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Figure 1: Six ‘a’s Rendered on the Grid. 

Abstract - A relatively new area of research concerns com- 
puter programs which operate by the action of many small 
agents, rather than the serial execution of  an algorithm. Be- 

stically from conventional programs, new 
ired for developing and maintaining them. 

An optimization technique, the Parallel Terraced Scan, has been 
applied to one such program: a letter-recognition system called 
the Examiner [7] .  The Parallel Terraced Scan is the exploration 
of many possible paths, but with more computation devoted to 
paths which are identified as being more promising. Thus. it re- 
sembles pruning of search trees in some respects, but i t  does not 
completely abandon paths which are tentative1 
fruitful. 

I. INTRODUCTION 

The work described here concerns modifications made to a 
program called the Examiner, intended t module for 
use in a more complex program, Letter hich is cur- 
rently under development [4]. The Letter Spirit project is 
concerned with the creation of novel, stylistically-consistent 
typefaces as rendered on a medium-resolution (3x7) grid of 
56 unit-length quanta, with great diversity allowed in the p a -  
ticular stylistic properties of letterfoms in th 
Six examples of the letter ‘a’ rendered on this 
Figure 1. 

The Examiner’s architecture has much in common with 
the Copycat [9] and Tabletop [2] programs. All three are 
intended to capture certain key aspects of human cognition 
within their given domains, and, among other distinctive fea- 
tures they have in common, carry out nearly all processing 
via the action and interaction of many very small procedures, 
called Codelets. The Hearsay-I1 program [l], the first black- 
board system, provided inspiration for this aspect of Copycat, 
Tabletop and the Examiner. These programs p 
flexibility than many traditional problem-solvi 
and - beyond their interest as cognitive mod 
the best way to approach certain practical problems. Creat- 
ing systems of this kind is a considerably different task from 
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traditional programming, and a new repertoire of techniques 
for developing them is needed. This work describes an opti- 
mization for such architectures which can increase the speed, 
accuracy and quality of output of such programs, and IS ,  in 
addition, suggestive of certain qualities of human cognition. 

11. THE EXAMINER: AN AGENT-ORIENTED 
ARCHITECTURE 

A task related to Optical Character Recognition is the cate- 
gorization of letters rendered on the Grid. Many letterforms 
of each category may exist, and the task of interest here is 
the categorization of novel letterforms on the Grid, hence- 
forth called gridletters. Creating a system that perfoms this 
task well is not straightforward. Several approaches are doc- 
umented in [7] One of these, the Examiner, is the starting 
point for the optimization technique described herein. The 
Examiner’s architecture operates very roughly as follows: 

The Workspace is the data structure where a structured 
parsing of the letter may be built up. The quanta are col- 
lected into subsets, which are contiguous parts of the letter- 
form. Each part has potentially several semantically mean- 
ingful labels, such as “short”, or “ascender”. A part may 

le, which is an abstraction of a portion of a 
letter, such as “left-post”, “dot”, or “crossbar”. 
The Conceptual Memory is a localist network containing 
nodes for each possible role, and each possible role-set, 
or “whole”. Links connect role-sets to their constituent 
roles. For example, the node representing “f” has links 
to the nodes for “crossbar” and “f-post”. Each node has an 
activation value which can vary between -100 and +loo, 
and each link has a fixed, permanent strength indicating 
the propensity of activation to spread from one node to an- 

ound to a role, the concept node for 
that role will re large amount of positive activation. 

‘sparking”. 
e The Coderack is a list of Codelets, essentially procedure 

calls which are placed on the Coderack by other Codelets, 
for possible selection and execution later, rather than being 
run immediately. The order of execution is probabilistic, 
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Codelets on the Coderack. Codelets fa11 into many types, 
such as those responsible for creating and altering parts, 
attaching semantic labels to parts, binding parts to roles 
thereby positively activating those roles, spreading activa- 
tion in the Conceptual Mcmory. and activating role-scts di- 
rectly based upon global properties of the letterform. 
The Temperature is a number from 0 to 100. This is an in- 
verse “goodness” rating for the quality of the work done 
thus far in  a run, with high Temperature corresponding 
to situations where the system has not yet built up much 
useful structure. Temperature focuses the behavior of Let- 
ter Spirit by determining how much weight to give each 
codelet when the virtual roulette wheel is spun which picks 
the next codelets to be run. This makes behavior more di- 
rected when an answer seems nearer, and more likely to 
consider a wide range of options when it seems that little 
useful progress has been made. This phenomenon can be 
seen in many complex systems, from computer models us- 
ing simulated annealing to the choices made by politicians. 

