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Introduction: On Symmetry-Breaking and Projective Geometry 

It is well known that in projective geometry there is a perfect symmetry 
between points and lines, known as duality. Thus on the projective plane, not only 
does every pair of points determine a line, but every pair of lines determines a 
point. This means that there are no parallel lines. 

Projective geometry has some unexpected and counterintuitive aspects. For 
instance, a projective line and a projective point are both "closed" objects. The 
closure of points is a very simple and familiar notion, although "closure" is an 
unfamiliar name for it. Imagine you have tacked a line to some fixed point on the 
projective plane; now "ping" the line with your finger so that it spins about the 
point, like a spinner in a board game. It will of course return to its original position 
over and over again. This might be called the rotational closure of a projective­
plane point, and since the same property holds for points on the Euclidean plane as 
well, it is hardly astounding. In fact, it is hard to imagine how it might have been 
otherwise. How else could a line tacked to a point behave when pinged? 

Were this all there were to the notion of closure, it would not be clear why it 
deserves mention- it would seem to be a trivial, self-evident, necessary fact. Even 
granting that this property might deserve an official name, it would still not be clear 
why the property should be attributed to the point in question, rather than to, say, 
the spinning line, or to point and line taken as a unit. 

However, this is not all there is to the notion of closure in projective geometry. 
The essence of the concept emerges far more clearly when one considers the dual 
property - namely, the fact that if one takes any fixed projective-plane line and 
"pings" a point on it so that it zips along the line, the point will return to its original 
position over and over again, like a racecar zipping around a closed track. This, 
despite the fact that projective-plane lines are "straight". This very counterintuitive 
property of the projective plane might be called translational closure. In this case, it 
seems natural to attribute the quality of closure to the line itself, rather than to the 
point zipping along it, or to some point-line unit. After all, it is the track that is 
closed, not the racecar on it. Similarly, a projective-plane line itself seems to form 
some kind of loop, and all the point does is simply reveal this inherent loopiness. 
In fact, a projective-plane line does not just seem like a loop, it is a loop - a 
completely straight loop, to boot (whatever that means). 

If one thinks long and hard about the duality of projective geometry, one runs 
into many puzzling questions. For instance, if there is a perfect symmetry between 
points and lines, then how is it that lines seem to be made of points, and not vice 
versa? How is it that lines seem to be infinite in size, and points infinitesimal (and 
not the reverse, or something more symmetrical)? When one "pings" a line about a 
fixed point, the line seems to sweep across the entire projective plane, covering 
every last bit of space, and yet when one pings a point along a line, the moving 
point would hardly appear to cover every part of the plane- not even close! How 
can these seeming asymmetries (and many other similar anomalies) be reconciled 
with the perfect duality claimed to hold between points and lines? 

Such thoughts cannot help but lead one to a reexamination of the intuitions 
underlying the very notions of "point" and "line". When one looks carefully, one 
unearths a host of "Euclidean prejudices" that unconsciously come in and 
contaminate one's supposedly neutral imagery. In order to unbury these intuitions, 
it is very useful to consider the nature of the relationship between Euclidean 
geometry and projective geometry. 

This intimate relationship is usually explained by saying that Euclidean 



geometry is what results when a particular line of the projective plane is singled out 
and called the line at infinity. This line, and all the points on it, are considered to be 
inaccessible or "ideal". Two lines whose common point lies on the line at infinity 
are said to be parallel. The upshot of this deletion of one line (and its component 
points) is a rich new geometry with many features lacking in projective geometry: 
parallel lines, perpendicular lines, lengths, angles, circles, and so on. 

Euclidean geometry could thus be described as arising from projective geometry 
by destroying the symmetry between points and lines. In fact, removal of the line at 
infinity somehow "damages" all the remaining lines, in the sense that now all lines 
are (translationally) open. Points, however, remain intact - they are still 
(rotationally) closed, as was described above. 

Projective geometry 

Lines are closed; 
no parallel lines exist. 

Delete one line (the "line at infinity") 
and all the points on it; all remaining 
lines are thereby broken. 

Euclidean geometry 

Lines are open; 
parallel lines exist. 

The standard view of the relationship 
between projective and Euclidean geometry 

As one thinks about these matters more and more, one starts to build up a 
realization that points in the projective plane cannot be imagined in quite the same 
way as they are imagined in the Euclidean plane. Even the simple act of calling a 
point "closed" somehow conjures up a swarm of lines passing through the point. 
Duality eventually forces one into thinking of a point as a complex object, just as 
complex as a line. 

Just as a line consists of an infinite translational set of points, one realizes that a 
projective point, unlike a Euclidean point, must consist of an infinite rotational set 
of lines. Someone might object and ask, "Why say that a point consists of many 
lines? Why not merely say it is associated with an infinite set of lines?" The answer 
would be that if true conceptual symmetry is to hold, then points must be to lines as 
lines are to points, and this means that "consists" has to be the proper term. 

Of course, this new vision of points as "big" objects leads to a total overthrow of 
old Euclidean prejudices, and requires deep rebuilding of one's intuitions. Let us go 



back, for instance, to the puzzle of the spinning line covering the full plane whereas 
the zipping point seems to fail to do so. If one is careful, one realizes that Euclidean 
prejudices pervade one's sense of what the projective plane is. To be concrete, the 
natural feeling that the spinning line reaches every "part" of space reveals the 
prejudice that the "parts" of space are points. One might counter with the question, 
"But what else could space consist of?" The answer is: lines. 

Consider once again a point running along a fixed line. A moment's thought 
shows that this point, in the course of its travels, is momentarily on every single 
line on the plane (remember, every line in the projective plane crosses any given 
line- there are no parallels). In that sense, its one-dimensional trip does cover the 
plane entirely. Moreover, consider the spinning line tacked to a fixed point. 
Although that line undeniably sweeps through every point of the plane, it certainly 
does not come into exact alignment with every line of the plane. And so one sees 
that by enlarging one's perspective on the nature of points and lines, full symmetry 
is restored, at the price of reconceptualizing the plane itself as consisting of either 
points or lines, depending on circumstances. Full symmetry means that one accepts 
the idea that, in projective geometry, lines are made of points, and points are 
likewise made of lines; space is made of points, and space is equally made of lines. 

As one gradually gains a deeper and deeper appreciation of the perfect 
conceptual symmetry of the projective plane, one's sense of what points and lines 
really are - even Euclidean points and lines - undergoes a subtle but genuine 
change. One is led, for example, to looking for duals, inside Euclidean geometry, of 
all sorts of phenomena. One begins to think of angles and lengths as dual to each 
other, for instance. Often such heuristics lead to the invention of new Euclidean 
concepts, and sometimes to the discovery of new theorems. However, since the 
Euclidean plane is not the projective plane and duality is not a true symmetry in 
Euclidean geometry, there is no rigor to this process. It is hit-or-miss, which makes 
it all the more of an adventure, but sometimes it is quite frustrating and 
disappointing when an idea suggested by this approximate duality simply doesn't 
pan out at all. 

When one jumps back and forth between Euclidean and projective geometry 
sufficiently often, one becomes very sensitive to these issues of duality and 
symmetry, and one goes on the lookout both for unexpected appearances of duality 
within Euclidean geometry and for unexpected appearances of nonduality within 
projective geometry. The latter, of course, are simply cues that one's intuitions are 
still insufficiently projective, and can always be fixed up by replacing Euclidean 
prejudices by symmetric notions. 

There is, however, one other place to look for a violation of duality, which is 
not apparent at first- namely, at the interface between the two geometries. In 
other words, it has to do with the very manner in which Euclidean geometry comes 
out of projective geometry. Euclidean geometry, as was stated above, is usually cast 
as resulting from projective geometry by the deletion of a line. But this is 
asymmetric! Why not delete a point- would that not be just as good? This simple 
idea is the premise underlying "Euclidual geometry", which is the principal subject 
of this article. (Incidentally, the term "Euclidual", coined as a combination of 
"Euclid" and "dual", is meant to be accented on its second syllable, so that it rhymes 
with "residual".) 



A more symmetric picture 

Projective geometry 

Points are closed, lines are closed; 
parallelism does not exist. 

Delete one line and all the points on it, 
creating (translational) infinity; 
all remaining lines are thereby broken. 

Euclidean geometry 

Delete one point and all the lines on it, 
creating (rotational) infinity; 
all remaining points are thereby broken. 

Euclidual geometry 

Points are closed, lines are open; 
parallel lines exist. 

Lines are closed, points are open; 
parallel points exist. 

The Alien yet Familiar Face of Euclidual Geometry 

Because projective geometry is perfectly symmetric, deleting a line and deleting 
a point should give exactly the same thing- or rather, exactly isomorphic things. 
And indeed they do. Euclidual geometry is, as its name implies, the exact dual of 
Euclidean geometry. In some sense, then, there is nothing conceptually new in 
Euclidual geometry. How could there be? It is formally identical to Euclidean 
geometry, simply with the concepts "point" and "line" exchanged. 

And yet, somehow, it is different- radically different. How and why can this 
be the case? The answer is, the terms "point" and "line" conjure up pictures in our 
heads, and that is an inevitable part of understanding the meaning of sentences 
involving those terms. We are not at all like the imaginary mathematicians, 
posited in so many books on the philosophy of mathematics, who take certain 
primitive terms as "undefined" and simply let them be whatever the axioms and 
theorems define them as being. That is a formalistic, fairy-tale notion of what the 
act of doing mathematics is, stemming from a period when mechanizable deductive 
logic, not ineffable psychological imagery, was considered to be the essence of 
mathematics. Fortunately, that misguided idea is gradually receding into the past as 
the roles of intuition, imagery, and so on come to be recognized for what they are. 

Even though in principle, points and lines are formally interchangeable in 
projective geometry, in practice no such symmetry is used in the figures in books on 
projective geometry. For instance, no author on projective geometry would ever 
have the gall to label the figure shown below "two points meeting in a line": 

The reason, of course, is that such a label is patently wrong. What we see is two 



lines meeting in a point, not the reverse. We have strong feelings about what lines 
and points are, and our figures must somehow respect those feelings, at least to the 
extent that they can do so while also remaining faithful to the phenomena they are 
intended to represent. 

It is for this reason that Euclidual geometry, despite its total formal 
indistinguishability from Euclidean geometry, will turn out to have an utterly alien, 
bizarre, counterintuitive, and disorienting feeling to it. Euclidual geometry breaks 
the symmetry of projective geometry in exactly the opposite way that Euclidean 
geometry breaks it. In other words, Euclidean and Euclidual geometries represent 
two modes of symmetry-breaking that together constitute a symmetric duo. Thus, 
where lines become open and points remain closed in Euclidean geometry, in 
Euclidual geometry it is the reverse: points become open while lines remain closed. 
More concretely, this means that when you ping a tacked line, it does not return to 
its initial position, but rather, keeps on twisting forever without ever making it 
back. And of course, when you ping a point on a line, it does return, just as it did in 
projective geometry. Thus to us Euclideans, Euclidual geometry is even more 
counterintuitive than projective geometry is, because in it, two totally taken-for­
granted aspects of Euclidean geometry are overturned: the openness of lines and the 
closure of points. 

How can this be understood? How can one build up intuitions for this strange 
new universe? In the several double-columned pages that follow, an elaborate and 
systematic comparison between Euclidean and Euclidual geometry will be presented, 
including a fair number of pictures in order to help intuition along. Despite the fact 
that it is nothing but an isomorphism and in that sense a triviality, this extended 
analogy contains many extremely subtle aspects that take time to digest. It is 
therefore recommended that it be taken quite slowly, point by point (and line by 
line, of course). 

