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ABSTRACT 
This paper discusses Paradigm, a game of intuition and 
pattern exploration. We offer a sample case study aimed at 
illustrating the game’s relevance as a microdomain for 
studying creativity and related phenomena such as aesthetic 
sensibility, analogy-making, and high-level perception. We 
also discuss a few of Paradigm’s more influential 
predecessors, along with some computer programs that 
have sought to model creativity in similar domains. Rather 
than focusing on creativity in the sense of generating output 
(e.g., writing stories or making up jokes), we emphasize its 
more exploratory and evaluative aspects, which we believe 
to be prerequisites for genuine “output creativity.” 
Keywords 
Creativity, high-level perception, pattern recognition, 
analogy, induction, aesthetic judgment 
INTRODUCTION 
In this paper, we discuss Paradigm, a game of pattern 
exploration and discovery, which represents a promising 
domain for the study of creativity and related phenomena 
such as aesthetic sensibility, intuition, and analogy-making. 
Paradigm serves as a challenging, yet tractable 
“microdomain” for the computational modeling of such 
processes. Meanwhile, it also lends itself well to 
(empirical) psychological enquiry due to the gradually 
unfolding, interactive nature of the game.  
The goals of this paper are (a) to explain what makes the 
Paradigm domain interesting; (b) to illustrate why this 
domain is well-suited for the study of creativity and related 
aspects of cognition; and (c) and to offer some preliminary 
results of our own investigations into the domain. In 
addition, we offer some background on Paradigm, 
discussing a few of the game’s predecessors as well as 
several computer programs that have attempted to model 
creativity and related phenomena. Finally, we outline some 
future directions for research involving the Paradigm 
domain. 

 
BACKGROUND 
We begin this section by discussing a pair of important 
distinctions involving types of creativity. Next, we discuss 
a few of Paradigm’s predecessors. Finally, we summarize 
some relevant computer models of creativity that operate in 
microdomains similar in spirit to Paradigm. 
Creativity: Two Distinctions (and Continuities)  
Rather than attempt to define creativity (which is probably 
a futile task in any case), we instead begin by making a 
couple of distinctions that will help clarify what we mean 
by this term. The first of these distinctions contrasts input 
and output creativity, while the second has to do with 
mundane (or everyday) and extraordinary creativity. 
Input Creativity and Output Creativity 
According to [20], “Input creativity involves the analysis of 
incoming data, whereas output creativity involves the 
production of something new” (p. 212). Examples of input 
creativity would include solving a puzzle or chess problem, 
listening to and interpreting a piece of music, or 
deciphering a joke. Meanwhile, examples of output 
creativity would include devising a puzzle or chess 
problem, writing a piece of music, or making up a joke. 
Looking back on some of the better-known AI projects 
dealing with creativity—especially those developed during 
the 1980s and ’90s [e.g., 2, 15, 21]—one finds that most of 
the emphasis was placed on output creativity. Some of this 
“output” was quite interesting or even entertaining, and 
certainly, these projects have triggered plenty of discussion 
and debate—not only about creativity, but also about how 
humans react to artifacts that appear to be creative, 
regardless of their inner workings [8, 28].Yet it would be 
hard to imagine a genuine model of creativity that did not 
account for the role of evaluation, sensibility, and aesthetic 
judgment—all of which are encompassed by the notion of 
input creativity. “To be a good writer, you have to be a 
good reader” [22], which is to say that input creativity is 
more basic than—and essential to—genuine output 
creativity. The iterative, back-and-forth relationship 
between input and output creativity is captured in the 
notion of the “central feedback loop of creativity” [22]. 
Mundane Creativity and Extraordinary Creativity 
Discussions of creativity often center on those rare acts of 
genius one associates with the Picassos, Mozarts, and 

 

 
 