In an ideal run, the Examiner recognizes a letter as follows. 
First, the gridletter is parsed into non-overlapping parts. A 
‘d’, for example, could be parsed into two parts, one corre- 
sponding to something tall and thin on the right, and an open 
bowl similar to a lone letter ‘c’. The exact shapes of these 
parts will vary depending upon the gridletter. Given a parsing, 
the Examiner tries to label the parts. Labels are properties 
that can apply to a shape. These labels, (for instance, “tall”), 
are attached probabilistically, with a better probability of a 
label being applied to more appropriate parts. When a part 
has some labels, sparking can occur. Sparking is a process in 
which a part is used to activate the concept nodes for roles. 
The definition of a role includes a collection of labels, and 
the extent to which a part sparks a role is determined by how 
well the sets of labels of the gridbound part and the abstract 
role correspond. Activation is then spread, so that a whole 
receives activation in proportion to the sum of the activation 
of its constituent roles. Any wholes with positive activation 
are subject to R-Role checking. R-Roles, or Relational Roles, 
are norms for where, if at all, role-fillers should touch, how 
tips at the ends of parts should be positioned in relation to one 
another, and so on. If the Temperature is low enough, then the 
program may halt. Temperature is lowest when exactly one 
whole has high activation. The lower the Temperature, the 
greater the probability is that the system will halt, returning 
the most-highly activated whole as its answer. At any point 
in processing, the system may also decide to change its pars- 
ing of the letterform into a different set of component parts. 
This will be likely to occur if a part has received many la- 
bels but fails to spark any roles. If the problematic part is 
small, then it will be absorbed into a neighboring part, and if 
it is large, it will be broken into multiple smaller parts. All 
of these decisions are made probabilistically, so that, if the 
same situation recurs, different choices may be made in suc- 
cessive runs. At fixed deadlines (defined in terms of number 
of Codelets run), the standards the program has for sparking 
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arc made less stringent. Therefore, an unusual part may not 
bepble to spark any roles early in a run, but able to, using the 
looser standards, later on. This approach, called role loosen- 
ing, is favored, rather than having roles very loose initially, 
so that strange answers do not supercede correct ones in the 
early stages of a run. In later stages, when it seems unlikely 
that the gridletter is a typical example of any category. role 
loosening allows the system to explore more unusual possi- 

Small steps in the Examiner’s processing (the labelling of 
a part with one label, the sparking of roles with a part, the 
spread of activation, the re-parsing of the letterform, etc.) are 
carried out by individual Codelets. Because the selection of 
the next Codelet to be run is made probabilistically, the Ex- 
aminer may explore many different parsings of a letterform, 
and the set of labels a part has acquired will also have many 
possibilities. This is a great strength of the system. If the 
method of parsing and labelling were deterministic, then the 
system would only be able to recognize letterforms whose 
style was not too strange for the program’s rules and defi- 
nitions. The probabilistic nature of the system allows it to 
explore various possibilities, but, because it is not totally ran- 
aom, it is unlikely to produce very strange answers (such as 
identifying a typical ‘0’ as an ‘x’). The exact course of a 
run depends upon many factors. Strange letters will usually 
need to be re-parsed many times, and the runs may take thou- 
sands of Codelets. Plain letters are usually recognized in a 
few dozen Codelets, and are sometimes recognized correctly 
on the first parsing. 

The Examiner is a robust letter-recognizer which achieves 
a high rate of correct identification over stylistically varied 
letterforms. Its performance is favorable in comparison with 
other letter-recognition architectures and resembles the be- 
havior of humans when given the same task. 

111. THE PARALLEL TERRACED SCAN 
The idea behind the Parallel Terraced Scan is to explore 
many possibilities at a time, but to devote more computational 
power to the directions which are more promising. Thus, 

answer, regardless of 
may be. However, the 
d the average running 

time is greatly reduced from exhaustive search. This is remi- 
niscent to work on the k-armed bandit problem [ 5 ] .  

