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The purpose of this article is to relate a number of geometrical explorations I have 
recently made as a consequence of a kind of personal obsession with the notion of 
point/line duality, as well as a fascination with gnomonic projection. These 
explorations have yielded new (for me) ways of understanding hyperbolic and 
related geometries via the sphere, and several new "hybrid" types of geometry, 
described below in some detail. 

Gnomonic projection and the absolute polarity. If a point on the plane is joined to the 
center of the sphere lJy a line, the line hits the sphere in two antipodal points, called the 
"gnomonic image" of the point. Thus here, the gnomonic image of point P' is the 
antipodal point-pair P. If you take the gnomonic image of all the points on a straight line, 
you get a great circle. Thus great circlep and planar linep' are each other's images. 

There is a natural duality between great circles and antipodal point-pairs, exemplified by 
the equator and the north/south poles, which are each other's duals. In general, the great 
circle located midway between two antipodal spherical points is the dual of that point-pair, 
and vice versa. This relationship is called the "absolute polarity". In the picture, great 
circle p and antipodal point-pair P are each other's duals; their gnomonic images on the 
extended Euclidean plane, straight linep' and point P: are each other's duals. 

For me, gnomonic projection enormously clarifies the interrelationships among 
the geometries that I find most interesting. This means essentially two-dimensional 
geometries, including all of the following (plus some new ones, to be described in a 
few pages): projective, elliptic, Euclidean, and hyperbolic, as well as their duals: 
projective (self-dual, obviously), elliptic (self-dual), Euclidual, and "hyperbual"; and 
finally, contrajective (yet another self-dual geometry). 

I was first led in this direction, a bit over a year ago, by my fascination with the 
absolute polarity on the surface of a sphere (with antipodal points equated). (I didn't 
know its name, since I had never heard of polarities at the time.) It was thrilling to 
me to realize that I could begin with any diagram on the extended Euclidean plane, 
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gnomonically project it upwards onto the sphere, then dualize it in the obvious way 
(namely, by converting great circles into their absolute poles and point-pairs into their 
absolute polars), and finally project the dualized image back down onto the extended 
Euclidean plane, thereby creating a specific transformation of the plane that concretely 
realized the abstract notion of duality. 

When I first thought of this transformation of the extended Euclidean plane, a bit 
over a year ago, I supposed it might be original, but of course it turned out simply to be 
a polarity, carried out via the intermediary of a three-dimensional sphere. In fact, if 
you recast it purely in terms of planar operations (without any reference to the 
sphere), it is just "antireciprocation"- that is, reciprocation in some circle, followed 
(or preceded) by reflection across the circle's center. I was disappointed to find out 
how very old this idea was (dating from about 1820), when I read the chapter on 
projective geometry in Coxeter & Greitzer's book Geometry Revisited, about a year ago. 
That was the first time I had ever heard of the notion "polarity". 

As I continued pondering this image of what one might call sphere-mediated 
polarities, it occurred to me that you could get a large family of related polarities by 
rotating the sphere either before or after carrying out the dualization step (via the 
absolute polarity), and then gnomonic ally reprojecting the rotated-and-dualized 
image back down onto the plane. (Since any rotation of the sphere preserves great 
circles as well as all incidence relations on the sphere's surface, throwing in a rotation 
in this fashion will not disturb any projective properties.) My hope was that this 
might in fact yield all the polarities on the extended Euclidean plane. However, I soon 
realized that since there are five degrees of freedom in an arbitrary polarity and only 
three in an arbitrary rotation of the sphere, I had fallen far short of getting all the 
possible polarities, and consequently I lost most of my interest in the idea. 

Some months later, I realized I had overlooked the fact that there are other things 
(besides rotations) that you can do to the sphere before reprojecting the image down 
onto the plane. Anything that leaves intact the pattern on the sphere's surface will still 
yield a perfectly valid polarity. Thus you can translate the sphere as a whole, carrying 
its south pole to any desired spot on the plane; you can also inflate or deflate the sphere, 
and finally you can reflect the sphere in a mirror, thus reversing parity. Altogether, these 
operations, together with rotations, appear to yield six degrees of freedom, which are 
enough - in fact, more than enough - to yield all polarities on the plane. Since I 
knew that every combination of these operations definitely leads to some polarity or 
other, I concluded that there must be some redundancy in my counting, so that there 
are probably in truth just five, not six, degrees of freedom in the family. 

Thus I was led to making the following conjecture, which is almost surely correct: 

Gnomonic Conjecture 1: An arbitrary polarity of the projective plane can be made by 
carrying out a gnomonic projection G onto a sphere, followed by an arbitrary combination 
of rotations, translations, inflations, and reflections of the sphere, then followed by a 
"dualization" of the sphere, and finally followed by the inverse gnomonic projection G-1 

back down onto the plane. 