Einsteins of the world. Boden [3] draws a distinction 
between psychological creativity, which “involves coming 
up with a surprising, valuable idea that’s new to the person 
who comes up with it” (p. 2; italics in original), and 
historical creativity, which encompasses ideas or works 
that are novel in the scope human history (à la Picasso’s 
Guernica or Einstein’s theory of relativity). This distinction 
provides a useful starting point, even if it is often difficult 
(if not impossible) to determine what qualifies as 
“historically creative.”  
Yet even within the realm of so-called psychological 
creativity, one finds a tendency to focus on certain specific 
domains—art, music, literature, science—as if creativity 
were somehow limited to these domains. However, with 
just a little reflection, examples of creativity can be found 
in practically every aspect of life—for example, when 
someone improvises by using a rubber exercise band to 
remove the lid from a stubborn pickle jar (as one of the 
authors recently found himself doing), or when someone 
coins a novel (if not particularly clever) term like “joke-a-
thon” on the basis of an old one (say, “telethon,” itself a 
variation on “marathon”). These examples, and countless 
others like them, are encompassed in the self-explanatory 
term mundane creativity [1]. The advantage of recognizing 
such mundane acts as creative is that it helps “domesticate” 
creativity—that is, to portray it as something basic to 
cognition and pervasive in our daily lives, rather than as 
something that’s only accessible to a relatively select few.  
Mundane and extraordinary creativity are best thought of as 
two endpoints along a continuum, rather than as sharply 
distinct phenomena. Indeed, it is our belief in this 
continuity between mundane and extraordinary creativity—
and between input and output creativity—that provides the 
rationale for our focus on the various puzzles and games 
discussed in the following section.  
Games and Puzzles 
Here we discuss three domains that can be seen as 
predecessors to Paradigm—the card game Eleusis, the 
domain of Bongard problems, and the pen-and-paper game 
Patterns II—all of which were designed to highlight aspects 
of creativity, induction, and related cognitive processes. 
Eleusis 
Created by then-undergraduate student Robert Abbott in 
1956, Eleusis is an induction-based card game designed to 
simulate the processes of exploration and discovery that 
lead to the so-called “aha” moment [14]. Eleusis garnered 
broader interest after it was featured in Martin Gardner’s 
Scientific American column, Mathematical Games, in 1959, 
and again, in the simplified form described here, in 1977 
[10, 11].  
The modern version of Eleusis (sometimes called “Eleusis 
Express”) uses several decks of normal playing cards and 
supports anywhere from four to eight players. One of these 
players, the dealer, first makes up a “secret rule” that 
defines which cards may be played on any given player’s 
turn (e.g., “The card played must either be red or its value 

must be less than that of the last legal card”). Valid rules 
must only reference previously played cards; rules 
concerning external circumstances such as the number of 
players, the weather, or the time of day are forbidden. The 
dealer may choose to give a hint before play begins (e.g., 
“Color is relevant to the rule”). Each of the remaining 
players is then dealt a hand of 14 cards. Play proceeds in 
clockwise fashion, with each player laying a card on the 
table when his or her turn comes around. If the card is a 
valid play according to the dealer’s rule, the card is placed 
to the right of the last correct play (see Fig. 1). Otherwise, 
the card is placed below the previously played card, 
whether it was correct or not, and the player is dealt two 
additional cards as a penalty. Correct plays form a 
horizontal row (called the “main line”), while sequences of 
incorrect plays each form vertical lines (called “sidelines”).  

 
Figure 1. Example Eleusis layout after the initial card 
followed by three correct plays and five incorrect plays. 

There are several interesting variations on the simplified 
sketch presented above. Players may play multiple cards 
simultaneously, risking a greater penalty if any of them do 
not adhere to the dealer’s rule. A player may also usurp the 
role of the dealer by declaring him- or herself a “prophet,” 
a coveted position held as long as (s)he makes correct 
judgments about subsequent cards played. An elegant 
scoring mechanism rewards dealers whose rules are neither 
too easy nor too difficult to guess.  
Although useful as an instrument for teaching inductive 
reasoning and the scientific method [24], there are some 
limitations to Eleusis as a domain for studying the 
mechanisms of general exploration that are important to 
creative insight. A player’s decision at any given point is 
based on the set of previously played cards, not the full set 
of cards. This limitation encourages explicit hypothesis-
testing rather than more general exploration. For example, 
the rule “The card must be an odd spade” is unlikely to be 
discovered without the player having seen previous 



examples of odd spades. Yet the player has limited control 
over which cards are played (i.e., players can only play 
they hands they are dealt). Moreover, the dealer cannot rely 
on a specific progression of cards being played to stimulate 
a particular line of exploration. The sequence of played 
cards is determined by the random configuration of the 
shuffled deck and the collective decisions of the players.  
Bongard Problems 
The domain of Bongard problems (BP’s) was created by a 
computer scientist, Mikhail Bongard, as a medium for 
studying visual pattern recognition and “gist extraction” 
[4]. Each BP consists of 12 black-and-white panels, which 
are divided into two sets, with one set of six on the left and 
another set of six on the right (Fig. 2). Each panel contains 
an image, which is typically made up of geometric figures 
(e.g., points, lines, circles, polygons, etc.). Figures can vary 
along any number of dimensions: size, location, orientation, 
texture, shading, relationship to other figures within the 
panel, et cetera. For each BP, the challenge is to figure out 
what the six panels on the left-hand side have in common 
with one another that collectively distinguishes them from 
the six panels on the right-hand side.  

 
Figure 2. Sample Bongard problem: What do the six panels 
on the left have in common with one another that 
distinguishes them from the six panels on the right? 