The original Examiner searched multiple possibilities in 
parallel. For example, if a gridletter is parsed into three parts, 
then any of the 97,290 ways in which they could be bound to 
three of the forty-seven roles could follow. Different parsings 
could allow even more possibilities. And the binding of parts 
to roles is only part of a process meant to lead to the acti- 
vation of one whole. Numerous potential outcomes (perhaps 
numbering in the millions) will be active possibilities during 
the middle of a run. If each possibility were investigated to an 
equal extent, then the program would have exponential run- 
ning time. At the other extreme, if only one path to an answer 
were possible, then the system would suffer the rigidity that 



Re-parsings immediately clear all activations in the Con- 
ceptual Memory, so that leftover activations for parts that 
no longer exist do not muddle further processing. 
Each time the parsing of the letterform changes, a Gestalt 
Codelet sends activation to each role-set, based on the 
shape of the entire gridletter. This is posted with high ur- 
gency so that it will run soon and be able to influence future 
processing beneficially. When the Gestalt codelet has run, 
only wholes which are likely to be legitimate possibilities 
for the letterform have positive activation. This may reduce 
the number of candidate answers on the level of letter cat- 
egory from 26 to a much smaller pool, rarely more than 4. 
Extensive experimentation was carried out to find a good, 
fast Gestalt function the output of which would be a good 
heuristic for the actual answers. In the original Examiner, 
Gestalt Codelets were liable to run at any stage of the pro- 
cessing, abruptly changing the activations of wholes. 

Figure 2: Flow of Influence in the Examiner. 

. The compromise is to 
, and at any given 

is common in symbolic AI 
be able to explore many PO 

in time to be actively con with an empha- The R-Role Checker Codelet was eliminated. This Codelet 

em most likely to be correct, 
ities is accomplished by many 

Parts are more likely to receive certain labels than 

was with positive ac- 
tivation- an R- 
Role Checker poor to retain high 2Ktiva- 

posted for every 

The focus on the better PO 

means, 

The delay between posting and 

others. Codelets tend to post new Codelets that pursue the for long ’pans Of time before the 

same directions. The use of Temperature to weigh the impact 
of urgencies On Codelet selection focuses the system on better 
possibilities. Thus, by performing a weighted consideration 

sary decrease in the 
the activity Of the system was potentially misdirected 

activation occur. 

R-Role Checking occurred. This checking was added 

of many poss~bl~itles at once, the original ~~~~i~~~ already 
provides an example of the Parallel Terraced Scan. 

The optimization was not based, therefore, on introducing 

the system have an even greater focus on the best possibili- 
ties, enhancing the extent to which the Parallel Terraced Scan 
prunes the vast tree of possibilities. The primary- goal was to 
increase the speed of the program, but maximizing the accu- 
racy of its answers was a secondary goal. The major idea was 
to use the activations of concepts in the Conceptual Mem- 

roles. The optimization, thus, had two sub-goals. The first 
was to make the activations of a role at all times as consistent 
as possible with the likelihood that the role is represented in 

vation of roles with sparking, so that a role with high acti- 
vation will have a better chance of being involved in sparking, 
and one with low actlvation little or no chance. The corre- 
spondence between a role’s definition and a part’s labels re- 
mains the primary factor in sparking, but can be influenced 
significantly by the role’s activation. 

To make activations more meaningful in terms of express- 
ing the importance of each role at each point in the process- 
ing, several change; had to be made to the system. Originally, 
activation of a given role or role-set could change drastically, 
rising and falling in large jumps. In the optimization, it was 
attempted to insure that activations would change in small 
steps, and always reflect the likelihood of that concept being 
involved in the current letterform. The optimizations are as 
follows: 

directly to the Activation-Spreading Codelet, only wholes 
with activations greater than +20 are checked. This change 
reduces the number of Codelets run for the same amount 
of work, but reduces the total of processing be- 

distort the in the sec- 
tion on the number of Codelets run, the number of R-Role 

the whole, and 
Checker Codelets in a was typically a small fraction of 

was done by the delay between 
their posting and execution than in the time spent running 
them, 

was set to the previous activation the sum of the 
weighted inputs from each connected node, minus a decay 
factor, Activation could only pass from a whole down to a 