Soon after making this conjecture, I realized that if you omit the dualization step, 
you produce collinearities instead of correlations of the plane. I figured that in all 
likelihood you could get an arbitrary collinearity in exactly the same way. So I made 
an analogous conjecture: 

Gnomonic Conjecture II: An arbitrary collinearity of the projective plane can be made 
by carrying out a gnomonic projection G onto a sphere S, followed by an arbitrary 
combination of rotations, translations, inflations, and reflections of S, and finally 
followed by the inverse gnomonic projection G-1, carrying S back down onto the plane. 
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Brian chon 
hexagon 

Using the gnomonic projection and the absolute polarity in tandem to realize, in a concrete manner, 
projective geometry's point-line duality. In the upper right, Brianchon 's theorem is illustrated: 

If a hexagon is circumscribed about a conic, the three lines 
that link opposing vertices of the hexagon are concurrent. 

The "Brianchon conic" is a perfect circle, but that was done merely for ease of drawing. The 
hexagon, with sides labeled "a" through ''f", looks strange because it is self-intersecting, but it is 
no less a hexagon for that. The special point of concurrency is labeled "Brian chon point". 

This entire configuration is then "dualized" fly sending it up onto a sphere (whose shadow is 
shown) fly a gnomonic projection and then using the absolute polarity on the sphere to map 
antipodal point-pairs to great circles and vice versa. This done, the dualized image on the sphere 
is sent back down onto the plane via the gnomonic projection. The resulting ''gnomonic-dual 
image" of line a is thus point A, and so on. The Pascal conic (the gnomonic dual of the Brianchon 
conic) is a hyperbola, and the new planar configuration in its entirety illustrates Pascal's theorem: 

If a hexagon is inscribed in a conic, the three points .where 
opposing sides of the hexagon meet are collinear. 

And finally, to complete the perfect symmetry, the image of the Brianchon point is the Pascal line. 



-4-

What would seem to be a reasonable special case of this would be a one-
dimensional version, namely this: 

Gnomonic Conjecture III: An arbitrary one-dimensional projectivity of any line on the 
projective plane can be made by carrying out a gnomonic projection G onto a sphere S, 
followed by an arbitrary combination of rotations, translations, inflations, and reflections 
of S, so long as each one of them preserves the image of the line, and finally followed by 
the inverse gnomonic projection G-1, carrying S back down onto the plane. 

* * * 
All this was most exciting and quite beautiful, and kept alive my fascination with 

the "gnomonic approach" to visualization of projective geometry. The next thing that 
happened was that I was musing about the following two facts at about the same time: 

Fact I: Suppose we have been given a line and a point not on it. Then: 

• in elliptic geometry, there are zero parallel lines through the point; 
• in Euclidean geometry, there is one parallel line through the point; 
• in hyperbolic geometry, there are infinitely many parallel (i.e., 

non-intersecting) lines through the point. 

Fact II: When you make a gnomonic projection from a sphere onto the extended 
Euclidean plane or vice versa, then: 

• in order to model the elliptic plane, you delete zero lines; 
• in order to model the Euclidean plane, you delete one line. 

The suggestive resonance between these two facts led me to wondering if there 
wasn't a line missing from Fact II, whose addition would make it fully analogous to 
Fact I. That third line, of course, would have to look this way: 

• in order to model the hyperbolic plane, you delete infinitely many lines. 

Ironically, I was adding a line that spoke of deleting infinitely many lines! This 
suggestion seemed extremely appealing and eminently reasonable, but there was one 
question it left unanswered: Which infinite set of lines to delete? 

Since the line usually deleted to give Euclidean geometry is the equator, the image 
that instinctively leapt to my mind was that of a "fat equator" - a symmetrical band 
around the equator, delimited by two horizontal lines of latitude at equal angles above 
and below the equator. If we imagine this "fat equator" as being black and the rest of 
the sphere as being transparent, then when you project the sphere downwards 
gnomonically onto a white plane, what you get is a white circle surrounded by blackness 
extending to infinity. 
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A sphere with a fat equator has been projected gnomonically onto the extended 
Euclidean plane. The portion of the sphere above and below the fat equator maps onto 
a white disk centered on the sphere's south pole. The planar image of the fat equator 
itself maps onto the black exterior region, stretching in all directions out to infinity. 

This at first made me think of the Poincare model of hyperbolic geometry, but on 
reflection I concluded I was probably dealing with the Beltrami-Klein model, since 
gnomonically-prqjected great circles become straight lines (not circles) on the plane. 

The nondeleted portion of a great circle projects gnomonically downwards 
onto a chord of the circle delimiting the "legal" portion of the plane. 

