsslng Systems

The Parallel Terraced Scan: An Optimization for an Agent-Oriented Architecture

John Rehling and Douglas Hofstadter
Center for Research on Concepts and Cognition

Indiana University
510 North Fess Street

USA
rehling@cogsci.indiana.edu dughof@cogsci.indiana.edu

http://www.cogsci.indiana.edu

Bloomington, Indiana 47408-3822 ,

Figure 1: Six ‘a’s Rendered on the Grid.

Abstract - A relatively new area of research concerns com-
puter programs which operate by the action of many small
agents, rather than the serial execution of an algorithm. Be-

stically from conventional programs, new
ired for developing and maintaining them.

An optimization technique, the Parallel Terraced Scan, has been
applied to one such program: a letter-recognition system called
the Examiner [7] . The Parallel Terraced Scan is the exploration
of many possible paths, but with more computation devoted to
paths which are identified as being more promising. Thus. it re-
sembles pruning of search trees in some respects, but i t does not
completely abandon paths which are tentative1
fruitful.

I. INTRODUCTION

The work described here concerns modifications made to a
program called the Examiner, intended t module for
use in a more complex program, Letter hich is cur-
rently under development [4]. The Letter Spirit project is
concerned with the creation of novel, stylistically-consistent
typefaces as rendered on a medium-resolution (3x7) grid of
56 unit-length quanta, with great diversity allowed in the p a -
ticular stylistic properties of letterfoms in th
Six examples of the letter ‘a’ rendered on this
Figure 1.

The Examiner’s architecture has much in common with
the Copycat [9] and Tabletop [2] programs. All three are
intended to capture certain key aspects of human cognition
within their given domains, and, among other distinctive fea-
tures they have in common, carry out nearly all processing
via the action and interaction of many very small procedures,
called Codelets. The Hearsay-I1 program [l], the first black-
board system, provided inspiration for this aspect of Copycat,
Tabletop and the Examiner. These programs p
flexibility than many traditional problem-solvi
and - beyond their interest as cognitive mod
the best way to approach certain practical problems. Creat-
ing systems of this kind is a considerably different task from

0-7S03--/Z53-.1/97/$10.00 0 1997 IEEE

traditional programming, and a new repertoire of techniques
for developing them is needed. This work describes an opti-
mization for such architectures which can increase the speed,
accuracy and quality of output of such programs, and IS , in
addition, suggestive of certain qualities of human cognition.

11. THE EXAMINER: AN AGENT-ORIENTED
ARCHITECTURE

A task related to Optical Character Recognition is the cate-
gorization of letters rendered on the Grid. Many letterforms
of each category may exist, and the task of interest here is
the categorization of novel letterforms on the Grid, hence-
forth called gridletters. Creating a system that perfoms this
task well is not straightforward. Several approaches are doc-
umented in [7] One of these, the Examiner, is the starting
point for the optimization technique described herein. The
Examiner’s architecture operates very roughly as follows:

The Workspace is the data structure where a structured
parsing of the letter may be built up. The quanta are col-
lected into subsets, which are contiguous parts of the letter-
form. Each part has potentially several semantically mean-
ingful labels, such as “short”, or “ascender”. A part may

le, which is an abstraction of a portion of a
letter, such as “left-post”, “dot”, or “crossbar”.
The Conceptual Memory is a localist network containing
nodes for each possible role, and each possible role-set,
or “whole”. Links connect role-sets to their constituent
roles. For example, the node representing “f” has links
to the nodes for “crossbar” and “f-post”. Each node has an
activation value which can vary between -100 and +loo,
and each link has a fixed, permanent strength indicating
the propensity of activation to spread from one node to an-

ound to a role, the concept node for
that role will re large amount of positive activation.

‘sparking”.
e The Coderack is a list of Codelets, essentially procedure

calls which are placed on the Coderack by other Codelets,
for possible selection and execution later, rather than being
run immediately. The order of execution is probabilistic,

- 900 -

mailto:rehling@cogsci.indiana.edu
mailto:dughof@cogsci.indiana.edu
http://www.cogsci.indiana.edu

Codelets on the Coderack. Codelets fa11 into many types,
such as those responsible for creating and altering parts,
attaching semantic labels to parts, binding parts to roles
thereby positively activating those roles, spreading activa-
tion in the Conceptual Mcmory. and activating role-scts di-
rectly based upon global properties of the letterform.
The Temperature is a number from 0 to 100. This is an in-
verse “goodness” rating for the quality of the work done
thus far in a run, with high Temperature corresponding
to situations where the system has not yet built up much
useful structure. Temperature focuses the behavior of Let-
ter Spirit by determining how much weight to give each
codelet when the virtual roulette wheel is spun which picks
the next codelets to be run. This makes behavior more di-
rected when an answer seems nearer, and more likely to
consider a wide range of options when it seems that little
useful progress has been made. This phenomenon can be
seen in many complex systems, from computer models us-
ing simulated annealing to the choices made by politicians.

