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Abstract A critical question about the nature of human
learning is whether it is an all-or-none or a gradual, accu-
mulative process. Associative and statistical theories of
word learning rely critically on the later assumption: that
the process of learning a word’s meaning unfolds over time.
That is, learning the correct referent for a word involves the
accumulation of partial knowledge across multiple instances.
Some theories also make an even stronger claim: Partial
knowledge of one word–object mapping can speed up the
acquisition of other word–object mappings. We present three
experiments that test and verify these claims by exposing
learners to two consecutive blocks of cross-situational learn-
ing, in which half of the words and objects in the second block
were those that participants failed to learn in Block 1. In line
with an accumulative account, Re-exposure to these mis-
mapped items accelerated the acquisition of both previously
experienced mappings and wholly new word–object map-
pings. But how does partial knowledge of some words speed
the acquisition of others? We consider two hypotheses. First,
partial knowledge of a word could reduce the amount of
information required for it to reach threshold, and the supra-
threshold mapping could subsequently aid in the acquisition
of newmappings. Alternatively, partial knowledge of a word’s
meaning could be useful for disambiguating the meanings of
other words even before the threshold of learning is reached.
We construct and compare computational models embodying

each of these hypotheses and show that the latter provides a
better explanation of the empirical data.
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Since its empirical beginnings, the study of human memory
has been a study of graded, rather than binary, phenomena.
Ebbinghaus’s (1913) early work on savings in memory
showed that information remains in the system, and influ-
ences future learning, even when it can no longer be
recalled. Subsequent studies have provided a wealth of
further evidence for both the positive (Bentin, Moscovitch,
& Heth, 1992; Nelson, 1978; Nissen & Bullemer, 1987;
Wixted & Carpenter, 2007) and negative (Anderson, 1995;
Bouton, 1993; Shiffrin & Schneider, 1977) effects on learn-
ing of information that is not directly accessible. In a similar
vein, theories of associative learning in both humans (Gluck
& Bower, 1988; Kruschke, 2001; Shiffrin & Schneider,
1977) and animals (Le Pelley, 2004; Mackintosh, 1975;
Rescorla & Wagner, 1972) have taken as their central thesis
that learning is a gradual, accumulative process and that the
accumulation of past learning changes future learning.

But Gallistel, Fairhurst, and Balsam (2004) have recently
questioned this idea of incremental learning, arguing that the
learning curves found in classic associative learning experi-
ments may have been an artifact of group averaging. Instead,
they suggest that individual learners’ behavior may be better
explained by all-or-none step functions. This type of learning
appears to be particularly likely in the face of surprising or
highly consequential outcomes, as in the case of “flashbulb
memories” (Brown & Kulik, 1977) or taste aversion (Garcia,
Kimeldorf, & Koelling, 1955). Distinguishing these two fun-
damentally different characterizations of the learning process
is at the heart of understanding the way that humans learn
about their world. Here, we consider this question in the
context of word–referent learning in language acquisition.
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Partial knowledge in word learning

Many discussions of children’s early word learning suggest
a form of one-shot, all-or-none learning called fast-mapping
(Carey & Bartlett, 1978; Heibeck & Markman, 1987;
Houston-Price, Plunkett, & Harris, 2005; Markson &
Bloom, 1997; Woodward, Markman, & Fitzsimmons,
1994). In one variant of these studies, the experimenter
presents one novel and one known object to the child and
then provides a novel spoken label (e.g., “blicket”).
Children consistently map the novel label to the novel object
and, given this single trial, consistently treat that name as
referring to that object. This suggests one-shot learning
(Markson & Bloom, 1997; Woodward, Markman, &
Fitzsimmons, 1994). But the everyday visual world is much
more complex than laboratory experiments, with potentially
many more referents. Consequently, determining which words
in an utterance refer to which objects is nontrivial. How do
children resolve this ambiguity? One possibility is that they
avoid the problem altogether, ignoring any utterances or scenes
that are too complex, learning only from less ambiguous
naming instances. For example, children could wait until some
cue—whether social (Baldwin, Markman, Bill, Desjardins, &
Irwin, 1996; Brooks &Meltzoff, 2005; Kuhl, 2004) or linguis-
tic (Bloom & Markson, 1998; Gleitman, 1990)—made an in-
stance more favorable to fast-mapping. By this view of learning,
either a single naming event gives all of the information neces-
sary for mapping a word to an object, or it is thrown away.