A little more thought added clarity concerning the nature of the "fat equator". 
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Although at first one might tend to conceive of it as consisting of an infinite set of lines 
of latitude, that would be a bad way of looking at it. Rather, the fat equator should be 
conceived of as an infinite set of great circles: namely, those that you get by tiliing the 
equator through all angles less than or equal to some particular fixed angle. Of course, 
these deleted lines (or great circles, depending on whether you're looking at the plane 
or the sphere) are the lines that define parallelism, in the sense that any two lines that 
meet on any deleted line are said to be parallel. And the bottom and top edges of the 
fat equator play a special role, in that any two lines that intersect on them are 
asymptotic or bounding parallels. From now on, think of these upper and lower edges of 
the fat equator as colored red. Thus, two red circles divide the black (forbidden) zone 
from the white (permitted) zone on the sphere. When projected down onto the plane, 
they yield a single red circle separating the white disk from the infinite black zone. 

Then I realized that the two red-colored edges of the fat equator on the sphere are 
really the gnomonic images of the conic at infinity - that is, the conic usually 
referred to as the Absolute. In this case, the Absolute is a circle on the plane- the limit 
circle of the Klein model, of course. But then I remembered that in its full generality, 
the Absolute is an arbitrary conic, not just the special case of a circle. No problem: you 
can get an arbitrary conic by gnomonic projection of the fat equator. All you need to 
do is, as before, first rotate the sphere, translate it, inflate it, reflect it if you like. By a 
suitable choice of such operations followed by a downward gnomonic projection, you 
can make the fat equator's two red edges map onto any desired conic on the plane. 

To summarize what I have said so far, then, my "fat equator" idea really seemed to 
be just a new way to think about the concept of the Absolute, mediated once again by 
the sphere, along with gnomonic projection and the set of all operators that act on the 
sphere as a whole but leave its surface-pattern undisturbed. I had never seen this idea 
spelled out before, but it didn't seem as if it could be entirely novel. Still, it made much 
clearer for me a whole lot of things about the relationships among projective, elliptic, 
Euclidean, and hyperbolic geometries, leading me to wonder why it is so ignored. 

One small thing, for instance, that I had read in books but never understood before 
was the claim that in Euclidean geometry, the Absolute is not one line, but two 
coincident lines. It is often stated that this is a degenerate case of a conic; this would be 
easier to visualize if it were located somewhere in the middle of the plane, but for me it 
was hard to conceive of the line at infinity as two lines. But now, all I needed to do to 
see this was to imagine making the fat equator thinner and thinner. As its thickness 
approaches zero, its two red-colored edges - lines of latitude in opposite hemispheres 
located symmetrically with respect to the equator - eventually come to coincide on 
the equator itself. For me, this provided a very satisfying intuition for the statement 
that the line at infinity is really two coincident lines. 

* * * 
Having gotten this far, I then naturally turned to my idea of dual geometries. Thus, 

I thought, hyperbual geometry- the dual of hyperbolic geometry- must surely 
come from deleting the dual of the fat equator on the sphere. But what is the fat 
equator's dual? The absolute polarity makes the answer quite obvious: it is the interior 
of a circular zone surrounding the North and South poles, a zone one might call the 
polar caps, or the ice caps. So now imagine deleting the polar caps (colored blue, with 
their edges being green circles, say) from the sphere (transparent) and then making a 
gnomonic projection downwards onto the (white) plane. What you get is a green 
circle (the Absolute) whose interior is blue (this is the forbidden zone, corresponding 
to the blue polar caps), and which is surrounded by an infinite expanse of white. In 
short, what this produces is the planar complement of the Beltrami-Klein model. 
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A sphere with deleted polar caps has been projected gnomonically onto the plane. The 
deleted caps map onto a small shaded disk centered on the sphere's south pole. The image 
of what remains is the white exterior region, stretching in all directions out to infinity. 

Now since we are dealing with a dual geometry- the hyperbolic analogue of 
Euclidual geometry- this curious plane, just like the Euclidual plane, should be 
conceived of as consisting of lines, not of points, and the blue disk as the set of deleted 
points at infinity. Just as in Euclidual geometry, deletion of a point really means 
deletion of all lines that pass through it, so in fact this hyperbual plane is quite 
impoverished, in that it contains no line passing through the blue disk. Fortunately, 
however, there are lots of lines left over. Obviously, if you carry this whole procedure 
through, you will construct all of hyperbual geometry, exactly in parallel fashion to 
the way I constructed Euclidual geometry. The only difference is that you have 
deleted a circular neighborhood of points rather than a single point. 

Needless to say, you can now rotate and translate (etc.) the sphere, and the deleted 
blue area on the plane (with its green-colored Absolute boundary) will change its 
shape, location, and size accordingly, thus giving you all the different possible 
realizations on the plane of hyperbual geometry. The only difference between these 
planar models is that they have differently-shaped Absolutes, but of course the 
geometry that takes place within the confines of the Absolute is an invariant. 

