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ChapterO 
Bewitched ... 

by Circles, Triangles, and a Most Obscure Analogy 
Although many, perhaps even most, mathematics students and other lovers of 

mathematics sooner or later come across the famous Euler line, somehow I never did 
do so during my student days, either as a math major at Stanford in the early sixties or 
as a math graduate student at Berkeley for two years in the late sixties (after which I 
dropped out and switched to physics). Geometry was not by any means a high 
priority in the math curriculum at either institution. It passed me by almost entirely. 

Many, many years later, however, and quite on my own, I finally did become 
infatuated - nay, bewitched- by geometry. Just plane old Euclidean geometry, I 
mean. It all came from an attempt to prove a simple fact about circles that I vaguely 
remembered from a course on complex variables that I took some 30 years ago. From 
there on, the fascination just snowballed. I was caught completely off guard. Never 
would I have predicted that Doug Hofstadter, lover of number theory and logic, would 
one day go off on a wild Euclidean-geometry jag! But things are unpredictable, and 
that's what makes life interesting. 

I especially came to love triangles, circles, and their unexpectedly profound 
interrelations. I had never appreciated how intimately connected these two concepts 
are. Associated with any triangle are a plentitude of natural circles, and conversely, 
so many beautiful properties of circles cannot be defined except in terms of triangles. 

Not surprisingly, some of the most important points of a triangle are the centers of 
various natural circles associated with it. Three such circles are the circumcircle, which is 
the smallest circle that the triangle will fit inside, and which thus passes through all 
the triangle's vertices; the incircle, which is the largest circle that will fit inside the 
triangle, and which is thus tangent with all three of its sides; and the nine-point circle, a 
circle that somehow manages to pass through the midpoints of all three sides, the feet 
of all three altitudes, and three further notable points. The centers of these circles are 
the circumcenter 0, the incenter I, and the nine-point center P. 

Two other famous special points are the centroid G (also known as the 
"barycenter"), which is the center of gravity of the triangle (meaning that the 
triangle would balance perfectly if were supported by a pin located precisely at its 
centroid), and the orthocenter H, which is where all three altitudes cross (an interesting 
fact in itself, that they all cross in a single point!). 

The Euler line or, as it more properly ought to be called, the Euler segment (which 
term I will use henceforth) connects four out of these five most special of special 
points. To be specific, the circumcenter, the centroid, t~1e nine-point center, and the 
orthocenter all lie on a single line. (Poor little neglected incenter!) Shown below is a 
typical triangle ABCwith its circumcircle, its nine-point circle, its three midpoints, its 
three altitudes, and its Euler segment OGPH 

The Euler segment runs from Oto H, passing through both Gand Pen route, and 
always in that order. But it does more than that- it also possesses a fixed set of length 
ratios. Namely, eGis one-third of the length of the whole segment, and OPis one-half 



of the whole. (Incidentally, for fans of projective geometry, this means that Oand P 
are harmonic conjugates with respect to Gand H) 

The Euler line for triangle ABC 
- actually, the Euler segment -
runs from ABC's circumcenter 0 
to ABC's orthocenter H (where 
the altitudes crisscross). 
Precisely one-third of the way 
from 0 to H, the line passes 
through ABC's centroid G; at the 
exact halfway point, it passes 
through P, center of the so-called 
nine-point circle. The nine points 
through which that circle passes 
are: Ma, Mb, Me (ABC's 
median points); Ha, Hb, He (feet 
of ABC's altitudes); and Xa, Xb, 
Xc (midpoints of the segments 
connecting H with each of the 
vertices). Last but not least, note 
the poor forgotten incenter I, 
somehow left out of the party. 

When I learned that this holds for every triangle, I was riveted by the almost 
mystical-seeming interconnections thus revealed. I intuitively felt that this segment 
must represent something very deep about the original triangle ABC- something 
like its "essence", if there were such a thing. Could it be that the Euler segment is a 
kind of "key" containing, in some elegantly coded form, information about ABC's 
many other special points, such as its incenter, its Fermat point (the point with the 
minimal sum of distances to the vertices), its Brocard center, its Morley center (and 
on and on the list goes), as well as about their hidden interrelationships? 

Although I loved the Euler segment, I was deeply puzzled as to why the incenter I 
had been excluded from it, and felt that the incenter surely had to have its own special 
way of relating to these four points, or else, perhaps, its own coterie of special friends 
(although which ones they might be, I had no hunch about). Unresolved questions 
like this can lure one on, ever more deeply, into the study of special points and their 
unexpected hidden patterns. In any case, I was certainly hooked by these questions. 

As I grew more involved with triangles, I started to see a metaphorical connection 
between my love for their special points and a mathematical love I had had from 
childhood: the love for special points on the number line, of which the quintessential 
examples are of course ;rand e. Among my other favorites were ...f2, the golden ratio~. 
and Euler's constant y. Perhaps the most exciting aspect of math for me was learning 
of equations that showed secret links among such numbers, such as Euler's equation: 

eitr = -1 

When I first saw this, perhaps at age 12 or so, it seemed truly magical, almost other­
worldly. One can even draw an analogy between this equation, which relates four 
important numbers in a most astonishing way, and the Euler segment, which relates 
four important triangular points in a most astonishing way. 
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Of course, one difference between special points in a triangle and special points on 
the number line is that the former are not constants - they vary as the triangle itself 
varies. But this is somewhat misleading. What really counts about a given special 
point is not the physical point itself, but its properties, and these properties do not vary 
from one triangle to another. A typical theorem about special points tells you that 
Description 1 and Description 2, which on the surface seem to have nothing to do with 
each other, point at the very same spot on the plane. Seeing where that spot is, while 
nice, is not what matters- it's the abstract connection between descriptions that really 
counts. And that's a triangle-invariant property. Similarly, a typical theorem about 
special constants tells you that Formula 1 and Formula 2, which on the surface seem 
to have nothing to do with each other, point at the very same spot on the number line. 
One does not care so much about the number's magnitude (few mathematicians know 
more than a couple of decimals of e or rr, or care what they are) as the fact that that spot 
marks the nexus of two very different conceptualizations. 

Some of Indian mathematician Srinivasa Ramanujan's most amazing discoveries 
are amazing precisely because they have this quality of telling you that two 
unbelievably unrelated-looking expressions turn out to have exactly the same value. 
Nobody ever calculates or writes out the value, though. To concentrate on that would 
really be to miss the point. (Incidentally, Ramanujan himself was quite a mystic, and 
he often had no proofs for his results, claiming instead that they had been given to 
him by the goddess Namagiri in his dreams.) 

Perhaps thoughts like these seem naively extra-mathematical, and irrelevant to the 
pursuit of mathematical truth. But I am convinced that the contrary is the case. That 
is, I believe that precisely these kinds of undeniably emotional, somewhat irrational 
reactions to things are the true motivators of the quest for mathematical truth, which is 
based, after all, on a sense of beauty, something that one certainly cannot put one's 
finger on with any kind of cool objectivity. 

In any case, one day I made a little discovery on my own, which can be stated in 
the following picturesque way: If you are standing at any vertex and you swing your 
gaze from the circumcenter to the orthocenter, then when your head has rotated 
exactly halfway between them, you will be staring straight at the incenter. 

A 

A satisfying link between triangle ABC's incenter I 
and two other of its special points - the orthocenter 
H and the circumcenter 0. One way of characterizing 
this property is to say that 0 and H are "isogonic 
conjugates" (I being its own isogonic conjugate). 

More formally, the bisector of the angle formed by the two lines joining a given 
vertex Vwith the circumcenter and with the orthocenter points straight at the incenter. 
It wasn't too hard to prove this, luckily. 

This discovery, which I knew must be as old as the hills, was a relief to me, since 
it somehow put the incenter back in the same league as the points I felt it deserved to 
be playing with. Even so, it didn't seem to play nearly as "central" a role as I felt it 
merited, and I was still a bit disturbed by this imbalance, almost an injustice. 

Seeking to quench my avid thirst for geometrical insight, I went to a couple of 
superb technical bookstores with row after row after row of math books - but even 
there, all I found on geometry was a handful of rather thin volumes. These days, 
books devoted to this kind of topic- even books that devote a chapter to this kind of topic 
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-are rare as hen's teeth. It seems they went out of vogue at about the same time as the 
bee's knees and the eat's pxjamas (if not considerably earlier). In any case, I bought 
all the relevant books I could find, of which my favorite was Geometry Revisited, by H. 
S. M. Coxeter and Samuel Greitzer. None of these books on its own was anywhere 
close to definitive, but I nonetheless drank from them all with great gusto. And I must 
say, absorbing bits from all of them gave me quite a broad feeling for the subject. 

A few of these books referred to a long-out-of-print volume by Julian Lowell 
Coolidge, called Treatise on the Circle and the Sphere, published in 1916. I didn't know 
whether this book or any of the other old-timers that were occasionally cited would 
have anything much to say beyond what my modern books collectively had told me, 
but eventually I decided I had better go check out what my university's math library 
had on the subject. Soon, I found myself browsing through perhaps the dustiest of all 
the library's many dusty shelves - those in the old-fashioned-geometry section -
and there I came across Coolidge, which I found had lain undisturbed for some 12 
years, and for 9 years before that, and then before that, yet another 10 years. In other 
words, it had been checked out only three times since 1960. To my surprise, it was 
quite a big tome -some 600 pages jam-packed with beautiful diagrams and theorems. 
A moment's skimming was enough to tell me that this was a treasure trove of 
geometric gems. Without further ado, I checked it out andjoyfully took it home. 

Browsing through Coolidge's Chapter One (a small book in itself, rich enough to 
make me feel very humble), I came across something that almost took my breath 
away. There was apparently a second segment that not only was reminiscent of the 
Euler segment, but in fact was deeply analogous to it. 

A 
The anonymous (but herein-dubbed "Nagel'') 
segment, running from the incenter I to the Nagel 
point N. One-third of the way along, it passes 
through the centroid G, and halfway along, it 
passes through the Spieker circle's center S. 

This segment, which seemed, strangely, to have no name, ran from the incenter I to 
another special point that I already knew and loved, the Nagel point N. 

An excircle of triangle ABC is a circle outside ABC 
that grazes all three of its sides (considered as 
infinite lines). Three such circles exist, and when 
their grazing-points are joined with the opposite 
vertices, the joining-lines turn out to all meet in a 
single point: the Nagel point N. 
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Like the Euler segment, the anonymous segment passed through the centroid Gas 
well as through a point S that was the center of another very interesting circle, the 
Spieker circle. Moreover, the relative positions of these points along the segment were 
the same as in the Euler line: G was one-third of the way from I to N, and S fell 
exactly halfway between I and N. To cap it all off, Coolidge listed a long and 
systematic set of parallels between the Spieker circle and the nine-point circle, some of 
the high points of which are given below (translated into crisper modern terms from 
Coolidge's slightly verbose "turn-of-the-centurese"): 

The nine-point circle ... 

is the circumcircle of ABC's median triangle; 

has radius one-half that of ABC's circumcircle; 

is the circumcircle of the triangle whose vertices 
are the midpoints of the segments linking ABC's 
vertices with its orthocenter; 

passes through the points where ABC's sides are 
cut by the lines linking ABC's vertices with its 
orthocenter (i.e., the feet of ABC's altitudes). 

The Spieker circle . .. 

is the incircle of ABC's median triangle; 

has radius one-half that of ABC's incircle; 

is the incircle of the triangle whose vertices are 
the midpoints of the segments linking ABC's 
vertices with its Nagel point; 

is tangent to the sides of ABC's median triangle 
where that triangle's sides are cut by the lines 
linking ABC's vertices with its Nagel point. 

In the figure below, the Spieker and nine-point circles are shown together. 
A 

BcY=-----~1---<F-~;,:,..::,_-.::::::.oc 

Ma Ha 

The larger circle, centered on P, is ABC's nine-point circle; 
the smaller circle, centered on S, is ABC's Spieker circle. 
The shaded triangle is ABC's median triangle, and the other 
small triangle is the "auxiliary triangle" belonging to ABC's 
Nagel point N, whose vertices are halfway between N and 
points A, B, and C. Note that lines NA, NB, and NC cut the 
Spieker circle where it is tangent to the median triangle. 

Altogether, this systematic set of correspondences between properties of the Euler 
and Nagel segments (including the correspondences between properties of the nine­
point and Spieker circles) constituted one of the most remarkable and complex 
mathematical analogies I had ever run across. And to my great pleasure, it restored 
the honor of the incenter, while also elevating the Nagel point to a level of respect 
much higher than I had previously accorded it. 

I wondered to myself, "Why does this fantastic second segment have no standard 
name? Why is it not routinely mentioned in the same breath as the Euler segment? 
Why are the two of them not treated by geometers as precisely equal companions?" 
Even Coolidge didn't go much beyond the mere act of describing this segment. At the 
end of Chapter One, he did go so far as to suggest that there probably are other circles 
analogous to the Spieker circle that remain to be discovered, but that was about it. 

Surely, I thought, there is more to it than this. In mathematics, such a striking and 
intricate analogy can't just happen by accident! There's got to be a reason for it. But 
there was no discussion in Coolidge of why the parallels were so perfect and so 
systematic. In the whole library I found only one other book that mentioned this 
segment, again leaving it nameless and giving less information on it than Coolidge. 

I was baffled. Why was this companion segment- which I began calling the 
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Nagel segment, after the discoverer of its outlier endpoint- so neglected? Was it truly 
less important than the Euler segment? Or was itjust that it had been discovered at a 
time when people were beginning to lose interest in this kind of geometry? I could 
not help but mull this over, and the image of these two segments, each one lopsidedly 
cutting the other into two pieces, reverberated through my head intensely. 