The way in which fresh new light is repeatedly shed on Euclidean geometry as 
one explores Euclidual geometry is strongly reminiscent of what happens when, in 
learning a foreign language, one starts to gain glimpses of how one's native 
language must seem to people "on the outside". Things that as a monolingual one 
had taken entirely for granted start to seem far from inevitable, and sometimes 
downright strange. For instance, to a monolingual speaker of English, it is probably 
inconceivable that a language could get by entirely without definite or indefinite 
articles- they seem like necessary ingredients for expressing what one means, and 
moreover, they seem utterly natural and obvious. But when one encounters a 
language like Latin or Russian or Chinese, in which there are no articles at all, one 
does a double-take and begins to see that words for "the" and "a" are not inevitable 
and necessary features of every language, but simply possible ingredients of 
communicative precision. Likewise, one sees that genders and declensions, which 
are close to nonexistent in English, can add flavors and flexibilities that English 
simply lacks, to a language that has them. Of course, there are myriad other cross­
language distinctions that could be mentioned, such as the existence of different 
singular and plural noun forms, which some languages lack, or the existence of 
verbal modes and tenses that English lacks, and so on and so forth. To come into 
contact with each one of these cross-language differences is to discover a hidden axis 
of variability that one would never have suspected existed if one had remained 
entirely immersed in English. 

To be sure, similar disorienting (but in the long run, super-orienting) 
experiences have happened before in the history of geometry - most notably in the 
discovery of non-Euclidean geometries, but also in the invention of four-



dimensional and higher-dimensional Euclidean geometries. However, Euclidual 
geometry is especially powerful in this regard because, unlike the others, it is 
entirely isomorphic to Euclidean geometry, and thus very familiar in one sense, 
while at the same time being utterly alien in a different sense. 

Perhaps the act of steeping oneself in Euclidual geometry might best be likened 
to trying to gain fluency in "hsilgnE" - totally time-reversed English, of the sort 
that can be heard when a recording of normal English speech is played backwards. 
Some of the sounds of hsilgnE are very easy to imitate well ("m", for instance), but 
others are exceedingly difficult. For instance, the word "two", when time-reversed, 
sounds something like "whoosh!", although normal symbols can't quite capture the 
abrupt quenching of the "sh" sound that takes place at the end. The naive 
assumption that a time-reversed "t" would sound much like a normal "t" is utterly 
wrong, because of the explosive attack. This is the kind of clear but subtle revelation 
about English that one would never obtain, were one not exposed to the alternative 
language. 

Moreover, the grammar of hsilgnE, while obviously perfectly isomorphic to 
that of English, is nonetheless very alien to our way of thinking. How could anyone 
feel comfortable putting subjects at the end of sentences, or adding pluralization and 
past-tense markers to the beginnings of nouns and verbs, for instance? One could 
easily spend a lifetime trying to internalize the strange ways in which native hsilgnE 
speakers form sentences completely effortlessly - and yet by simply recording 
oneself and playing the tape backwards, one can hear one's own voice doing it 
flawlessly! 

This kind of half-alien, half-normal feeling is about as close as one can come to 
the experience of stepping into the Euclidual universe. 
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The Euclidean plane is made of infinitely many points, 
resembling an infinite case of chicken pox. 

The Euclidual plane is made of infinitely many lines, 
resembling an infinite set of Pick-up Stix. 
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Denizens of the Euclidean plane 

0 

Euclidean point 
(primitive entity 

havzng no constituents) 

Euclidean line 
(composed of 

Euclidean points) 

Euclidean line segment 
(composed of Euclidean points) 

Denizens of the Euclidual plane 

Euclidualline 
(primitive entity 

having no constituents) 

Euclidual point 
(composed of 

Eucliduallines) 

Euclidual point segment 
(composed of Eucliduallines) 



Euclidean Geometry 

The Euclidean plane is composed of 
infinitesimal, indivisible entities called 
points. 

A pencilpoint is a tool that, when 
placed on a Euclidean piece of paper, 
makes a point. 

A line is a composite entity that 
contains infinitely many points, 
whereas a point, being infinitesimal 
and indivisible, does not contain any 
lines at all. 

The fundamental operation that 
makes a line out of many points is 
sliding, also known as translation. 

When a pencilpoint is held against a 
ruler and slid, it traces out many points 
constituting a finite portion of a line­
a line segment. 

There is a special line, called the 
line at infinity. All points that belong 
to it are called points at infinity. This 
line and its constituent points do not 
belong to the proper Euclidean plane. 

A line is formed by translating a 
point from -oo to +oo. Translationally 
speaking, therefore, a line is not just 
composite, but infinite in extent. 

A line, if translated along itself (i.e., 
so that each of its constituent points is 
carried into another), remains exactly 
the same line. 

By contrast, if a line is rotated, no 
matter by how little, it becomes a 
different line. Rotationally speaking, 
therefore, a line has infinitesimal 
extent. 

Points are rotationally finite (i.e., 
closed) in the sense that if you spin a 
line about a fixed point, it returns to its 
starting position. 

Lines are translationally infinite 
(i.e., open) in the sense that if you slide 
a point along a fixed line, it will 
approach the line at infinity but will 
never reach it; the point will therefore 
never return to its starting position. 

When a point travels between any 
two points on a given line, it traces out 
a line segment. 

Euclidual Geometry 

The Euclidual plane is composed of 
infinitesimal, indivisible entities called 
lines. 

A rangeline is a tool that, when 
placed on a Euclidual piece of paper, 
makes a line. 

A point is a composite entity that 
contains infinitely many lines, whereas 
a line, being infinitesimal and 
indivisible, does not contain any points 
at all. 

The fundamental operation that 
makes a point out of many lines is 
twisting, also known as rotation. 

When a rangeline is held against a 
rotor and twisted, it traces out many 
lines constituting a finite portion of a 
point- a point segment. 

There is a special point, called the 
point at infinity. All lines that belong 
to it are called lines at infinity. This 
point and its constituent lines do not 
belong to the proper Euclidual plane. 

A point is formed by rotating a line 
from -oo to +oo. Rotationally speaking, 
therefore, a point is not just composite, 
but infinite in extent. 

A point, if rotated about itself (i.e., so 
that each of its constituent lines is 
carried into another), remains exactly 
the same point. 

By contrast, if a point is translated, 
no matter by how little, it becomes a 
different point. Translationall y 
speaking, therefore, a point has 
infinitesimal extent. 

Lines are translationally finite (i.e., 
closed) in the sense that if you slide a 
point along a fixed line, it returns to its 
starting position. 

Points are rotationally infinite (i.e., 
open) in the sense that if you spin a line 
about a fixed point, it will approach the 
point at infinity but will never reach it; 
the line will therefore never return to 
its starting position. 

When a line pivots between any two 
lines on a given point, it traces out a 
point segment. 



A Euclidean 'll!lites ... 

''I am puzzled. To me, a Euclidual point looks so big that it seems to fill all of space lJy itself!" 

A Euclidual replies ... 

"OJ course it seems that way to you because, like all Euclideans, you unconsciously conceive of space 
as consisting of all possible points (i.e., dots). If, however, you retooled yourself to think of space as 
consisting of all possible lines, then you would see that there are lots of 'parts' of space that this Euclidual 
point misses -for example, line m. In fact, this point includes only an infinitesimal fraction of all possible 
lines! However, if you were to slide the point along any fixed line, it would sooner or later come to include 
line m - or any other line - as one of its constituents, although only for the most fleeting moment. 

And one last remark: we Eucliduals, believe it or not, tend to think that one single Euclidean line fills all 
of space by itself, because when we think of all those infinitely many points on it, what we imagine is lines 
spraying out in every direction from each one of them, thus including every possible line. VWI,at we forget is 
that that is not what points are, on the Euclidean plane - they are just teeny dots and are not made out of 
infinitely many lines. VWI,at a strange notion of points that is! 

Such are the deep-rooted assumptions that one unconsciously brings along when one crosses over from 
one culture to another. Of course they can be overcome, but it takes time. " 



A Euclidean writes ... 

''I am puzzled. Any line in the Euclidean plane cuts space into two 
mutually inaccessible regions. If a point is on the other szde of the line 
from you, then as the old saying goes, 'You can't get therefrom here!' 
This is completely obvious to a Euclidean mind ... 

0 

You 0 

Me 

... but how is there any kind of Euclidual counterpart to 
this phenomenon? How could a mere point cut space into 
two mutually inaccessible regions? Can't you always go 
around a mere point?" 

A Euclidual replies ... 

"You are again forgetting that we Euclidua/s are concerned not with points but with lines. If we want one 
line to coincide with another one, we can always get it to do so by rotating it about the point where those two 
lines meet (just as you folks would get one point to coincide with another one by sliding the former point along 
the line that connects the two points). Under normal circumstances, we can always carry out such a rotation 
(just as under normal circumstances, you folks can always carry out such a sliding operation). Of course you 
Euclideans could imagine us doing this by using either a clockwise or a counterclockwise rotation, but we don't 
have that liberty. We have to go whichever way doesn't involve making our line swing through the forbidden 
point at infinity, whereas you don't see any problem going either way. 

But now suppose one point has been deleted from our plane. Can we carry out our rotation? Well, it all 
depends, as you can see in the picture below. If point Pis the deleted one, then You can get to Me, but if point 
Q is the deleted one, then You cannot get to Me- you run into Q in attempting to do so, and of course can't get 
around it at all, because going 'the other way: as you Euclideans might put it, is a priori forbidden. 

And one last remark: we Euclidua/s would be similarly tempted to think you Euclideans could 'go around' 
a mere line by going 'the other way'- namely, by going out to the line at infinity, crossing it, and coming back 
on the other side. But that, to you, is inconceivable -just as rotating through the point at infinity is to us. " 

00 

You 

Me 

op 



A gnomonic projection establishes a one-to-one correspondence between points on a plane 
(including the line at infinity) and antipodal point-pairs on the surface of a sphere that sits on the 
plane. Through any point P of the plane, draw the line that connects it with the center 0 of the 
sphere. This line will always pass through the sphere at two antipodal points P1 and P2 , which 
are then conceptually united and taken to be the image of point P. Under this mapping, the line at 
infinity goes into the equator. [Figure borrowed from H. S.M. Coxeter, Introduction to Geometry.] 



A Euclidean Model and a Spherical Model of the Projective Plane 

At this point, we interrupt our two-column presentation to describe how the 
Euclidual plane can be modeled (i.e., simulated) on the Euclidean plane. Firstly, 
however, it should be recalled that the projective plane can be modeled on the 
Euclidean plane by adding to the latter the line at infinity, which feels, intuitively, 
like a huge circle sweeping around the edges of the whole plane (as if it had edges!), 
despite the fact that that line must be considered just as straight as any of the normal 
lines on the Euclidean plane. In addition to restoring the line at infinity, one must 
also drop all metric notions- namely, angles and lengths. As a consequence, not 
only parallelism but also perpendicularity goes down the drain. 

For every cardinal direction (e.g., north, southeast, north-by-northwest, etc.), 
there is a point on the line at infinity- or rather, for every opposite pair of cardinal 
directions there is a point. Thus, there is a "north-south" point at infinity, an 
"east-west" point at infinity, and so on. Every normal Euclidean line passes 
through exactly one point on the line at infinity. 

Given that the idea of constant distance has vanished, the concept of "circle" 
loses its meaning on the projective plane, although, as it turns out, the notion of 
"conic" does have meaning. In other words, it turns out that conics - ellipses, 
hyperbolas, parabolas, and circles- can be defined entirely non-metrically, which is 
a rather startling finding, especially since one's first exposure to conics in school is 
almost invariably in terms of constant distances, sums of distances, and differences 
of distances. (It might well seem contradictory for conics to be definable while circles 
are indefinable. The explanation is as follows. In projective geometry there is no 
way of distinguishing one type of conic from any other type. From a projective 
point of view, a hyperbola and a circle are indistinguishable curves! Thus there is 
no purely projective way of singling out from the set of all conics just those that are 
circular, which is why it still makes perfect sense to say that circles are not definable 
in projective geometry, even though a purely projective construction on the 
Euclidean plane could, by happenstance, result in a perfect circle.) 

A closely related and extremely useful conceptual model of the projective plane 
is based on the surface of a sphere. The usual way this model is described is to say 
that a projective point consists in a pair of antipodal points on the sphere, and a 
projective line is a great circle. Since any two distinct great circles intersect in a pair 
of antipodal points, we have every pair of projective lines intersecting in a 
projective point. The converse, namely every pair of projective points determining 
a projective line, is also intuitively clear. Consider, for instance, the projective point 
N-S, consisting of the north and south poles. Any other antipodal point-pair on the 
globe determines a unique great circle - the meridian, or line of longitude, passing 
through both itself and N-S. 