* * * 
Here is a summary of the geometries I have mentioned so far, all characterized as 

resulting from the projective plane as realized on the surface of a sphere, with 
antipodal points equated, and various portions of the sphere possibly deleted. 

1. Projective geometry, gotten by deleting no lines and no points from the sphere. 
This nonmetric geometry is its own dual. 

Size of a line: -. Number of parallel lines thru a point: 0. 
Size of a point: -. Number of parallel points on a line: 0. 

la. Elliptic geometry, gotten by imposing the natural projective metric onto 
projective geometry, in which a line and a point both acquire size 2n. This 
metric geometry is its own dual. 

Size of a line: 2n. Number of parallel lines thru a point: 0. 
Size of a point: 2n. Number of parallel points on a line: 0. 
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2. Affine geometry, gotten by deleting the equator (one line) from the sphere. 
The dual of this semi-metric geometry is iffine geometry. 

Size of a line: oo. Number of parallel lines thru a point: 1. 
Size of a point: -. Number ofparallel points on a line: 0. 

2a. Euclidean geometry, gotten from affine geometry by imposing an absolute 
involution of points on the equator, defining perpendicular lines. The dual of 
this metric geometry is Euclidual geometry. 

Size of a line: oo. Number of parallel lines thru a point: 1. 
Size of a point: 27t. Number of parallel points on a line: 0. 

2'. !!fine geometry, gotten by deleting the north/south pole (one point) from the 
sphere. The dual of this semi-metric geometry is affine geometry. 

Size of a line: -. Number of parallel lines thru a point: 0. 
Size of a point: oo. Number of parallel points on a line: 1. 

2a'. Euclidual geometry, gotten from iffine geometry by imposing an absolute 
involution of lines on the north/south pole, defining perpendicular points. 
The dual of this metric geometry is Euclidean geometry. 

Size of a line: 27t. Number of parallel lines thru a point: 0. 
Size of a point: oo. Number of parallel points on a line: 1. 

3. Hyperbolic geometry, gotten by deleting a "fat equator" (infinitely many 
lines) from the sphere. The dual of this metric geometry is hyperbual 
geometry. 

Size of a line: oo. Number of parallel lines thru a point: oo. 

Size of a point: 27t. Number of parallel points on a line: 0. 
3'. Hyperbual geometry, gotten by deleting "polar caps" (infinitely many points) 

from the sphere. The dual of this metric geometry is hyperbolic geometry. 
Size of a line: 27t. Number of parallel lines thru a point: 0. 
Size of a point: oo. Number of parallel points on a line: oo. 

4. Contrajective geometry, gotten by deleting both the equator (one line) and the 
north/ south pole (one point) from the sphere. This nonmetric geometry is its 
own dual. 

Size of a line: -. Number of parallel lines thru a point: 1. 
Size of a point: -. Number of parallel points on a line: 1. 

4a. Ecliptic geometry, gotten by imposing the natural projective metric onto 
contrajective geometry, in which a line and a point both acquire size oo. This 
metric geometry is its own dual. 

Size of a line: oo. Number of parallel lines thru a point: 1. 
Size of a point: oo. Number of parallel points on a line: 1. 

Note that the latter two are hybrid geometries, in the sense that they involve deleting 
two different types of things at once. The resulting geometry in some sense inherits 
different traits from its "mother" and "father" geometries- specifically, it inherits its 
points from its mother and its lines from its father. 

In the case of contrajective geometry, the mother and father geometries are iffine 
and affine geometry, respectively, which means that contrajective geometry has iffine 
points and affine lines. (And projective geometry has affine points and iffine lines.) 

Similarly, the mother and father of ecliptic geometry are Euclidual and Euclidean 
geometry, respectively, which means that ecliptic geometry has Euclidual points and 
Euclidean lines. (And elliptic geometry has Euclidean points and Eucliduallines.) 
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All this is pretty crazy, or at least mind-boggling- but as if this weren't enough, I 
then realized that many other hybrid possibilities were opened up by the idea of 
deleting fat equators and polar caps. Here is a list: 

5. Hyperb-Euclidean geometry, gotten by deleting the equator (one line) and polar 
caps (infinitely many points) from the sphere. This hybrid geometry's 
mother is hyperbual geometry, and its father is Euclidean geometry. It 
therefore has hyperbual points and Euclidean lines. The dual of this metric 
geometry is hyperb-Euclidual geometry. 

Size of a line: oo. Number of parallel lines thru a point: 1. 
Size of a point: oo. Number of parallel points on a line: oo. 