H 

The two analogous crisscrossing segments OGPH and IGSN, 
each of them cutting the other one in the same lopsided way 
where they meet, namely at ABC's centroid G. 

In order to gain a deeper intuitive feel for these things, I ambled into my study, 
plunked myself down in front of my trusty Macintosh, fired it up, and double-clicked 
on the icon labeled "Geometer's Sketchpad". Up came a mostly empty screen 
(representing a blank sheet of paper) with a bar on the left side containing a few icons 
for tools with which to draw lines, circles, points, and so on. By selecting certain of 
these icons and then clicking on various spots of the "paper", I had, within a couple of 
minutes at most, constructed a picture, such as shown above, of a triangle ABC with its 
two associated segments. It looked excellent, but this picture was not the destination­
it was just the starting-point. 

I clicked on point C and, with the mouse in my right hand, started "dragging" it 
around the screen. As I did so, everything else that depended on point ~ whether 
point or line, started moving in synchrony, perfectly maintaining the geometric relationships 
established by my construction. In other words, I could now watch the dynamic way in 
which the Euler and Nagel batons swiveled around simultaneously as the triangle 
defining them changed. This "dynamogram" was revelatory in a way that no static 
image could possibly be. 

I certainly feel fortunate and grateful to have this wonderful program at my 
fingertips, and I truly wish some of the old-time geometers, such as Euclid, 
Apollonius, Pappus, Menelaus, Desargues, Euler, Ceva, Poncelet, Steiner, von Staudt, 
Brocard, Nagel, Gergonne, Spieker- and let's not forget Coolidge, of course!- could 
have seen it. I can't help but believe that they all would have flipped out, so to speak­
unless, that is, they were as geometrically gifted as James Gleick's recent book Genius 
would have you believe the late great theoretical physicist Richard Feynman was. 
Here is what Gleick writes: 

In high school he had not solved Euclidean geometry problems by tracking proofs 
through a logical sequence, step by step. He had manipulated the diagrams in his mind: 
he anchored some points and let others float, imagined some lines as stiff rods and others 
as stretchable bands, and let the shapes slide until he could see what the result must be. 
These mental constructs flowed more freely than any real apparatus could. 

I suppose Feynman could do this to some extent- but then, so can I. For that matter, 
so can anybody who loves geometry. However, I must say, I am extremely skeptical 
that Feynman or anyone could do anything like what Geometer's Sketchpad allows 
me to do. The reason is, GS does its arithmetic with something like 19 decimal digits 
of accuracy, and it can simultaneously move around dozens or even hundreds of 
complexly interdependent points, lines, and circles (and typical constructions often 
involve this much stuff). If Feynman could do that, he deserves considerably more 
than the epithet "genius"- perhaps "paranormal Martian freak" would be more like 
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it. Still, it's a nice story, and Gleick's suggestion of what Feynman could see in his 
mind does get across a feeling for the immense power one taps into with this program. 

So I looked for patterns, questing after comprehensibility. But although my 
dynamogram was pretty and fascinating, my eyes didn't pick much up at first. Here 
is a picture of the two crisscrossing segments by themselves, without triangle ABC. 

0 I 

N segment H 

Recall that in the tight analogy between the segments, Omaps onto I and N maps onto 
H It seemed therefore very natural to construct the lines OJ and NH, each of which 
links counterpart points together. Mter all, these lines, if built, would constitute a 
concrete physical realization of the abstract analogy- a lovely idea, irresistible to me. 

It took but a moment to construct them, and the instant they flicked onto my 
screen, I saw something most promising - they appeared to be parallel! To test this 
hopeful hypothesis, all I needed to do was fuss around with the triangle ABC, which I 
immediately did, and I found that no matter how I tweaked it, the 01-NH parallelism 
stayed true. Moreover, I found that the two midpoints, P and S, when joined, added a 
third parallel line to the first two. I felt as ifl had stumbled on a stupendous connection 
between the segments! 

: 0 ~~~----_,:~ 

~~H: 
A couple of minutes' thought deflated me rather devastatingly, however. I soon 

realized that this supposedly "profound insight" was in fact a triviality: any two line 
segments that cut each other in identical length-ratios will always have parallel lines 
defined by their tips. My parallelism had nothing whatsoever to do with the fact that I 
was dealing with two Deeply Significant Segments - it was just a simple 
consequence of similar triangles. I felt ashamed of myself for my premature elation. 

The next thing I did was to make the only other two lines that remained, HI and 
NO. But unlike OJ and NH, these two lines didn't have any strong reason pushing for 
building them. 

Disappointingly, they turned out to be neither parallel nor perpendicular, and after 
watching them for a little while, I concluded they were of no interest. But where to 
look, then, for insight into what lay behind this tantalizing analogy? I was at a loss. 
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Chapter I 
Bedazzled ... 

by a Sparkling Crystal 
Disappointed at having made essentially no progress on the mystery of the 

interrelationship of the two analogous segments, I gradually started letting the matter 
slide into "background mode". And so a few days later, I found myself idly thinking 
about a completely different and rather simple geometric question: 

Suppose somebody gives me a point G and asks for the general recipe for making triangles 
having G as centroid. Can I simply "splay out" from G three segments of arbitrary lengths 
in arbitrary directions, letting their tips define the vertices? 

A 

B c 
That, of course, I knew instantly was nonsense. There had to be some constraints 

on the segments that defined the three vertices - after all, there is a relationship 
between a triangle's centroid and its vertices! But what were these constraints? I 
remembered that the segment from the centroid to any vertex forms a part of one of 
the triangle's three medians (a segment that links a vertex with the opposite side's 
midpoint). So this told me the constraint on my "centrifugal" segments had to be 
essentially the same as the relationship that holds among the medians of a given 
triangle. And how are medians related? I sketched this picture on paper, showing just 
two medians (it's easier to think about two things than three): 

I wanted to see how they constrain each other. Since they, rather than the sides of 
the triangle, were the focus of my thinking, I went back over the medians a few times 
in red ink to make them stand out. And then I remembered that medians always cut 
each other in a characteristic way, namely into subsegments whose length-ratio is 1:2. 
So I wrote numbers indicating the relative lengths of the subsegments, as follows: 

The instant I put those numbers down on the paper, something clicked in my 
mind. This was a turning point in the whole process, for in the crisscrossing heavy 
lines of this picture I suddenly recognized something familiar - my two 
fundamental segments crisscrossing each other, slicing each other up in that lopsided 
1:2 way. Unexpectedly, the little puzzle had brought me back to my earlier quest via 
the back door! Looking at one picture and seeing another- that was what everything had 
hinged on. 

This new vision meant that I could interpret my two segments as medians of a 
hidden triangle. And of course, since any triangle has three medians, this meant there 
was one more segment, which would complete the trio of which the Euler and Nagel 
segments were now seen to be simply the first two. Excitedly, I penned it in: 
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??? 

N ??? H 

Here we see the third median, also of course divided into subsegments having a 1:2 
length-ratio. I suspected that its endpoints were novel points, but then again they 
might be well-known, so I simply labeled them with question marks. The next step 
was to draw the full triangle implicitly defined by these three medians. I was starting 
to tingle now, because it seemed to me that since two of the medians were known 
segments having very important endpoints and midpoints (not to mention sublime 
properties), it almost had to be the case that this third median's endpoints and midpoint 
would also have absolutely fundamental properties. 

T 

u H 

Was I on the verge of a significant discovery? It certainly felt that way. My new 
triangle gave me a strong sense of symmetry and closure - the sense of bringing 
something beautiful but unfinished to its inevitable completion. Since two of its sides' 
midpoints were, by chance, named by vowels, I called the new midpoint "U', and the 
new vertex became "T". I also gave the name "V" to the midpoint of the new median. 
This point was the counterpart to the nine-point center P and the Spieker center S. So 
my new segment - the third median and the analogue of segments IGSN and OGPH 
-was UGVT. Betraying my rather juvenile excitement, I gave the triangle as a whole 
the corny name "Magic Triangle". Shown below are the Magic Triangles for two 
different triangles ABC. Of course, these static diagrams are no substitute for a 
Geometer's Sketchpad dynamogram. Too bad! 

A 

B c 

[[ 9 ]1 



H 

B c 

T 

The irony did not escape me that two of my Magic Triangle's sides (HI and NO) 
were lines that I had earlier rejected as meaningless. At the earlier time, it had not 
occurred to me that the lines' intersection-point might be of interest. In that context, I 
simply wouldn't have had any grounds for suspecting that that point might mark the 
tip of a new segment analogous to the first two. But now, I saw things I never would 
have seen because I now perceived the two segments as medians. I will come back to 
the cruciality of this idea of "seeing X as Y" toward the end of this essay. 

An idea that immediately aroused my curiosity was: What happens if you take 
the Magic Triangle of the Magic Triangle of ABC? What happens if you iterate the 
operation n times? I explored this and soon learned that in general there are no simple 
patterns. However, there are some exceptional pretty cases, such as the one shown 
below, where there is a kind of zooming-in effect, with the even generations all 
resembling each other, and the odd generations all resembling each other. 

The result of iterating the ''Magic 
Triangle" or "hemiolic crystal" 
operation. Each triangle is labeled by 
its generation number. Only the outline 
is shown for generations 0 through 3; 
however, for the fourth generation, the 
full crystal is shown, with shading. 

At about this point, I started feeling a little self-conscious about the hokey name 
"Magic Triangle", and I found a more poetic name that seemed to say a little more 
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and to fit very nicely: hemiolic crystal. With its crisscrossing medians, its six external 
points, and its four internal points, it looked at least a little bit like a crystal. The term 
"hemiolic" came from the musical notion of hemiola, which refers to the ambiguity 
inherent in a six-beat measure: should it be heard as three groups of two notes each, or 
as two groups of three notes each? On the one hand, this is nothing but a fancy name 
for the hardly-earth-shattering fact that multiplication of two particular small integers 
is commutative; on the other hand, when one hears a given melody grouped in these 
two opposing manners, it is a striking perceptual shift. Some beautiful musical effects 
are based on hemiola, and I felt it was a very appealing concept to bring in. For 
example, should we think of the six points forming the exterior of this crystal as two 
sets of three points (HNT and OIU)? Or should we rather think of them as three sets of 
two points (OH, IN, and UT)? The possibilities implied by these two complementary 
views seemed pregnant with meaning, and so "hemiolic crystal" it was. 

But needless to say, all this excitement was predicated on something entirely 
unsure: that my new third segment was in some sense meaningful. I was convinced it 
would have to be, but I still didn't know the first thing about its new points T, U, and V! 
Nonetheless, I had inner confidence, perhaps based, unconsciously or 
semiconsciously, on considerations of the following sort. I could imagine three 
possibilities regarding T, U, and V: 

(1) All three of my supposedly new points T, U, and V turn out to be known 
entities. If this is the case, fine - because I would have revealed an 
unsuspected unity among them (the fact that they belong to a third segment 
much like the Euler and Nagel segments). That would be a lovely new 
discovery - and of course the harmony among the trio of segments 
constitutes a yet higher-level unity, a fact that, it seemed to me, would 
constitute a quite fundamental and respectable discovery. 

(2) At least one of my new points T, U, and Vis a new discovery and turns out to 
have interesting and novel properties. This is even better than ( 1), because 
then not only have I discovered a sublime high-level trio and a great new 
segment, but also one or more nifty new special points! 

(3) None of my new points T, U, and V has any interesting property at all. On 
one level, this would seem pretty dismal, but just think - on another level, 
the absence of meaning would be so strange that it would in itself be 
fascinating. How amazing that two fundamental segments define a third 
segment in an utterly natural and closure-creating manner, and yet the 
third segment turns out to be meaningless! This would be a sort of 
paradoxical twist or surrealjoke, a bit like the old mathjoke that "proves" the 
nonexistence of "uninteresting numbers". The proof goes like this: if there 
were uninteresting numbers, the smallest of them would be highly 
interesting, for that very reason. Hence there can be no smallest uninteresting 
number, ergo no uninteresting number at all- QED. However, it seemed to 
me that the paradox of "uninterestingness as a source of interest" would 
apply even more to the segment than to the numbers. On the other hand, 
this whole possibility seemed so unlikely as to hardly merit consideration. 

All in all, then, I felt secure no matter how things might turn out - provided, that 
is, that the whole idea hadn't already been discovered, in which case I would just be a 
jackie-come-lately. Since this kind of letdown had already happened a couple of 
times during the previous months of my geometry binge, I was fairly used to the 
feeling of disappointment. But somehow this case felt quite different. This time, I 
thought, I have really found something of my own! 

Certainly Coolidge hadn't known about the new segment or the crystal in 1916, for 
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his book doesn't mention either one at all. In fact, though, he came pretty close to 
finding them - he explicitly talks about the "trapezoid" defined by the points OIHN, 
but he doesn't see that it naturally beckons one to complete it by putting a little triangle 
on its short top-side. 

~ 
N 2 H 

And Roger Johnson, a disciple of Coolidge's who came out with his own scholarly 
treatise on circles and triangles in 1929, briefly describes the unnamed second 
segment, but doesn't mention any connections between it and the Euler segment. So 
at least up till 1929, my crystal was certainly completely unsuspected. "And," I 
thought to myself, "how much deep exploring of triangles has there been since 1929?" 
Not too long thereafter, people began turning away from such "simple-minded" and 
concrete matters, and soon most mathematicians were swept away by the tides of 
Bourbaki-ism and other such abstraction-favoring schools of thought. 

Later, I found a more recent book by Nathan Altshiller-Court- College Geometry: An 
Introduction to the Modern Geometry of the Triangle and the Circle, published in 1952. This 
extremely comprehensive treatise mentioned the Nagel segment (again giving it no 
name and according it much less honor and space than its "identical twin", the Euler 
segment) but didn't connect it with the Euler segment, much less hint at the existence 
of a third, related segment. 