BP’s were introduced to a wider audience via their 
inclusion in Hofstadter’s Gödel, Escher, Bach [11] and 
have since been studied extensively by several researchers 
(see below), although the BP domain is still considered to 
be largely unsolved in AI. As is the case with Eleusis, the 
solution to a BP generally involves an “intuitive leap,” 
wherein a subtle shift in perception allows the player to see 
heretofore unconnected elements as being “the same” at 
some relevant level of abstraction. Often, this shift in 
perception occurs without conscious deliberation, after the 
player has examined both positive examples of drawings 
that conform to the rule and negative examples that do not.  
On the other hand, the exploration of a Bongard problem is 
a completely unconstrained process, which is not the case 
with Eleusis. For example, the player might alternate back 
and forth between the left and right sides, or else 
concentrate exclusively on the positive examples (i.e., the 

ones on the left), forming a hypothesis for the “hidden rule” 
before scrutinizing the panels on the right in search of a 
counterexample. 
One advantage of BP’s is that they are based on abstract 
visual forms that are more or less universal. However, the 
staggering variety of pixel-level features, along with the 
need to model the complex processes involved in low-level 
vision, make the Bongard domain an exceedingly difficult 
one. 
Patterns II 
Patterns II, designed by Sid Sackson [26], is Paradigm’s 
most direct predecessor. It is designed for two participants, 
a pattern-designer and a player. Each participant begins the 
game by drawing a six-by-six grid on a piece of paper. 
Using four types of symbols, the pattern-designer fills in 
the squares on her grid to form a pattern, which the player 
is not allowed to see. The player’s goal is to divine the 
designer’s pattern through a process of exploration.  

 
Figure 3. An example from Patterns II: “Diagonal Squares.”  

In each round of the game, the player indicates a square on 
his card that he wants revealed, after which the pattern-
designer draws in the appropriate symbol, copying it from 
her grid. The game ends when (a) the player has discovered 
the “rule” behind the pattern and can fill in the rest of the 
squares on his own, or (b) the player’s six-by-six grid has 
been completely filled.  
There are no limits to the allowed patterns: any 
arrangement of 36 symbols, chosen from the four available 
types, is valid. Of course, this doesn’t mean that all patterns 
are equally interesting. Many patterns are too simple, too 
rigid, boring. Others are too chaotic, unbalanced, 
complicated, or perplexing. Patterns that are the most 
enjoyable to play seem to achieve a careful balance 
between order and chaos, simplicity and complexity. 
Models 
In terms of computational modeling, it is useful to 
distinguish between domains, on the one hand, and 
programs or models that operate in such domains, on the 
other. A clear example is that of the game of chess versus a 
program that plays chess (e.g., Deep Blue). Second, it is 
important to distinguish between results-driven programs 
and more psychologically motivated ones. For example, 
Deep Blue was designed first and foremost to succeed in 



the domain of playing chess, and not necessarily to serve as 
a plausible model of human cognition. In contrast, the 
models discussed in this section—Copycat, Metacat, 
Phaeaco, and GENESIS—are ultimately concerned with 
domain-independent aspects of cognition. In other words, 
they operate within certain domains (or microdomains), but 
they are ultimately not about those domains. 
Copycat and Metacat 
Copycat [19] is a program that “solves” open-ended 
analogy puzzles involving short letter strings—for 
example, “If aabbcc is changed to aabbdd, then how 
should iijjkk be changed?” (or simply, aabbcc à  aabbdd; 
iijjkk à  ???). The word “solves” is slightly misleading, as 
there are no right or wrong answers in Copycat, though 
there do to tend to be better and worse ones. Often, there is 
a general consensus in this regard, but there is also room 
for disagreement among individuals based on (largely 
aesthetic) preferences. 
Briefly, Copycat’s architecture consists of three main 
components: the Workspace (roughly its working memory); 
the Slipnet, a conceptual network with adjustable links 
between concepts (roughly a long-term memory); and the 
Coderack, which houses a variety of agent-like codelets, 
which perform specific tasks in simulated parallel, without 
the guidance of an executive controller. These tasks range 
from identifying groups (e.g., the bb in aabbcc) to 
proposing bridges between items in different letter-strings 
(e.g., the bb in aabbcc and the jj in iijjkk). During the 
course of a run, Copycat’s actions are influenced by a 
measure known as the temperature, which reflects the 
program’s moment-to-moment perception of the “analogy 
situation.” A high temperature reflects a lack of perceived 
coherence and therefore encourages the program to try out 
“wilder” ideas, while a lower temperature leads it to focus 
in on a particular pathway. 
The sequel to Copycat, Metacat [17] adds several 
additional features. These include an the Episodic Memory, 
which allows the program to remember its responses to 
previous problems (an ability that is completely lacking in 
Copycat), as well as an ability to monitor the “mental 
events” that take place during each run, such as detecting a 
“snag” or noticing a key idea. Metacat also has implicit 
(albeit primitive) notions of concepts such as succinctness, 
coherence, and abstractness, which figure into its answer 
evaluations—specifically in terms of the rules it formulates 
to explain or justify each answer. For example, it considers 
iijjll a better answer than iijjdd on the aforementioned 
problem (aabbcc à  aabbdd; iijjkk à  ???) because the 
former “involves seeing the change from abc to abd in a 
more abstract way” than the latter; in other words, it 
involves seeing c as changing to its successor rather than 
merely to the letter d. Metacat’s ability to employ criteria 
such as abstractness and coherence in its answer 
evaluations could be seen as an early step toward 
understanding how qualitative judgments of this sort—