5'. Hyperb-Euclidual geometry, gotten by deleting a fat equator (infinitely many 
lines) and the north/south pole (one point) from the sphere. This hybrid 
geometry's mother is Euclidual geometry, and its father is hyperbolic 
geometry. It therefore has Euclidual points and hyperbolic lines. The dual of this 
metric geometry is hyperb-Euclidean geometry. 

Size of a line: oo. Number of parallel lines thru a point: oo. 

Size of a point: oo. Number of parallel points on a line: 1. 

6. Subjective geometry, gotten by deleting a fat equator (infinitely many lines) 
and polar caps (infinitely many points) from the sphere. This hybrid 
geometry's mother is hyperbual geometry, and its father is hyperbolic 
geometry. It therefore has hyperbual points and hyperbolic lines, but it has no 
projective metric. This nonmetric geometry is its own dual. 

Size of a line: -. Number of parallel lines thru a point: oo. 

Size of a point: -. Number of parallel points on a line: oo. 

6a. Subtropical geometry, gotten by imposing the natural projective metric onto 
subjective geometry, in which a line and a point both acquire size oo. This 
hybrid geometry's mother is hyperbual geometry, and its father is 
hyperbolic geometry. It therefore has hyperbual points and hyperbolic lines. 
This metric geometry is its own dual. 

Size of a line: oo. Number of parallel lines thru a point: oo. 

Size ofa point: oo. Number of parallel points on a line: oo. 

At some stage, I started realizing that the affine/iffine family, whose members are 
characterized by having blank entries in their descriptive tables (somewhat 
reminiscent of defective verbs, such as the verb falloir in French, whose conjugations 
lack one or more entries), was far from complete. The way I calculated it, there are 
twelve of these semi-metric geometries in toto. 

A couple more of them are described below: 

7. Hyperaffine geometry, gotten by deleting a fat equator (infinitely many lines) 
from the sphere, but leaving out the concept of perpendicularity. The dual of 
this semi-metric geometry is hyperiffine geometry. 

Size of a line: oo. Number of parallel lines thru a point: oo. 

Size of a point: -. Number of parallel points on a line: 0. 
7'. Hyperiffine geometry, gotten by deleting polar caps (infinitely many points) 

from the sphere, but leaving out the concept of perpendicularity. The dual of 
this semi-metric geometry is hyperaffine geometry. 

Size of a line: -. Number ofparallellines thru a point: 0. 
Size of a point: oo. Number of parallel points on a line: oo. 
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9 fullY. metric geometries 
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There are also offine and uffine geometries, which are to subtropical geometry what 
affine and iffine are to projective geometry. Then there are also hyperoffine and 
hyperuffine geometries, and four more. All twelve of them are shown on the 
accompanying chart. 

All told, including the twelve semi-metric geometries, there seem to be 24 natural 
geometries that come out of canonical ways of deleting points, lines, "fat points", or 
"fat lines", either alone or in simple combinations. If you leave out the semi-metric 
geometries, there are still twelve geometries - too many to even name, let alone 
understand! 

* * * 
There is no compelling reason, other than elegance, to make the two deleted 

regions in a hybrid geometry be centered on locations that are each other's absolute 
duals. For example, in making contrajective geometry (which involves deleting one 
line and one point), if you delete the equator, you are not thereby compelled to delete 
the north/south pole in particular -you can delete any point whatsoever on the 
sphere. Of course, there are only two "essentially different" types of points to delete­
ones off the equator, and ones on it. Therefore, contrajective geometry and its metric 
partner, ecliptic geometry, divide into two cases: deleted point and line incident, versus 
deleted point and line non-incident. 

Because the deleted line functions on the plane essentially as a horizon, I choose to 
use that name for it. And, following the convention used in perspective drawing, I 
call any point on the horizon a vanishing point. (Of course, vanishing points are not real 
points because they lie on the deleted line.) Similarly, because the deleted point 
functions on the plane essentially like the sun (you cannot look directly at it, and the 
closer you come to doing so, the harder it gets), I choose to use that name for it. And 
not following any prior convention, at least to my knowledge, I call any line that 
emanates from the sun a sunbeam. Therefore, contrajective geometry's two cases are 
where the sun is above the horizon, and when the sun is exactly on the horizon. For short, 
therefore, I refer to them as the "midday" and "sunset" versions of contrajective (or 
ecliptic) geometry. 

I know almost nothing about contrajective or ecliptic geometry, but the one basic 
fact I do know is shown in the accompanying figure. It is simply the fact that to each 
pencil of parallel lines, there is a naturally associated range of parallel points, and vice 
versa. More simply put, there is a one-to-one correspondence between vanishing points and 
sunbeams. This seems to be a fundamental, central fact about such geometries, but 
what it really means or implies, I don't yet know. I feel like an ignoramus, in fact. 