In an ideal run, the Examiner recognizes a letter as follows.
First, the gridletter is parsed into non-overlapping parts. A
‘d’, for example, could be parsed into two parts, one corre-
sponding to something tall and thin on the right, and an open
bowl similar to a lone letter ‘c’. The exact shapes of these
parts will vary depending upon the gridletter. Given a parsing,
the Examiner tries to label the parts. Labels are properties
that can apply to a shape. These labels, (for instance, “tall”),
are attached probabilistically, with a better probability of a
label being applied to more appropriate parts. When a part
has some labels, sparking can occur. Sparking is a process in
which a part is used to activate the concept nodes for roles.
The definition of a role includes a collection of labels, and
the extent to which a part sparks a role is determined by how
well the sets of labels of the gridbound part and the abstract
role correspond. Activation is then spread, so that a whole
receives activation in proportion to the sum of the activation
of its constituent roles. Any wholes with positive activation
are subject to R-Role checking. R-Roles, or Relational Roles,
are norms for where, if at all, role-fillers should touch, how
tips at the ends of parts should be positioned in relation to one
another, and so on. If the Temperature is low enough, then the
program may halt. Temperature is lowest when exactly one
whole has high activation. The lower the Temperature, the
greater the probability is that the system will halt, returning
the most-highly activated whole as its answer. At any point
in processing, the system may also decide to change its pars-
ing of the letterform into a different set of component parts.
This will be likely to occur if a part has received many la-
bels but fails to spark any roles. If the problematic part is
small, then it will be absorbed into a neighboring part, and if
it is large, it will be broken into multiple smaller parts. All
of these decisions are made probabilistically, so that, if the
same situation recurs, different choices may be made in suc-
cessive runs. At fixed deadlines (defined in terms of number
of Codelets run), the standards the program has for sparking

- 901 -

arc made less stringent. Therefore, an unusual part may not
bepble to spark any roles early in a run, but able to, using the
looser standards, later on. This approach, called role loosen-
ing, is favored, rather than having roles very loose initially,
so that strange answers do not supercede correct ones in the
early stages of a run. In later stages, when it seems unlikely
that the gridletter is a typical example of any category. role
loosening allows the system to explore more unusual possi-

Small steps in the Examiner’s processing (the labelling of
a part with one label, the sparking of roles with a part, the
spread of activation, the re-parsing of the letterform, etc.) are
carried out by individual Codelets. Because the selection of
the next Codelet to be run is made probabilistically, the Ex-
aminer may explore many different parsings of a letterform,
and the set of labels a part has acquired will also have many
possibilities. This is a great strength of the system. If the
method of parsing and labelling were deterministic, then the
system would only be able to recognize letterforms whose
style was not too strange for the program’s rules and defi-
nitions. The probabilistic nature of the system allows it to
explore various possibilities, but, because it is not totally ran-
aom, it is unlikely to produce very strange answers (such as
identifying a typical ‘0’ as an ‘x’). The exact course of a
run depends upon many factors. Strange letters will usually
need to be re-parsed many times, and the runs may take thou-
sands of Codelets. Plain letters are usually recognized in a
few dozen Codelets, and are sometimes recognized correctly
on the first parsing.

The Examiner is a robust letter-recognizer which achieves
a high rate of correct identification over stylistically varied
letterforms. Its performance is favorable in comparison with
other letter-recognition architectures and resembles the be-
havior of humans when given the same task.

111. THE PARALLEL TERRACED SCAN
The idea behind the Parallel Terraced Scan is to explore
many possibilities at a time, but to devote more computational
power to the directions which are more promising. Thus,

answer, regardless of
may be. However, the
d the average running

time is greatly reduced from exhaustive search. This is remi-
niscent to work on the k-armed bandit problem [5] .