which are crucial to so-called input creativity—can emerge 
from simpler processes. 
Phaeaco 
The domain of Bongard problems has been explored using 
several computational models. For example, the authors in 
[25] employed a model that took hand-coded first-order 
logic representations as inputs, emphasizing general 
heuristic search as a means for finding solutions. More 
ambitiously, Maksimov [16] employed machine-learning 
techniques to solve a very similar class of problems, where 
representations were images processed at the pixel level.  
Arguably, the deepest exploration of BP’s yet is Phaeaco 
[9]. As with the program described in [16], Phaeaco takes 
black-and-white pixels as input. A major difference, 
however, is Phaeaco’s restriction to psychologically 
plausible mechanisms. For example, when assessing the 
area of a shape, Phaeaco does not calculate a precise 
measurement, just as humans are unable look at a circle and 
“see” its area as, say, 16.7 mm2. Instead, it estimates areas 
(and other numeric measurements) using methods that have 
been empirically shown to match human judgment [6]. 
Starting with stochastic, low-level visual processing, 
Phaeaco builds up representations of the figures in the 
various panels (recall Fig. 2). Instead of searching a tree-
like space, it uses a technique known as the parallel 
terraced scan [23], in which multiple pathways are 
simultaneously explored, with more promising ones 
receiving more attention.1 The scan is guided by the 
perceived relevance of concepts in the program’s 
conceptual network, which fluctuate over time (i.e., during 
the course of a run). As with Copycat and Metacat, 
processing in Phaeaco is carried out by codelets, which 
create, modify, and discard short-term memory structures; 
adjust the strengths of the connections between concepts in 
long-term memory; and compete with one another for 
processing time. The resulting “perceptual structures” 
emerge from of a coupled system of low-level “retinal” 
processes and high-level “cognitive” processes. 
On the problems it is able to solve, Phaeaco has been 
shown to perform nearly as well as human subjects [9]. 
However, it is only able to find solutions to 15 out of the 
initial 100 Bongard problems, leaving much ground still to 
be explored in this difficult domain.  
GENESIS 
GENESIS [20] is a model of creativity that operates in a 
simplified version of the Eleusis domain, called Micro-
Eleusis. There are only four types of cards in Micro-
Eleusis: red-even, red-odd, black-even, and black-odd. 
GENESIS was developed in an effort to (a) test two 
competing theories of creativity, the cortical-arousal 
theory and the creativity as normal problem solving theory; 
and (b) to compare the effect of two different search 
mechanisms, parallel terraced scan and best-first search, 
                                                             
1 The parallel terraced scan is also an important mechanism in 

Copycat and Metacat. 



on creativity. For the dealer, creativity amounts to 
formulating a successful rule; for the player (non-dealer), it 
is equated with discovering the rule (GENESIS is capable 
of playing either role). 
GENESIS uses an agent-based architecture. Builder agents 
construct rule representations, which are represented as 
tree-structured finite state automata (FSAs). K-lines [18], 
the other type of agent, are themselves collections, or 
chains, of previously successful builders. For example, if a 
particular chain of builders is successful in accomplishing 
some sub-goal (e.g., building an FSA that is consistent with 
the set of already-played cards), then a k-line is formed 
from those builders. Thereafter, the k-line may be activated 
if at least half (or some other threshold) of its constituent 
agents—either builders or other k-lines—are activated. 
When activated, the k-line in turn activates the remainder 
of its sub-agents. In this sense, a k-line can be seen as an 
“emergent memory,” as the authors put it. As with Copycat, 
Metacat, and Phaeaco, a critical point of emphasis in 
GENESIS is the potential for fluid representation and the 
analogies that naturally emerge within such a system. 
PARADIGM 
In this section, we describe the rules of Paradigm and then 
discuss the thought processes involved in exploring a 
particular Paradigm pattern. The goal is to motivate interest 
in Paradigm as a domain for studying creative exploration, 
by highlighting the intuitions, false-starts, and bursts of 
insight that arise in the course of a game. 
How the Game Works 
Paradigm2 is an extension of Patterns II—a pen-and-pencil 
game—into a digital format, although there are some basic 
differences between them. For example, a blank square in 
Paradigm plays the role of an empty cell in Patterns II, 
while a colored square in Paradigm is akin to a Patterns II 
cell with a particular symbol drawn in.3 Furthermore, while 
Patterns II always employs the same sized grid (six-by-six) 
and the same number of symbols (four), there is no limit to 
the number and/or configuration of squares that can appear 
in a Paradigm pattern, nor is there any limit to the number 
of colors (so long as they are easily distinguishable).  

 

                                                             
2 Paradigm was designed by Kory Heath in 2006 
(http://www.koryheath.com/games/paradigm).  
3 The full version of Paradigm supports an arbitrary assortment of 

other shapes in addition to squares. 