All this gave me quite a bit of hope that I was the first to see this gem. Was I truly 
the first person in decades to find a major new property of the triangle? In an 
exuberant mood that evening, I described my breakthrough to my wife, and she 
fantasized that now, some 25 years after having abandoned mathematics, I might be 
awarded the Fields Medal! We chuckled over this idea, especially the irony that I 
had quit math in utter despair over its enormous abstraction. Of course, any talk of a 
Fields Medal was just a silly dream and we knew it, but it did occur to me to wonder 
just why it was so utterly laughable to think that work in Euclidean geometry, no 
matter how elegant or new or fundamental, might be considered worthy of the Fields 
Medal- or even worthy of serious attention by mathematicians at all. 

But let me not get ahead of my story, for such meta-level musings are the focus of 
the next chapter. To conclude this chapter, then, I would like to tell about the rest of the 
discovery: the search for the meaning of T, U, and V. 

The day after I had come up with the notion of the crystal itself, I made an all-out 
effort to find its meaning - that is, to "decipher" its new points. My first attempt 
focused on V, because it seemed the easiest. My idea was that, just like P and S, its 
counterparts on the other two medians, V ought to be the center of some spectacular 
circle that managed to jump through several hoops at once. So on the screen I drew a 
circle of variable size centered on V and let it shrink and grow while carefully 
looking for coincidences of any sort - simultaneous tangencies here and there, 
simultaneous passages through various points, simultaneous whatever! But I saw 
nothing. It was somewhat shocking, but I took it in stride. After all, it would be nice if 
V had beautiful properties but ones so subtle that nobody before me had ever noticed 
them. I still had high hopes that V would in the end turn out to have lots of meanings. 

As a result of this mild setback, I went back to thinking a bit more about P and S, 
since it was on them that my analogy, for whatever it was worth, was based. On 
reflection, it seemed to me that both P and S really belonged more to ABC's median 
triangle (the triangle formed by the midpoints of ABC's sides) than to ABC itself, because 
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they are the centers of that triangle's circumcircle and incircle, respectively. Semi­
symbolically stated, P is the 0 of the median triangle, and Sis the I of the median 
triangle. 

B c 

MaMbMc is ABC's median triangle. 
The circumcircle of this little triangle 
is the nine-point circle of ABC itself, 
and similarly the incircle of this little 
triangle is the Spieker circle of ABC 
itself. Therefore, P is the 0, and S 
the I, of the median triangle. 

When I thought about this in connection with the medians of my crystal, the 
analogy seemed clearly to be telling me this: "Vis the Uofthe median triangle." But 
what did this mean? It seemed to me to suggest that the meaning of V would be 
elucidated only after I elucidated the meaning of U, and so this pushed me to switch 
the focus of my quest to the two new points directly on the hemiolic crystal ( T and U), 
rather than the single new point insideit. 

I made a small and rather simple discovery at this point, which was that by 
drawing the segments connecting 0, I, and U inside the hemiolic crystal of ABC, I 
was thereby constructing the hemiolic crystal of ABC's median triangle. In rather 
opaque language, I had found the following result: 

OVIPUS-hunoti Theorem. The hemiolic crystal of ABC's median triangle is the 
median triangle of ABC's hemiolic crystal. 

It sounds kind of grandiose, but really it is quite trivial. Pictorially, it looks like this: 

The hemiolic crystal of triangle ABC is HUNOTI; that of its 
median triangle MaMbMc is hunoti. Since the median triangle 
is half the size of ABC and centered on the same point (G), but 
rotated 18rP with respect to it, its hemiolic crystal is likewise 
half the size of HNT, centered on the same point as it, and 
rotated 18rP with respect to it. This fact establishes a set of 
six one-to-<Jne correspondences between the points OVIPUS 
and the points hunoti, in that order. 

H 

c 

At this point, I went off on a long and completely fruitless wild-goose chase, 
motivated by a very jumbled-up analogy that I made in a confused moment, 
involving my new points Tand Uand several of the old points of the hemiolic crystal. 
The details of my confusion of course don't matter, so I won't repeat them here. What 
does matter is that at the end of this wasted time I got extremely discouraged about the 
probability of my crystal's meaningfulness- so discouraged, in fact, that I was even 
led to questioning whether I had correctly understood the passage in Coolidge where I 
had learned about the so-called "Nagel segment". I started wondering if the whole 
idea of the hemiolic crystal hadn't perhaps been a hallucination caused by a 
misunderstanding! Maybe the Nagel segment involved some other points, after all, or 
maybe it wasn't really as analogous to the Euler segment as I had at first thought. 
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Maybe my whole beautiful dream was about to go up in smoke. 
So I went back to Coolidge and rechecked the passage in which he describes the 

anonymous Euler-like segment. To my relief, I found I had gotten it exactly right. I 
hadn't misunderstood anything. But my sense of self-confidence had been quite 
shaken by my stupid false analogy, and I felt I needed some outside guidance. Since I 
was already looking at the crucial section of Coolidge, I let it serve that role. Very 
carefully, I hunted through it for any possible hints of things to look for in old or new 
dynamograms. It was then that I first noticed the rather important role played by two 
"auxiliary triangles"- one involving ABC's orthocenter H, the other involving ABC's 
Nagel point N. Each auxiliary triangle was constructed in the same way. You took a 
point X (H in one case and N in the other), connected it in turn with A, B, and C, and 
then bisected those segments. The three midpoints defined X's auxiliary triangle. 

Coolidge was whispering a secret, but to my ears his analogical message was loud 
and clear: Construct the auxiliary triangle belonging to T! Clearly, it was time to wake up 
Geometer's Sketchpad again. I first constructed a triangle ABCand its hemiolic crystal 
HUNDT!, then the auxiliary triangle belonging to T. Of course, the intricate 
interdependencies of all these points and lines were perfectly maintained no matter 
how I distorted the original triangle ABC, so I knew I had front-row seats to whatever 
interesting phenomena there might be- if there were any to be found, that is! 

A very cluttered picture. Triangle ABC is given 
at the outset. MaMbMc is its median triangle. 
HNT are the vertices of ABC's hemiolic 
crystal, with OIU being the midpoints of its 
sides and PSVG its four interior points. 
TaTbTc is the "auxiliary triangle" belonging to 
point T- that is, the triangle whose vertices 
lie halfway between T and the vertices of ABC. 
It is hard to notice any relationships in this 
complex an image, even if it is a dynamic 
image on one's screen. 

B 

A 

In its original form, this picture was very cluttered. I couldn't make head or tail of 
what was going on, there were so many extraneous points and lines around. The fact 
that it was dynamic didn't help at all. It seemed I would simply have to do some 
judicious pruning - namely, I would have to "hide" a bunch of points and lines. 
This, incidentally, is one of the many attractive design-features of Geometer's 
Sketchpad. To make almost any dynamogram of interest requires a good number of 
construction lines, and they often clutter up the picture enormously. No problem: 
any object can be made invisible by "hiding" it. Its invisibility will not interfere at all 
with the interrelationships it enjoys with other objects in the diagram. Once things 
are hidden, as you move any base point around, its dependent points and lines will 
swing around each other in subtle trajectories for seemingly magical reasons! 
Hiding objects is a little bit like a stage trick, in which invisible props allow magical 
things to happen - for example, hiding the wires on which Mary Martin is 
suspended, making it seem as though Peter Pan is flying unsupported across the stage. 
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So, I started stripping away line after line, point after point, in an attempt to boil the 
picture down to its essence, fearing all the while that I might well be throwing the 
baby out with the bathwater. Still, I knew that I would never be able to find the baby if I 
didn't do this, so I pared the image down, very gradually, winnowing out a point here, 
a line there, until it started seeming that I had reached roughly the right level of 
simplicity. I also highlighted T's auxiliary triangle by shading it, since that was 
supposed to be the real focus of my perception. 

The previous diagram after drastic simplification, and 
slight alteration of the triangle ABC. Most of the points 
and lines of ABC's hemiolic crystal have been made 
invisible. Only T, 0, V, and G are left. T's auxiliary 
triangle has been shaded for emphasis. All of a sudden, 
there is a strong suggestion of three-dimensionality. 

At this stage, something leapt out at my eye - namely, the undeniable three­
dimensionality of the picture. T and its auxiliary triangle seemed to form a tetrahedron 
with ABC as its base. "Aha- this could be the key to it all!", I thought. But then, once 
again, that familiar feeling of foolishness washed over me, as it hit me that this would 
hold no matter what point's auxiliary triangle I made. This property had nothing to 
do with the fact that I was dealing with a special point T. Once again, I had 
experienced a "false epiphany", showing what a naive geometer I really was. 

I felt quite humiliated, but even so, I wasn't daunted. I just kept on looking for 
something interesting. And as I randomly dragged a vertex of ABC around, a small 
coincidence caught my eye - the fact that point 0 kept staying inside the shaded 
region. It seemed inconsequential, but I wondered, "Is this really always so? Why 
would that be the case?" So I kept on watching it as ABC changed shape, and indeed it 
never left the shaded region. I noticed that whenever TaTbTcgot long and pointy, 0 
seemed to cling very close to one of the longer sides, and to slide down toward the 
pointy end. This rang a bell. I recognized this trait- it's a characteristic of the Nagel 
point of a triangle! (How did I know this? Easy- I had spent some time watching 
Nagel points sliding around inside their home triangles, during an earlier stage of 
my geometry binge.) At last, I was picking up a meaningful message: Oseemed to 
be acting like the Nagel point ofT's auxiliary triangle. 

Of course, this needed some confirmation. To make sure that my intuition was 
right, I quickly added some new construction lines to my dynamogram, which 
defined the actual Nagel point of T's auxiliary triangle. This new point, N', landed 
smack on top of 0, and as I moved things around, their co-incidence never changed at 
all. I was in like Flynn! 

For a moment, I was a bit worried that this, too, might prove to be yet another false 
epiphany - another piece of geometrical trivia - but as I considered it carefully, I 
came to the firm conclusion that this was a meaningful and unexpected finding. So 
now I knew at least somethingdefinite and new about T: 

Triangle ABC's circumcenter 0 is the Nagel point of the auxiliary triangle ofT. 

It wasn't exactly the most perspicuous and exciting property of all time, but it was at 
least something, and I felt that I now held the key to the unraveling of the properties of 
T, and maybe also of U 
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Perhaps most importantly, I felt that I now had genuine confirmation that the new 
points of the hemiolic crystal were not meaningless. My initial intuitive sense that in 
making my new third segment, I was "onto something" had been upheld, and my 
fears that I was a dumbbell who had simply misread Coolidge vanished into thin air. 
This was enough for one day, and I went to bed with a feeling of great satisfaction. 

The next morning, however, I felt distinctly uneasy with the current stage of my 
discovery. For a segment that was supposed to be on a par in importance with the 
Euler segment, my new segment was surely not acting very important. The only 
piece of information I had about it was a rather obscure fact about one of its endpoints. 
Surely, there must be more to the new points than just that one teeny theorem! 

By the way, note that I just referred to my screen-based observation as a "fact" and 
a "theorem". Now any red-blooded mathematician would start screaming bloody 
murder at me for referring to a "fact" or "theorem" that I had not proved. But that is 
not my attitude at all, and never has been. To me, this result was so clearly true that I 
didn't have the slightest doubt about it. I didn't need a proof. If this sounds arrogant, let 
me explain. The beauty of Geometer's Sketchpad is that it allows you to instantly 
discover if a conjecture is right or wrong - if it's wrong, it will be immediately 
obvious when you play around with a construction dynamically on the screen. If it's 
right, things will "stay in synch" right on the button no matter how you play with the 
figure. The degree of certainty and confidence that this gives is downright amazing. 
It's not a proof, of course, but in some sense, I would argue, this kind of direct contact 
with the phenomenon is even more convincing than a proof, because you really see it all 
happening right there before your eyes. Seeing is believing, as they say, and for me 
there is no clearer illustration of this homily than the experience of playing with 
Geometer's Sketchpad. 

None of this means that I did not want a proof. In the end, proofs are critical 
ingredients of mathematical knowledge, and I like them as much as anyone else 
does. I just am not one who believes that certainty can come only from proofs. When 
in my distant math-major past, I made various mathematical discoveries, I was almost 
always completely certain of their truth long before finding any proof. In this 
particular case, even if my little result wasn't yet deserving of the title "theorem", it 
was, as far as I was concerned, a fact. 

In any case, as I lay in bed, musing over my partial success, I thought that my 
isolated little result was rather pathetic, and that surely it had to be accompanied by 
more. My unproven "theorem" could be tersely phrased as follows, using an obvious 
notation to symbolize the notion of "auxiliary triangle": 

0 is theN-point of the T-l::l. 

Sometimes I even wrote it in this highly compressed manner: 

0 is the N of T. 

This most compact way of writing it highlighted the letters "0', "N", and "T", and 
that in turn made me think about where those three points fit into the crystal HUNOTI. 
I noticed that they all lie on NOT, one of its three sides. But since my feeling about the 
crystal was that it is a highly symmetric structure, it seemed natural to wonder 
whether analogous statements might not hold for the other two sides - HUN and TIH. 
Thus I was led, purely by a sense of elegance, analogy, and symmetry, to make the 
following two rather bold speculations: 

U is the H-pointofthe N-11. 

I is the Tpoint of the H/1. 
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I didn't have a great deal of confidence in either of them, because although formally 
they made a symmetric trio with the first one, when you looked at their meanings, 
they said amazingly different things. Here are all three, spelled out more completely: 

( 1) 0, the circumcenter of ABC, is the Nagel point ofT's auxiliary triangle. 
(2) U is the orthocenter of the auxiliary triangle belonging to ABC's Nagel point. 
(3) I, ABC's incenter, plays the T role for the auxiliary triangle of ABC's orthocenter H. 