This model allows one easily to visualize how both points and lines can 
simultaneously be closed entities, something that seems utterly mystifying if one 
thinks in purely Euclidean terms. That points are closed is exemplified by the image 
of a meridian twirling about the fixed N-S pole. Obviously it will return to where it 
started after some time. That lines are closed is no harder to see: simply ping any 
antipodal point-pair on the equator (say), and it will sail right around the globe like 
Magellan in his ship, coming back in due time to where it started and then starting 
the same trek right over again. (Unfortunately, Magellan never did quite make it 
back, showing that history is less reliable than geometry.) 

There is a natural mapping of this spherical model of projective geometry onto 
the extended Euclidean plane. Imagine the sphere to be sitting on the plane with its 



south pole smack on the origin. Then imagine an arbitrary line in three-space that 
passes through the center of the sphere. Each such line of course intersects the 
sphere in two antipodal points - that is, one projective point. In addition, each 
such line either intersects the Euclidean plane in one point, or is parallel to it, in 
which case it intersects the line at infinity at one point. Thus, taken together, the set 
of all lines through the sphere's center establishes a one-to-one correspondence 
between point-pairs on the sphere and points on the extended Euclidean plane. 
Moreover, by imagining planes passing through the center of the sphere and cutting 
it into two symmetric hemispheres, it is not hard to see that this mapping sends 
every great circle onto a unique straight line on the plane, and conversely, every 
planar straight line onto a unique great circle. The equator is of course mapped onto 
the line at infinity. This elegant mapping of spherical phenomena onto planar 
phenomena by means of lines and planes that pass through the center of the sphere 
is known as a gnomonic projection. 

Note that we have here followed the usual convention of portraying projective 
points as infinitesimal "point-like" entities, rather than as composite structures 
made up of many lines. Were we to do the latter, we would describe a projective 
point not as an antipodal point-pair, but as the set of all great circles passing 
through an antipodal point-pair. This is virtually never done in discussions of 
projective geometry, which is somewhat strange since it is more faithful to the 
point-line symmetry that projective geometry is all about. This fact reveals the 
deep and hard-to-recognize Euclidean prejudices that we all - even professional 
geometers - carry with us to the projective plane, prejudices that are almost 
impossible to rid ourselves of, even after years of trying. 

By the way, we have said that a point consists of a rotational set of lines tacked 
down at a fixed spot (note the avoidance of the word "point"!) on the plane. How 
does this apply to ideal points - points at infinity? The gnomonic projection 
furnishes a quick answer to this question. Take a projective point on the equator 
(which corresponds to the line at infinity). That point consists of a set of great circles 
defining planes that cut the flat plane underneath the sphere in a set of parallel 
lines. In other words, the gnomonic image of any point-pair on the sphere's equator 
is a set of parallel lines on the plane below, all of which are pointing in the cardinal 
direction defined by the equatorial point-pair. If you slide the point around the 
sphere's equator, all the planar parallel lines will obediently rotate in perfect 
synchrony, like a polite school of infinitely long fish. Amusingly, then, a rectangular 
grid, consisting of two orthogonally intersecting sets of parallel lines, is nothing 
more and nothing less than two ideal points located at cardinal directions 90 degrees 
away from each other! 

A Euclidean Model of the Euclidual Plane 

We now return to our initial goal- that of modeling the Euclidual plane on 
the Euclidean plane. First of all, it is clear that we need to retain the line at infinity, 
since a key property of the Euclidual plane is that there are no parallel lines- that 
is, that every pair of lines meets somewhere - and this can happen only if we 
include the line at infinity. Secondly, however, we have to delete some particular 
point of the plane. Which point shall we choose? 

Actually, this is an amusing question, because whereas it appears that there are 
an infinity of possibilities, in fact there are only two. Either you choose a point on 
the line at infinity, or you don't. That this distinction is all there is to the matter 
becomes obvious after a moment's thought. 



If you do choose a point at infinity, it certainly doesn't matter which one, 
because they are all completely interchangeable. To be more specific, since the 
Euclidean plane is completely isotropic (a fancy way of saying that it does not single 
out any cardinal direction as special), once you've chosen your point, you are free to 
think of it as the N-S ideal point (i.e., you can orient your x-y coordinate system so 
that they-axis points in this direction, or if you prefer to think of it more concretely, 
you can orient your paper so that the point is "straight up, off the top of the page"). 

On the other hand, if you choose a point not on the line at infinity, then your 
point is a normal Euclidean point, and again, since the Euclidean plane is 
completely homogeneous (meaning that any point is identical to any other point), 
what appears to be a vast ocean of choices is reduced to no choice at all: as soon as 
you've picked a point off the line at infinity, just call it the origin, and center your 
coordinate system on it, and off you go! In short, your choice is between deleting the 
N-S ideal point, defined by the direction of they-axis (and all lines parallel to it), or 
deleting the normal point (0,0). 

In considering this choice, I myself was swayed, probably irrationally, by the 
connotations of the term "point at infinity". This seemed to me to suggest a point 
infinitely far away in the sense of Euclidean distance (which is simply a Euclidean 
prejudice rearing its ugly head), so I opted for deletion of the N-S ideal point. The 
truth is, the term "point at infinity" refers to rotational infinity, which has nothing 
to do with translational infinity, but I wasn't quite sure of that when I began. In any 
case, it's a fine choice. 

Now of course merely deleting an infinitesimal dot an infinite number of 
miles away does nothing serious right here, but then again, deleting a point at 
infinity is a lot more involved than just that. We also have to delete all the lines 
through it, or to speak in a more truly Euclidual fashion, we have deleted nothing at 
all until we have deleted all the lines that the point consists of. Now what lines are 
those that go through a point infinitely far above and far below the page? To belabor 
the obvious, they are the N-S lines - the lines parallel to the y-axis, or in other 
words, the lines whose equation is of the form x = constant. By convention, then, 
we shall henceforth assume that all these lines have been deleted, or forbidden; they 
are the ideal lines of the Euclidual plane. 

The immediate effect of deleting these lines is to bring into existence parallel 
points : points whose only shared line is a nonexistent line, which is to say, points 
sharing no line at all. In short, in this Euclidean model of the Euclidual plane, any 
points that have the same value for their x-coordinate are parallel points. 

Moreover, since N-S lines are forbidden or unreachable, one now sees why a 
line cannot return to its starting state when spinning on a tack- it would have to 
pass through a nonexistent direction in order to get back! Thus, turn though it 
might, it will never return, no matter how long one waits. To a Euclidean person, 
this of course sounds preposterous: what's to keep a spinning line from reaching 
some particular direction in the plane, and then spinning beyond it? Is there some 
kind of force? Of course not, but that's not the point. 

To gain perspective, turn the tables. Consider how silly it would sound if a 
Euclidual asked us, "Why doesn't a Euclidean point, once pinged, simply move 
rightwards along the x-axis until it reaches what you Euclideans call 'infinity' and 
then come trundling on back to its starting position?" We Euclideans would 
snortingly reply, "You've got the wrong picture in your head. Such a trip out the x­
axis is infinitely long and would take an infinitely long time, at least if carried out at 
constant speed. Only if the sliding point accelerated to unlimitedly large velocities 
could it ultimately 'pass infinity' and come back on the other side." 



Well, in perfectly analogous fashion, a Euclidual line pivoting about a fixed 
point and coming closer and closer to the deleted N-S direction without ever 
reaching it must be thought of as passing through an infinite sequence of evenly­
spaced rotational stages precisely isomorphic to the infinite sequence of evenly­
spaced mileposts along the x-axis. In other words, we must think of the set of lines 
through a fixed point as being parametrized in such a way that lines arbitrarily close 
to the forbidden direction have a parameter-setting arbitrarily close to oo. 

In point of fact, a parametrization with this property is very easy to come by: it 
simply uses the slope of the line. So we are led to imagining the result of "pinging" 
a Euclidualline to be not that the line acquires a fixed angular velocity (as would be 
the case for "Euclidean line-pinging"), but rather that it swivels on a fixed point in 
such a way that its slope increases by a fixed amount per second. Under these 
conditions, the line will go on turning forever, gaining slope at a constant rate, yet it 
will never reach parallelism with they-axis. If one's visual system were as innately 
sensitive to slope as human visual systems are to angle, then it would seem 
completely obvious that the pinged line was moving out towards infinity at a 
constant rate, and of course could never get there. And Eucliduals have precisely 
such visual systems. To them, a N-S line would feel precisely as inaccessible as an 
infinitely distant point feels to us Euclideans. 

And conversely, whereas for us Euclideans the full traversal of a line by a 
pinged point seems an infinite voyage, no such imagery holds for Eucliduals, who 
consider the trip from the origin out the positive x-axis and the return home (along 
the negative half of the line, of course) to be as easy as pie. More specifically, they 
consider it to be as short as 1t, since 1t is the measure of a full cycle of a Euclidualline, 
in precise analogy to the fact that in the Euclidean plane, the angular measure of the 
spin undergone by a line that returns to its starting position is 1t. 

Some readers may object that it should be 27t, not 1t; this is a true in a sense but 
false in another sense. The proper analysis of this is very subtle, and involves the 
realization that a point comes back "flipped" after just one tour about a line, and it 
takes two cycles before it returns "unflipped". This totally absurd-sounding idea is 
nonetheless the perfect isomorph of the fact that a line, when rotated 180 degrees 
about a point, comes back into coincidence with itself but reversed in direction; it 
takes another 180 degrees before it is truly back where it started. One gains some 
appreciation for this by recalling how projective points in the spherical model 
consist of two antipodal points, and imagining such a point-pair going halfway 
around the globe and seeming to be fully back, whereas in fact the two members of 
the couple have swapped roles, so that another half-tour of the globe is needed to 
restore things to how they really were. However, although quite helpful, this 
spherical image is only part of the picture, since it is still mired in the old Euclidean 
prejudice that points are tiny, indivisible objects. The details of this aspect of the 
analogy emerge far more clearly in the two-column presentation and the 
accompanying diagrams. 

In the diagrams that follow, when parallel points are represented, they will 
always be portrayed as having the same x-coordinate. This convention is a 
consequence of my having chosen the deleted point to be a Euclideanly ideal point. 
Had I made the opposite choice, the deleted and hence forbidden lines- the lines 
that define parallelism of Euclidual points -would have all sprayed out radially 
from the origin. Either choice is fine; I just happened to make the former one. 

There is, by the way, a "point at infinity" that in everyday life acts a little like 
the deleted point giving rise to Euclidual geometry- namely, the sun. Our eyes 
automatically avoid looking at the sun, and the more closely our gaze approaches 



that direction, the harder it is on us. We could pretend that it is infinitely hard to 
look straight at the sun. In this analogy, the sun's rays (which on earth are all 
parallel, the sun being "essentially" infinitely far away) play the role of the deleted 
lines, so that any two points along the pathway of a given ray would be parallel. 
Although the analogy doesn't go too far, it may help to give a certain concreteness to 
the strange-seeming notions of "forbidden point" and "forbidden lines", not to 
mention "parallel points". 

One last subtlety ought to be mentioned before we resume the two-column 
comparison, and this is a question that might have occurred to some readers already. 
Deletion of the N-S ideal point means deleting all the lines that that ideal point 
consists of- and one of those lines is of course the line at infinity. But deleting the 
line at infinity was what gave rise to Euclidean geometry! So what's going on? The 
answer is that we should actually have made a distinction between two types of 
deletion. There is rotational deletion (which is what we are dealing with in this 
case) and translational deletion (which is what gives rise to Euclidean geometry). 
They are independent operations, and the effect of rotationally deleting one ideal 
point does not entail the effects of translationally deleting all the lines that compose 
it. Otherwise, deleting a single point anywhere at all would mean not only that an 
infinite set of lines would disappear as well, but also that all the points on all those 
lines would vanish, and all of a sudden, poof!- the entire plane would have gone 
up in a puff of smoke. 