* * * 
Just as contrajective geometry subdivides into two cases depending on the relative 

locations of the two deleted entities, so aU hybrid geometries subdivide. Some of them 
split into three cases, and some of them into a whole bunch. Take hyperb-Euclidual, 
for instance, which involves deleting a fat line (which we might as well take to be 
centered on the equator) and one point (which we will consider mobile). There are 
three essentially different positions for the point relative to the fat equator: outside the 
fat equator (i.e. in the white zone), on either edge of the fat equator (i.e., on either red 
curve), and inside the fat equator (i.e., in the black zone). More conventionally put, the 
deleted point can fall either in the real region of the plane, or on the Absolute, or in the 
ultra-ideal region. 



Contrajective (or ecliptic) 
geometry: midday variety 
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Actually, mentioning the Absolute brings up a subtle point: in any hybrid 
geometry, there really are two Absolutes: a Point Absolute, which is a locus, and a line 
Absolute, which is an envelope. The Point Absolute is the boundary of the deleted 
(simple or fat) line, curiously, and the Line Absolute is the boundary of the deleted 
(simple or fat) point. The reason for this reversal is that deleting a point really means 
declaring all the lines that belong to that point to be ideal- that is, to consist of parallel 
points. So the operation of deleting a point is really more about lines, and conversely, 
deleting a line is really more about points. 

Let's jump to the messiest case by far, which is subtropical (or subjective) geometry. 
Here we are deleting both a pair of antipodal caps and the fat equator. Where can the 
caps lie, relative to the fat equator? The easiest case is when there is no overlap at all. 
Then you have the most opposite case, which is when one is contained entirely in the 
other. There are actually two such cases, dual to each other. It's easy enough to 
envision two antipodal caps sliding around in perfect synchrony on the surface of the 
globe and sometimes being contained entirely inside the fat equator, assuming they 
are small enough, but what about the reverse case? How could the fat equator ever be 
contained inside a pair of caps, no matter how big they are? 

The trick is, one has to remember that in a self-dual geometry like this, both the fat 
equator and the caps can be thought of either as a collection of ultra-ideal points or as a 
collection of ultra-ideal lines. The intuitive image of caps contained inside the fat 
equator, given above, is basically a point-oriented image. To see the fat equator as 
contained inside the caps, however, we have to switch over to a line-oriented point of 
view (so to speak). In this view, the caps, rather than being merely a set of points, 
consist in the set of all lines that pass through those points (if the caps are small, these 
lines are nearly meridians, for instance). Thus we imagine the caps sliding around 
the sphere and, if they are wide enough, there will be certain positions when the lines 
they define include all the lines comprising the fat equator - when this happens, 
then the fat equator is inside the caps. From a point-oriented stance, this happens 
exactly when the fat equator is thin enough, and oriented in such a way, that it passes 
through the caps, like a multilane highway passing through two antipodal cities. 

From now on, since every case has a dual, I'll just describe the far-easier-to­
visualize point-oriented cases. And since the caps are antipodal, I'll just talk about one 
of them. So, to begin with, we can easily imagine a cap as being externally tangent to 
the fat equator, or as being internally tangent. Internal tangency subdivides again, 
depending on whether the cap is wider or narrower than the fat equator. We can even 
imagine a cap as being doubly internally tangent to the equator- namely, when it is 
completely inside the fat equator but has the same width as it does. By the way, this is 
a self-dual case, of course. 

I think there is another type of double internal tangency. Imagine the fat equator 
reaching out to, say, the Tropics of Cancer and Capricorn, and the cap being tilted so 
that it is tangent to both Tropics on their north sides. I think this is a valid case. 

Another very weird case is where one cap is centered on the north pole, and is 
very fat - so fat that it descends nearly to the equator itself- and the fat equator is 
also so fat that it actually overlaps this very fat polar cap. Then there are measure-zero 
cases such as when the caps reach to the Tropics of Cancer and Capricorn and where 
the fat equator does likewise, so that the Tropics serve simultaneously as the Point 
Absolute and the Line Absolute. There are probably more cases that I've missed, but 
this certainly gives the idea. It's a huge, ridiculous zoo of geometries! 

* * * 
This act of cataloguing geometries ad nauseam is kind of fun but makes me also feel 
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very weird. On the one hand, I am at long last doing "high-level mathematics"- a 
kind of abstract level of mathematics that feels far more sophisticated, in some sense, 
than the mere act of discovering various curious concurrences of lines in triangle 
geometry on the Euclidean plane. I feel I'm almost being "modern"- almost doing 
"twentieth-century" mathematics. On the other hand, I feel ridiculously out of touch 
with all the wonderful, specific, idiosyncratic geometrical phenomena that must be 
going on in every single one of these individual geometries. 