But there are reasons to doubt the interpretation of fast-
mapping as all-or-none learning even in simplified learning
situations. First, although some experimental studies sup-
port a within-experiment fast-mapping phenomenon, reten-
tion across even short time spans turns out to be quite
fragile. Horst and Samuelson (2008) showed that children
could succeed in the fast-mapping task—demonstrating
one-shot learning of a word’s referent—but fail to retain
this mapping after a 5-min delay. Indeed, in the paper in
which the term fast-mapping was coined, Carey and Bartlett
(1978) considered the initial learning to be partial and in-
complete and to be only the beginning of an accumulative
learning process (Swingley, 2010). Second, a large literature
of indirect evidence suggests that adults and children aggre-
gate information about words and their meanings over many
encounters, amassing statistical evidence about the latent
structure underlying not just pairs of words and referents,
but the whole system of words (Bowers, Davis, & Hanley,
2005; Gershkoff-Stowe, 2002; Landauer & Dumais, 1997;
Ratcliffe & McKoon, 1978; Seidenberg, 1997; L. B. Smith,
Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002; Xu
& Tenenbaum, 2007; Yoshida & Smith, 2003; Yu, 2008; Yu
& Smith, 2007). If information is accumulated, the highly
ambiguous learning instances that do not support fast-
mapping may still be of use. Statistical learners would seem

to benefit from not throwing data away, even if the data are
incomplete or ambiguous (Recchia & Jones, 2009).

This idea—that words can be learned by combining
information across situations (Gleitman, 1990; Pinker,
1994; Yu & Smith, 2007)—is central to all associative
(e.g., McMurray, Horst, & Samuelson, 2012; Plunkett,
1997; Rogers & McClelland, 2004; L. B. Smith et al.,
2002;) and statistical (e.g., Frank, Goodman, &
Tenenbaum, 2009; Siskind, 1996; Yu, 2008) models of
language acquisition. Words should not go from unlearned
to learned in one fell swoop, but should pass through a state
of partial knowledge. Indeed, the existence of such partial
states is both critical for these models and the source of
some of their most interesting predictions. For instance,
children’s word learning is known to accelerate prodigiously
during their second year of life. Previous theories have taken
this to be evidence of a change in learning mechanism. In a
computational model, McMurray (2007) showed that no
change in mechanism is necessary to explain a “vocabulary
explosion” as long as words vary in difficulty and are
learned through the accumulation of partial knowledge.

However, although contemporary statistical learning
models are built on the assumption of partial knowledge,
a plausible alternative method might be to aggregate
information across only learned words and referents, with
no partial knowledge entering into the statistical calcula-
tions. While work in categorization suggests that partial
knowledge should play a key role in such learning
(Billman & Knutson, 1996; Kellog, 1980; Rosch &
Mervis, 1975; Trabasso & Bower, 1966), there is signif-
icant controversy on this question in the contemporary
word-learning literature.

Cross-situational word learning

Although cross-situational word learning accounts
appeared in the literature earlier (Gleitman, 1990; Pinker,
1994; Siskind, 1996), Akhtar and Montague (1999) reported
the first empirical demonstration that children could learn
words by intersecting evidence across multiple individually
ambiguous situations. They showed that 2-, 3-, and 4-year-
olds could determine whether a novel adjective referred to
shape or texture by observing a series of back-to-back
labeling events (e.g., “this is a modi one”) in which multiple
objects were similar on one of these dimensions and differ-
ent on the other. However, the recent explosion of interest in
cross-situational word learning and, consequently, partial
knowledge was kindled by a set of papers from Yu and
Smith (2007; Smith & Yu, 2008). In their cross-situational
word-learning paradigm, learners are exposed to series of
trials in which they hear a number of words and see an equal
number of objects. On each trial, the mapping between
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words and objects is ambiguous; words co-occur with many
potential referents. However, because words co-occur much
more often with their correct referents than with other ob-
jects, learners can discover the correct word–object map-
pings by tracking co-occurrence information across trials.
These papers extended Akhtar and Montague’s (1999) re-
sults in several directions. First, they showed that learning
was robust to significantly greater ambiguity on individual
learning trials. Second, they showed that significantly more
time could pass between learning trials. Third, they showed
that multiple words could be learned at once from the same
set of ambiguous naming events. Fourth, they showed that at
least rudimentary cross-situational learning abilities were
present in 12- and 14-month-old infants. All of these exten-
sions increased the plausibility of cross-situational word
learning as an important process in early language learning.