These statements seem to have nothing to do with one another! They involve 
completely different concepts - it's simply that those concepts have been cyclically 
permuted from one line to the next. The only reason to call these statements 
"analogous" is because they all have the common form "X is the Y of Z's auxiliary 
triangle", and because each one is formally associated with one of the three sides of 
the hemiolic crystal - a pretty dubious basis on which to bank. And I certainly 
wasn't holding my breath. Still, I felt there was at least a sporting chance that this 
guess might pan out, so I pitter-patted down the hall in my bedroom slippers, turned on 
the old Mac, and clicked on my faithful "verification engine", Geometer's Sketchpad. 

In the twinkling of an eye, I had made a new dynamogram showing ABC, its 
Nagel point N, and its U point. I then constructed N's auxiliary triangle. The question 
was, did U look like that triangle's orthocenter? It looked at least plausible on the 
screen, but I needed proof- "eyeball proof', that is. And so I constructed the three 
altitudes of N's auxiliary triangle. The first one ran straight through U, skewering it 
perfectly. So did the second, and so did the third. Bingo! Moreover, when I moved 
the vertices of ABC, everything stayed completely right on target. There was no doubt 
that the first of my two analogy-based speculations was true! It was quite a stunning 
moment for me. 

Eureka! 
U is the H of N's auxiliary triangle! 

B 

The question remained, what about the other speculation? Now that one of them 
had been verified and was known to be true (pace all red-blooded mathematicians!), I 
was willing to bet high stakes on the other one. In fact, my mind would have been 
totally boggled if the last one hadn't been true as well. Mter all, it closed the HUNOTI 
circle, so to speak. 

However, I wasn't going to deny myself the pleasure of actually seeing its truth on 
the screen. Nor did I have so much chutzpah that I could simply nonchalantly skip 
the act of perceptual verification, relying instead purely on intellectual knowledge (or 
faith, if you insist) that it must be true. I have far too concrete a mind to do that. So I 
made the dynamogram, and played around with it. To my astonishment, the two 
points that were supposed to be coincident with each other were moving around 
completely independently of each other. No relationship at all! Could it be that my 
third and final statement was wrongwhile the other two were right? 
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I had a moment or two of self-doubt, but then my ever-strong belief in beauty and 
symmetry- a kind of "inner compass"- resurged and started to gain the upper 
hand. I thought to myself, "Don't be silly. The theorem is of course true. It follows, 
therefore, that I've simply made a mistake somewhere in this construction. Let me try 
again." And in trying it again, I discovered the slight error I'd committed. I was 
right that I'd been wrong. And indeed, the correctly-built new dynamogram fully 
verified the third member of the trio, and victory was mine. 

H 

Showing that I, the incenter of ABC, 
plays the T role in the hemiolic 
crystal hunoti belonging to H's 
auxiliary triangle HaHbHc. 

c 

It strikes me that a key ingredient here was the fact that I had enough self­
confidence to trust my "inner compass" more than what I saw before me on the 
screen. If I hadn't, I might well have been stopped in my tracks, and never made the 
third discovery that closed the circle- or the triangle, to be more accurate. 

Given the way the statements associated with the three sides of the crystal all 
"chain" or "dovetail" together, I decided to call my cyclic trio of results the "Garland 
Theorem", as it represents a "garland" of linked results. I was now extremely 
satisfied: I had found enough to convince me that the hemiolic crystal was a 
nontrivial new idea with at least a few elegant and nonintuitive (or non-obvious) 
properties. So, at the conclusion of my second day, this was how things stood. 

The next morning, I felt far less satisfied. Just as on the previous morning, I felt 
that what I had found so far was really not very impressive, if I was indeed dealing 
with something whose importance was on the level of the Euler segment. What I had 
found was just a set of three little curiosities. Big deal! I needed something much 
more impressive. I also felt I needed proofs. Dynamic visual verifications were fine 
for just me, but if I wanted to show this stuff to other people, especially professional 
mathematicians, I would be laughed off the stage if I had no proofs! 

Never having been the completely analytic do-it-in-your-head type, I went back to 
Geometer's Sketchpad, to be in contact with the phenomena themselves in a very 
concrete way. I had a vague hunch, from things I had seen on the screen the day 
before, that there were more results to be found along the same lines as the three cyclic 
components of the Garland Theorem. The obvious thing to do, it seemed, was to take 
an auxiliary triangle such as H's, and to take ABC, and to exhibit their fuU hemiolic 
crystals together on the screen. To be sure, this might make a hugely messy 
screenful, but then again, it might not. No harm trying. And here's what I found: 
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ABC's hemiolic crystal HUNOTI was 
constructed first. Then H's auxiliary 
triangle HaHbHc was constructed 
(shaded), and finally its hemiolic 
crystal hunoti. The two crystals share 
one vertex and nest in a neat manner, 
setting up a family of equivalences: 
His the H of H; U is theN of H; I is 
the T of H; and P is the 0 of H. 

The diagram was surprisingly unmessy- in fact, as simple as it could possibly 
have been. First of all, ABC's orthocenter H coincides with the orthocenter h of H's 
auxiliary triangle (this is provable in a snap). This, together with the obvious fact that 
the auxiliary triangle is half the size of ABC and oriented parallel to it, implied that the 
two hemiolic crystals, one big and one small, must fit snugly together, their sides 
perfectly superimposing. Thus two of the midpoints of the big one had to coincide 
with two vertices of the small one, and this implied three further point coincidences. 
Rather than being baffling, it all made sense in a very straightforward manner. So 
not only had I now discovered some new facts, I also had a clear understanding of 
why these facts were true. In other words, as new results started pouring in, so did 
proofs of them! I couldn't have asked for more. 

Two more diagrams - one involving the auxiliary triangle of N and one 
involving the auxiliary triangle of H- gave me precisely analogous results, and for 
precisely analogous reasons: the snug nesting of a half-size triangle inside the full­
size one. Since each diagram gave me four results where the day before I had had just 
one, I had almost effortlessly multiplied the content of the Garland Theorem by a 
factor of four, so that it now ran this way: 

The "Garland" Theorem. For any point X, define X's auxiliary triangle, denoted 
"X-~", by joining X with each of A, B, and G and connecting the midpoints of 
those segments. The following relations then hold among the points of ABCs 
hemiolic crystal: 

(lh) His the H-point of the H-~. 
(ln) N is theN-point of theN-~. 
(1 t ) T is the T-poin t of the T-~. 

(2h) U is both the H-point of theN-~ and theN-point of the H-~. 
(2n) 0 is both theN-point of the T-~ and the T-point of theN-~. 
(2t) I is both the T-point of the H-~ and the H-point of the T-~. 

(3h) P is the Opoint of the H-~. 
(3n) S is the /-point of theN-~. 
(3t) V is the U-point of the T-~. 

And its proof was now clear, to boot. I was getting to the point where it felt like the 
hemiolic crystal really was a significant new idea in the geometry of the triangle. 
Even if my discovery turned out not to be new, these two days had been without a 
doubt the most exhilarating mathematical experience I had had in 30 years. I was 
truly thrilled - nay, bedazzled- by the hemiolic crystal I had unearthed. And I had 
a hunch that what I had seen so far was still just the tip of the iceberg. 
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Chapter U 
Bewildered ... 

by the Meaning of it all 
The next morning, I was certainly on a high. I had found an elegant new 

concept, a host of intriguing results associated with it, and even their proofs had come 
along for free. All that remained to find out was: Was my idea original? This question 
nagged at me all day, and eventually I decided I would at least make an attempt to 
look in the math library for books or journals that might mention results of this kind. 

That evening I went over there, and my first stop was back at the geometry area of 
the stacks. I carefully hunted for books that dealt with plane geometry, and although I 
found many, they were all of roughly the same vintage: turn-of-the-century, give or 
take 20 years. Since I knew Roger Johnson's 1929 volume was probably the most 
authoritative of the bunch, I felt pretty confident that my result was in none of these. 
The rest of the books were about non-Euclidean geometry, projective geometry, 
algebraic geometry, differential geometry, and so on. A fair number of them were so 
abstruse that they did not deign to mention such pedestrian items as triangles. So 
once again, but for a very different reason, I was "safe". 

My next stop was the journals section. I scoured the several hundred titles for ones 
related to geometry, and the most appropriate one seemed the straightforwardly titled 
journal of Geometry. However, upon opening it, I found its contents anything but 
straightforward. About many of the articles, I had to ask myself, "This is geometry?!" 
Here are a few titles, just so you can get the idea: 

"Metrizations of orthogonality and characterizations of inner-product spaces" 
"Strongly distributive multiplicative hyperrings" 
"On automorphisms of n-dimensional Laguerre space" 
"A group-theoretic characterization of finite derivable nets" 
"Semifield skeletons of conical flocks" 
"Chain geometries over local alternative algebras" 
"Quasi-ordered Desarguesian affine spaces" 
"Matroidal hypervector spaces" 

Another perspective on modern aspects of geometry is afforded by some theorems. 
Here are a few memorable gems I collected from articles in the journal of Geometry: 

"A complete, convex, externally convex metric space in which metric 
pythagorean orthogonality is homogeneous is a real inner product space." 

"Let TC be a semifield plane of flock type and odd order q2. Then the planes of 
the skeleton are all semifield planes if and only if 1r is the Knuth semifield 
plane of flock type." 

"Any order compatible place A. of a sub(skew)field of the kernel of an ordered 
quasifield (Q, +, •, P) extends to an order compatible place ~ of Q with A~ = 
conv(AA.)." 

"The elation group L1 of a finite elation Laguerre plane .-1 is an elementary 
abelian p-group, each derived affine plane is a dual translation plane such that 
all dual translations are induced by L1, and the order nof.Lis a power of p." 

"A desarguesian projective Hjelmslev plane J) (~) over a PH-ring ~is of level n 
if and only if the Jacobson radical jf of~ is nilpotent of degree n." 

"The class of all saturated mixed extensions of linear symmetric designs 
coincides with the set of all finite Mobius planes." 

Perhaps even more telling than this set of prickly titles and forbidding theorems is 
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the statistics I collected on a few issues of this leading journal. I was struck by the fact 
that most articles seemed to have no pictures at all, so I decided to tally up the picture 
density. I took three successive issues of the Journal of Geometry that appeared in 1991 
and 1992. Altogether, they contained 52 articles. Of these, only 13 contained any 
pictures. The page-level statistics are even more revealing. In these issues there were 
602 total pages, but only 39 of them had any pictures! In other words, on the average, 
75 percent of the articles (39/52) and 93 percent of the pages (563/602) in the Journal of 
Geometry are pictureless. By contrast, Coxeter and Greitzer's book Geometry Revisited, 
which has 153 pages of text, has roughly 160 separate diagrams- an average of over 
one per page! (To be frank, I must confess that Coolidge is disappointing on this score. 
His first chapter does rather well, but thereafter pictures are extremely sparse.) 

One might think that the absence of pictures is due to the extreme abstraction of the 
ideas under discussion, and that there simply are no appropriate types of figure that 
can be drawn at all. One reply would be to ask whether, in that case, one is still really 
dealing with geometry. Perhaps a new name is needed. Another reply is that many 
academic people - regrettably many - take actual pleasure in being formal and 
opaque. Perhaps they like the fact of joining a tiny elite clique of co-understanders, or 
perhaps they simply enjoy jargon for its own sake. 

It is precisely this kind of thing that made me throw up my hands in Berkeley in 
1967 and drop forever out of mathematics. I hadjust taken a graduate seminar entitled 
"Number Theory" in which it turned out that the natural numbers 0, 1, 2, 3, and so on 
(after which number theory is named) were trotted out only on rare occasions as 
"trivial examples" of the results being discussed. I simply couldn't face the thought of 
"number theory without numbers" for the rest of my life. And now, looking through 
the Journal of Geometry some 25 years later, I felt as if I were experiencing a replay of 
that old experience, simply with numbers replaced by geometric objects like triangles 
and circles. Who cares about geometry without geometric objects? It would be like 
the "fine romance- with no kisses" in the old Jerome Kern/Dorothy Fields song­
and as a Gershwin song from the same epoch says, that's Not for Me! 

This may sound overly cynical, but I have had too much experience with 
mathematics on too many levels to back off very far from this position. One of my 
most bitter mathematical memories has to do with the charmingly titled little book 
Three Pearls of Number Theory, by the famous Russian mathematician A. Y. Khinchin. 
This book, written for the admirable purpose of helping a wounded soldier-friend of 
Khinchin's pass several dreary months in a hospital, contains a proof by Khinchin of 
an absolutely beautiful result in number theory called ''Vander Waerden's theorem". 
We can skip the theorem entirely; what matters is simply that Khinchin's proof is 
very dense in symbolism and extraordinarily hard to follow. I nevertheless loved the 
theorem so much that I simply had to plow through its proof, no matter how hard. I 
read it through twice, each time taking me several hours. At that point, I had finally 
digested and internalized it fully, and I realized that it was really very simple. The 
frightening thickets of double-subscripts turned out to symbolize very visual ideas! I 
could see it all in pictures in my mind. 

By spending another few hours, I managed to "translate" Khinchin's proof into a 
set of a dozen or so elegant colored diagrams. With the aid of these pictures, I was able 
to take an intelligent nonmathematician friend of mine - someone, in fact, who 
claimed to dislike math- through the entire proof in every last detail in under half 
an hour. My nonmathematical friend seemed to get the idea rather easily, whereas it 
had taken me many hours of struggle to get it. 