A large jolt of activation could stay with a node for a long 
time, and would only eventually decay. In the optimiza- 
tion, at the time that activation spreads, a node is allowed 
to retain only a small portion of its previous in 
addition to what activation is spread to it via its inputs. For 
a whole, the sum of the weighted inputs from each con- 
nected role node is added in. For a role, the maximum 
of the weighted inputs from the connected whole nodes is 
added. The discrepancy is easily explained. A whple re- 
ceives activation from roles only to the extent that &h of 
its component roles is active. A role, however, receives ac- 
tivation from wholes to the extent that any of the wholes it 
may be a member of is active. Logically, a whole is present 
only if all of its associated roles are. A role is present if any 

the Para11e1 Terraced Scan to the Examiner, but On cause fewer wholes need to be checked. Althougkthis m a ~  

Ory as the for an increased focus On more appropriate Originally, the activation of each role and whole’s node 

gridletter being recognized’ The second was to the role, however, if the &vation of the whole was above +75. 
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one of its associated wholes is. 
The onset of phases of loosening was made probabilis- 
tic. Before, distinct phases of loosening were inforced on 
a fixed schedule. Now, a short first phase maintains the 
tightest roles, and most letterforms are recognized during 
this phase. Subsequent phases randomly toggle between 
higher and lower looseness settings. Thus, letterforms that 
are only identified with loose roles may be recognized rel- 
atively quickly, while a letterform that requires tight roles 
will have many chances later, if it is not recognized in the 
first phase. 
The sparking of roles with parts was made to be influenced 
by the activations of the roles. Roles with higher acti- 
vations are given higher priority in the decision of which 
roles to spark with a part (however, this is not the case for 
roles which already have a part bound to them). This is 
perhaps the most important optimization, and many of the 
other modifications were necessary so that the activation of 
a role is, at all times, a good indicator that the role should 
be considered as relevant to the gridletter being recognized. 
Roles with negative activation are not considered at all for 
sparking, so it is very important that a role receive negative 
activation only if it is exceedingly improbable that it is a 
component of the correct answer’s whole. 

The primary strategy behind the optimizations can be seen 
in Figure 2. Here, the primary components of the model (in 
terms of Codelets and nodes in the Conceptual Memory), as 
already described above, are shown schematically. An arrow 
indicates that one component of the system may influence the 
one the arrow points to. Influence may take the form of updat- 
ing act vations, posting Codelets, or influencing the behavior 
of Codelets. Black arrows indicate aspects of the original Ex- 
aminer; each of these continued to exist (although perhaps 
in a different form) after optimization. Gray arrows indicate 
those aspects of the system added in the optimization. No 
black arrow was drawn from whole activations to role activa- 
tions, because activation spreading of this sort, while possible 
in the original Examiner, was extremely rare. 

Considering only the black arrows, we can see that there is 
a loop between the Codelets involved with parsing, labelling 
parts, and sparking roles, but from there, all activity is feed- 
forward. That subsystem influences role activations, which in 
turn influence whole activations. In addition, Gestalt Codelets 
may directly alter the activations of wholes. 

In the optimized system, considering both the black and 
gray arrows, we see that there are loops allowing each of the 
components to influence any other (except Gestalt), even if 
only indirectly. The interaction indicated by these loops con- 
stitute the most important aspects of the optimization. Of par- 
ticular note is the bottom-uphop-down interaction between 
the two levels of the Conceptual Memory. By allowing the 
low and high levels of a conceptual hierarchy to influence 
each other, this is an application of top-down pressure of the 
kind described in the interactive activation model of [6]. A 
whole can receive activation via Gestalt. or from one or more 

> 

bbbbbb 
Figure 3: Six ‘b’s from EASY. 

of its constituent roles being sparked. Activation (positive or 
negative) will then spread back down to roles, including those 
which have not yet been involved in sparking. Subsequently, 
when sparking occurs, the roles that have received higher ac- 
tivation from their wholes will be favored. Thus, when the 
system suspects the presence of a certain whole, it will try to 
complete the figure (if possible) by looking for parts for the 
remaining roles involved in that whole. 