Subsequent papers have explored the relationship between
cross-situational word learning and other language-learning
mechanisms (Suanda & Namy, 2012; Yoshida, Rhemtulla, &
Vouloumanos, 2012; Yurovsky, Yu, & Smith, in press), the
possibility of learning other classes of words through cross-
situational statistics (Scott & Fischer, 2012), and the impact of
natural language statistics on cross-situational word learning
(Monaghan & Mattock, 2012; Vogt, 2012; Yurovsky, Yu, &
Smith, 2012). However, the most contentious questions have
concerned the representational basis and mechanistic under-
pinnings of cross-situational learning (Kachergis, Yu, &
Shiffrin, 2012; Medina, Snedeker, Trueswell, & Gleitman,
2011; K. Smith, Smith, & Blythe, 2009, 2011; Trueswell,
Medina, Hafri, & Gleitman, 2013; Vouloumanos, 2008; Yu
& Smith, 2011, 2012; Yu, Zhong, & Fricker, 2012; Yurovsky,
Smith, & Yu, in press). One of the central issues in this debate,
and the focus of this article, is the role of partial knowledge in
word learning.

In particular, Yu and Smith’s (2007; L. B. Smith & Yu,
2008) original papers explicitly propose that learners accu-
mulate an approximation to the co-occurrence structure in
their input by remembering the words and objects that co-
occur on each trial. Consequently, this hypothesis predicts
that learners’ representations at any point in time contain not
just a set of word–object mappings (highest co-occurrence
word–object pairs), but also some partial knowledge of how
often other objects have occurred with each word. This
prediction was confirmed by Vouloumanos (2008), at least
for low-ambiguity learning trials. In these experiments,
learners saw a single object on each trial, but a number of
different words co-occurred with each object across trials,
each with a different frequency (1×, 2×, 6×, 8×, or 10×).
After training, adults showed fine-grained sensitivity to this
statistical structure, discriminating between each of these
frequencies of co-occurrence.

K. Smith et al. (2011) asked about the fidelity of learners’
approximations to word–object co-occurrence distributions

over the course of learning as they programmatically varied
the ambiguity of individual learning trials. They asked
learners to indicate which object they believed to be the
most likely referent for each word on each of its 12 occur-
rences. These guesses were then used to determine which of
four learning models best accounted for participants’ behav-
ior: (1) perfect memory for all co-occurrences, (2) noisy,
approximate memory for all co-occurrences, (3) memory for
only a single co-occurring object, or (4) random selection.
K. Smith et al. (2011) found that as ambiguity increased,
participants were less likely to have perfect memory for co-
occurrence frequencies but that they nonetheless accumulat-
ed an approximate co-occurrence distribution rather than a
single guess. Their data thus support accumulative accounts
of word learning and, by extension, an important role for
partial knowledge.

However, it is possible that even the highest levels of
ambiguity in K. Smith et al. (2011) underestimate the levels
of ambiguity relevant for real-world word learning. Medina
et al. (2011) recorded natural parent–child interactions,
extracted the ambiguous object-labeling events, and
presented these to adult learners in a cross-situational ver-
sion of the human simulation paradigm (Gillette, Gleitman,
Gleitman, & Lederer, 1999). In their analyses of learning
trajectories, Medina et al. found no evidence that learners
were accumulatively tracking co-occurrence distributions.
They concluded that their data were more consistent with
learners storing and tracking only a single guess for the
referent of each word. Thus, they argued that in the ambig-
uous environments that characterize the natural world, word
learning is a step function and there is no partial knowledge.

In response, Yurovsky, Smith, and Yu (in press) argued
that Medina et al. (2011) mischaracterized the ambiguity of
natural labeling events. These authors replicated Medina et
al.’s experiments, recording parent–child interaction not on-
ly from a third-person perspective, but also from a camera
placed on each child’s forehead. They then analyzed the
learning trajectories observed for cross-situational learners
from each perspective. Yurovsky, Smith, and Yu found that
participants who observed ambiguous naming events from a
“child’s-eye” view did accumulate co-occurrence distribu-
tion information, showing indirect evidence of partial
knowledge even in learning from natural naming events.