Figure 4. Example of a fully revealed Paradigm pattern. 

At the start of each game, all of the squares are blank. The 
player begins by choosing a square—any square—on the 
board and guessing its color from a set of possible 
choices—typically no more than a handful. If the guess is 
incorrect, the correct color is revealed, the turn ends, and 
any points earned thus far on the turn are lost. (Typically, a 
correct guess is worth one point.) If the guess is correct, the 
player can either continue the turn—risking any points 
gained from previous correct guesses during the turn—or 
pass. A turn lasts for as many guesses the player is willing 
to make, as long as (s)he keeps guessing correctly. The 
final score for the entire game is the sum of all turn scores.4 
Correct or incorrect, each guess yields one new piece of 
information—namely, the color of the newly revealed 
square. In turn, this information may trigger a shift in the 
player’s perception of the overall pattern, or else simply 
reinforce an existing set of ideas about the portions of the 
pattern which remain hidden. Various competing pressures 
may be in play at any given point in the game, including 
the pressure to see horizontal, vertical, or diagonal lines of 
a certain color; to perceive larger groups such as L-shapes, 
diamonds, or pentonimoes; to notice relationships between 
individual squares (or groups) of different colors; to make 
distinctions between background and foreground colors or 
groups; to spot the potential formation of new groups at the 
pattern’s edges; and so on.  
This gradually unfolding perceptual (and conceptual) 
process leads to hypotheses about the colors of unrevealed 
squares. Making a guess essentially amounts to testing a 
hypothesis, one involving a potential mapping between the 
currently visible pattern and the full pattern (or at least a 
section of the total pattern). At the beginning of play, 
guesses are tentative, random, and often wrong. As more 
squares are revealed, players have more of a basis for their 
guesses. After each correct guess, a decision must be made 
to either play it safe and stop—cashing in whatever points 
have been earned thus far on the current turn—or to keep 
going and risk losing those points. 
Exploring a Paradigm Pattern 
In this section, we summarize the first encounter by one of 
the present authors with a particular Paradigm pattern, 
“Springtime.” This summary is meant to serve as an 
example of a typical one-player game, not as a rigorous 
account of the psychological processes involved. However, 
some general comments and reflections are offered along 
following the description of the game. 
The playing surface for Springtime is a six-by-six grid (Fig. 
5). In the standard version of Springtime, there are five 
colors to choose from, but for the purposes of the following 
discussion, the pattern has been re-rendered in black-and-
white (Fig. 6). 

                                                             
4 The full version also includes a multiplayer “hot-seat” variant, 

which uses a slightly different scoring system. 



 
Figure 5. Blank six-by-six board at the start of the game. 

 
Figure 6. Names for the shading patterns used in the 
following Paradigm example, from left to right: diagonal, 
dark gray, grid (or gridded), light gray, and black. 

As is typical with Paradigm, the initial guesses in this game 
were essentially random. Figure 7-a shows the outcome of 
these two guesses, the first of which (the black square on 
the left) was correct and the second of which (a black 
square to right of the first one) was incorrect. [Note: 
Correct guesses are indicated with shaded arrows, incorrect 
guesses with white arrows.] The third guess—a dark-gray 
square in the lower left corner—was also incorrect. 
However, once the correct answer (black) was revealed, the 
next move immediately came to mind, based on a visual 
analogy between the left and right halves of the board. This 
guess, a gridded square in the lower right-hand corner, 
turned out to be correct (Fig. 7-b). 

 
Figure 7. The board after (a) two and (b) four moves. [A shaded 
arrow signals a correct guess; a white arrow signals a wrong one.)  

Figure 7-b reveals a clear relationship between (1) the two 
black squares on the left half of the board and (2) the two 
gridded ones on the right. However, it was still unclear 
what to do next at this stage in the game, given just this 
little bit of information. Consequently, the next set of 
moves involved some guesswork about the remaining 
squares in the center of the board. The hunch was that the 
top half of the board would mirror the bottom half—not 
necessarily in terms of the exact shades or textures, but in 
the relationship between the center and corner squares. 
Figure 8-a reveals the outcome of the aforementioned 
guesswork (one guess was right, and the other was wrong), 
which was followed by a pair of more confident (and 
correct) guesses involving the squares in the top two 
corners (upper left and upper right; see Fig. 8-b). 

 
Figure 8. The guesswork shown in (a) led to the pair of more 
confident answers shown in (b).    

The next few moves involved more guesswork, this time in 
search of a pattern (or set of patterns) to flesh out the space 
in between the block of four squares in the center and the 
four lone squares in the corners. After three more guesses 
were made (Fig. 9-a), the concept of diagonal symmetry 
had begun to appear relevant, and there was a sense that the 
question-marked square in Figure 9-a should match up with 
the light-gray square that had just been revealed. 

 
Figure 9. Three guesses (two of them correct) in (a) 
suggested the move in (b), guided by diagonal symmetry. 