The original Examiner searched multiple possibilities in
parallel. For example, if a gridletter is parsed into three parts,
then any of the 97,290 ways in which they could be bound to
three of the forty-seven roles could follow. Different parsings
could allow even more possibilities. And the binding of parts
to roles is only part of a process meant to lead to the acti-
vation of one whole. Numerous potential outcomes (perhaps
numbering in the millions) will be active possibilities during
the middle of a run. If each possibility were investigated to an
equal extent, then the program would have exponential run-
ning time. At the other extreme, if only one path to an answer
were possible, then the system would suffer the rigidity that

Re-parsings immediately clear all activations in the Con-
ceptual Memory, so that leftover activations for parts that
no longer exist do not muddle further processing.
Each time the parsing of the letterform changes, a Gestalt
Codelet sends activation to each role-set, based on the
shape of the entire gridletter. This is posted with high ur-
gency so that it will run soon and be able to influence future
processing beneficially. When the Gestalt codelet has run,
only wholes which are likely to be legitimate possibilities
for the letterform have positive activation. This may reduce
the number of candidate answers on the level of letter cat-
egory from 26 to a much smaller pool, rarely more than 4.
Extensive experimentation was carried out to find a good,
fast Gestalt function the output of which would be a good
heuristic for the actual answers. In the original Examiner,
Gestalt Codelets were liable to run at any stage of the pro-
cessing, abruptly changing the activations of wholes.

Figure 2: Flow of Influence in the Examiner.

. The compromise is to
, and at any given

is common in symbolic AI
be able to explore many PO

in time to be actively con with an empha- The R-Role Checker Codelet was eliminated. This Codelet

em most likely to be correct,
ities is accomplished by many

Parts are more likely to receive certain labels than

was with positive ac-
tivation- an R-
Role Checker poor to retain high 2Ktiva-

posted for every

The focus on the better PO

means,

The delay between posting and

others. Codelets tend to post new Codelets that pursue the for long ’pans Of time before the

same directions. The use of Temperature to weigh the impact
of urgencies On Codelet selection focuses the system on better
possibilities. Thus, by performing a weighted consideration

sary decrease in the
the activity Of the system was potentially misdirected

activation occur.

R-Role Checking occurred. This checking was added

of many poss~bl~itles at once, the original ~~~~i~~~ already
provides an example of the Parallel Terraced Scan.

The optimization was not based, therefore, on introducing

the system have an even greater focus on the best possibili-
ties, enhancing the extent to which the Parallel Terraced Scan
prunes the vast tree of possibilities. The primary- goal was to
increase the speed of the program, but maximizing the accu-
racy of its answers was a secondary goal. The major idea was
to use the activations of concepts in the Conceptual Mem-

roles. The optimization, thus, had two sub-goals. The first
was to make the activations of a role at all times as consistent
as possible with the likelihood that the role is represented in

vation of roles with sparking, so that a role with high acti-
vation will have a better chance of being involved in sparking,
and one with low actlvation little or no chance. The corre-
spondence between a role’s definition and a part’s labels re-
mains the primary factor in sparking, but can be influenced
significantly by the role’s activation.

To make activations more meaningful in terms of express-
ing the importance of each role at each point in the process-
ing, several change; had to be made to the system. Originally,
activation of a given role or role-set could change drastically,
rising and falling in large jumps. In the optimization, it was
attempted to insure that activations would change in small
steps, and always reflect the likelihood of that concept being
involved in the current letterform. The optimizations are as
follows:

directly to the Activation-Spreading Codelet, only wholes
with activations greater than +20 are checked. This change
reduces the number of Codelets run for the same amount
of work, but reduces the total of processing be-

distort the in the sec-
tion on the number of Codelets run, the number of R-Role

the whole, and
Checker Codelets in a was typically a small fraction of

was done by the delay between
their posting and execution than in the time spent running
them,

was set to the previous activation the sum of the
weighted inputs from each connected node, minus a decay
factor, Activation could only pass from a whole down to a

A large jolt of activation could stay with a node for a long
time, and would only eventually decay. In the optimiza-
tion, at the time that activation spreads, a node is allowed
to retain only a small portion of its previous in
addition to what activation is spread to it via its inputs. For
a whole, the sum of the weighted inputs from each con-
nected role node is added in. For a role, the maximum
of the weighted inputs from the connected whole nodes is
added. The discrepancy is easily explained. A whple re-
ceives activation from roles only to the extent that &h of
its component roles is active. A role, however, receives ac-
tivation from wholes to the extent that any of the wholes it
may be a member of is active. Logically, a whole is present
only if all of its associated roles are. A role is present if any

the Para11e1 Terraced Scan to the Examiner, but On cause fewer wholes need to be checked. Althougkthis m a ~

Ory as the for an increased focus On more appropriate Originally, the activation of each role and whole’s node

gridletter being recognized’ The second was to the role, however, if the &vation of the whole was above +75.