Finally, the most recent data on partial knowledge come
from Trueswell et al. (2013), who applied the analysis used
by Medina et al. (2011) to learning trajectories observed in a
task very much like that used by K. Smith et al. (2011).
Adult learners saw a series of trials in which they heard a
novel label and were asked to guess which of the objects
they saw on the screen was its most likely referent. In
contrast to K. Smith et al. (2011), however, Trueswell et
al. found no evidence of accumulative learning, even at very
low levels of ambiguity. Unfortunately, this discrepancy is
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difficult to interpret for several reasons. First, Trueswell et
al. asked participants to learn novel names for familiar
objects (e.g., cats, doors) rather than novel names for novel
objects. Second, in Trueswell et al., words referred to cate-
gories of objects, the exemplars of which were different on
each occurrence. This is a departure from the cross-
situational learning paradigms used in previous work (e.g.,
Kachergis et al., 2012; K. Smith et al., 2011; Yoshida et al.,
2012; Yu & Smith, 2007; Yurovsky, Yu, & Smith, in press).
Third, participants’ final word–object mapping accuracies
were significantly lower in Trueswell et al. than in previous
cross-situational learning experiments. Altogether, it is thus
difficult to know whether the absence of evidence for partial
knowledge in these data should count as evidence of
absence.

In order to move toward a resolution to these discrepan-
cies, we address the question of partial knowledge in statis-
tical word learning through a combination of experiments
and computational models. These experiments provide a
more direct, and perhaps more sensitive, measure of partial
knowledge than those used in previous work, and the
models provide insight into the role of this partial knowl-
edge in bootstrapping subsequent learning.

Measuring partial knowledge

In the experiments to follow, the role of partial knowledge in
word learning was examined directly in adult learners en-
gaged in the cross-situational word-learning task (Yu &
Smith, 2007). In the task, learners are exposed to a series
of trials in which they are asked to learn the correct words
for a set of novel objects. To simulate ambiguous word-
learning environments, each individual training trial con-
tains multiple words and multiple candidate referents. At
the end of training, learners select a referent for each word
and typically demonstrate knowledge of a statistically sig-
nificant proportion of the mappings. In contrast to previous
studies, however, we focus not on the correctly selected
referents, but, instead on the words for which participants
give incorrect answers. If the accumulative theories of word
learning are correct, some proportion of these words are
neither learned nor unlearned but, rather, exist in an in-
between state of partial knowledge. The crucial manipula-
tion in the present experiments was to expose participants to
a second block of learning in which half of the stimuli were
drawn from this set of incorrectly associated words and
objects. If word learning is all-or-none, participants should
not benefit from seeing these items again. In fact, learning
might be impaired by the formation of incorrect all-or-none
hypotheses about these word–object mappings in Block 1
(Yurovsky, Yu, & Smith, in press). In contrast, if word
learning proceeds by the accumulation of partial,

incomplete, and ambiguous knowledge, learning should be
significantly improved by earlier experience with these
mappings, even if that experience did not yield measurable
knowledge of the correct word–referent mappings.

In addition to testing for partial knowledge in this new,
potentially more sensitive paradigm, we also address a fur-
ther question about the role of partial knowledge. One way
in which partial knowledge could benefit later learning is
through item-by-item savings (McMurray, 2007). That is,
partial knowledge of one word–referent pair could mean
faster learning of that one pair from future experiences.
Alternatively, partial knowledge could be an effective
bootstrapping mechanism not just for one partially learned
word, but for the whole set of to-be-learned words: partial
knowledge of one word–object mapping could facilitate the
learning of other words and objects with which it appears
(Fazly, Alishahi, & Stevenson, 2010; Regier, 2005; Siskind,
1996; Yu, 2008). That is, partial knowledge could accelerate
learning the latent structure of the whole system of words
and referents. To study these issues, we developed two
computational models, each embodying one of these hy-
potheses and asked which provided a better account of the
empirical data. We focused particularly on the role of
learning-by-exclusion mechanisms (e.g., Markman, 1990)
in driving system-wide acceleration. We begin by presenting
the empirical work.