The hunch was correct (Fig. 9-b), but while the exposed 
squares were nicely balanced at this point, another plateau 
of sorts had been reached. Thus, another tentative guess 
was made, this time in the bottom-right quadrant, directly 
above the lone gridded square in the corner (Fig. 10-a). 
This guess (light gray) turned out to be wrong, but once the 
correct answer (grid) was revealed, it quickly suggested not 
one, but three analogous moves—one in each of the 
corresponding spaces in the remaining three quadrants (Fig 
10-b). 

 
Figure 10. The incorrect guess in (a) paved the way for the 
three correct ones shown in (b).  

 

? 



Stepping back, we can see a combination of radial and 
diagonal symmetry at work in the pattern-in-progress 
shown in Figure 10-b. The next move was based on the 
hunch that the nascent “columns” in each of the four 
corners would turn out to extend upward (or downward, as 
appropriate) by an additional unit. Alas, this hunch turned 
out to be wrong—at least in terms of the lower right-hand 
corner, where the initial guess was made (Fig. 11-a). Yet 
once again, the correct answer quickly suggested an 
analogous follow-up move: a corresponding light-gray 
square on the other side of the board. As Figure 11-b 
shows, this guess was correct. 

 
Figure 11. The incorrect guess in (a) led to the correct guess 
shown in (b). But what about the question-marked squares?  

The question at this point was what to do with the 
remaining blank squares in the outer two columns 
(indicated by the “?”s in Fig. 11-b). The next guess was to 
try light gray in the question-marked space in the leftmost 
column, which was wrong—the correct answer was black 
(Fig. 12-a). Once this answer was revealed, though, the 
notion of diagonal symmetry became more salient, leading 
to a more confident guess on the next move: dark-gray for 
the other question-marked square (Fig. 12-b). 

 
Figure 12. Once again, an incorrect guess in (a) suggests a 
correct follow-up move in (b). 

At this point, it had become clear that not only was there a 
pattern on the game board there was also a meta-pattern in 
terms of the guesses being made. A tentative guess, 
whether right or wrong, would be followed by a confident 
guess (or, on those occasions when radial rather than 
diagonal symmetry was the guiding concept, by three 
confident guesses). Then more guesswork would ensue, 
and so on. This on-again, off-again pattern manifested itself 
again over the next two pairs of moves (Fig. 13). 

 
Figures 13-a (left) and 13-b (right). Two pairs of 
complementary moves, both guided by diagonal symmetry.  

In contrast, the next space that was revealed—the light-
gray square indicated in Figure 14-a—pointed the way to 
three additional moves: the trio of light-gray squares 
indicated in Figure 14-b.  

 
Figure 14. This time, an incorrect guess (a) leads to not one, 
but three correct moves (b). 

Looking back at Figure 13-a, we notice what appears to be 
an important shift in the pattern’s appearance with the 
emergence of a pair of (backward) L-shaped groups: a 
black one in the lower left corner, and a dark gray one in 
the upper right corner. In Figure 13-b, things are taken one 
step further with the establishment of a pair of similarly 
backward J-shaped groups. Finally, in Figure 14-b, we note 
the presence of four analogous light-gray pairs, one in each 
of the four quadrants. The global pattern, which initially 
appeared to be built around a set of four corresponding 
quadrants, now looks to be based on a subtle blend of 
diagonal and radial symmetry.  

 
Figure 15. The guess in (a) strengthened the hunch that a 
backward J-shaped group would be found in each quadrant, 
while the subsequent move in (b) confirmed it. 

? 

? 

? 



The pathway to the completed pattern involved two more 
combinations of the kind of “tentative guess, confident 
follow-up” sequence we have seen many times already. 
The first guess (Fig. 15-a) confirmed a hunch that the J 
shapes already evident in the top left and bottom right 
quadrants would carry over to the other two quadrants (Fig. 
15-b). In hindsight, the pattern as it stood in Figure 15-b 
should have led to a better guess than the one that was 
actually made (dark gray for the question-marked square in 
Fig. 15-b). The correct answer (grid) yielded all the 
information needed for the last three moves to be made. 
The completed pattern is shown in Figure 16-b.  

 
Figure 16. One last incorrect guess (a) was all that was needed 
to suggest the final three moves and complete the pattern (b). 

As Figure 16-b illustrates, it turned out not to be symmetry 
that was the central concept behind the pattern, but 
rotation. The full pattern can be seen as consisting of three 
sub-patterns (Fig. 17), all of which exhibit a sort of 
rotation: (a) the four (backward) J-shaped groups; (b) the 
four light-gray pairs; and (c) the four “singletons,” whose 
shades/textures are related to those of the four J-shaped 
groups. Yet it was not until the uncovering of the gridded 
square indicated in Figure 16-a that this “aha moment” 
could occur. This “revelation” (in both senses of the word) 
made for a nice surprise at the end of the game and a 
pleasing flourish to the puzzle.  