Phenomena in the Euclidean plane 

Two nonparallel lines share one point 

Line segment linking points P and Q, 
with midpoint M shown 

Two rays heading off in opposite directions 
from point 0 towards (translational) infinity 
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Phenomena in the Euclidual plane 
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Two nonparallel points share one line 

Point segment linking lines p and q, 
with midline m shown 
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Two sprays heading off in opposite directions 
from line 0 towards (rotational) infinity 
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A ray is a "half-line" consisting of all 
the points belonging to a given line, 
starting from a given point and sliding 
without limit towards the line at 
infinity. 

An arbitrary point chosen from a 
line divides the line into two rays. 

Any two points are infinitesimal 
parts of a common line; any two lines 
have at most one point in common. 

Parallel lines are lines that have no 
point in common (alternately, they are 
lines whose only common point is a 
point at infinity). 

The idea of "parallel points" (points 
linked by no line) makes no sense. 

The degree of rotation of a line about 
a fixed point is given in terms of 
radians (the natural units of angle). A 
full rotation consists of 27t radians. 

If a line is rotated 1t radians about 
one of its component points, it comes 
back into coincidence with itself; 
however, the two rays defined by the 
fixed point have swapped places. 

Rotating again through 1t radians 
brings the line back, with both rays 
returned to their starting positions. 

Two lines, one of which has 
swiveled through an angle of 7t/2 
radians relative to the other, are said to 
be perpendicular lines. 

Translation of a point along a fixed 
line is measured in terms of distance. 
Unlike the case with rotation, there is 
no natural unit of distance, and 
distances between two points on a line 
can be arbitrarily large. 

The length of a line segment is the 
distance between its two endpoints. 

The midpoint of a line segment is 
that point that is equidistant from the 
segment's endpoints. 

A curve is a continuous locus of 
points. 

A curve's arc length is the sum of 
the lengths of infinitesimal line 
segments approximating the curve. 

A triangle consists of three points (or 
vertices), and the three line segments 
(or sides) joining pairs of them. 

A spray is a "half-point" consisting 
of all the lines belonging to a given 
point, starting from a given line and 
twisting without limit towards the 
point at infinity. 

An arbitrary line chosen from a 
point divides the point into two sprays. 

Any two lines are infinitesimal parts 
of a common point; any two points 
have at most one line in common. 

Parallel points are points that have 
no line in common (alternately, they 
are points whose only common line is a 
line at infinity). 

The idea of "parallel lines" (lines 
linked by no point) makes no sense. 

The degree of translation of a point 
along a fixed line is given in terms of 
slidians (the natural units of slide). A 
full translation consists of 27t slidians. 

If a point is translated 1t slidians 
along one of its component lines, it 
comes back into coincidence with itself; 
however, the two sprays defined by the 
fixed line have swapped places. 

Translating again through 1t slidians 
brings the point back, with both sprays 
returned to their starting positions. 

Two points, one of which has 
traveled through a slide of 7t/2 slidians 
relative to the other, are said to be 
perpendicular points. 

Rotation of a line about a fixed point 
is measured in terms of twistance. 
Unlike the case with translation, there 
is no natural unit of twistance, and 
twistances between two lines on a point 
can be arbitrarily large. 

The swingth of a point segment is 
the twistance between its two endlines. 

The midline of a point segment is 
that line that is equitwistant from the 
segment's endlines. 

A curve is a continuous envelope of 
lines. 

A curve's arc swingth is the sum of 
the swingths of infinitesimal point 
segments approximating the curve. 

A trislide consists of three lines (or 
sides) and the three point segments (or 
vertices) joining pairs of them. 



The meaning of parallelism in the Euclidean plane 
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e 

Given two parallel lines (pl and p2) and a third nonparallel line (q), the 
angles from the latter line to each of the parallel lines have the same value. 
Moreover, if the third line is moved parallel to itself (to q?, then the length 
of the line segment along it bounded fly the two parallel lines stays invariant. 

The meaning of parallelism in the Euclidual plane 

Pl 
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1 Line at infinity, 
: ~ connecting parallel 

points P 1 and P2 
Line at infinity, 
connecting parallel ~ 1 

points Q and Q' 

swingth = s P2 

Given two parallel points (Pl and P2) and a third nonparallel point (Q), the 
slides from the latter point to each of the parallel points have the same value. 
Moreover, if the third point is moved parallel to ztself (to Q), then the swingth 
of the point segment inside it bounded fly the two parallel points stays invariant. 



More on the Spherical Model of the Projective Plane 

We now take another brief interlude from the two-column presentation to 
introduce a second model of the Euclidual plane, one that is perhaps the most 
useful of all. 

We begin by recalling that the projective plane can be modeled either on the 
Euclidean plane (by the addition of a line at infinity and the deletion of metric 
notions) or on the surface of a sphere (via the gnomonic projection). In terms of 
enhancing one's intuition, the latter is in many ways more useful, because in it, the 
absolute equivalence of all lines (and of all points) is self-evident. In particular, the 
"line at infinity" (played by the equator) is obviously no different in any way 
whatsoever from any other line. In other words, in this model the "line at infinity" 
is just a plain old line, identical to every other line, exactly as it should be. 

Moreover, the perfect duality of points and lines falls out almost trivially from 
the spherical model. That this happens is a consequence of the fact that there is a 
completely natural, simple mapping between points on a sphere and lines on a 
sphere. Here's how this "dualization" procedure works. To find the counterpart of 
any great circle, simply take the antipodal point-pair furthest away from the circle. 
In other words, start anywhere on the great circle and move perpendicularly away 
from it, until you have gone one quarter of the way around the sphere. Then you 
are maximally far from the great circle. That's the dual of the great circle, and 
conversely, the dual of this point is the great circle you began with. For example, 
under this concrete dualization-operation, the point corresponding to the equator is 
the N-S pole-pair, and vice versa. 

It is not hard to see that if one chooses a point-pair P on a particular great circle 
q, then the great circle p that is the image of P will pass through the point-pair Q that 
is the image of q. In other words, this type of dualization respects incidence. To 
convince yourself of this, imagine ("with no loss of generality", as mathematicians 
are so fond of saying) that the great circle q is the equator, so that Q is the N-S pole­
pair. Now any random point P on the equator has for its image a great circle p that 
perpendicularly crosses the equator, a quarter of the way around the globe from P. 
This means that pis a meridian and thus that it passes through the N-S pole-pair, 
which is of course Q, and that was what we set out to show- namely, that if a point 
Plies on a line q, then its image-line p passes through q's image-point Q. 

The upshot of this very simple observation about point-pairs and great circles 
on the sphere is that any configuration of "points" and "lines" on a sphere, no 
matter how complex, can be instantly dualized into another different-looking 
configuration in which the roles of points and lines are totally reversed but in 
which precisely the same incidence relations hold. This, then, is one of the great 
powers of the spherical model of the projective plane. 

By the way, one of the beauties of this point-line switching operation is that it 
can be used as a way of turning any point-line picture on the Euclidean plane into a 
dual picture where lines and points have been reversed but all incidence relations 
have been retained. All you do is this: take your planar picture and use the 
gnomonic projection to project it up onto the surface of the sphere. Given this 
picture on the sphere, perform the point-line reversal just described; you now have 
a complementary, or dual, picture on the surface of the sphere. Now merely send 
this new image back down onto the plane by means of the gnomonic projection run 
in reverse. What results is an utterly different-looking planar picture, and yet it is, 
in some sense, "the same picture", since it contains all the same information as the 
original, simply coded differently. In particular, all incidence properties that held for 



the original picture remain valid for the dualized picture. 
An example of this process is shown below. In short, what you will observe is 

that a configuration made up of 7 points, 9 lines, and one conic, in which three key 
lines are concurrent, gets converted into a totally different-looking configuration 
made up of 9 points, 7 lines, and one conic, in which the corresponding three key 
points are collinear. Now for the details. 

Six line segments - a through f- define a rather ugly self-intersecting 
hexagon (shaded). Careful inspection will show that these line segments, if 
extended to full lines, are all tangent to a conic, which happens to be a circle (the 
light circle). (The only reason it is a circle is that circles are the easiest conics to 
draw.) Opposite vertices of this hexagon have been joined to form three more lines, 
which all intersect in a point, labeled "Brianchon point". Readers familiar with 
projective geometry will recognize that this configuration exemplifies Brianchon's 
theorem, a brilliant geometrical ruby discovered by Charles Brianchon in 1806: 

Consider the hexagon formed by any six lines tangent to any arbitrary 
conic. Construct the three lines that link opposing vertices of the hexagon 
(e.g., vertices ab and de). These three lines are concurrent. 

@South pole 
of sphere 

The gnomonic-projection sphere itself sits on the plane of the paper, its south 
pole clearly indicated, as well as its size (by the heavy circle). 

The dual figure to the Brianchon configuration, made by the pole/ equator 



swapping process on the sphere, is based on six points - A through F - that are the 
duals of their namesake line segments. These six points define another self­
intersecting hexagon of a most different shape. Although it does not quite jump out 
at the eye, these six points all lie on another conic, namely a hyperbola- the dual 
conic to the first one. (Typical of the elegance pervading projective geometry is the 
theorem that states that this type of dualization process operating on any conic 
yields another conic.) Finally, opposite sides of this second hexagon have been 
joined to form three more points, all of which lie on a single line, labeled "Pascal 
line". This configuration illustrates Pascal's theorem, a gleaming geometrical 
emerald that is the dual to Brianchon's theorem. However, it was discovered long 
before Brianchon's theorem- in fact, in 1640 by Blaise Pascal, 16 years old: 

Consider the hexagon formed by any six points lying on any arbitrary 
conic. Construct the three points where opposing sides of the hexagon meet 
(e.g., sides AB and DE). These three points are collinear. 

Hopefully, this example makes clear what it means to say that a transformation 
not only replaces points by lines and lines by points, but also respects incidence. 

One can add some interesting bells and whistles to the dualization operation by 
rotating the sphere before sending the reversed image on its surface back down to 
the plane; in fact, one can even carry or roll the sphere to any spot on the plane, and, 
if one wishes, inflate or deflate it, before gnomonically projecting the reversed 
image on its surface back down to the plane. (Note that none of these operations 
perturbs the internal relationships of points and lines on the sphere's surface in the 
slightest.) This shows that there is not just one single way of dualizing a Euclidean 
picture, but an infinite family of related ways of doing so. Such incidence-respecting 
point-line reversals are called polarities in projective geometry. 



The sum of the interior angles of a Euclidean triangle 
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A Euclidean triangle consists of three points and the line segments they define. It is crucial to 
keep in mind that a line segment is the finite stretch between two points- i.e., the stretch that 
lYypasses translational infinity - since this fact defines the meaning of "interior angle". 
Specifically, the interior angle at any given vertex (vertex A, for example) is that region of the 
vertex created lYy joining the vertex to all the points belonging to the opposite line segment (a, in 
this case). Given this definition, the sum of the interior angles of a triangle is always lBfY, or 1t. 
Symbolically, 

The sum of the interior slides of a Euclidual trislide 

A Euclidual trislide consists of three lines and the point segments they define. It is crucial to keep 
in mind that a point segment is the finite twist between two lines - i.e., the twist that lYypasses 
rotational infinity - since this fact defines the meaning of "interior slide". Specifically, the interior 
slide on any given side (side a, for example) is that part of the side intercepted lYy lines emanating 
from the opposite point segment (A, in this case). Given this definition, the sum of the interior 
slides of a trislide (indicated in the diagram lYy arrows) is always lBfY, or 1t. Symbolically, 

a+b+c=1t 



The sum of the three interior angles 
of a triangle is n radians. 

The three lines linking a triangle's 
vertices with the midpoints of opposite 
sides are concurrent, and their common 
point is called the centroid. 

A circle is a curve- namely, the set 
of all points equidistant from a given 
point (its center). Any line segment 
joining the center to a point on the 
circle is called a radius. By definition, 
all radii have the same length. 