I at least got a taste of Euclidual geometry, and I have at least tried a tiny bit to think 
about contrajective geometry, and hope to continue- but what about all the rest? I 
don't know Word One about a single one of them, and probably, as far as most of them 
are concerned, never will. It's sad. It really reminds me of those linguists who study 
African languages and who make grand classificatory schemes, grouping them into 
large families and subfamilies and plotting interrelationships and historical 
tendencies and so on, all while knowing not one word of any of them. It may seem 
grand, but on another level it is very remote from the phenomenon of language itself. 

Somehow, in mathematics as in linguistics, there must be a happy medium. I 
don't want to just manipulate geometries as if they were opaque little capsules - I 
want to peer inside those capsules, and learn specifics. Of course, I can't hope to learn a 
great deal about each of these dozens of geometries, any more than I can hope to learn 
dozens of foreign languages, but I would certainly like a glimpse inside each capsule, 
in the same way as I can recognize Vietnamese and Cantonese, have a smattering of 
Russian and Hindi, and know a few languages well enough to converse in them. 

Plus, it strikes me that this kind of geometry-manipulation, while fun for a short 
time, becomes a nearly empty shell-game quite soon. There is nothing really gripping, 
nothing really strange or exciting or beautiful going on at these ethereal levels of 
abstraction. The really beautiful phenomena are lower down, at a more visualizable 
level. And the really deep ideas, too, all spring out of lower-level phenomena, or at 
least so I deeply believe. 

Maybe finding a deep idea quickly sends you soaring up into the stratosphere of 
abstraction, but whatever you are doing up there remains rooted way down on some 
very low level, and that's where its power comes from. If you forget about that origin 
and remain stuck (and possibly stuck-up) up in the oxygen-poor, image-poor 
stratosphere of abstraction, you will probably wind up eventually just counting angels 
on the head of a pin, metaphorically speaking. Only if you occcasionally dip back 
down to the low, oxygen-rich layers of the atmosphere will you refresh yourself and 
renew your excitement with down-to-earth, genuinely unpredictable, weird, exotic 
phenomena that you could never have dreamt of from your remote perch in the 
abstract sky. Thus renewed, you may well shoot back up to the stratosphere, but at 
least you will be in touch with the doings on earth, and your inspiration will be 
coming, in some sense, from the right place. 

* * * 
Several weeks ago, Donald Coxeter wrote to me that my earlier article "A Diamond 

of Geometries" reminded him of something in Boris Rosenfeld's History of Non­
Euclidean Geometry, so I immediately rushed out to the library, checked it out, and 
checked it out. On first perusal, I failed to spot anything that seemed related, but a 
clever friend of mine decided to look up "Sommerville" in the index, and that led 
him to Rosenfeld's discussion of Klein's, Cayley's, and Sommerville's projective metrics. 
I quickly recognized that this was indeed related to my investigations of Euclidual 
geometry and the rest of the "bouquet of geometries" described herein, but the 
language was so different from mine that I had a rough time figuring out what the 
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exact overlap is. 
Whereas I characterize a geometry by specifying what gets deleted from a 

projective plane (one line or one point, or possibly one of each), Rosenfeld talks about 
the values of the coefficients K and k that figure into the cross-ratio-based formulas for 
determining what I call line-sep (the generalization of angle that most naturally fits the 
geometry in question) and point-sep (the generalization of distance that most naturally 
fits the geometry in question). Each of these coefficients K and k can take on only 
three "essentially different" values: real, imaginary, or infinite (when K or k is finite, 
its precise value makes no difference), and since there are two such coefficients, there 
are nine total combinations, leading to nine "essentially different" geometries. 
Actually, Rosenfeld has three constants, K, k, and 1(, because he is dealing with three­
dimensional rather than two-dimensional geometries, so there is a similar cross-ratio­
based formula for plane-sep as well. As a consequence, in this scheme, there are 27 
different 3-D geometries. 

It was quickly apparent to me that Sommerville's "co-Euclidean" space *R3 (the 
nomenclature and notation are Rosenfeld's, not Sommerville's, I would guess) is a 3-D 
version of my "Euclidual plane". On the other hand, it was not at all clear whether 
my "contrajective geometry" (what you get when you simultaneously delete both a 
point and a line from the projective plane) fits into this projective-metric scheme, in 
the sense of being the geometry yielded by some particular choice of Sommerville's 
parameters K and k. 

Obviously the projective metrics that Klein, Cayley, and Sommerville studied and 
that Rosenfeld discusses include all sorts of weird geometries, but I couldn't make 
head or tail of most of them. I had no idea what quasielliptic or quasihyperbolic spaces 
are, or what pseudoisotropic spaces or co-Galilean spaces are, or what flag space is. (The 
definition of flags on Rosenfeld's p. 260 - "manifolds of planes whose intersections 
with a nested system of fixed planes have prescribed dimensions" - left me 
completely in the dark.) 