 
Figures 17-a (left), 17-b (center), and 17-c (right). The three 
“rotating” sub-patterns that make up the completed puzzle.  

Reflections on Springtime (and Paradigm) 
Roughly 100 Paradigm patterns have been created to this 
point, and each game involving a given pattern is capable 
of unfolding in countless different ways. (For example, 
there are roughly 1041 “paths” through a six-by-six grid 
such as the one used in Springtime, simply in terms of the 
order in which the squares can be chosen.) Even so, it is 
still possible to make some general observations about the 

domain—and its relevance to the study of creativity—on 
the basis of the one game detailed in the previous section.  
To start with, it is worthwhile to consider some of the 
concepts involved in working one’s way through a puzzle 
such as Springtime. First, there are concepts that are 
relevant in terms of the pattern itself. Some of the concepts 
are spatial—center, corner, diagonal, symmetry, L-shaped, 
J-shaped, rotation, counterclockwise, et cetera—while 
others are more relational: counterpart, pair, group, and 
even singleton (since a singleton can be thought of as a 
“group of one”). Over the course of the game, the 
“activation,” or perceived relevance, of a given concept is 
likely to ebb and flow. For example, the relationship 
between the center and corner squares was perceived to be 
highly relevant in the early stages of the game, after which 
symmetry (radial and diagonal) began to appear more 
salient. It wasn’t until the middle stages of the game that 
various sorts of groups—pairs, L-shapes, and J-shapes—
emerged as relevant. And it wasn’t until the final stages 
that rotation (particularly counterclockwise rotation) could 
be seen as a key idea in making sense of the overall pattern. 
In addition to these “pattern-level” concepts, there are also 
a number of more general “strategy-level” concepts that are 
relevant—not only to this particular puzzle, but to more or 
less any puzzle in the domain. These include concepts such 
as guess, hypothesis, rule, random-seeming, tentative, and 
confident. The scoring aspect of Paradigm was basically 
ignored during the walkthrough of Springtime; however, 
the gist of it is that it rewards justified risk-taking (but not 
foolish risk-taking). Therefore, it’s important for players to 
have a sense of how well they understand the pattern and 
the rule(s) behind it at each stage of the game—to know 
whether an upcoming move is a more-or-less random guess 
or a confident, well-founded one. This sense of “knowing 
what one knows,” or meta-cognition, is important not only 
in playing Paradigm and similar risk-reward games, but in 
many other realms as well. The creative process, in which 
self-evaluation, reflection, and scrutiny are crucial, is 
certainly one such realm. 
Finally, there are a variety of more general aesthetic 
concepts [28] that come into play in the Paradigm domain, 
such as interesting, boring, tedious, surprising, elegant, 
humorous, frustrating, et cetera. These concepts tend to be 
most relevant when reflecting on a completed pattern. Is the 
pattern visually appealing? Was the pathway from the early 
stages of the game to the conclusion interesting or boring, 
riveting or tedious? Players develop a feel for such 
aesthetic evaluations with experience, just as one does with 
any domain, from architecture to avant-garde jazz. Such a 
feel for the domain—perhaps the most sophisticated degree 
of so-called input creativity—is likely a prerequisite to 
high-quality output creativity.    
FROM EXPLORATION TO CREATION 
Good Paradigm patterns—patterns that are fun to play—are 
tricky to design, and coming up with a particularly elegant 
or humorous one is a rewarding exercise. Having gained 



experience both designing patterns and playing patterns 
designed by others, we note a few basic characteristics of 
“good” patterns. These “meta-patterns” reflect aesthetic 
judgments of the sort described in the previous paragraph, 
and they would need to be addressed by any model seeking 
to attain human-level performance in the domain—a 
difficult task, to be sure. 
Balancing Local and Global Constraints  
Global constraints work best when they are only expected 
to exert pressure toward the end of the game, when much of 
the pattern is already revealed. For example, in a pattern 
consisting of various shapes, with each one a different color 
(e.g., all diamonds are red, all L-shapes are blue, etc.), a 
helpful global constraint might be that there is an identical 
number of each shape in the completed pattern (i.e., five 
red diamonds, five blue L’s, etc.). In contrast, local 
constraints, which involve only adjacent or nearby squares, 
can (and should) play a role throughout the game. Both 
types of constraints are needed in order for players to make 
sense of the gradually unfolding pattern during the course 
of a game. Because Paradigm is played by uncovering one 
square at a time, patterns that need to be mostly (or even 
completely) revealed in order for players to guess the 
rule(s) tend to be frustrating to play. If the gist of the 
pattern isn’t obvious when it has been completely revealed, 
it will be that much harder for players to figure it out as 
they try to uncover it in the course of a game. 
Balancing Complexity and Order 
One-trick patterns such as simple tilings or trivial divisions 
(e.g., red on the top half of the board and blue on the 
bottom) are only interesting until the rule is discovered. 
After that point, the mechanical process of unveiling the 
rest of the pattern becomes tedious. On the other hand, if a 
pattern is too complex, players tend to become frustrated. 
That is, players lose interest in trying to make good guesses 
when every choice seems equally likely. Even if a pattern 
has some mathematical or logical structure that can (at least 
in principle) be discerned, most players will not discover it. 
This observation is in accordance with psychological 
theories of what makes games fun [13] (and what’s the 
point of a game if it’s no fun to play?). 
Balancing the Visual and the Conceptual 
People perceive lines, simple shapes, and groups 
effortlessly. Good Paradigm patterns foster a gradual 
progression from no understanding to complete 
understanding. In most cases, visual forms (e.g., squares, 
diagonals, spirals, etc.) are easier to progressively explore 
than logical or arithmetical rules are. It might be clever to 
devise rules that involve, say, mapping colors to numbers, 
or rules in which each square’s color depends on the 
number of neighbors of a given color. However, such rules 
seldom yield patterns that are fun to play. These types of 
rules are also difficult to layer on top of one another.  
Balancing Ambiguity and Clarity  
As alluded to above, the best Paradigm patterns are those 
that encourage oscillation between periods of uncertainty 