The way I think about this is that my set of pictures, not Khinchin's obscure 
equations, was the real proof - that is, the set of ideas that Khinchin himself had in 
mind - and that what Khinchin published was deliberate obscurantism. If it wasn't that, 
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then it was at least intellectual spartanism of an extreme sort. Why in the world did he 
show no pictures? Why did he make it so hard when in reality it could be made so 
intuitive? Why did he have the gall to imply that his book was a collection of precious 
pearls when it was so needlessly obscure? I think he would have done better to call 
his book Three Oysters of Number Theory. 

Countless experiences like this have made me very cynical about dense 
symbolism accompanied by a total absence of pictures. I realize that one cannot 
generalize to all situations, but there is certainly something to my impression that much 
of mathematics is made to seem much harder and more complex and more profound 
than it really is. There is often a very simple and crystal-clear diagram hiding in a 
dense thicket of symbolism. 

But let me return to my visit to the math library. I certainly came up empty­
handed in terms of looking for previously published statements of my discoveries. I 
also came away extremely depressed. Out of the roughly 100 articles that I had 
surveyed in the journal of Geometry, exactly one belonged to the domain of 
"elementary Euclidean geometry". Most of the rest were concerned with 
generalizing generalizations that had already been generalized once or twice before. 
It reminded me of a cynical remark I'd once made about mathematicians: 

Definition of a mathematician: Someone who, on first learning about sex, says, 
'just two? That's the trivial case ... Let us consider the case of continuum many 
different sexes." 

I am not a sworn enemy of generalization, by the way. I recognize its appeal and 
its beauty. I have even engaged in it myself! However, there is a kind of paradox 
associated with generalization that I do not fully fathom, and that is the fact that 
whereas the act of generalization is supposed to free one up from specifics and to carry 
one into, well, very general realms, what more often seems to happen is that 
generalization leads down increasingly narrow alleys, so that in the end the papers 
involving the highest levels of generalization are comprehensible only to a tiny group 
of people who enjoy counting angels on the head of a pin. In other words, 
generalization somehow usually leads to trivia. As I say, I don't fully understand how 
or why generalization is so often self-defeating, but there seems to be some kind of 
trick whereby one can walk a fine line between concreteness and abstraction, 
between specialization and generalization, in such a way that the results are deep, 
powerful, and comprehensible- but only a few people seem able to pull this trick off. 
Most people who stay in mathematics succumb to the "pleasures" of nth-order 
generalization, where n goes to infinity. 

I cannot really judge the articles in the journal of Geometry. My intuition tells me 
that many of them must be shallow despite their air of depth, but surely some of them 
are genuinely deep and important. Sometimes I feel positively daunted by the 
remoteness and incomprehensibility of the whole journal, and I feel a kind of 
childish admiration for anyone who can think at such abstract levels. But I oscillate 
between respect and disgust. It is a very strange and uncomfortable feeling. 

After I came home from the math library, the enjoyable if ridiculous fantasy from 
a couple of nights earlier that my discovery might merit a Fields Medal was replaced 
by its exact opposite: that this was the most elementary, trivial, childish, outmoded 
type of mathematics imaginable, at no higher than a high-school level. I found 
myself going through mental flip-flops that left me utterly baffled - nay, bewildered. 
When I thought about my result on its own, just for what it was, it seemed to me I had 
found something very elegant, something that made even the stunning Euler line 
seem like just a hint at what was really there to be found. It felt like a real advance! 
But when I then imagined those endless shelves of books and journals filled with 
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incomprehensibly abstract results, making my kinds of ideas look positively infantile, 
I felt nothing but shame and insignificance. 

At about this point, I remembered a passage I had read only a few days earlier in 
the highly acclaimed book The Mathematical Experience, by mathematicians Philip ]. 
Davis and Reuben Hersh. 

In mathematics, many areas show signs of internal exhaustion - for example, the 
elementary geometry of the circle and the triangle, or the classical theory of functions of a 
complex variable. While one can call on the former to provide five-finger exercises for 
beginners and the latter for application to other areas, it seems unlikely that either will 
ever again produce anything that is both new and startling within its bounded confines. 

Even before making any geometric discovery of my own, I had felt a sense of outrage 
upon reading this quote. The tone was both insulting and narrow-minded. And now, 
of course, I felt that way all the more strongly. Five-finger exercises, indeed! 

It is instructive to contrast this pessimistic outlook with Coolidge's assessment of the 
future of the field in 1916. Here is the paragraph that opens the concluding page ofhis 
Chapter One, the quasi-book called "The Circle in Elementary Plane Geometry": 

It is a parlous undertaking to suggest possible lines of further advance in the subject of 
plane geometry. On the one hand, the subject has shown itself inexhaustibly fertile, new 
discoveries have come in such numbers at times when a superficial observer would have felt 
sure that the last word had been said, that it would be highly unwise to assert that with a 
little patience one might not strike oil by working in any portion of the subject. On the 
other hand, the existing literature is so vast that there is a large antecedent probability that 
any new seeming result may have been discovered decades if not centuries before. 

Now this charmingly written little statement, in contrast to Davis and Hersh's 
condescending pontifications, rang true to my ears. And interestingly enough, I 
found a similar summary and outlook for the future at the end of virtually every one 
of Coolidge's 15 wonderfully scholarly and deep chapters! Words like "limitless" 
"inexhaustible", and "illimitable", as well as phrases such as "much remains to be 
done" and "there must be a large amount of treasure to be unearthed", kept on 
cropping up in these summaries. In fact, it is worthwhile quoting how Coolidge 
brings his book to a close, because it is representative of his entire style and attitude. 

What is certain is that the circle has been diligently studied for two thousand years, and 
that it will be similarly studied for many thousands more. The methods of attack here 
exhibited are no more in advance of those known to Euclid and Apollonius than will be 
those of future geometers in comparison with the best that we have been able to show. This, 
at least, is what we have a right to hope and expect. For ourselves, 'Let us shut up the box and 
the puppets, for our play is played out.' 

Certainly Coolidge in 1916 expected that geometry had a rich future, even without its 
methods changing to any large degree, ahead of it. And I doubt that much has 
occurred in the intervening decades to change that. 

It so happened that a couple of weeks earlier, I had heard for the first time a tape 
recording of my late father, Robert Hofstadter, reminiscing during the last year of his 
life with his old friend Robert Herman about their lives as physicists, and their 
feelings about their discoveries and their colleagues and various other topics. The 
same day as I had come across the upsetting quote in Davis and Hersh's book, I had 
received that cassette in the mail from Herman, and quite by coincidence, listening to 
it for the first time that evening served as a superb antidote to Davis and Hersh. 

In one part of their conversation, my father recalled that in 1946, he had been 
given the assignment of teaching optics to a small class of physics graduate students at 
Princeton. The students, knowing that optics was an ancient and very classical topic, 
were uniformly skeptical that this field could have any bearing on their future 
research careers. They kept on saying, "Isn't optics a dead field, a closed book?" But 
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my Dad argued with them that such an appearance was certainly deceptive. He 
expressed an unwavering faith that the classical field of optics was too beautiful to be 
exhaustible. This may not have held any water with the students, but it was his honest 
opinion. And then my Dad and Herman chuckled together, saying that neither of 
them could possibly have anticipated in 1946 just how optics might progress, but that in 
fact the unpredictable discovery of the laser in the 1950's and 1960's had totally 
revolutionized the field, making it one of the hottest and most central fields of modern 
physics. This uplifting idea that classical beauty and simplicity are precisely what 
prevent a field from being exhaustible seemed quite contrary to the spirit of the remark 
by Davis and Hersh, and resonated exactly with my sentiments. (Of course, that is not 
too surprising, since my Dad's ideas had seeped into my very soul ever since I was a 
tiny child!) 

Might plane geometry be comparable to optics, or is this mapping of two "classical" 
fields a false analogy? Someone might argue that the laser brought "foreign" ideas -
ideas from quantum mechanics- into optics. This would suggest that the apparent 
fertility of optics didn't really stem from some internal aspect of the field, but from a 
transplant. According to this viewpoint, then, for plane geometry to be renewed, ideas 
from outside geometry would have to be brought in. Davis and Hersh seem to say as 
much when they write, "it seems unlikely that either will ever again produce 
anything that is both new and startling within its bounded confines." Perhaps they 
would agree that an influx of outside ideas, coming from some other branch of 
mathematics, might revitalize the geometry of the circle and triangle. 

But this viewpoint seems quite opposed to Coolidge's closing words to the effect that 
Euclid's methods were good enough for him, and ought to be good enough even for 
future generations! Of course, his claim was a bit exaggerated: in truth, there have 
been many great advances in technique since Euclid, and in fact they permeate 
Coolidge's book - but in a certain sense, geometry has all the while remained 
accessible and concrete, and that is probably what Coolidge really meant. Geometry has 
remained what I call a "horsies-and-doggies" subject- one that doesn't take a novice 
too long to get into, one that a good high-school or college student can play around in 
and perhaps make genuine discoveries in. 

Or rather, up until Coolidge's time, geometry had remained accessible. Today, as 
my selection of titles and theorems from the journal of Geometry shows, what is called 
"geometry" seems arcane and forbidding, even to someone who was once deeply in 
love with mathematics. Today, it almost seems that there is no place to publish ideas 
like the ones in this essay, except possibly in unprestigious "teaching journals". It's 
not considered research. One gets the distinct impression that real mathematicians 
wouldn't be caught dead talking about triangles! And that seems sad. 

A couple of months ago, I was in Italy and had the chance to see my good friend 
Benedetto Scimemi, a mathematician at the University of Padova, for the first time in 
a couple of years. Nonchalantly, I remarked to him that of all things, I had of late 
become a maniac about elementary geometry. To my amazement, Benedetto replied, 
"So have 1." "Really?", said I, and added, "I'm in love with the special points of a 
triangle." Benedetto said, "So am 1." Then I said, "What set me on fire was reading 
Coxeter and Greitzer's Geometry Revisited." Benedetto said, "Same here." This was 
getting strange. Finally I said, "I'm using a computer program to explore these ideas." 
Benedetto replied, "Geometer's Sketchpad, naturally. So am 1." I was floored! 

It turned out Benedetto and I really were looking at and eating up the same kinds 
of things, but of course we had differing approaches. This was a delightful surprise! 
But Benedetto has also remarked more recently, via electronic mail, "My colleagues 
are simply turned off by this Euclidean-geometry stuff. It's perceived as completely 
out of fashion, and you can't publish it in any 'important' journals. If you tell your 
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colleagues about your interest in this kind of thing, you run the risk of evoking 
condescending smiles." I find this truly sad. 

These days, there are a couple of places where what I think of as beautiful 
mathematics is discussed clearly and in an exciting way. The journal of Recreational 
Mathematics has lots of pictures and lots of genuinely exciting ideas. So does 
Mathematics Magazine, a journal intended for undergraduates and math teachers. (For 
that matter, so did Martin Gardner's venerable "Mathematical Games" column in 
Scientific American, which purported to be merely about "games", whereas in fact it 
exemplified play with ideas at the highest level of beauty and importance.) But if you 
tried to survive as a professional mathematician by publishing in the journal of 
Recreational Mathematics or Mathematics Magazine, you would become an object of many 
snorts, and would have no hope of getting tenure at a top-rank university. 

It would be nice if there were a journal that was taken seriously and yet where 
ideas like the hemiolic crystal were welcome. I don't suppose the title journal of 
Horsies-and-Doggies Mathematics would go over very big, however. 

Sometimes I feel like a stranger from another era, both mathematically and 
musically. I love songs from the thirties and thereabouts, but I know that if "A Fine 
Romance" or "Not for Me" were played on a pop-music radio station today, it wouldn't 
matter one bit how melodious, witty, or sparkling the song was - listeners would be 
completely turned off. In fact, I suspect that precisely those qualities would turn them 
off! There's such a stylistic gulf that pop-music listeners today cannot relate to what I 
consider beauty and charm. But this cultural tendency seems arbitrary rather than 
inevitable. I don't think that heavy metal represents musical progress over the style of 
Gershwin and Kern and Rodgers and Berlin and Porter. Nor do I think that disdain 
for the concrete represents mathematical progress over the style of Brocard and Crelle 
and Mobius and Steiner and Coolidge. 

Perhaps the musical analogy most pertinent to this discussion concerns the claims 
made every so often to the effect that tonal music - the language of Bach, Bizet, 
Bechet, and the Beatles - is an exhausted medium. Pushing a kind of dogmatic 
avant-gardism, some musical commentators proclaim, "There is nothing fresh left to 
say in the tonal idiom." This strikes me as about as likely as the idea that coherent, 
grammatical prose is a dead language and that no high-quality novel or short story 
will ever again be written in that medium. People who make such bald claims do 
nothing but reveal the poverty of their imaginations. Is Davis and Hersh's claim about 
classical geometry any more plausible? 

What if a physicist made the same claim of exhaustion about classical mechanics 
(which had its heyday in the eighteenth and nineteenth centuries, but was 
supplanted by quantum mechanics in the first quarter of this century)? One 
argument seemingly in favor of such a claim would be that classical mechanics was 
shown to be wrong. So how could it be at all meaningful to work in that field any more? 
The flaw in this silly argument is that classical mechanics is an internally consistent 
system as well as a canonical limiting case of quantum mechanics; in fact, one can't 
hope to understand quantum mechanics without first having absorbed and mastered 
classical mechanics. This is because humans naturally think in classical terms. So 
classical mechanics has hardly been jettisoned; it plays a central role in physics, and 
always will. 