Experiment 1

To determine the role of partial knowledge in statistical
word learning, we followed Yu and Smith’s (2007) cross-
situational word-learning paradigm. In this task, participants
are exposed to a series of individually ambiguous learning
trials, each of which contains multiple co-occurring words
and potential referents. While each trial is individually am-
biguous, words always co-occur with their correct referent.
Thus, participants who correctly track co-occurrence fre-
quencies between words and objects across trials can learn
the correct pairings. In Experiment 1, adult participants were
exposed to two consecutive blocks of cross-situational word
learning. At the end of training in Block 1, participants
selected the referent that they believed was correct for each
word. Each participant then engaged in a second block of
cross-situational word learning, but the stimuli to which
they were exposed varied by condition.

In the All New condition, each of the 18 words and
objects seen in the second block of learning was completely
novel. In contrast, in the Partial condition, half of the words
and objects seen in the second block were drawn from the
words and objects that participants had incorrectly mapped
in the previous block. If word learning is all-or-none, par-
ticipants’ incorrect selections in Block 1 should be the result
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of either an incorrect hypothesis or random guessing.
Consequently, one would expect participants in the Partial
condition to perform no better than participants in the All
New condition in Block 2. In contrast, if participants
encoded some of the distributional information in Block 1
even for those words that they mapped incorrectly, one
would expect learning in the Partial condition to be signif-
icantly better than that in the All New condition.

The training trials in Block 2 were designed to be iden-
tical across the two conditions except for the substitution of
nine incorrectly mapped words and objects for new words
and objects in the Partial condition. This allowed us to test
one further hypothesis. If participants had encoded partial
knowledge of the incorrectly mapped words, it could be
useful in one of two ways. First, partial knowledge of the
distributional information encoded for a particular word in
Block 1 could be useful for learning that same word in
Block 2; learning an individual word might be accumulative
(McMurray, 2007). But, that knowledge could be useful in a
further way. Not only could partial knowledge of a word
speed learning of that same word, it also could aid in the
acquisition of novel word–object mappings through reduc-
tion of ambiguity in training (Siskind, 1996; Yurovsky, Yu,
& Smith, in press). We thus ask not only whether learning is
improved in the Partial condition relative to the All New
condition, but also whether it improved for both the nine
repeated pairs and the nine all new pairs.

Method

Participants

Eighty undergraduate students at Indiana University re-
ceived class credit in exchange for volunteering. Forty of
these students participated in the Partial condition, and 40
participated in the All New condition. Because the Partial
condition required at least nine items to be mis-mapped in
Block 1, not all of these participants could be included in the
final sample. To ensure a fair comparison across conditions,
a similar inclusion criterion was applied to participants in
both conditions. The final sample included 18 participants in
the Partial condition and 20 in the All New condition. The
criterion for inclusion is described fully in the Stimuli and
Design section below.

Stimuli and design

Participants were exposed to a series of trials consisting of
multiple referents and multiple words. Referents were rep-
resented by pictures of unusual objects that were easy to
distinguish from each other but difficult to name. Words
were one- and two-syllable pseudowords constructed to be
phonotactically probable in English and synthesized using

the AT&T Natural Voices® system. All words and objects
have been used in previous cross-situational learning exper-
iments (Kachergis et al., 2012; Yu & Smith, 2007;
Yurovsky, Yu, & Smith, in press). Forty-two unique words
and objects were used in total—24 in Block 1 and 18 in
Block 2.

Training trials for Block 1 presented two pictures—one
on each side of the screen—and played two labels, follow-
ing Yu and Smith’s (2007) 2 × 2 condition. Training trials
for Block 2 presented four objects—one in each corner of
the screen—and played four labels, following Yu and
Smith’s (2007) 4 × 4 condition. The 2 × 2 condition was
used in Block 1 because it minimized variance in accuracies
and, thus, minimized the number of participants excluded
from the final sample (see the inclusion criterion explana-
tion below).

Trials in both conditions were designed such that each
was individually ambiguous: word order did not correlate
with referents’ on-screen positions. However, words always
co-occurred with their correct referents. In Block 1, each of
the 24 words appeared 5 times with its correct referent and 2
or fewer times with each of the other 23 referents. In Block
2, each of the 18 words appeared 4 times with its correct
referent and 2 or fewer times with each of the other 17
referents. Thus, participants could, in principle, determine
correct word–object mappings by tracking co-occurrence
information across trials. In total, training in Block 1
consisted of sixty 2 word × 2 object training trials, and
training in Block 2 consisted of eighteen 4 word × 4 object
training trials. Word–object pairings and trial orders were
selected randomly for each participant and were yoked
across conditions.