The ratio of the arc length of a circle 
to the length of any radius is 2n. 

The circumcircle of a triangle is the 
unique circle that passes through all 
three vertices of the triangle, and its 
center is the circumcenter. 

An altitude of a triangle is a line 
through a vertex, which is also 
perpendicular to the opposite side. 

The three altitudes of a triangle meet 
in a single point called the orthocenter. 

The three angle-bisectors of any 
triangle meet in a point called its 
incenter, which is the center of its 
incircle, the unique circle that is tangent 
to all three line segments constituting 
the triangle. 

The circumcenter 0, centroid G, and 
orthocenter H of any triangle all lie on a 
line known as the Euler line of the 
triangle. The distance from 0 to G is 
exactly half that from G to H. 

The midpoint of the OH line 
segment is the center of the nine-point 
circle, a circle that passes through the 
triangle's three midpoints, its three 
altitude feet (the points where the 
altitudes cross the sides), and the 
midpoints of the line segments joining 
the orthocen ter to the respective 
vertices of the triangle. 

The natural coordinate system for 
the Euclidean plane is a biaxial system, 
consisting of two perpendicular axes 
(i.e., lines) that meet in a point called 
the origin. 

The coordinates of a point on the 
plane are given by the perpendicular 
distances of the point to the two axes. 

The sum of the three interior slides 
of a trislide is n slidians. 

The three points linking a trislide's 
sides with the midlines of opposite 
vertices are collinear, and their 
common line is called the centroidal. 

A circual is a curve - namely, the 
set of all lines equitwistant from a given 
line (its central). Any point segment 
joining the central to a line on the 
circual is called a radial. By definition, 
all radials have the same swingth. 

The ratio of the arc swingth of a 
circual to the swingth of any radial is 2n. 

The circumcircual of a trislide is the 
unique circual that is tangent to all 
three sides of the trislide, and its central 
is the circumcentral. 

An altitude of a trislide is a point on 
a side, which is also perpendicular to 
the opposite vertex. 

The three altitudes of a trislide meet 
in a single line called the orthocentral. 

The three slide-bisectors of any 
trislide meet in a line called its 
incentral, which is the central of its 
incircuat the unique circual that passes 
through all three point segments 
constituting the trislide. 

The circumcentral o, centroidal g, 
and orthocentral h of any trislide all lie 
on a point known as the Euler point of 
the trislide. The twistance from o to g is 
exactly half that from g to h. 

The midline of the oh point 
segment is the central of the nine-line 
circual, a circual that is tangent to the 
trislide's three midlines, its three 
altitude legs (the lines joining the 
altitudes to the vertices), and the 
midlines of the point segments joining 
the orthocentral to the respective sides 
of the trislide. 

The natural coordinate system for 
the Euclidual plane is a bipolar system, 
consisting of two perpendicular poles 
(i.e., points) that meet in a line called 
the origin. 

The coordinates of a line on the 
plane are given by the perpendicular 
twistances of the line to the two poles. 



Biaxial coordinates of a point in the Euclidean plane 

y-axis The biaxial coordinates of point P 

P. - line through P that is parallel 
Y to the x-axis and perpendicular 

to they-axis P 

are (x,y), where x is the length of the 
line segment bounded l7y the origin 
(the point shared l7y the x andy axes) 
and the point intercepted on the x-axis 
l7y a line through P perpendicular to 
the x-axis; y is defined analogously. 

length= y 

origin length= X 

f1 - line through P that is parallel 
x to they-axis and perpendicular 

to the x-axis 

x-axzs 

Bipolar coordinates of a line in the Euclidual plane 

The bipolar coordinates of line pare (x,y), 
where x is the swingth of the point segment 
bounded l7y the origin (the line shared l7y 
the X and Y poles) and the line joining the 
X-pole with a point on p perpendicular to 
the X-Pole; y is defined analogously. 

swingth = x 

~ -point on p that is 
I parallel to the Y -pole 
I and perpendicular 

to the X-pole 

swingth = y 

lJ -point on p that is parallel to the X -pole 
and perpendicular to the Y -pole 



A Tubal Model of the Euclidual Plane 

Armed with this deeper understanding of the spherical model of the projective 
plane, we now turn to a similar three-dimensional model of the Euclidual plane, 
one with equally remarkable intuition-enhancing powers. To do so, we will describe 
a mapping that converts our already-existing Euclidean model of the Euclidual 
plane into a three-dimensional model. 

Imagine an infinitely long tube of radius 1 sitting on the Euclidean plane, 
oriented such that its central axis- an infinitely long line, of course -lies precisely 
above they-axis. Let us denote by the term "0-point" that point on the tube's axis 
that lies directly above the origin (i.e., where y = 0). Now it is very easy to define a 
"quasi-gnomonic" projection of points on the Euclidean plane up onto the tube's 
surface. To get from any point P on the plane to its tubal counterpart P', we simply 
construct the straight line that passes through both the 0-point and P. This is a 
unique straight line, of course, and it penetrates the tube in two "opposite" or 
"antipodal" points. Much as in the spherical model of projective geometry, we 
conceptually unite these two tubally antipodal points into one single entity P', 
which will be the image of P. 

Note that as usual, Euclidean prejudices have crept back into the picture, 
unnoticed: we are again describing points as tiny, indivisible objects. If the tube's 
surface is to be considered a model of Euclidual geometry, however, we must rid 
ourselves of this type of imagery, and replace it with the idea that a point consists of 
all the lines on the tube that pass through the given point-pair P'. But then the 
question instantly arises: What constitutes a line on the surface of a tube? Luckily, 
that's very simple: a line on the tube is simply the quasi-gnomonic image of a line 
on the plane. Saying just this may not make it easy to envision what shape a line 
actually traces out on the surface of the tube. In fact, however, the shape is a perfect 
ellipse whose center is the 0-point. 

To show this, we consider the following alternate but equivalent way of 
describing the quasi-gnomonic projection of a planar line m. Imagine the unique 
plane that cuts the Euclidean plane in the given line and that simultaneously passes 
through the 0-point; in general, this plane will slice the tube obliquely, and in so 
doing it will define an ellipse m' centered on the 0-point. (It is intuitively quite 
obvious that slicing a tube with a plane can result only in a perfect circle- when 
the plane is perpendicular to the tube's axis- or an ellipse.) 

So now we know how to conceive of a Euclidualline on the tube, and armed 
with that knowledge, we can figure out how to conceive of a Euclidual point as well: 
a Euclidual point consists in the set of all tubal ellipses centered on the 0-point and 
passing through a fixed point-pair on the tube's surface. Remember that the two 
points constituting such a point-pair are connected by a line through the 0-point, so 
that if one of them is 5 units "north" of the 0-point, then the other will be 5 units 
"south" of it (i.e., the points in such a pair have equal but opposite y-coordinates). 
Similarly, if the angular coordinate of either of these tubal points is 4> (where 0 is the 
angle assigned to points halfway up the tube- on its "equator", so to speak- and 
rc/2 is the angle assigned to points sitting on the bottom of the tube), then the other 
point will have angular coordinate -<j>. 

Much as the spherical model of projective geometry greatly facilitates one's 
intuition for the simultaneous closure of both points and lines, so the tubal model 
greatly enhances one's intuition for how lines can be closed while points are open 
- precisely the opposite of what holds in Euclidean geometry. Envisioning the 
closure of lines is trivial: a tubal line being an ellipse, which is a closed curve, it is 
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A tube of radius 1 sitting on the plane, tangent to they-axis. Its circular cross-section directly 
above the x-axis is called the "0-circle", and the center of the 0-circle is called the "0-point". 
Through the 0-point pass two orthogonal "toothpicks": the H-toothpick, which is horizontal, and 
the V-toothpick, which is vertical. Each of them can twist about its own axis. The two parallel 
horizontal lines on the tube through which the H-toothpick passes form the "equator" of the tube. 



tilted ellipse m': 
the quasi-gnomonic image, 

on the tube, of line m 

pointP, 
an arbitrary 

point on line m 

point Q, 
another arbitrary 

point on line m 

line m on plane 

An arbitrary line, line m, has been drawn on the plane. Two arbitrary points on line m -points 
P and Q- have been connected by straight lines to the 0-point. Each such line intersects the tube 
in a pair of antipodal points (i.e., points symmetrically located with respect to the 0-point). If a 
point were to slide along all of line m, its image points on the tube would trace out a tilted ellipse 
m ', whose center is the 0-point. 

Ellipse m' can equally well be described as the intersection of the tube with the plane that 
passes through both the 0-point and the line m. One can imagine obtaining both m and m' by 
controlling the tilt of a variable plane that passes through the 0-point, using the H- and V­
toothpicks as controls. 



easy to see how a point, when pinged, would zip around the line and come back to 
its starting point. Of course, what held for the spherical model also holds here -
namely, a tubal point, being a point-pair, seems already to be back after just 180 
degrees, or n radians, whereas in fact it is only "pseudo-back"; true restoration of the 
point's original state requires one more cycle through n radians. (We shall 
henceforth refer to trips of points along lines as involving a certain number of 
slidians- intended to rhyme with "Lydians"- rather than radians, since we wish 
to emphasize that we are dealing with a measure of linear separation between 
points, and not with angles between lines.) 

The non-closure of points is a little subtler than the closure of lines is. This 
requires us to imagine the set of all tubal lines passing through a given tubal point. 
Some of these lines- i.e., ellipses- are rather small, being nearly perpendicular to 
the axis of the tube. However, others are very large, being nearly parallel to the axis 
of the tube. In the limit, such lines would be arbitrarily elongated ellipses, stretching 
as far along the tube as the eye could see. Clearly, something is going to infinity as 
these "lines" approach parallelism with the y-axis. This notion of a parameter 
increasing at a constant rate, and thus able to head for but never to actually reach 
infinity, is just what is needed to make non-closure understandable. Note that if 
one of these lines actually did reach the infinite status, that would mean that it had 
become parallel with the tube's axis, and thus that it ran all the way from y = -oo to 
y = +oo. Such an "ellipse" on the tube's surface would in actuality consist of two 
straight N-S lines, diametrically across from each other on the tube. This antipodal 
line-pair is of course one of the infinite set of lines that were deleted when the point 
at infinity was deleted. 

Slide and Twistance Made (Relatively) Easy 

The tubal model allows us easily to visualize many counterintuitive 
phenomena of the Euclidual plane. For instance, the notion of slide between two 
points is reduced to a very simple and clear idea on the tube: the amount of slide 
between two points is simply the difference in their angular coordinates <1>1 and <1> 2. It 
makes no difference where the points happen to be located longitudinally along the 
tube (i.e., their y-coordinates). Two points are said to be perpendicular if the slide 
between them has value n/2, meaning that they are located exactly one-quarter of 
the way around the tube from each other, no matter where they are along its axis. 

If one projects this down onto the Euclidean plane, one instantly sees that any 
point on the y-axis is perpendicular to any ideal point of the (extended) Euclidean 
plane, since the latter all have an angular coordinate of 0, whereas the former all 
have angular coordinate n/2. Similarly, any two points having angular coordinates 
<1> and <1> + n/2 will be mutually perpendicular, whatever their y-coordinates. 
Forbidden lines are thus lines of constant slide relative to any given point. (Note 
that the Euclidean dual of this statement is the proposition that ideal points are 
"points of constant angle" relative to any given line. Though this sounds a little 
obscure, what it means is simply that the angle between a fixed line in the plane and 
any variable line through a fixed ideal point is invariant. It is just a fancy way of 
saying, then, that for people scattered across any flat region, no matter how large, the 
angle between the ground and an infinitely distant star is the same.) 