A parallel debate could be conducted concerning geometry. Argument: Doesn't 
general relativity show, with its curved spacetime, that our universe is not Euclidean 
but non-Euclidean - and thus that old-fashioned Euclidean geometry is wrong? Like the 
argument above, this is silly. Euclidean geometry is an internally consistent system 
as well as a canonical limiting case of non-Euclidean geometry; in fact, one can't 
hope to understand non-Euclidean geometry without first having absorbed and 
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mastered Euclidean geometry. This is because humans naturally think in Euclidean 
terms. Therefore Euclidean geometry, whether applicable or not to our physical 
universe, plays a central role in mathematics, and always will. 

The real question about both classical mechanics and Euclidean geometry is: Are 
they still fertile areas for investigation, or have they both come to an end, for all 
practical purposes? Is it just fashion and caprice to consider them no longer worthy of 
serious research? I think it is just fashion and caprice, but I don't know for sure. Could 
some physicist, one fine day in the future, be awarded the Nobel Prize for making 
novel and elegant advances in the venerable old field of classical mechanics? I admit 
that this sounds somewhat implausible to me, but I can't put my finger on just why. 
Maybe it's simply that I have internalized the viewpoint that today's physics culture 
has collectively established. And, some fine day in the future, could a major advance 
in Euclidean geometry come to be widely considered as ... well, as a major advance? I 
would like to think so, but I am somewhat dubious about this as well. 

This idea of exploration in Euclidean geometry gradually slipping into the status of 
a trivial activity was reinforced most disturbingly for me when I finally got a hold of 
an article that Scimemi had described to me when we saw each other in Italy. This 
was David Gale's "Mathematical Entertainments" column in the Spring 1992 issue of 
the Mathematical Intelligencer. Reading it provoked considerable inner turmoil in me. 

In his column, Gale told of recent work done in geometry by a mathematician 
named Clark Kimberling. Like me, Kimberling is interested in the special points of a 
triangle, and like me, he explores their interrelationships with the aid of a computer. 
The difference is, he does it in an entirely automated way. It's a very big difference. 

The goal of the study described by Gale was to discover collinearities of special 
points, or "centers", as Gale calls them - apparent "coincidences", like the Euler and 
Nagel segments, that are really not coincidences at all, but mathematical necessities: 
hidden consequences of the definition of a triangle. To do this, Kimberling fed into a 
program the algebraic or trigonometric characterizations of 91 different "centers" -
more than I know of, by a long shot! - and had the computer calculate their 
coordinates, in several randomly-chosen triangles, to roughly ten decimal places 
each. Then the lines they formed could be generated and numerically compared. 
Any ten-decimal agreement noticed in one triangle and echoed in other triangles 
could not be a coincidence, but had to be a co-incidence, a shoo-in for theoremhood. 

Of course any two points determine a line; the question was simply how many 
distinct such lines there were. If there were no collinearities at all, as would be the case 
if the points were randomly chosen and thus completely unrelated to one another, 
there would be 4095 different lines- one for each pair. But these "centers" were not 
random points by any means, and numerical comparison (by the machine, of 
course) revealed an enormous degree of order: all 91 centers lay on a mere 103 
distinct lines- "special lines", we could call them. 

In my view, this discovery is a completely new kind of advance in Euclidean 
geometry. It is a tour de force that couldn't have been imagined before our times, and it 
gives us a qualitatively new type of insight into what goes on in triangles. Which 
points have the most lines going through them? Which lines have the most points? 
Could one use the intertwined point/line incidence statistics to objectively rank-order, by 
their importance, all the special points and lines? This is a strange but fascinating idea. 

One of the individual results Gale cites is the discovery by Kimberling's program 
that, in addition to the standard four centers OGPH on the Euler line (and now I really 
do mean line, since we are talking about the extended line that goes beyond Hand 0), 
there are eight more centers on that line! (He doesn't tell us anything about them, 
unfortunately.) Gale also cites an elegant pair of closely-related theorems, shown 
below, that were discovered by Kimberling's program. 
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c a 

a 
Two surprising collinearities involving the so-called "Napoleon points" and the Fermat point. c 

On the left, collinearity of N, F, and 0. Here, N is ABC's "outer Napoleon point", which is where the 
lines joining the vertices of ABC with the centers Na, Nb, Nc of the three external equilateral triangles all 
meet. F is the Fermat point, where the lines from ABC's three vertices meet each other at 12(]> angles. 0 
is ABC's circumcenter. 

On the right, collinearity of n, F, and P. Here, n is ABC's "inner Napoleon point", which is where the 
lines joining the vertices of ABC with the centers na, nb, nc of the three internal equilateral triangles all 
meet. F is the Fermat point, defined as above. P is the center of ABC's nine-point circle. 

These two collinearities were first discovered by a computer program written by Clark Kimberling. 
Both facts were also first proven by another computer program by Kimberling. 

Each unexpected collinearity - and there are a great number of them - is a 
theorem, or at least a strongly supported conjecture needing proof. And here is where 
Kimberling makes ingenious use of the computer again. The algebraic or 
trigonometric characterizations of the various centers are symbolic expressions that 
can be manipulated in a tireless way by any sophisticated "computer algebra" 
program, such as Mathematica. Proving that three such centers are indeed collinear is, 
in principle at least, a mere exercise in symbol manipulation - a task at which 
computers excel. Realizing this, Kimberling simply handed over to Mathematica the 
chore of proving all of his computer-generated conjectures, which it compliantly did 
for him (including the Fermat-Napoleon pair shown above). Let me now quote from 
Gale's column, because Gale puts this all in perspective about as well as it can be: 

Surely this is a rather strange state of affairs. Everything is being done by the computer. 
Program A goes on a voyage of exploration and comes up with a vast number of theorems. 
Then program B takes over and supplies the proofs, and while all this is going on the 
investigator just sits back and watches. The robots have taken over. It makes one reflect a bit 
on what we are trying to achieve in doing mathematics. It is certainly impressive to 
suddenly learn hundreds of new facts in a discipline that people have worked in for more 
than two millennia. But mathematics, and science generally, is concerned with much 
more than compiling a huge catalogue of facts. The hope is to find general principles from 
which the facts can be deduced, and the robots don't seem to be very helpful for this. They 
tell us what is true but don't tell us why. They supply lots of information but little insight. 

Is this not all rather remarkable? What would Euclid have thought? What would 
Euler or Poncelet or Coolidge have thought? What do we think? 

The first time I heard about Kimberling's work was Benedetto Scimemi's capsule 

[[ 27 ]1 



description, and I was very upset. After all, I was in love with the special points and 
their interrelationships, and had hoped to be a big discoverer of scads of new theorems 
about them. Now, it seemed that I was not only going to get scooped, but scooped by a 
machine! (Of course, I was sneakily planning to use a machine myself, but I 
certainly wasn't going to say that the machine had done the research!) 

Learning more from Gale's column about Kimberling's successes did not cheer 
me up. In fact, since I read the column just a couple of days after making my big 
discovery, I immediately started worrying that the crystal - my crystal! - might be 
among the scads of results churned out by his machine. What a strange coincidence 
it would be for a human and a machine to have independently and 
contemporaneously come up with the same fundamental new finding about triangles 
after a 60-year hiatus in the field! 

Even though I hated the idea that my discovery might not be mine because I came 
along just a few months too late, I nonetheless found the whole Kimberling story 
extremely thought-provoking, and wrote to Gale to find out Kimberling's address. In 
my letter, I reflected as follows on my perplexity: 

I find the interconnections of these "centers" of a triangle beautiful and mysterious. Each 
such relationship might be likened to a little gem of a poem. Therefore I was in a way 
upset to hear that these little "poems" are being turned into trivia- at least in the sense of 
new ones now being producible in massive quantities in a mindless, mechanical manner. 
We would certainly not like it if we found that a computer could be easily programmed to 
come up with deeply moving poems in a mindless manner. It would greatly reduce our 
feeling that poems written by humans were moving or charming if the same effect could be 
produced without any sentiment or insight behind it. 

On the other hand, despite being somewhat saddened, I was also fascinated, because these 
relationships among special points or "centers" have for me an indescribable quality of 
depth and mystery to them. The more of them I know, the better. Who cares whether they 
were produced by a human, a machine, or an oracle? I feel that each new one brings me 
ever so slightly closer to fathoming the mysterious "essence of triangularity", even though I 
will certainly never attain that ultimate "nirvanic" state of understanding. 

If a computer had done in, say, 1955 what Gale describes in his column, it would 
have been considered earthshaking news, and the popular press would doubtless have 
touted it as an irrefutable demonstration that intelligent computers existed, even that 
computers can think. After all, what higher mental activity than creative mathematics? 
What more sublime accomplishment than the discovery of brilliant new diamonds 
in Euclidean geometry? That's how it would have been seen in the fifties, perhaps 
even by sophisticated observers. But for us in the 1990's, is there any reason to see it 
differently? I think so. 

A very large monetary prize was put up, some years ago, for "the first significant 
new mathematical theorem discovered and proven by a computer". It has not yet 
been given out. Could either of Kimberling's results concerning the Fermat and 
Napoleon points conceivably merit this prize? They are almost certainly new. They 
are indisputably elegant theorems. They were unquestionably discovered and proven 
by a computer. So only one question would seem to remain: Are they significant? 

The level of significance of new results in Euclidean geometry is of course 
debatable, as my pained musings about the worth of my own discovery clearly show. 
But it should not surprise anyone to hear that I lean toward the opinion that these two 
new theorems found and proven by Kimberling's machine are worthy findings. If a 
human had found them, the achievement would perhaps not be considered deserving 
of a Ph.D. in mathematics, but I would guess that a somewhat larger selection of the 
machine's results - 10 or 20 theorems, say -would be every bit as novel and as 
interesting as the vast majority of Ph.D. theses in mathematics. Or just for fun, let us 
assume, as in my nightmare, that Kimberling's machine found my crystal, my very 

[[ 28 ]1 



own crystal, and went on to discover many more of its properties than I have. (And 
for all I know, it actually did so!) Wouldn't that be grounds for awarding the prize to 
the machine? Or to Kimberling? 

Ah, but there is the crux of the matter. Which of the two deserves the prize? The 
program certainly wouldn't appreciate receiving an award, because the program is 
insentient- in fact, totally dumb. No matter how much one admires its output, one 
still feels that there was one and only one mind doing any mathematics of any sort 
here - and it was Kimberling's. Kimberling, not the machine, was the one who 
wanted to know how special points interrelate. Kimberling, not the machine, was the 
one who thought up the technique of numerical search using random triangles, and 
the exploitation of a computer-algebra program. Kimberling, not the machine, 
selected 91 special points to be fed in, and Kimberling, not the machine, knew their 
trigonometric characterizations. When you subtract all this out, you are left with an 
unconscious, brute-force search not all that different in flavor from the brute-force 
calculation of a billion digits of rr, which of course nobody considers a mark of 
genuine intelligence, let alone a creative or significant mathematical act. (Of course, 
maybe a trillion would be creative ... ) 

The most charitable assessment (too charitable, but leave that aside) would be to call 
this research joint work. For example, probably most of the results generated by the 
machine had considerably less esthetic appeal than the two Gale cited. I wouldn't be 
surprised, therefore, if Kimberling had to wade through a good many boring results to 
find a truly beautiful one. It would of course be far more impressive if the machine 
itself had a sense of esthetics and surprise, and once in a while printed out, "Hey, 
Clark - what do you think of this one? Isn't it a beaut?" But that wasn't what 
Kimberling was trying to do. He wasn't trying to automate the doing of mathematics­
he was trying to automate the discovery of fresh new theorems of geometry. There is a 
world of difference, when you think about it carefully. 

So I was being disingenuous above when I wrote that these theorems were 
"unquestionably discovered and proven by a computer", and that the only remaining 
issue was that of their significance. Unquestionably, my foot! Hidden in phrases like 
"discovered by a computer" -phrases that apply mental terms to computers- lurk 
some tacit assumptions about computers as autonomous agents versus computers as tools, 
which we have now brought out into the open. A discovery made by a computer and 
a discovery made through a computer are two different things indeed. We don't say 
that telescopes make discoveries in astronomy, even if they are computer-controlled! 

The question of whether to award the prize for Kimberling's work in geometry 
seems to me to depend crucially on whether the prize was intended to celebrate the 
emergence of the era of automous computer creativity, or just to give credit to people 
who creatively use a computer as a tool (and certainly Kimberling did that, in spades). 
I'm quite sure that the former was the intent, and therefore, if I were a member of the 
prize committee, I would be against awarding the prize to Kimberling and/or his 
machine, no matter what level of significance is attributed to their work by the 
mathematics world. 

Forty years ago, people were much less sophisticated at thinking about the 
distinction between computers as unjudgmental generators of information and 
computers as reflective, autonomous agents. The human mind itself was much less 
clearly understood, and the extremely different strengths and weaknesses of minds 
and machines were still to be revealed by the various successes and failures of 
artificial intelligence. Forty years ago, finding and proving beautiful and completely 
new theorems in geometry, no matter how it was done, would have been considered 
astonishing. Even a reasonably competent "computer algebra" program (and good 
ones are almost a dime a dozen today) would have been considered a major step 
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towards the mechanization of the highest levels of mentality! 
But today, we don't jump to such conclusions. If Kimberling's machine by luck 

discovered the hemiolic crystal, we would easily recognize the huge difference 
between its act of discovery and mine. In one case, the discovery would be motivated 
by deep curiosity and would involve such quintessential cognitive processes as the 
manipulation of concepts, the making of analogies, the ranking of ideas as to importance, 
the recognition of elegance, and the feeling of surprise. In the other case, the discovery 
would be made in an indiscriminate, brute-force manner with no making of 
analogies, no judgments of importance, no genuine concepts motivating it- not even 
basic concepts like "triangle" or "line" or "point", let alone meta-level concepts like 
"interesting" or "surprising" or "elegant". In one case, it would be fair to say that the 
discovery was self-motivated, whereas in the other, one would have to concede that no 
decision whatsoever came from within the "deciding agent" itself. In short, the 
computer as used by Kimberling epitomizes Lady Ada Lovelace's famous remark, 
made in her 1842 memoir about Babbage's Analytical Engine, to the effect that a 
calculating machine does precisely what it was told to do, and no more. (Her actual words 
were these: "The Analytical Engine has no pretensions whatever to originate 
anything. It can do whatever we know how to order it to perform.") 