It's hard for me to imagine that Sommerville, when he came up with his "Big 27", 
wouldn't have experienced an embarras du choix similar to the one I experienced. I 
mean, who has time to fully explore 27 different geometries? Life is finite, after all! 
That's why I wonder if he - or anyone else - ever really looked deeply into, say, 
Euclidual geometry, in the sense of finding Euclidean models of it (as I do in my 
"Diamond of Geometries" article) or carefully describing it. Has anyone besides 
myself ever graphically discussed the weird, disorienting properties that such a space 
has? By this, I mean explicitly bringing up the existence of parallel points and 
perpendicular points, the lack of parallel lines, the fact that all lines have finite length, 
the fact that points are "made out of' lines, so to speak, rather than the reverse, and so 
on - all the things that I spelled out in such detail in my article "A Diamond of 
Geometries". 

I guess that in some rough sense, that article attempts to do for Euclidual geometry 
(or as Rosenfeld would have it, "co-Euclidean" geometry) what Flatland did for four­
dimensional geometry, in the sense that it tries to spell out, in the most basic and vivid 
terms, the truly disorienting nature of this "alternate world". 

Post Scriptum 
Writing this article was a distinct help to me in analyzing and classifying my 

own bouquet of geometries. Mter finishing the first draft of it (it started life out, in fact, 
as a letter to Donald Coxeter!), I went back to Rosenfeld's discussion of Sommerville's 
27, and went very carefully through it. It took quite a while, but eventually I was able 
to make a mapping between Sommerville's and my geometries. The mapping was 
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certainly complicated by the fact that Sommerville was operating in 3-space while I 
was working in 2-space, but I eventually came to see that in a certain sense, 
everything I had devised had already been thought up by Sommerville some 80 years 
earlier- in roughly 1913. This was a cause for sadness, or at least a sense of letdown. 

However, I have a certain kind of consolation. The discussion of Sommerville's 
stuff took place toward the very end of Rosenfeld's hefty tome (over 400 pages) in a 
chapter on group theory and non-Euclidean geometry, in a section called 
"Quasisimple and k-Quasisimple Lie Groups". Typical of the lucidity of the prose in 
that section is this gem of a sentence: 

Quasielliptic and quasihyperbolic spaces S(m,n) and S(m,n; 4>Z1) are special 
cases of quasi-Riemannian and quasipseudo-Riemannian spaces, and k-quasielliptic 
and k-quasihyperbolic spaces S(m0 m1 •.. mk_1) and S(mo m 1 ..• mk_1; ~l1 •.• lk) are 
special cases of k-quasi-Riemannian and k-quasipseudo-Riemannian spaces, which 
are spaces with a homogeneous connection in whose tangent spaces there are 
defined corresponding projective metrics. 

If you can make head or tail of this, more power to you! 
Ironically, the very opacity of this section provides me with a certain kind of 

consolation prize. Even if I am not the first person to get here, I feel that I am a bit like 
Reinhold Messner, the Italian-Tyrolean mountaineer who was the first person to 
carry out the remarkable feat of climbing Everest without the aid of any oxygen. Not 
that I consider the ascent of these particular slopes of geometry to be the equivalent of 
climbing Everest, admittedly, but my analogy is meant to stress that my way of getting 
there was a horsies-and-doggies method - I didn't use any sophisticated concepts 
whatsoever. Certainly no equations, no fancy group-theoretical ideas, no "quasi­
pseudo" fizgigs with homogeneous (or inhomogeneous) lolligaggles -just plain old 
visual imagery involving "fat equators", "ice caps", the "sun", the "horizon", and so 
forth. It's about as down to earth as you can get! And yet with my low-falutin' no­
oxygen techniques, I still got to the very same place as those high-falutin' 
mathematicians did, with their piles of subscripts and superscripts. (I didn't mention 
earlier that Rosenfeld's jungle of superscripts with subscripts was too complex for my 
poor little word-processing program to reproduce, so I just used parentheses.) 

So my consolation prize is my hunch that my achievement is very different in 
kind from Sommerville's; it comes from such an intuitive, imagistic source that 
surely, I must have some different kinds of insights into it all from those he had. At 
the very least, there must surely be some fresh insights to be had from this new, 
highly intuitive angle of approach, even if I myself haven't yet found them. 

In any case, I feel that I'm making a kind of slow catch-up with respect to modern 
mathematicians. My first rediscoveries turned out to be 170 years old or so; then this 
new wave of rediscoveries, made about a year later, is about 80 years old - so at this 
rate, by a bit under a year from now, I ought to be fully caught up with modern 
mathematicians and making my own discoveries. If this rate continues, then by 
gosh, in just two years from now I will be making discoveries that will only be made 
100 years from now! Needless to say, I am very much looking forward to that. 

* * * 
* * 

* * 
* * 
* 
* 