The basic principles that emerge are that it is beneficial 
to use information which is easy to calculate, or has already 
been calculated for another purpose, to save in subsequent 
computational effort. This principle could be carried out fur- 
ther in the Examiner. Whole and role activations could in- 
fluence parsing so that quanta are grouped into parts that are 
likely to be involved in the gridletter. While this optimization 
is not planned, it could improve performance, particularly, for 
gridletters which are difficult to parse correctly. 

%. RESULTS 
The primary measure of performance was the average number 
of codelets per run in a test set. For purposes of debugging 
and parameter tuning, a small set of 52 gridletters, henceforth 
called TINY, representing each category twice, was used. A 
larger test set of 544 gridletters, called TEST, was used to 
demonstrate the real progress of the system. If a small test 
set were used for all debugging and testing, then it would be 
possible that the system had been tuned to work well only for 
those gridletters. Meanwhile, a large test set involved in the 
debugging stage would make testing excessively slow. TINY 
was used to implement all major features of the optimization. 

The only modifications made using TEST as a test set were 
to the deadlines used to initiate the various stages of role loos- 
ening and the inclusion of an additional R-Role checker to 
help discriminate ‘g’ and ‘q’. The effect of modifying dead- 
lines was to find a good balance in the tradeoff between speed 
and accuracy. TEST was further broken into two subsets, 
EASY and HARD. The 388 gridletters in EASY were meant 
to be more typical of their intended categories, while the 156 
members of HARD were intuitively stranger and less typical 
of their categories, and therefore harder to recognize quickly 
and correctly. The intrinsic difficulties of the subsets of TEST 
were shown in experiments with human subjects (with the 
subsets going by the names NORMALS and FONTS, respec- 
tively) as shown in [8]. Figures 3 and 4 show examples of 
the letter ‘b’ to demonstrate the contrast between EASY and 
HARD. 

The results of the optimization can be seen in Table 1.  The 
raw data for the pre-optimization Examiner are given under 
OLD, and the optimized version under NEW. The factor of 
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Table 1: Performance of the Examiner. 

Figure 4 The six ‘b’s from HARD. 

increase in speed and percent increase in accuracy are given 
in the A columns. Speed is indicated with the number of 
Codelets per run. In all instances, the performance following 
the optimizations was improved. 

V. CONCLUSIONS 

throughout a run, takes advantage of prior computation by us- 
ing values computed in earlier stages of processing to wisely 
direct future processing. In part , the use of Gestalt illus- 
trates the value of this principle Gestalt Codelet is quick 
and easy to compute, and it usually does its work soon after a 
new parsing occurs, so that the small investment in computa- 
tion involved in running the Gestalt Codelet can lead to large 
savings in total run time by eliminating most of the possible 
wholes from consideration immediately. In many ways, this 
is like the use of a heuristic to direct search in a symbolic AI 
program, but the Parallel Terraced Scan simply prioritizes the 
many possibilities it explores in parallel, rather than selecting 
or ordering possibilities searched serially. 

The improvement in performance is more pronounced for 
the HARD set than for PLAIN, probably because there is 
more room for improvement. In extreme cases, the average 
speed-up for a particular gridletter can be by a factor of 20 or 
more. The even greater speed-up on the TINY set is probably 

’ 

allel Terraced Scan differ aditional program- 
ming situations. There is a paradigm in  which 

is the programmer’s task to find an algorithm that will al- 
t answer. The domains of Copycat, Tabletop and 
r represent a different type of task, where multi- 
may exist, although some are better than others. 

(For the test sets used with the ner above, we assumed 
that each gridletter was a mem exactly one letter cate- 
gory, but ambiguous gridletters, which suggest two or more 
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categories, certainly exist.) Thcse domains may present a 
dilemma for programming with traditional algorithms, where 
a deterministic approach may lead to brittleness and exhaus- 
tive search is impractical. The architecture used in stochastic, 
agent-oriented systems such as the Examiner avoids both of 
these hazards. The approach may work in many areas where 
traditional AI has failed to meet with success. As research 
with agent-oriented systems continues, it will be important 
for techniques such as that described in this paper to be part of 
the implementations. Faster programs are easier to develop, 
because shorter times for testing and evaluating modifications 
can lead to much faster programming. 

This work demonstrates the power of the Parallel Terraced 
Scan as a computational optimization; it is e 
a mechanism hypothesized to have a role in h 
should also prove to be computationally beneficial. 
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