Could any computer ever escape the Lovelacian epithet? Could a computer ever 
attain true autonomy? This is in fact my research area, and I have thought about it for 
many years. I firmly believe the answer is "yes"- and I think it will happen when 
computers, like people, have flexible concepts whose associative halos shift according to 
situation; when computers, like people, constantly make judgments about what matters 
and what doesn't, about what is interesting and what isn't, and about what is surprisingand 
what isn't; when computers, like people, can be reminded by a new situation of 
something that happened before; when computers, like people, are aware of their own 
processing at some coarse-grained level, and use that knowledge to guide themselves; 
when computers, like people, make mistakes and recognize them and learn from them; 
when computers, like people, have a sense of beauty and curiosity and are driven by it. 
All this is not around the corner, to be sure, but programs whose architecture has 
many of these features to a small degree are beginning to be designed. I don't think 
we're likely to see genuine machine creativity- creativity where the credit clearly 
should redound to the machine and not to its developers or "coaches"- for decades if 
not centuries, but at least we are gradually developing a sophisticated understanding of 
what it means to talk about such things. 

But notice a terrible irony here: The more one thinks Kimberling's geometry 
program is a mindless automaton, the stronger the argument that it has thoroughly 
trivialized the further exploration of Euclidean geometry, rendering the subject a 
mere historical curiosity, totally irrelevant to modern mathematical research. Or so it 
would appear on first sight. Actually, I think matters are more complex than this, and 
so, it would seem, does David Gale. He clearly felt that something crucial was 
lacking in what Kimberling's "robots" do. As Gale put it, "They tell us what is true but 
don't tell us why". I think this critique comes close to the mark, but misses it slightly. 
In my letter to Gale, I tried to articulate my view: 

The first program discovered, via numerical experimentation, a lot of new facts. The 
second program discovered the proofs of those facts. Now traditionally in mathematics, 
people have not distinguished between proving a fact and giving the reason for that fact's 
truth. In other words, provingis universally assumed to be the same as understanding why. 

But everyone knows that some proofs are opaque while others create clarity. This 
measure of transparency is, I think, what you were implicitly referring to when you said 
that the computer proofs don't tell us why the statements are true. But the English word 
"why" doesn't quite say enough. I think what you meant would be better expressed as 
follows: "The robots tell us what is true, and in a sense they even tell us why it is true, but 
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they don't furnish us with whys of insight." The fact is, there are "opaque why's" and "clear 
why's" (and of course all possible shades in between), and the computer- at least in this 
case - furnishes only whys that lie toward the opaque end of the spectrum. 

At the end of his column, Gale wrote in favor of intuitive understanding and 
against rigor for rigor's sake. I couldn't agree more. I have always felt that 
mathematicians give too much weight to proofs and not enough to clarity. So this 
brings up the following question: Is the only way one can come to deeply understand a 
mathematical truth via a proof? Or are there other ways of deep understanding that 
fall short of being proofs? After all, we surely understand many phenomena in the 
real world as deeply as we could ever understand anything in mathematics, yet we do 
so entirely without proof, merely through experience. Math is the only field where 
we insist that proofs and understanding are synonymous. But is this justified? Why 
couldn't a why of insight come in math, as in the real world, from experience? 

Could watching computer-graphics displays of mathematical phenomena, for 
instance, provide an alternative route to deep understanding? Couldn't our ability to 
pick up complex patterns through vision substitute, in some situations, for the 
intellectual exercise of a rigorous demonstration? Or alternatively, could one come to 
understand some mathematical fact or phenomenon with great clarity simply 
because it is analogous to something else with which one is very familiar? I suspect 
that an uncanny and mostly unconscious facility with analogies is what gave 
Ramanujan his unerring way of arriving at new mathematical truths - and it so 
often bypassed proof entirely, confounding his more orthodox colleagues. 

Questions like this probe long-standing assumptions at the very heart of 
mathematics. For this reason, I find Kimberling's computational studies to be every 
bit as philosophically provocative as the now-infamous Appel-Haken proof-by­
computer of the four-color theorem. They make one wonder, "What is math all about? 
"What are creativity and discovery all about? 

One thing that seems clear to me is that indiscriminate generation of information, 
even when it includes marvelous gems, does not constitute doing math or science. 
Again, Gale comes close to making what I think is the right point when he says, 
"Mathematics, and science generally, is concerned with much more than compiling 
a huge catalogue of facts. The hope is to find general principles from which the facts can 
be deduced." True, but a bit misleading. Even general principles are of no value if 
they are generated but then go unrecognized because of being randomly scattered 
among huge piles of less important facts. 

George Gamow in his delightful book One, Two, Three ... Infinity and Jorge Luis 
Borges in his delightful short story "The Library of Babel" both describe huge 
libraries containing every possible book, composed by the mindless mechanical act of 
combining symbols into strings. Both authors vividly convey the hopelessness of 
finding useful items in such a library, filled as it would be with such useless passages 
as "aaaaaaaaaaa ... ", "boobooboobooboo ... " (both patterns repeated forever), 
"zawkporpkossscilm ... " (blathering on randomly without any part ever being 
recognizable in any language at all), "horse has six legs and ... " (an endless recitation 
of falsities in good English), "I like apples cooked in terpentin ... " (an endless litany of 
incoherencies riddled with typos, for good measure). It's quite obvious why this 
would be such a useless place to visit. 

But now imagine a variation on this theme: The Library of All Mathematical 
Truths. On the surface, it sounds infinitely better than the Library of Babel. After all, 
included in this library would be all truths of arithmetic (1+1=2, 12xl2=144, etc.), all 
the gems of Euclidean geometry, all the beautiful theorems of number theory, all of 
real and complex analysis, all of topology, group theory, and category theory, all the 
recent foundational work in set theory and metamathematics, even Godel's 
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incompleteness theorems and their endless spinoffs... Every deep idea ever proposed 
or that ever might be proposed would be found here, as long as it is true. So every last 
one of Gale's vaunted "general principles from which the facts can be deduced" 
would be here. Sounds great, right? The problem is that there would be unimaginable 
amounts of useless garbage as well - true but useless trivia- completely burying the 
general principles, rendering them utterly unfindable and thus utterly useless. In 
fact, this starts to sound quite a bit like your typical math library, come to think of it. 

Doing mathematics has only a vague relation to knowing lots of facts or even 
being a great technician in some specialty. Drones can attain such competencies, sad 
to say. Often, these abilities only becloud truth; what really matters is knowing where to 
put the emphasis. In other words, what matters in mathematics (and in science in 
general) is the ability to reliably distinguish the very important from the merely 
interesting, the merely interesting from the mundane, and of course the mundane 
from the trivial. Without this, one is not doing mathematics in any genuine sense. 
One might as well be a Kimberling robot. 

And let's not knock the Kimberling math robots too much, anyway. What they do 
comes pretty darn close to what mathematicians often say doing mathematics is all 
about: finding new truths and proving them. Of course, people who say this usually 
haven't thought about it too much. Math really is about Gale's "general principles"­
but very often those principles go unstated and unrecognized. Why in the world is 
that so? The answer is simple: the general principles that underlie all serious 
progress in mathematics are not theorems but intuitions and images. Moreover, such 
wispy mental phenomena are most often born out of analogies. Two theorems seem 
reminiscent of each other in some abstract way, and a vague image crystallizes in 
someone's mind. All of a sudden, a torrent of new theorems pours out! But in the 
articles that ensue, the analogy that sparked it all may never be mentioned at all. 
How come? Because it is not in itself a formal notion, and mathematicians have had it 
drilled into their heads all their lives that definitions, theorems, and proofs are what math 
is about. Of course, those are a big part of math, but there's something beyond them. 

George P6lya made a laudable effort to put his finger on these ethereal kinds of 
patterns in mathematical thought in his two scholarly volumes Induction and Analogy in 
Mathematics and Patterns of Plausible Inference, as well as his more popular book How to 
Solve It. Unfortunately, P6lya was exceptional. Few mathematicians have the courage 
to write about their images and intuitions - after all, what could be worse for a 
mathematician than being caught saying something wrong or vague? Perhaps this is 
why Khinchin didn't draw any pictures, even though he surely had pictures- my 
pictures- in his mind. Instead, he churned out a raft of formidable formalistic stuff, 
because doing so was very orthodox, and therefore very safe. Maybe I'm wrong about 
Khinchin, but I suspect that this is true of a large percentage of mathematicians. 
Professional insecurity, then, makes mathematicians do a pretty good job of imitating 
Kimberling's mindless math robots! 

Here is an amusing analogy. Maybe each individual human mathematician is 
like a mindless Kimberling robot spewing large numbers of raw mathematical truths 
(i.e., articles) into the Library of All Mathematical Truths, and the mathematical 
community as a whole is a bit like Kimberling, sifting and weighing the articles, 
judging their levels of interest and importance. In this analogy, the highest 
intelligence- in fact, the only intelligence! -would reside in the math community 
as a whole. Of course this is a joke, but is there not a grain of truth in it anyway? 

Perhaps the best characterization I have found of mathematics is this: "Math is the 
study of the beauty of the interrelationships of patterns", with strong stress on the word 
"beauty". The indispensable role of esthetics is the crux of the matter, and it's what 
makes math-making so extraordinarily hard to mechanize, to model. 
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Math-making being as elusive as it is, I feel it could be instructive to make a few 
high-level comments about this particular act of geometry-making, an act that I was 
fortunate enough to be able to watch from a ringside seat as an ongoing process in my 
own mind. First of all, as I hope to have made clear, I am not much of a geometer. I 
am just a geometry amateur, and something of a bumbling amateur, at that. More 
often than I like to admit, I have "false epiphanies" in which I mistake trivia for 
profundities, and I have a rather primitive idea of how to construct proofs. Compared 
to a titan like H. S. M. Coxeter, I have but a minuscule storehouse of knowledge. So 
why in the world was I the lucky one to have found this gem? Although some luck 
was certainly involved, I don't think it was a complete accident. Here is my feeling 
about it. 

First of all, I am apparently just a bit more taken than are most geometers with the 
mystery of the special points of a triangle. In fact, I doubt that most would use the 
word "mystery" in this connection. Yet in these points and their beautiful patterns I 
sense something almost mystical about the "essence of triangularity". To most 
geometers, it probably doesn't feel quite that compelling. That in itself is symptomatic 
of a significant attitude-disparity. And my unswerving fascination has led me on, 
something like an infatuation or even an obsession, to muse for months on end about 
special points and their interrelationships. I didn't call Chapter 0 of this essay 
"Bewitched" for nothing! So that's the first point. 

Secondly, I am someone who for years has been in love with analogies, and with 
the concept of analogy itself. Not only do I use analogies in my thinking and my 
writing all the time, I am also constantly jotting down other people's analogies, 
wondering how they arise, pondering what makes some of them good and others bad, 
and musing about what they say about the subcognitive mechanisms of the mind. 
For almost 15 years, my professional research has been largely about making a 
computer model of how people make analogies and use them in the creative process. 
So you can imagine that when I came across the analogy between the Euler and 
Nagel segments, I was electrified. It was not just a beautiful analogy, but a beautiful 
analogy smack-dab in the midst of a field that I was intoxicated with already. It was a 
mind-boggier of an analogy, and to add to that, I was baffled as to why nobody but 
nobody had mentioned it in their books on geometry since Roger Johnson's 1929 
treatise. This struck me as so irrational and narrow-minded that it also served as a 
kind of goad to my curiosity. Was there something I was missing? Was the Nagel 
segment, despite its seeming fundamentality, just a trivial sidekick to the Euler 
segment? Was it worthy of nothing but a footnote (if even that) when the Euler 
segment was treated like a glamorous movie star? I couldn't figure this out, and the 
image of these two "twin" segments, each one cutting the other in that strange, 
lopsided way, just etched itself into my brain. 

These two factors together added up to something unique, I guess- this special­
points-of-a-triangle analogy par excellence started swirling around in my head over and 
over again. I couldn't let it loose, or rather, it wouldn't let me loose. It was the analogical 
unity of the two segments that caught my imagination, much more than either 
segment on its own. Coolidge's systematic, point-by-point listing of parallels between 
them certainly was a critical element, and, I have to say, so was the bizarre fact that he 
himself voiced no curiosity as to why there was this deep and beautiful analogy at the 
heart of triangularity. The fact that this obvious, salient question went completely 
unasked was almost as much a source of mystery to me as was the analogy itself. 

So I see two factors- (1) being a special-points aficionado, and (2) being an analogy 
nut- adding up to a third key factor, which is a kind of mixture of the two: obsession 
with a fantastic special-points analogy. This was enough to propel me into the 
discovery. Being a geometry expert was apparently not a prerequisite to this 
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discovery. Being a mere bumbler was good enough! Of course, I was not a typical 
bumbler - I was a bumbler with one hell of a tool to help compensate for my 
bumbling- namely, Geometer's Sketchpad. 

Thus, one further key factor that mustn't be overlooked is the fortuitous existence 
and tremendous power of Geometer's Sketchpad. Somehow, this program precisely 
filled an inner need, a craving, that I had, to be able to see my beloved special points 
doing their intricate, complex dances inside and outside the triangle as it changed. 
And my own personality welcomed a computer program to explore mathematics, and 
felt that it afforded visions of geometric truth, an attitude that perhaps would be a little bit 
less accepted by a traditional mathematician. In short, living in the 1990's and having 
a Macintosh and enjoying computers was also part of it. 