One of the most surprising and elegant properties of the tubal model is what a 
circual turns out to look like in it. To see how this works, one must first think about 
the most natural way to impose a Euclidual coordinate system on the tube. One 
wants a bipolar system- the dual of a biaxial system- in which lines rather than 
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Perpendicular points on the E-plane are such that the difference between 
the azimuthal angles of their tubo-gnomonic projections is 90 degrees. 
More intuitively put, their tubal images are 90 degrees around the tube 
from each other. To a Euclidual eye, perpendicular points look as far 
apart as any pair of points can get from each other. 



p s 

slide(P, Q) = lf> slide(R,S) = lf> 

The slide between any two points on theE-plane depends solely on their x-coordinates. 
To find its value, project the two points up onto the tube by tubo-gnomonic projection, 
then take the difference between their azimuthal angles. This is the value of the slide. 
Note that this does not imply that the slide between two points is a function solely of 
the difference between their x-coordinates; for instance, segment PQ is clearly much 
shorter than segment RS, yet slide(P, Q) is exactly equal to slide(R,S). 



points are the basic entities to which one assigns coordinate pairs. The dual to a 
Cartesian coordinate system is one in which the X and Y poles, like the x and y 
Cartesian axes, are perpendicular to each other. We can freely choose the poles to 
both lie on the x-axis, which makes the x-axis itself now become the "origin"- that 
is, the line relative to which all twistances are to be measured, just as in Cartesian 
coordinates, the origin is the point relative to which all distances are to be 
measured. And what is a twistance? A twistance is a measure of the rotational 
separation of two lines, superficially reminiscent of an angle but ranging between 
-oo and +oo, and thus more like a distance. 

One might think that the twistance between two lines would just be a function 
of the angle between them, but it's nothing of the sort; twistances are trickier than 
that. Imagine, for instance, two lines that are parallel in the Euclidean plane - for 
simplicity's sake, the east-west lines y = 0 andy = 1. One would expect that since 
they are parallel, the twistance between them would be zero. Wrong! There is a 
non-zero twistance between any pair of nonidentical lines, parallel or not, just as in 
Euclidean geometry, there is a non-zero distance between any pair of nonidentical 
points (whether or not a Euclidual might think they were parallel points). 

Quasi-gnomonic projection up onto the tube makes this initially troubling idea 
much more understandable. The line y = 0 becomes a circle running vertically 
around the tube- in fact, we shall henceforth refer to this special circle as the 0-
circle- and the line y = 1 becomes an ellipse tilted with respect to the tube's axis, 
and intersecting the 0-circle in two antipodal points on the tube's "equator" (the 
pair of infinitely long horizontal lines facing each other halfway up the tube). 
Despite the fact that y = 0 and y = 1 are parallel lines on the Euclidean plane, they 
have tubal images (the 0-circle and the tilted ellipse) that not only intersect but do 
so at a non-zero angle. Although this does not tell us the twistance between them, it 
gives a good intuitive sense for why the twistance is not zero. 

But let us return to the coordinatization of the tube and the plane. As was said 
a moment ago, we shall take as our poles two perpendicular points on the Euclidean 
plane's x-axis (or, on the tube, the quasi-gnomonic images of those points). For 
simplicity's sake, we might as well make them the Euclidean origin (x = 0, y = 0) and 
the "east-west" ideal point defined by the direction of the x-axis. The tubal image of 
that ideal point is the point-pair on the tube's equator having y-coordinate 0. So 
now imagine a pair of toothpicks (I could have said "poles", but that might have 
been too confusing!) stuck through the tube, one vertically and one horizontally, at 
these points' images. We shall call these the H -toothpick and the V -toothpick. The 
H and V toothpicks pass through each other precisely in the middle of the tube, at 
the 0-point. We will define our bipolar coordinates in terms of rotations of these 
two toothpicks. 

First, however, we shall introduce one more useful piece of terminology. 
Imagine a variable plane passing through the 0-point. We shall call this plane the 
0-plane. The 0-plane always cuts the tube in some ellipse centered on the 0-point; 
when the 0-plane is perpendicular to the tube's axis, that ellipse is of course the 0-
circle. These various "0-entities" will play key roles in our development of bipolar 
tubal coordinates. Note that the two toothpicks constitute two perpendicular 
diameters of the 0-circle. 

Imagine now that the 0-plane can be made to rotate about the 0-point by 
twisting either toothpick. (A very useful image, for those who know it, is the 
delightful Scandinavian marble maze called "Labyrinth", in which a wooden board 
is made to tilt at different angles by two independent twists controlled manually by 
knobs located on adjacent sides of a wooden box.) What we are interested in is not 



the rotated plane itself, but the ellipse made by its intersection with the tube- in 
other words, in what the 0-circle becomes as the toothpicks are twisted. 

If one looks down from infinitely far above the plane and twists only the V­
toothpick (the one sticking straight up at us out of the Euclidean plane), the 
resultant ellipse will of course appear to be a line segment, because one is seeing it 
edge-on. As the V -toothpick is twisted, we see the line segment crossing the tube at 
an increasing angle, growing longer and longer until it eventually is parallel with 
the tube. In a similar manner, if one moves out the x-axis to the east-west ideal 
point and twists only the H toothpick (the one floating one unit above the x-axis and 
parallel to it), one again sees a rotating ellipse edge-on, which is to say, a line 
segment crossing the width of the tube at various angles, growing unboundedly 
long as the angle of rotation of the H-toothpick approaches 90°. 

If (as in the Labyrinth game) we now allow ourselves a combination of two 
twists, one of the V-toothpick and one of the H-toothpick, we can turn the original 
circle into any desired "line" on the tube (ellipse centered on the 0-point). 
Although that claim might sound surprising, it is just the Euclidual version of the 
pedestrian Euclidean fact that any possible point on the Euclidean plane can be 
reached by translating the origin twice - once parallel to the x-axis, and once 
parallel to they-axis. 

To finish our coordinatization task, we merely need to assign numbers to each 
of the two toothpick-twists. That, luckily, is quite easy. We imagine making either 
one of the two twists by itself; then we observe how far the resultant ellipse extends 
up or down they-axis- in other words, we take that ellipse's extremal y-coordinate. 
That number, which can of course range between -oo and +oo, will be the bipolar 
coordinate associated with the given toothpick (i.e., pole). We do this for both poles, 
and the pair of such y-coordinates will constitute the bipolar coordinates of any 
given line (i.e., ellipse). 

Guided by a sense of duality, we have now figured out how to assign two 
independent bipolar coordinates to any of the allowed ellipses on the tube (and by 
projection, these same coordinates will of course apply to the corresponding line on 
the Euclidual plane). Now in Euclidean geometry, given a coordinate system, one of 
the most natural questions that arises is: "How can we use it to calculate distances?" 
The analogous question here is, of course, "How can we calculate twistances?" In 
Euclidean geometry, the answer is that if we combine the two coordinates (x, y) of 
any point using the Pythagorean formula ..J(x2 + y2), we get the distance of the given 
point from the origin. More generally, the formula ..J[(x2 - x1)2 + (y2 - y1)2] gives the 
distance between an arbitrary pair of points. The analogous answer is therefore that 
the Pythagorean formula applied to the bipolar coordinates of any two lines will 
give the twistance between those lines. Now, of course, we can easily calculate the 
twistance between the parallel Euclidean lines y = 0 andy= 1; it turns out to be 1. 

What is the Shape of a Circual? 

Having now a formula for twistance, we are in a position to define the notion 
of a "circual" quite rigorously, as the set of all lines having a fixed twistance t from a 
given line. In other words, a circual is the envelope of all lines whose bipolar 
coordinates (x, y) satisfy the familiar-looking equation 

(x-a)2 +(y-b)2 =t 2. 

The line (a, b) is the central of the circual, and tis (the swingth of) its radial. 
Although it is far from self-evident, it turns out, when one calculates it out, 



A circual on the tube 

On the Euclidual plane, a circual is defined to be the envelope of all lines equitwistant from a 
given line (the central of the circual). Since we are here looking at a tubal realization of the 
Euclidual plane, a line is realized as an arbitrary ellipse centered on the 0-point. We wish to find 
all such lines that are equitwistant from a particular such line. As our central, we shall choose the 
0-circle itself- the circular cross-section of the tube directly above the x-axis. 

A variable line is determined by twisting the H- and V-toothpicks. The twistance of the line 
from the central is given by the Pythagorean formula .Y (h2 + v2), where h and v are the twists of 
the two toothpicks (both h and v can range between +oo and --oo ). The equation of this circual is 
therefore .Y (h2 + v2) = t, where t, a constant, is the radial of the circual. This equation is more 
commonly written 

h2 + v2 = t2. 

It turns out that the envelope of all such lines (i.e., tubal ellipses centered on the 0-point) is a 
pair of circles running around the tube, symmetrically located with respect to the 0-point. If t = 0, 
then the two circles coincide and equal the 0-circle. As t increases in magnitude, they separate. 

If an arbitrary tubal line rather than the 0-circle is chosen for the central of the circual, then 
the equation of the circual becomes 

(h- h0)2 + (v- v0)2 = t2, 

where h0 and v0 are the bipolar coordinates of the line chosen to be the central. In this case, a 

circual turns out to be a pair of ellipses on the tube, again located symmetrically with respect to 
the 0-point, and identically tilted. 



that circuals on the tube are, amusingly enough, shaped like circles and ellipses! 
However, unlike the ellipses that correspond to lines on the plane, these circles and 
ellipses are not constrained to be centered on the 0-point (or in other words, the 
planes containing them are not constrained to pass through the 0-point). Thus a 
simple example of a circual is any circular cross-section of the tube located at any y­
coordinate other than 0. This is in fact what circuals whose central is the origin look 
like- that is, circuals all of whose lines are equitwistant from the 0-circle. As the 
"radial" -that is, the twistance from the central, given by t-is varied, the circle­
that-is-a-circual slides along the axis of the tube. When the radial is zero, then the 
circual coincides with the 0-circle y = 0. This is the smallest possible circual whose 
central is the origin. 

From my statement that circuals can be located at negative as well as positive y­
coordinates, readers might be wondering whether such circuals would not then 
belong to negative radials. Actually, the fault is mine: I slightly oversimplified the 
truth about circuals. A circual on the tube consists not of one circle or ellipse, but of 
a pair of them, symmetrically constructed with respect to the 0-point. In other 
words, for every point on a circual, its antipodal point (defined as its exact reflection 
through the 0-point) is also on the circual. So in fact, there is no difference between 
a negative and a positive radial, as one might hope. 

Now that we know how circuals on the tube look, you might well ask, "What 
does a circuallook like in the Euclidean-plane model?" To answer this, all we need 
to do is to use our quasi-gnomonic projection to get from the tube down onto the 
plane. And here, our knowledge of conic sections comes in handy. Recall that what 
you get when you slice any cone by a plane parallel to its axis is a hyperbola. Well, it 
turns out that this is what is going on in our quasi-gnomonic projection, and so 
hyperbolas are the representatives of circuals in the Euclidean-plane model. 

To see that the quasi-gnomonic projection of a pair of antipodally symmetric 
ellipses on a tube down onto a plane amounts to slicing a cone by a plane parallel to 
its axis is not nearly as hard as it sounds- in fact, it is trivial. First of all, the plane 
involved is of course the Euclidean plane on which the tube is sitting. What is the 
cone? Well, its apex is the 0-point, and the cone itself is the three-dimensional 
shape traced out by all the lines connecting the 0-point to points on the ellipses. 
Why is this a cone? Well, in the special case when the two ellipses are circles, this 
shape is obviously a cone. In the general case, it is almost as easy to see; it suffices to 
recall that a cone sliced obliquely by a plane gives an ellipse. Now just run that 
statement backwards: given an ellipse in a plane, if you connect all of its points to 
some point not in that plane, you get a cone. Put the Euclidean plane back into the 
picture, and we now have a bona fide cone and a plane- not just any plane, but a 
plane parallel to the cone's axis- cutting it. Voila- a hyperbola! 

There are of course many, many further intriguing questions that might pop to 
mind. We have but scratched the surface of Euclidual geometry, but this gives a 
good flavor for the subject. In what follows, we shall make some concluding 
philosophical musings. 



On Abstract Geometries and Their Concrete Realizations 

Intuition suggests that there must be some close relationship between the 
sphere as a model of projective geometry and the tube as a model of Euclidual 
geometry. This is in fact the case, but to see things with maximal clarity, we need to 
bring in a third element- namely, the (Euclidean) plane as a model of Euclidean 
geometry. The three-way relationship can now be portrayed concisely, as follows. 