- 902 -

one of its associated wholes is.
The onset of phases of loosening was made probabilis-
tic. Before, distinct phases of loosening were inforced on
a fixed schedule. Now, a short first phase maintains the
tightest roles, and most letterforms are recognized during
this phase. Subsequent phases randomly toggle between
higher and lower looseness settings. Thus, letterforms that
are only identified with loose roles may be recognized rel-
atively quickly, while a letterform that requires tight roles
will have many chances later, if it is not recognized in the
first phase.
The sparking of roles with parts was made to be influenced
by the activations of the roles. Roles with higher acti-
vations are given higher priority in the decision of which
roles to spark with a part (however, this is not the case for
roles which already have a part bound to them). This is
perhaps the most important optimization, and many of the
other modifications were necessary so that the activation of
a role is, at all times, a good indicator that the role should
be considered as relevant to the gridletter being recognized.
Roles with negative activation are not considered at all for
sparking, so it is very important that a role receive negative
activation only if it is exceedingly improbable that it is a
component of the correct answer’s whole.

The primary strategy behind the optimizations can be seen
in Figure 2. Here, the primary components of the model (in
terms of Codelets and nodes in the Conceptual Memory), as
already described above, are shown schematically. An arrow
indicates that one component of the system may influence the
one the arrow points to. Influence may take the form of updat-
ing act vations, posting Codelets, or influencing the behavior
of Codelets. Black arrows indicate aspects of the original Ex-
aminer; each of these continued to exist (although perhaps
in a different form) after optimization. Gray arrows indicate
those aspects of the system added in the optimization. No
black arrow was drawn from whole activations to role activa-
tions, because activation spreading of this sort, while possible
in the original Examiner, was extremely rare.

Considering only the black arrows, we can see that there is
a loop between the Codelets involved with parsing, labelling
parts, and sparking roles, but from there, all activity is feed-
forward. That subsystem influences role activations, which in
turn influence whole activations. In addition, Gestalt Codelets
may directly alter the activations of wholes.

In the optimized system, considering both the black and
gray arrows, we see that there are loops allowing each of the
components to influence any other (except Gestalt), even if
only indirectly. The interaction indicated by these loops con-
stitute the most important aspects of the optimization. Of par-
ticular note is the bottom-uphop-down interaction between
the two levels of the Conceptual Memory. By allowing the
low and high levels of a conceptual hierarchy to influence
each other, this is an application of top-down pressure of the
kind described in the interactive activation model of [6]. A
whole can receive activation via Gestalt. or from one or more

>

bbbbbb
Figure 3: Six ‘b’s from EASY.

of its constituent roles being sparked. Activation (positive or
negative) will then spread back down to roles, including those
which have not yet been involved in sparking. Subsequently,
when sparking occurs, the roles that have received higher ac-
tivation from their wholes will be favored. Thus, when the
system suspects the presence of a certain whole, it will try to
complete the figure (if possible) by looking for parts for the
remaining roles involved in that whole.

The basic principles that emerge are that it is beneficial
to use information which is easy to calculate, or has already
been calculated for another purpose, to save in subsequent
computational effort. This principle could be carried out fur-
ther in the Examiner. Whole and role activations could in-
fluence parsing so that quanta are grouped into parts that are
likely to be involved in the gridletter. While this optimization
is not planned, it could improve performance, particularly, for
gridletters which are difficult to parse correctly.

%. RESULTS
The primary measure of performance was the average number
of codelets per run in a test set. For purposes of debugging
and parameter tuning, a small set of 52 gridletters, henceforth
called TINY, representing each category twice, was used. A
larger test set of 544 gridletters, called TEST, was used to
demonstrate the real progress of the system. If a small test
set were used for all debugging and testing, then it would be
possible that the system had been tuned to work well only for
those gridletters. Meanwhile, a large test set involved in the
debugging stage would make testing excessively slow. TINY
was used to implement all major features of the optimization.

The only modifications made using TEST as a test set were
to the deadlines used to initiate the various stages of role loos-
ening and the inclusion of an additional R-Role checker to
help discriminate ‘g’ and ‘q’. The effect of modifying dead-
lines was to find a good balance in the tradeoff between speed
and accuracy. TEST was further broken into two subsets,
EASY and HARD. The 388 gridletters in EASY were meant
to be more typical of their intended categories, while the 156
members of HARD were intuitively stranger and less typical
of their categories, and therefore harder to recognize quickly
and correctly. The intrinsic difficulties of the subsets of TEST
were shown in experiments with human subjects (with the
subsets going by the names NORMALS and FONTS, respec-
tively) as shown in [8]. Figures 3 and 4 show examples of
the letter ‘b’ to demonstrate the contrast between EASY and
HARD.