After each block of training, participants were tested for
their knowledge of word–object mappings. Each test trial
presented all of the referents seen in that block of training
and played one label word. Because all referents were
present on each test trial, participants could not learn
word–object mappings from co-occurrence at test.
Participants received one test trial for each word in the
training set. The order in which words were tested and the
screen positions of referent objects on each test trial were
random across participants.

The critical manipulation in this experiment was the
connection between Blocks 1 and 2. In the Partial condition,
9 of the words for which each participant selected an incor-
rect referent at test in Block 1 were heard again by that
participant in Block 2. The correct referents for these re-
peated words were also carried over into Block 2, and the
mapping between them remained the same. This allowed us
to test the hypothesis that participants had acquired partial
knowledge of these mappings despite their incorrect an-
swers in Block 1. Each of the 18 individual training trials
in Block 2 contained 2 repeated words and objects carried
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over from Block 1 and 2 novel words and objects. In the All
New condition, no words or objects were carried over into
Block 2, and thus each participant in this condition was
exposed to 18 novel words and objects in Block 2.
Critically, half of the items on each training trial in Block 2
were identical—and novel—for participants in both condi-
tions. The other half were repeated items for participants in
the Partial condition but novel for participants in the All New
condition. Figure 1 shows a schematic of this design. In the
results, these items will be referred to as repeated versus
new mappings. To recapitulate, a comparison of repeated
items between conditions refers to a comparison between
items that were repeated for participants in the Partial con-
dition but novel for participants in the All New condition. A
comparison of new items refers to a comparison between
items that were new, and identical, for participants in both
conditions.

Since nine of the items in Block 2 of the Partial condition
were those that participants had mapped incorrectly in Block
1, each participant in the final sample was required to
mis-map at least nine words in Block 1. However, learning
ability varies across participants; some learn all of the map-
pings in a cross-situational learning task. Thus, all partici-
pants who learned more than 15 of the word–object
mappings in Block 1 were excluded from the final sample.
Since cutting off only the right tail of the distribution of
learners would produce a biased estimate of learning abili-
ties, we also excluded participants who learned fewer than 9
of the word–object mappings in Block 1. To ensure accurate
comparison between the All New and Partial conditions, this
sampling was performed on participants in both conditions.
Thus, the final sample in each condition consisted only of
participants who learned between 9 and 15 of the 24 word–
object mappings in Block 1. Pilot studies showed that learn-
ing scores vary less across participants in a 2 word × 2
object design than in a 4 × 4 design, and thus each trial of

Block 1 contained two words and two objects. This in-
creased the proportion of participants included in the final
sample.

Procedure

Participants were told that they would be seeing a series of
slides consisting of multiple words and multiple objects and
that they would be subsequently tested on their knowledge
of which word referred to which object. At the beginning of
the test portion, they were told that they should click on the
on-screen object that they believed was the correct referent
for each word they heard. At the end of Block 1, participants
were asked to step out of the testing booth for a moment
while the experimenter set up the second block of training.
After the participant had left the booth, the experimenter ran
a Python script that determined which words and objects the
participant had mis-mapped and set up the second block
appropriately. The participants were then invited back into
the booth and completed the training and testing portions of
Block 2. If participants had learned too many or too few
items in Block 1, they were run in a dummy Block 2.

Results

Since only a subset of the participants was included in the
final sample, we first demonstrate that the full samples were
similar across conditions. Figure 2 shows histograms of
participants’ accuracies in Block 1, with lighter bars indi-
cating participants who were included in the final sample.
All of the following analyses were performed on this final
sample of participants.

Participants in both conditions experienced identical
training trials in Block 1. An independent samples t-test
analysis showed that accuracy on this block did not differ
significantly between conditions, t(36) = 0.32, n.s., licensing
comparison of Block 2 learning scores between conditions.
Participants’ test accuracies in Block 2 were submitted to a 2
(condition) × 2 (word type) mixed design ANOVA. For
participants in the Partial condition, word type was coded
as either new or repeated (previously encountered in Block
1). All words and objects were novel for participants in the
All New condition. However, since training trials in the
Partial condition each contained two repeated and two new
words, the items in those same slots were coded as repeated
and new for participants in the All New condition (see
Fig. 1). The new items were identical for participants in both
conditions. The ANOVA showed a significant main effect of
condition, F(1, 36) = 13.92, p < .001,η2 = .20, but no effect of
word type F(1, 36) = 1.46, n.s., and no interaction between
word type and condition, F(1, 36) = 1.46, n.s. Thus, partici-
pants in the Partial condition outperformed participants in the
All New condition not only for the subset of repeated words

... ...