and periods of discovery—ones in which previously 
ambiguous shapes, groups, or other aspects of the pattern 
suddenly “click.” In exploring such patterns (of which 
Springtime is a good example), the player is never quite 
certain what the final picture will be, but never feels 
hopelessly lost either. In addition, good patterns often 
require players to revisit areas of the board that were 
previously “understood” and reinterpret them as new 
information comes to light.  
FUTURE DIRECTIONS 
The discussion of Paradigm in this paper is motivated by 
the belief that it represents an interesting and potentially 
productive domain for studying cognition, creativity, and 
related phenomena. Like Copycat and Micro-Eleusis, it 
offers a restricted, yet non-trivial “microworld” in which to 
explore and model domain-general cognitive mechanisms, 
while filtering out the overwhelming complexities involved 
in accounting for domain-general knowledge. Like the 
Bongard domain, Paradigm also lends itself to study of the 
relationship between high-level perception—the “level of 
processing where concepts begin to play an important role” 
[5, p. 2]—and lower-level (in this case, visuospatial) 
perception. 
Currently, research on Paradigm is proceeding along three 
different (but interrelated) tracks. First, we have been 
investigating the domain itself, identifying and 
systematizing the various “knobs,” or dimensions, along 
which patterns can vary. Among these dimensions are the 
emphasis (or lack thereof) on (a) lines, paths, or geometric 
shapes as basic units; (b) symmetry (bilateral, radial, 
diagonal, etc.) as an organizing principle; (c) foreground–
background distinctions; (d) progressively shrinking or 
expanding shapes or sub-patterns; (e) iconic shapes or 
patterns (e.g., the sides of a die); (f) arithmetical rules as 
global constraints; and so on. As previously noted, not all 
of these “knobs” are equally useful in terms of designing 
interesting patterns. For example, patterns involving iconic 
shapes tend to be superficial, while ones involving 
arithmetical rules can be overly abstract and difficult. This 
investigative stage largely informal and qualitative: It 
involves a combination of designing new patterns; 
observing others while they play the game; and 
documenting our own thought processes while playing 
patterns for the first time (as with the Springtime example 
described in this paper). 
The second track involves more systematic empirical 
studies. A drawback of some the models discussed earlier 
in this paper (e.g., Copycat/Metacat and Phaeaco) is that it 
can be difficult to evaluate their performance, since 
comparison with human subjects is not always 
straightforward. Given a Bongard problem, for example, a 
subject’s only observable “behavior” is his or her guess at 
the actual solution to the problem (i.e., the hidden rule). In 
contrast, Paradigm (like Eleusis) provides a built-in means 
by which to track players’ decision-making, since it takes 
place incrementally—one move at a time—rather than all at 



once. In this sense, it allows for a finer grain of comparison 
between human-subject data and computer models.5  
The third—and most challenging—track is the 
development of a model (or models) of pattern exploration 
in Paradigm. This is a long-term process, one that will 
necessarily build on the results of the first two tracks 
mentioned in the previous paragraphs, along with the ideas 
developed and tested in earlier models (e.g., Copycat, 
GENESIS, Phaeaco). Current work is focused on 
evaluating the strengths of these and other predecessors. 
CONCLUSION 
It’s been said that “cognitive science cannot succeed if it 
cannot model creativity, and it is here that it is most likely 
to fail” [6, p. 14]. It could also be said that, historically 
speaking, the study of creativity—in philosophy, 
psychology, cognitive science, artificial intelligence (AI), 
and elsewhere—has itself been a succession of failures, 
although in the best cases, these have been instructive 
failures, either pointing the way to new approaches or 
disconfirming old ones. Faced with an enormous topic such 
as creativity, we accept that the gains made via any 
particular research project are likely to be modest in the big 
scheme of things. With this in mind, microdomains such as 
Paradigm can be useful arenas in which to develop models 
of creativity. 
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