Delete one line and squish the 
damaged sphere down so that it 
becomes as flat as possible 

The plane 

An infinitely oblate spheroid: 
model of Euclidean geometry 

The sphere 

Model of projective geometry 

Delete one point and stretch the 
damaged sphere out so that it 
becomes as long as possible 

The tube 

An infinitely prolate spheroid: 
model of Euclidual geometry 

Not surprisingly, there is a kind of duality between the natural planar model of 
Euclidean geometry and the natural tubal model of Euclidual geometry. More 
specifically, a plane and a tube can be looked upon as maximally opposite types of 
distortions of the sphere. In particular, a plane is what you get when you remove a 
sphere's equator and then "squish" the remainder of the sphere completely flat- in 
other words, an infinite plane is a maximally oblate spheroid. By contrast, a tube is 
what you get when you remove one pair of diametrically opposite points from a 
sphere and then "stretch" the remainder of the sphere so that it is infinitely long­
in other words, an infinite tube is a maximally prolate spheroid. This, then, is the 
connection between the sphere, the plane, and the tube. 

We have made continual reference to various objects and spaces as models of 
one or another variety of geometry. The implication would seem to be that there is 
something less than genuine about these "models", in the sense that a model train 
is not a real train. However, it is time to discredit this view. Probably the best way to 
put it is that a term like "projective geometry" or "Euclidual geometry" stands for an 
abstraction rather than for an actual space. As such, projective geometry can be 
realized in various different ways. So it would be more accurate to say that the 
sphere and the extended Euclidean plane are two different concrete realizations of 
projective geometry. These are to projective geometry what two actual physical 
trains are to the abstract concept "train". They are completely genuine, full-fledged 
instances of projective geometry rather than half-gauge or quarter-gauge "models" 
that aren't quite the real thing. 

This is no less true of the famous "models" of hyperbolic and elliptic geometry 
(the two most famous non-Euclidean geometries), such as the spherical model of 
elliptic geometry, or Poincare's and Beltrami's ways of embedding hyperbolic 
geometry in the Euclidean plane. Geometry books always use the term "Poincare 



model", as if it were good for giving you an idea of what hyperbolic geometry really 
is, but implying that it is certainly not the real McCoy itself, even though every 
single theorem of hyperbolic geometry holds in the alleged model. (Sometimes a 
three-dimensional model using a so-called "pseudosphere" is even trotted out as 
the genuine hyperbolic geometry, in contrast to mere models.) Once again, the 
implication is wrong. Henri Poincare, Eugenio Beltrami, and Felix Klein found full 
realizations of the abstraction known as "hyperbolic geometry". Neither is 
imperfect or less than complete. The fact that the Poincare model is embedded in 
the Euclidean plane and that it requires calling arcs of circles "lines" might make 
some people think it is some kind of "cheat" or "trick", but it certainly is not. 

By the way, just as one can tamper with the postulates of Euclidean geometry 
and come up with non-Euclidean geometries, so one can tamper with the postulates 
of Euclidual geometry and come up with non-Euclidual geometries. For instance, 
whereas in Euclidual geometry, exactly one point parallel to a given point can be 
found on any given line, there is a non-Euclidual geometry in which no such 
parallel point can be found (known as "elliptual" geometry, of course), and another 
non-Euclidual geometry in which many such parallel points can be found 
("hyperbual" geometry). The Euclidual mathematicians Henriette Ligneronde, 
Eucretina Bellatrima, and Felicia Gross even discovered ways to simulate hyperbual 
geometry on the Euclidual plane! The fact that the Ligneronde model is embedded 
in the Euclidual plane and that it requires calling arcs of circuals "points" might 
make some people think it is some kind of "cheat" or "trick", but it certainly is not. 

We have so far seen two models - that is, realizations - of projective 
geometry, and two of Euclidual geometry. What about models of good old Euclidean 
geometry? It might seem strange to suggest that the Euclidean plane might be 
merely one possible way of realizing the abstraction called "Euclidean geometry" -
yet if non-Euclidean geometries admit of multiple models, why should the same 
not hold for Euclidean geometry? 

Indeed, it turns out that both of the famous non-Euclidean geometries contain 
models of Euclidean geometry, just as Euclidean geometry contains models of both 
of them. Tit for tat! Such models allow the denizens of non-Euclidean worlds to 
develop an intuition for what, to them, is the highly counterintuitive subject of 
Euclidean geometry! Of course, to us, such models would seem doubly weird, since 
they give us an inkling of how our world looks to "people" whose world looks very 
strange to us. 

In this paper, it turns out that we have inadvertently come up with yet another 
model of Euclidean geometry- namely, Euclidual geometry itself. All we need to 
do is call Euclidual lines "points" and Euclidual points "lines", and then we can 
interpret any of our pictures of phenomena in the Euclidual plane as illustrating­
admittedly, in an extremely bizarre way- truths of Euclidean geometry. We also 
have a bizarre model of Euclidean geometry on the Euclidual tube as well as on the 
plane. Thus a tubal ellipse centered on the 0-point could be called a "point" instead 
of a "line", and the set of all such ellipses that pass through a given antipodal point­
pair could be called a "line" instead of a "point". Then, thanks to our careful 
analysis of Euclidual geometry, we would have an extremely hard-to-follow but 
genuine realization of Euclidean geometry on the surface of the tube. 

This type of conceptual double-reversal is delightful to contemplate but a bit 
too mind-boggling to be worth following out any further. The main point is simply 
that Euclidean and Euclidual geometries, being each other's duals, are ipso facto 
models of each other. In that sense, they are indistinguishable. 

This brings us back to the difference discussed earlier between, on the one 



hand, taking the terms of geometry as undefined, and on the other hand, bringing to 
them prior images and connotations. If we really bring no imagery whatsoever to 
the field of geometry, then "point" and "line", when discussed in projective 
geometry, should be as interchangeable in our minds and our speech as "left" and 
"right"- in fact, even more so! As a consequence, the ideas of deleting a point and 
deleting a line should feel no more distinct from each other than driving on the 
right side of the road and driving on the left side. Someone who felt this way would 
think, "Big deal- deleting a point and deleting a line are as alike as Tweedledum 
and Tweedledee!" To such high-powered but imagery-free thinkers, Euclidean and 
Euclidual geometries would have to be completely boring variants of each other, 
conveying no new imagery and no new results whatsoever. 

To us lesser beings, however, there seems to be a vast difference. Lines, to us, 
really are infinitely long non-closed structures made of points, and points really are 
infinitesimal spots about which lines can be freely rotated as often as one wants. We 
feel as if the world we live in is genuinely Euclidean, not Euclidual. Indeed, we find 
it hard if not impossible to imagine what it would be like to live in a Euclidual 
world. How could it ever happen that lines could not freely rotate around points? 
How could it ever happen that running along a straight line would eventually bring 
you back home? Even if cosmology reveals that space itself is curved and closed, 
that will not make things any better; it will simply tell us that the universe we live 
in violates our deep and primordial intuitions about space. 

My point is this: our thoughts and imagery about space are fundamentally and 
deeply Euclidean, and trying to get used to any other system requires great mental 
effort on our part, and even after expending such effort, we remain contaminated by 
many unconscious Euclidean prejudices. Thus, despite the formal symmetry, even 
interchangeability, of Euclidean and Euclidual geometries, something in us tells us 
that we are Euclideans, not Eucliduals. 



Similar triangles on the Euclidean plane 

The two triangles shown above are similar because their sides are parallel 
in pairs (i.e., each pair of corresponding sides shares an ideal point). 

Simular trislides on the Euclidual plane 

The two trislides shown above are simular because their vertices are parallel 
in pairs (i.e., each pair of corresponding vertices shares an ideal line). 



Two triangles are similar if they 
have the same interior angles. 

Two triangles are congruent if they 
have the same interior angles and their 
sides have the same lengths. 

The operations of translation and 
rotation are both shape- and size­
preserving - that is, each of them 
preserves both relative angles and 
relative distances. 

Translation of any planar figure is 
carried out as follows: Add a pair of 
constants (x0, y0) to the biaxial 
coordinates (x, y) of each point in the 
figure. 

Rotation of any planar figure is 
carried out as follows: Given a center of 
rotation 0 (any point) and any 
component point P of the figure, shift 
the line OP by a fixed angle (i.e., add a 
constant value e0 to the angle e that line 
OP makes with some fixed reference 
line in the plane); then on the new line, 
find a point P' having the same distance 
from 0 as P did. 

The operation of dilation is shape­
preserving - that is, it preserves both 
relative angles and ratios of distances. 

Dilation of any planar figure is 
carried out as follows: Uniformly scale 
all distances as measured from a fixed 
center point while keeping all angles 
(measured relative to an arbitrary 
reference line through that point) fixed. 

In Euclidean geometry, exactly one 
line parallel to a given line can be 
found through any given point. 

In elliptic geometry (one variety of 
non-Euclidean geometry), no such 
parallel line exists. 

In hyperbolic geometry (another 
variety of non-Euclidean geometry), an 
infinite number of such parallel lines 
exist. 

Two trislides are simular if they 
have the same interior slides. 

Two trislides are concordant if they 
have the same interior slides and their 
vertices have the same swingths. 

The operations of twistation and 
relocation are both shape- and size­
preserving - that is, each of them 
preserves both relative slides and 
relative twistances. 

Twistation of any planar figure is 
carried out as follows: Add a pair of 
constants (x0, y0) to the bipolar 
coordinates (x, y) of each line in the 
figure. 

Relocation of any planar figure is 
carried out as follows: Given a central 
of relocation o (any line) and any 
component line p of the figure, shift the 
point op by a fixed slide (i.e., add a 
constant value <l>o to the slide-value <1> 

that point op has with reference to 
some fixed point in the plane); then on 
the new point, find a line p' having the 
same twistance from o as p did. 

The operation of oblation is shape­
preserving - that is, it preserves both 
relative slides and ratios of twistances. 

Oblation of any planar figure is 
carried out as follows: Uniformly scale 
all twistances as measured from a fixed 
central line while keeping all slides 
(measured relative to an arbitrary 
reference point on that line) fixed. 

In Euclidual geometry, exactly one 
point parallel to a given point can be 
found on any given line. 

In elliptual geometry (one variety of 
non-Euclidual geometry), no such 
parallel point exists. 

In hyperbual geometry (another 
variety of non-Euclidual geometry), an 
infinite number of such parallel points 
exist. 



The View from Euclidualia 

What would it be like to be a Euclidual? This is a question one cannot help 
asking oneself as one grapples with Euclidual geometry. One thing that comes to 
mind very quickly is that a Euclidual would have to wonder just as earnestly, "What 
would it be like to be a Euclidean?" In fact, we clearly understand that for each 
aspect of Euclidual geometry that is boggling to us, there is a corresponding and 
isomorphic aspect of Euclidean geometry that is precisely as boggling to our 
Euclidual counterparts. For instance: 

"What sense does it make to say that a point consists of many lines?", we 
wonder. At the same time, Eucliduals wonder, "What sense does it make to say that 
a line consists of many points?" 

We wonder, "How can there be a non-zero twistance between parallel lines?" 
At the same time, Eucliduals wonder, "How can there be a non-zero distance 
between parallel points?" 

One of the stranger things about Eucliduals is how different their visual 
systems must be from ours. Eucliduals and we bring very different eyes to one and 
the same figure. What simpler Euclidean concept is there than that of congruent 
triangles? To our eyes, two congruent triangles are identical. Yet to Euclidual eyes, 
they have nothing in common. To come to grips with this anomaly, we must 
carefully analyze why it is that we Euclideans think two congruent triangles are 
identical. The answer is quite simple: we can shift either triangle and make it 
coincide perfectly with the other. And this is where Euclidean prejudices creep in­
namely, prejudices about what types of "shifting" are allowed in bringing two 
figures into coincidence. For us, operations that preserve angles and distances are 
the right kinds of shifting-operations - to our eyes, they are "shape-preserving". 
Thus, rotation and translation preserve angles, but of course Eucliduals don't care a 
fig about angles - they are concerned with twistances. Similarly, translation and 
rotation preserve distances, but unfortunately, Eucliduals find distances a 
completely silly way of looking at separation between points- what they care about 
is slides. 