Learned Not Learned

Partia
l

All New

Block 1 Block 2

Fig. 1 A schematic of the design of Experiment 1’s Partial and All
New conditions. In the Partial condition, nine items that participants
incorrectly mapped at test in Block 1 were subsequently repeated in the
stimuli in Block 2. In the All New condition, all 18 words and objects
in Block 2 were new
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that they had experienced, but also for the words that were
novel to participants in both conditions.1 Figure 3 below
shows mapping accuracies for participants for both word
types in both conditions.

Discussion

Experiment 1 was designed to answer two questions: (1) do
statistical word learners store and accumulate partial knowl-
edge across learning situations, and (2) if so, does partial
knowledge of one word lead to accelerated acquisition of
other co-occurring words? To answer these questions, par-
ticipants in the Partial condition were re-exposed to words
and objects that they had previously mis-mapped. Because
participants in the Partial condition significantly outperformed
participants in the All New condition in Block 2, we can
conclude that they must have stored some partial information
about words and objects they mis-mapped in Block 1.
Furthermore, this increased performance was seen not only
for repeated words encountered previously in Block 1, but
also for novel words. Thus, in answer to the second question,
statistical learners can recruit partial knowledge of some
word–object mappings to learn other word–object mappings

at a faster rate (Siskind, 1996). We investigate the potential
mechanistic underpinnings of this bootstrapping in the
Computational Model section below.

But perhaps this conclusion is premature. The results of
Experiment 1 are certainly consistent with the claim that
participants acquire and use partial knowledge of word–object
mappings, but there is an alternative explanation. Each trial of
Block 2 for participants in the Partial condition consisted of
two repeated pairings and two new pairings. If participants
had encoded no mapping information for the repeated items
but only had previously seen and heard these items, they could
have outperformed participants in the All New condition by
treating the 4 word × 4 object trials as two 2 word × 2 object
training trials. That is, they could have partitioned the words
and objects into two sets: familiar and new. They could then
have mapped familiar words only onto familiar objects and
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All New Condition: Block 1Fig. 2 Accuracy histograms for
all participants in Block 1 of
both the Partial (left) and All
New (right) conditions. The
lighter bars indicate the
participants who were in the
analyzed subset

1 An alternative possibility is that participants became fatigued over the
course of two blocks of training and that the benefit observed in the
Partial condition was due to buffering fatigue, rather than accelerating
learning. To rule out this possibility, an additional group of 20 partic-
ipants was run in a Control condition in which they saw only Block 2
of training. These Control participants selected the correct referent for
2.88(SD = 1.61) of the words, performing significantly better than
chance, t(19) = 2.85, p = .01, but also significantly worse than partic-
ipants in the All New condition, t(38) = 2.48, p < .05. Thus, rather than
depressing performance, exposure to Block 1 facilitated learning in
Block 2, consonant with other learning-to-learn results (e.g., Ahissar &
Hochstein, 1997). Exploring this phenomenon in cross-situational
word learning will be an interesting project for future research, but
for the present purposes, these data rule out the possibility that partial
knowledge of word–object mappings was only buffering fatigue.

Repeated Items New Items
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Mapping Accuracy in Block 2

Partial
All New
Exposure

Fig. 3 Mapping accuracy for Block 2 in the Partial and All New
conditions (Experiment 1), as well as the Exposure condition (Exper-
iment 2). Error bars represent ± SE. Participants in the Partial condition
outperformed those in the All New and Exposure conditions both for
the items they had mis-mapped in Block 1 (repeated) and for items
novel to all participants (new). Thus, partial knowledge of word–object
mappings from Block 1 facilitated not only the acquisition of those
mappings, but also the acquisition of new word–object mappings
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newwords only onto new objects. Experiment 2 was designed
to rule out this partitioning explanation.