The results of the optimization can be seen in Table 1. The
raw data for the pre-optimization Examiner are given under
OLD, and the optimized version under NEW. The factor of

- 903 -

Table 1: Performance of the Examiner.

Figure 4 The six ‘b’s from HARD.

increase in speed and percent increase in accuracy are given
in the A columns. Speed is indicated with the number of
Codelets per run. In all instances, the performance following
the optimizations was improved.

V. CONCLUSIONS

throughout a run, takes advantage of prior computation by us-
ing values computed in earlier stages of processing to wisely
direct future processing. In part , the use of Gestalt illus-
trates the value of this principle Gestalt Codelet is quick
and easy to compute, and it usually does its work soon after a
new parsing occurs, so that the small investment in computa-
tion involved in running the Gestalt Codelet can lead to large
savings in total run time by eliminating most of the possible
wholes from consideration immediately. In many ways, this
is like the use of a heuristic to direct search in a symbolic AI
program, but the Parallel Terraced Scan simply prioritizes the
many possibilities it explores in parallel, rather than selecting
or ordering possibilities searched serially.

The improvement in performance is more pronounced for
the HARD set than for PLAIN, probably because there is
more room for improvement. In extreme cases, the average
speed-up for a particular gridletter can be by a factor of 20 or
more. The even greater speed-up on the TINY set is probably

’

allel Terraced Scan differ aditional program-
ming situations. There is a paradigm in which

is the programmer’s task to find an algorithm that will al-
t answer. The domains of Copycat, Tabletop and
r represent a different type of task, where multi-
may exist, although some are better than others.

(For the test sets used with the ner above, we assumed
that each gridletter was a mem exactly one letter cate-
gory, but ambiguous gridletters, which suggest two or more

- 90

categories, certainly exist.) Thcse domains may present a
dilemma for programming with traditional algorithms, where
a deterministic approach may lead to brittleness and exhaus-
tive search is impractical. The architecture used in stochastic,
agent-oriented systems such as the Examiner avoids both of
these hazards. The approach may work in many areas where
traditional AI has failed to meet with success. As research
with agent-oriented systems continues, it will be important
for techniques such as that described in this paper to be part of
the implementations. Faster programs are easier to develop,
because shorter times for testing and evaluating modifications
can lead to much faster programming.

This work demonstrates the power of the Parallel Terraced
Scan as a computational optimization; it is e
a mechanism hypothesized to have a role in h
should also prove to be computationally beneficial.

VI. ACKNOWLEDGEMENTS
This research was supported by a Sun Microsystems Com-
puter Company Academic Equipment Grant EDUD-NAFO
960418. Valuable proofreading was performed by Helga
Keller and Janet Rehling.

VII. REFERENCES

[l] Erman, L. D., Hayes-Roth, F., Lesser, V. R. and Raj
Reddy, D. (1980). The Hearsay-I1 speech-understanding sys-
tem: Integrating knowledge to resolve uncertainty. Comput-
ing Surveys, 12(2):213-253.
[2] French, R. M. (1992). Tabletop An emergent stochas-
tic computer model of analogy-making. Doctoral dissertation,
University of Michigan, Ann Arbor.
131 Hofstadter, D. R. (1985). Mefamagical themas. New
York: Basic Books.
[4] Hofstadter, D. R. and the members of FARG (1995).
Fluid Concepts and Creative Analogies: Computer Models of

I Mechanisms of Thought. New York: Basic

[5] Holland, J. H. (1975). Adaptation in Natural andArti-
JTciaiSystems. Ann Arbor, MI: University of Michigan Press.
[6] McClelland, J. L. and Rume , D. E. (1981). An
interactive activation model of con effects in letter per-
ception: Part 1. An account of basic findings. Psychological
Review, 88:375-407.
[7] McGriw, G. (1995). Letter Spirit (part one): Emergent
high-level perception of letters usingfluid concepts. Doctoral
dissertation, Indiana University, Bloomington, IN.
[8] McGraw, G., Rehling, J., and Goldstone, R. (1994).
Letter perception: Toward a conceptual approach. Proceed-
ings of the Sixteenth Annual Conference of the Cognitive Sci-
ence Society.
[9] Mitchell, M. (1990). Copycat: A computer model
of high-level perception and conceptual slippage in analogy
making. Doctoral dissertation, University of Michigan, Ann
Arbor.

4 -