This means that to get a feeling for Euclidual vision, we must find the 
Euclidual analogues to our operations of translating and rotating figures in the 
plane. Let us first consider translation. Translation of a figure consists in: 

Adding a pair of constants (x0, y0) to all the biaxial coordinates (x, y) of points 
constituting the figure. 

The Euclidual version of this operation would thus be: 

Adding a pair of constants (x0, y0) to all the bipolar coordinates (x, y) of lines 
constituting the figure. 

Note that this operation is designed specifically to preserve all twistances 
between lines, just as translation preserves all distances between points. (Think 
about how the x0 and y0 will get canceled out in the Pythagorean formulas for 
distance and twistance.) We shall therefore baptize this operation with the name 
twistation (the phonetic resemblance to "translation" is of course not accidental). 

Now what about the dual to rotation? Well, rotation is a slightly more intricate 
operation, but basically, it is the following. 

Given a center of rotation 0 (any point) and any component point P of the 
figure, shift the line OP by a fixed angle (i.e., add a constant value e0 to the 



angle a that line OP makes with some fixed reference line in the plane); then 
on the new line, find a point P' having the same distance from 0 as P did. 

We can dualize this pretty straightforwardly, to make a new operation that we 
shall call relocation (again, the phonetic resemblance to "rotation" is intended). 

Given a central of relocation o (any line) and any component line p of the 
figure, shift the point op by a fixed slide (i.e., add a constant value <l>o to the 
slide-value <1> that point op has with reference to some fixed point in the 
plane); then on the new point, find a line p' having the same twistance from 
o asp did. 

For Eucliduals, relocation and twistation play analogous roles to our rotation 
and translation, respectively. And therefore, the figures that Eucliduals effortlessly 
see as having "the same shape" look nothing like each other, to us. Two trislides 
that "look alike" to Eucliduals- that is, that can be brought into exact coincidence 
with each other by relocation and twistation- are called concordant. 

What about the Euclidual counterpart of similar triangles? Two triangles are 
similar if they have exactly the same set of three angles. That's easy to dualize: two 
trislides are simular if they have exactly the same set of three slides. (Note that 
sharing just two slides is enough, since the size of the third slide is determined by 
the condition that the sum of all three slides must equal 7t.) Just as two similar 
triangles look, well, similar to us, although not identical, so to Eucliduals, two 
simular trislides appear, well, simular, although not identical. 

Similarity in Euclidean geometry can also be defined by means of the operation 
known as dilation -the uniform scaling-up or scaling-down (i.e., multiplication by 
a constant factor) of all distances from a fixed center point. This operation too has a 
Euclidual counterpart that we shall name oblation. Oblation is the uniform scaling­
up or scaling-down (i.e., multiplication by a constant factor) of all twistances from a 
fixed central line. 

We have now analyzed, to some extent, what makes two figures look exactly 
the same to possessors of one type of visual system and utterly different to 
possessors of the dual visual system. Despite all of this intellectual analysis, we still 
cannot help but think to ourselves, "Euclidual eyes must be very strange indeed! 
How could anyone possibly look at two perfectly congruent triangles and not see 
them as having the same shape, yet look at two utterly dissimilar 'concordant' 
triangles and see them as indistinguishable?" But we know that at the very same 
time, our Euclidual counterparts are thinking to themselves, "Euclidean eyes must 
be very strange indeed! How could anyone possibly look at two perfectly concordant 
trislides and not see them as having the same shape, yet look at two utterly 
dissimular 'congruent' trislides and see them as indistinguishable?" 

These are truly irreconcilable worldviews; still, we have tried our best to 
plunge ourselves into the Euclidual universe and to "see it as the Eucliduals do". 
Yet in some sense, the very best way of understanding their universe would be to 
realize that their universe looks to them exactly as our universe looks to us. If this 
is the case, however, then they must feel about lines exactly as we feel about points, 
and they must feel about points exactly as we feel about lines. So once again it 
sounds as if the only difference between our universes is a notational one- what 
words one uses for what things. 

If that were all there were to it, though, then we certainly wouldn't be so 
convinced that our universe is Euclidean and not Euclidual. Could it be that we are 
fooling ourselves? Does our intuitive conviction that lines are translationally 



infinite actually come from dealing with points that are rotationally infinite, except 
that we code it wrongly in our brains? Are we all born wearing invisible "inverting 
spectacles" that convert physically rotatory experiences into linear ones in the mind, 
and vice versa (a somewhat extreme variation on the famous theme of inverting 
spectacles that reverse right and left)? Are we humans actually living in a Euclidual 
universe that we erroneously perceive as Euclidean? Are we Eucliduals who just 
think they are Euclideans? 

It would seem that this is an unanswerable question. It certainly cannot be 
answered via experimentation, the way that Gauss sought to determine whether the 
space we live in is Euclidean or non-Euclidean by measuring the sum of the angles 
of a very large triangle. It seems that we simply innately think we live in a 
Euclidean world, and a Euclidual world makes no sense to us. Why this 
psychological asymmetry? Is it a property of the human brain, or a property of the 
universe, or what? 

A Few Speculative Remarks on Physics and Euclidual Geometry 

One cannot help but wonder if this new perspective on what space might be 
like could conceivably have anything to do with the physics of our universe. One 
thing is certain: the laws of physics often treat rotation and translation in very 
similar yet not identical ways. For example, there is the translational concept of 
linear momentum, and the analogous rotational concept of angular momentum. 
Both are conserved under all circumstances, as far as we know. Yet angular 
momentum is quantized (restricted to certain specific values) whereas linear 
momentum is not - it can assume any value whatsoever. (This holds for free 
particles; for bound particles, linear momentum is also quantized.) What does this 
asymmetry mean? Where does it come from? What would a world be like in 
which the reverse were the case- namely, a world where linear momentum was 
always quantized, but angular momentum was not? Would that kind of world 
perchance be Euclidual? 

A second potential link to physics is suggested by a disturbing point/line 
asymmetry in electromagnetism - the fact that the electric field admits of poi n t 
sources (i.e., charged particles) but no line sources, while the magnetic field admits 
of line sources (i.e., charged currents) but no point sources. The lack of point sources 
for the magnetic field deeply bothered the great English physicist P. A.M. Dirac, and 
he worked out a theory of what he called magnetic monopoles, which are isolated 
magnetic north and south poles- something that so far has never been seen in our 
universe. In Dirac's monopole theory, lines and points act very counterintuitively, 
in a manner somewhat reminiscent of the reversals in Euclidual geometry. Could it 
be, then, that the asymmetry of electromagnetic theory as embodied in Maxwell's 
equations is the result of an asymmetric way of "breaking" a more "projective" (i.e., 
fully symmetric) sort of physics, in which there is a complete and perfect symmetry 
between electric and magnetic phenomena? 

This is a very speculative idea, but perhaps someday someone will follow it out 
and discover some new physical meaning to the concepts of projective geometry. 

Geometries of" A Somewhat Bizarre Nature" 

My explorations into the disorienting Euclidual world were conducted in utter 
solitude over a several-week period, and of course I was deeply curious the whole 
time about whether I was blazing new pathways or just trodding down old ones. I 



looked with great care at all my books on geometry, which number several dozen, to 
see if I could find any references to such things as "parallel points" or other tell-tale 
phenomena of the Euclidual world. But I came up with nothing. 

Finally, though, on a day when I was putting the very finishing touches on this 
article, I opened up a rather old book on non-Euclidean geometry by D. M. Y. 
Sommerville (published in 1914), merely seeking the name of the three­
dimensional shape that is often presented as a model for hyperbolic geometry. I 
found it - "pseudosphere" - but while riffling through Sommerville's pages, I 
also found something else. I saw a picture that looked exactly like what I have 
herein called a "trislide", and its caption said something about the perimeter of a 
triangle being constant and equaling a multiple of 1t. That certainly caught my eye! I 
eagerly looked for more discussion and for references, but there was very little 
given. Indeed, the entire passage, not even one page long, was set in smaller type 
than the rest of the text, indicating that it was something of a digression and not 
very important, and began as follows: 

The other geometries, in which the measure of angle is either hyperbolic 
or parabolic, are of a somewhat bizarre nature. 

For example, if the absolute degenerates to two imaginary lines w, w', and 
two coincident points n, the case is just the reciprocal of the Euclidean case; 
linear measurement is elliptic, K being imaginary, and angular measurement 
is parabolic, k being infinite. In this geometry the straight line is of finite 
length = 1tK i. 

Sommerville really said very little more than that, other than describing the 
appearance of a trislide and stating the fact about its constant perimeter. No 
mention was made of the existence of parallel points, which I would have thought 
would be one of the most curious and striking aspects of this "somewhat bizarre" 
geometry. And there were no references at all! Clearly, however, people almost a 
century ago had certainly sniffed at, if not fully inhaled, some of these ideas. What I 
read also seemed to imply that projective, Euclidean, Euclidual, elliptic, hyperbolic, 
and other geometries known at the time were merely a few isolated points (or 
lines!) in an infinite space of geometries, defined by several continuous parameters. 
This was a little humbling and a little disappointing to me, but not seriously so. 

Conclusion: Making a Diamond of Geometries 

In any case, I had one last idea up my sleeve, and my intuition somehow told 
me it was genuinely new, perhaps even rich in implications. That idea involved 
the restoration of full symmetry to the Euclidean and Euclidual universes. Of 
course my idea was not to put back the missing line or point, since that would just 
result in projective geometry once again. Instead, the idea was to go in the opposite 
direction. That is to say, if Euclidean geometry results from "damaging" the 
projective plane by deleting one line, and if Euclidual geometry results from 
damaging it by deleting one point, why not doubly damage the projective plane, by 
deleting from it both one line and one point? 

The result of such an operation, which I have dubbed contrajective geometry, 
would be totally symmetric - in other words, self-dual, just like projective 
geometry -but it would feature lines that are open and points that are open, in 
contrast to projective geometry's closed lines and points. It would also feature both 
parallel lines and parallel points, all in one universe. Moreover, the natural pair of 
shape-preserving shifting-operations in contrajective geometry would not be the 



The fully symmetric 
Diamond of Geometries 

Projective geometry 

Points are closed, lines are closed; 
parallelism does not exist. 

Delete one line and all the points on it, 
creating (translational) infinity; 
all remaining lines are therefly broken 

Euclidean geometry 

Delete one point and all the lines on it, 
creating (rotational) infinity; 
all remaining points are therefly broken 

Euclidual geometry 

Points are closed, lines are open; 
parallel lines exist. 

Lines are closed, points are open; 
parallel points exist. 

Delete one more point and all the lines 
on it, creating (rotational) infinity; 
all remaining points are now broken 

Contrajective geometry 

Points are open, lines are open; 

Delete one more line and all the points 
on it, creating (translational) infinity; 
all remaining lines are now broken 

both parallel lines and parallel points exist. 



Euclidean pair (translation and rotation) nor the Euclidual pair (twistation and 
relocation), but rather a hybrid pair- translation and twistation - which draws 
one member from each of the "broken" geometries. 

Contrajective geometry fits in a symmetric position below both Euclidean and 
Euclidual geometry, and thus completes a seemingly inevitable quartet - the 
"Diamond of Geometries" alluded to in the title of this article. 

What is contrajective geometry like? What are some of its theorems? One 
thing for sure is that neither the sum of the interior angles nor the sum of the 
interior slides of all three-sided, three-vertexed entities is invariant, because the 
notions of "angle" and "slide" are irrelevant in this geometry. Only distances and 
twistances need apply here! But what exactly does this mean? How to visualize it? 
Is there some kind of natural model for contrajective geometry, playing the role that 
the sphere, the plane, and the tube do for the other three geometries? I must admit 
that at this stage I do not have the foggiest idea; these remain beckoning questions 
for the future. 