I have to admit, there is one last crucial factor that allowed me, of all people, the 
privilege of making this discovery (if discovery it is): the incredible down playing 
and neglect, by several generations of mathematicians the world over, of the 
"anonymous" segment so much like Euler's. So, to mathematicians everywhere, for 
not looking in this direction, I hereby express my great debt of gratitude. Thank you! 

Putting on my cognitive-scientist's hat now, I would like to point out something that 
struck me as I reviewed this chronicle of my discovery process - namely, the large 
number of analogies, good and bad, that figured critically in it. Here, then, is a list of 
the main analogies that I think served as guiding or misguiding forces, with a brief 
comment on each one: 

(1) My vague, intuitive feeling that special points in a triangle are very much 
like special constants on the real line, such as e and rr. Since I have deeply 
loved such constants from childhood, this analogy was in part responsible 
for getting me so hooked on geometry. 

(2) Coolidge's systematic mapping between properties of the Euler segment 
and properties of the Nagel segment. This was a bolt out of the blue. 

(3) Seeing the three parallel lines HN, OJ, and PS as a physical instantiation of 
the Euler/Nagel analogy- in other words, a meta-analogy that maps a 
visible geometric diagram onto an abstract analogy. 

(4) Looking at the crisscrossing-medians diagram that arose in a simple puzzle, 
and recognizing in it the much more profound Euler/Nagel diagram. 

(5) Mapping the new point V onto the known points P and S because of their 
analogous positional roles in their respective segments, and concluding 
that Vought to be the center of some important circle associated with ABC. 

(6) The scramble-brained analogy that led me so far astray for several hours 
one day that I eventually felt compelled to return to Coolidge's book for 
confirmation of my sanity - where I then chanced upon another key 
analogy - namely ... 

(7) The idea of constructing T's auxiliary triangle, arrived at by analogy with 
two other constructions described in Coolidge. 

(8) Looking at the behavior of a certain point marked "0" in a certain 
dynamogram, and seeing it as Nagel-point-like behavior with respect to a 
triangle it was inside. 

(9) Seeing the three letters "ONT" not just as standing for concepts involved in 
an abstract relationship, but as symbolizing one side of the crystal. 

(10) Jumping from a discovery attached to the NOT side of the crystal to the idea 
that maybe two further analogous results would hold, attached to the HUN 
and TIH sides of the crystal. 

[[ 34 ]1 



Some of these- especially numbers 3, 4, 8, and 9- may not strike you exactly as 
analogies. Why does recognizing Nagel-point-like behavior, to take just one example, 
constitute an analogy? At this point, I turn for help to someone whose mathematics 
and whose musings on mathematics I have always greatly admired - Stanislaw 
Ulam. As Heinz Pagels reports in his book The Dreams of Reason, one time Ulam and 
his mathematician friend Gian-Carlo Rota were having a lively debate about artificial 
intelligence, a discipline whose approach Ulam thought was simplistic. Being 
convinced that perception is the key to intelligence, Ulam was trying to explain the 
subtlety of human perception by showing how subjective it is, how influenced by 
context. He said to Rota, "When you perceive intelligently, you always perceive a 
function, never an object in the physical sense. Cameras always register objects, but 
human perception is always the perception of functional roles. The two processes 
could not be more different. .. Your friends in AI are now beginning to trumpet the 
role of contexts, but they are not practicing their lesson. They still want to build 
machines that see by imitating cameras, perhaps with some feedback thrown in. 
Such an approach is bound to fail. .. " 

Rota interjected, "But if what you say is right, what becomes of objectivity, an idea 
formalized by mathematical logic and the theory of sets?" 

Ulam parried: "What makes you so sure that mathematical logic corresponds to 
the way we think? Logic formalizes only very few of the processes by which we 
actually think. The time has come to enrich formal logic by adding to it some other 
fundamental notions. What is it that you see when you see? You see an object as a 
key, a man in a car as a passenger, some sheets of paper as a book. It is the word 'as' 
that must be mathematically formalized ... Until you do that, you will not get very far 
with your AI problem." 

To Rota's expression of fear that the challenge of formalizing the process of seeing a 
given thing as another thingwas impossibly hard, Ulam gave the droll reply, "Do not lose 
your faith. A mighty fortress is our mathematics." I personally don't think that 
mathematical formalization is the key to making machines that can "see as", but that 
was Ulam's opinion. In any case, we can take Ulam's key word "as" and see it as an 
acronym for "abstract seeing". Then Ulam's thesis becomes "AS is the key to AI", a 
thesis to which I fully subscribe. 

You could look forever at a point moving around on a screen but get nowhere in 
understanding its motion, unless it were to cause some pre-existing concepts in your 
unconscious mind to bubble up toward conscious recognition. In my case, I watched a 
point move around and some aspects of its behavior rang a bit of a bell. The more I 
watched, the louder the bell got. First the bell was just saying inside the triangle. Then it 
was saying often near an edge. Then often near the longest side. Then often down near the 
pointy end of the triangle. At roughly this moment, the notion of "Nagel point" burst into 
my conscious mind, and I suddenly saw the point's motion in a completely new way. 
I had wheeled in a whole new cluster of concepts in terms of which to frame what 
was objectively there for cameras to see in their context-free way. 

Much the same goes for analogies 3, 4, and 9. Any number of people have looked 
at a picture of crisscrossing medians cutting each other in their characteristic way, yet 
not seen the Euler and Nagel lines in it. The difference was, of course, that I was 
rather obsessed with the Euler/Nagel connection, so I came to the medians picture 
with a highly biased eye. These cases exemplify Ulam's "AS": seeing something as 
something else. They are the kinds of things that cognitive scientists interested in the 
deep underpinnings of creativity have to study very carefully. 

Like me, Ulam was fascinated by analogies, and he reveled especially in very 
abstract ones, often making analogies between analogies, and carrying the game of 
"meta" to even higher levels. (To celebrate this trait of her husband's mind, Fran~oise 
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Ulam chose the title Analogies between Analogies for a posthumous book of his writings 
ranging over a vast variety of subjects, mathematical and otherwise.) Once again, I 
think Ulam hit the nail on the head. Mathematical thinking is permeated with 
analogies between analogies, although it is not often recognized as such. 

It is time to wind up this lengthy and multifaceted discussion, but I could not 
conclude without saying that even during the writing of this essay, I found a new 
way of looking at the Garland Theorem, which led to a new way of looking at the 
hemiolic crystal, which in turn yielded two important extensions of the Garland 
Theorem itself. (Around and around it goes!) 

What I noticed was that every line in the Garland Theorem came from the 
nesting of a little hemiolic crystal hunoti, belonging to some point's auxiliary triangle, 
inside a corner of the big hemiolic crystal HUNOTI. The various points whose 
auxiliary triangles were involved were, in fact, H, N, and T. I drew a picture that 
captured this set of nestings in a very pretty way. 

N 

H 

New segment 

u~========~======~~ 

0 
Euler segment 

Nagel segment 

T 

This seemed like such a rich picture that I felt I should really consider the general 
case, involving the auxiliary triangle of an arbitrary point X. In my mind, I could 
almost see X moving around and its associated little crystal following along. To find 
new results, all I would need to do was to slide X around, locating those special places 
where its little triangle hunoti fit neatly into the big triangle HUNOTI, giving 
alignments of several points at once. I could do this in my mind with some effort, but 
it seemed more exciting to watch the process, so I constructed a dynamogram. 
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H 

c 

This dynamogram allows you to find all 
the identities comprising the Garland 
Theorem, and to see why they are true. 
HVNOTI is the hemiolic crystal of ABC, 
and the shaded hunoti is the hemiolic 
crystal of the auxiliary triangle of point X 
(bold lines). As X m(JVes around, hunoti 
will follow along, and in certain positions 
hunoti will slide into alignment with 
various subtriangles of HUNOTI, thus 
revealing hidden identities among points. 

The first reward I reaped from this dynamogram was the observation that when X 
coincides with any of the "vowel points" IOU, its little crystal hunoti aligns in a 
different way with points of HUNOTI- not nesting into a corner, but nestling against 
a side. This simple observation instantly provided 12 new results- four coming from 
each vowel point. 

VVhen the variable point X coincides 
with I, hunoti lies snugly along the side 
HIT. As a consequence, points I and i 
are identified, point P coincides with 
point u, V coincides with o, and S with 
n. Four identities are thus collected from 
this simple matchup of points. 

B 

T 

H 

I noticed that in this "side-nestling" type of picture, there were always two points of 
hunoti sitting on the side of HUNOTI, exactly halfway between the chosen vowel point 
and its two neighboring vertices. For example, in the picture above, points hand t, 
flanking the vowel point I, do this. But if you now look back at the earlier pictures 
where hunoti is nestling in a corner of HUNOTI, you find that these same two points 
get dijferentlabels. For example, one finds that the spot labeled h in this picture (i.e., the 
spot halfway between Hand I) is labeled i in the fancy corner-nesting picture. This 
tells us that "The I of His the H of I", or in less formal language, the incenter of the 
orthocenter's auxiliary triangle is the orthocenter of the incenter's auxiliary triangle. 
Altogether, six new identities of this sort are furnished by this observation. 

A similar kind of comparison of two positions for point X provided three more 
identities involving the centroid a which had up till then been curiously immune to 
being the subject of any garland-like identities. 

Altogether, then, I had reaped a much richer harvest than I had ever dreamed of. 
My full Garland Theorem could be combined with the OVIPUS-hunoti Theorem, and 
the two of them could be concisely summarized in the following schematic way: 
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Garland Theorem, full version. For any point X, define X's auxiliary triangle, 
denoted "X-tl", by joining X with each of A, B, and 4 and connecting the 
midpoints of those segments. Also let "M-il" stand for ABCs median triangle. 
The following relations then hold among the points of the various hemiolic 
crystals: 

OVIPUS = hunoti (M-Il) [meaning 0 = h (M-il), V = u (M-il), etc.]; 
UPIH= noth(Hil); OSUN= tihn(N-il); IVOT= hunt(T-Il); 
SOVP= uoih (Oil); VIPS= oiun(I-Il); PUSV = iuot(Uil); 

i(Hil) = h(I-Il); u(Hil) = h(Uil); 
u(N-Il) = n(Uil); o (N-Il)= n(Oil); 

o (T-Il)= t(Oil); i(T-Il) = t(I-Il); 
h(Gil) = g(Hil); n(Gil) = g(N-il); t(Gil) = g(T-il). 

Each of these "equations" provides a description (or set of descriptions) for some 
point (or set of points). For example, the equation UPIH = noth (Htl) tells us four things, 
one of which is that P (the nine-point center) is the circumcenter (i.e., the 0) of Hs 
auxiliary triangle. This is one of the famous properties of the nine-point center. We 
can actually read off some interesting features of the V-point from this theorem. The 
equation SOVP = uoih (Oil) tells us that Vis the incenter of the auxiliary triangle 
belonging to 0, and VIPS= oiun (I-ll) tells us that Vis the circumcenter of the auxiliary 
triangle belonging to I. When you look at two circles involved, you find that one of 
them is the same size as the nine-point circle, and the other is the same size as the 
Spieker circle. So my early hunch that V might have a fascinating new circle 
associated with it was not too far off- it's just that we have to settle for two circles 
instead of one. 

There are two notable circles centered on V, one 
of which (V # 1, lightly shaded) is the same size as 
the nine-point circle, and the other of which (V #2, 
heavily shaded) is the same size as the Spieker 
circle. Together, these two circles confer on point 
V a certain level of distinction, although not yet as 
impressive as that of P or S. However, there may 
well be more discoveries to come. 

B 

A 

c 

This is pretty much where matters stand, now. There is a large and symmetric 
batch of results that go at least some distance toward resolving the mystery of why 
there is such a tight analogy between the Nagel segment and the Euler segment, and 
between the Spieker circle and the nine-point circle. This set of results doesn't 
completely explain those mysteries, of course, but it reveals them to be merely isolated 
elements of one much larger complex of parallel and cyclically intertwined results. 

The story of the hemiolic crystal is by no means a closed book. Indeed, I see 
many fascinating avenues to explore. One has to do with the fact that you can take an 
unlabeled picture of a hemiolic crystal and legally label its points in four different 
ways. (It might seem that there should be six ways to label it, but as it turns out, there 
is a constraint: the UTmedian cannot be as long as the Euler median OR This limits 
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the possible labelings to four.) Thus one has HUNOTI, HITONU, NUHITO, and 
NOTIHU. All the "cousin" crystals belong to cousin triangles ABC, A'B'C', A"B"C", 
and A '"B"'C"'- and so the obvious question is: How are all four cousin triangles 
related to one another? 

But the biggest remaining mystery for me concerns the meanings of the points U 
and T. Although they play beautifully symmetric roles in the Garland Theorem, I 
have so far been unable to find any concise and catchy characterizations for them on 
their own. Just what is the T-point? What is the U-point? Mysteries beckon, mysteries 
call, mysteries ever lure me on ... 

A few weeks ago, flush with excitement about the earliest of these discoveries, I 
penned a letter to the great geometer H. S.M. Coxeter, hoping to see if my ideas were 
new and of merit. After briefly describing my new-found passion for geometry and 
recounting my discovery of the hemiolic crystal and its properties, I concluded with 
the following lines: "I will never be quite the same, after having drunk so deeply 
from the infinite well of geometry. My life is in some central way forever changed, 
thanks to the mysteries and beauties of triangles and circles." And so it is. 
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