Experiment 2

In Experiment 1, participants in the Partial condition could
have entered Block 2 with two potentially beneficial sources
of information: knowledge of which words and objects were
in Block 1, and knowledge of the mapping structure be-
tween these words and objects. In order to claim that partial
knowledge of word–object mappings drives the learning
benefit for these participants, we must determine that mere
exposure does not produce an equal benefit. Thus, Block 1
of Experiment 2 was designed to give learners identical
exposure to the individual words and objects but to none
of the mapping structure.

Method

Participants

Twenty undergraduates at Indiana University received class
credit for volunteering. None had previously participated in
Experiment 1 or any other cross-situational learning
experiments.

Stimuli and design

The individual words and objects and the manner of presen-
tation were identical to those of Experiment 1. However,
word–object co-occurrence distributions for Block 1 were
different in one important way. Twelve of the words
maintained identical distributions to those in the previous
experiment: co-occurring 5 times with their correct referent
and less frequently with each of the 23 incorrect referents.
The other 12 words had nearly flat co-occurrence distribu-
tions, appearing at most once with each of the 24 objects in
the set. Nine of these 12 flat-distribution words were then
carried over into Block 2. In this way, participants received
five exposures to each word and object, just as in
Experiment 1, but received uninformative distributional in-
formation. In Block 2, these words and objects had informa-
tive distributional structures identical to the corresponding
words and objects in the Partial condition of Experiment 1:
each repeated word mapped onto its correct repeated referent
4 times. Importantly, the correct referent for these words in
Block 2 was never the one that the participant had selected by
chance at test in block 1. This ensures that any potential
learning at test would operate the same way as in the Partial
condition of Experiment 1. That is, participants who noticed a
familiar item in Block 2 could potentially have inferred that
their previous guess was incorrect. Because the referent

participants chose for the flat-distribution words in Block 1
was never made the correct referent in Block 2, the utility of
this pragmatic inference would have been the same across
experiments.

In the analyses that follow, the 12 flat-distribution items
in Block 1 are labeled uninformative, and the 12 learnable
items are labeled informative. In Block 2, the repeated items
were those that had flat distributions in Block 1.

Procedure

Participants were given the same instructions as before. At
the end of Block 1, they were again instructed to step out of
the booth for a moment while the experimenter set up Block
2. The Participants then completed training and testing for
the second block as before.

Results and discussion

Participants in Experiment 2 were exposed to 24 words and
objects. However, in contrast to the previous experiments,
statistical information specified correct referents for only 12
of the words. Of these 12 items, participants learned an
average of 5.05 (SD = 2.48). This proportion, along with the
proportions from the Partial and All New conditions of
Experiment 1, were submitted to a one-way ANOVA for
accuracy in Block 1. Condition was not found to be a signif-
icant factor, F(2, 55) = 1.24, n.s. Since Block 1 accuracy was
comparable across conditions, we analyzed accuracy in Block
2. Figure 3 shows accuracy for Block 2 of the Partial and All
New conditions, as well as the new Exposure condition.

In order to determine whether mere exposure to words
and objects in Block 1 produces comparable learning bene-
fits to partial word–object mapping knowledge, accuracy for
Block 2 was compared across all three experimental
conditions—the Partial and All New data from Experiment
1 and the Exposure data from Experiment 2. Proportion
correct was submitted to a 3 × 2 mixed ANOVA with a
between-subjects factor of condition (Partial, All New,
Exposure) and a within-subjects factor of word type (repeat-
ed, new). Results again showed a significant main effect of
condition, F(2, 55) = 8.31, p < .001, η2 = .18, but not of
word type, F(2, 55) = 1.67, n.s., and no interaction between
the two, F(2, 55) = 0.92, n.s. Bonferonni-corrected t-tests
showed that the Exposure condition was not significantly
different from the All New condition, t(38) = 0.59, n.s., but
was significantly different from the Partial condition, t(36) =
3.73, p < .01, η2 = .28.

Thus, unlike participants who entered Block 2 with partial
mapping knowledge, those who were merely pre-exposed to
the words and objects did not show accelerated learning. This
rules out the old/new partitioning hypothesis as a possible
explanation for the difference between the Partial and All
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New conditions. It also rules out the possibility that the benefit
observed in the Partial condition was due entirely to partici-
pants inferring that the answers they gave at test in Block 1
were incorrect. However, participants in the Exposure condi-
tion did show slightly lower accuracy in Block 1. If these
participants noticed that a subset of the words were
unlearnable in the first block, they may have lost motivation
to learn in Block 2. That is, participants may have benefitted
from prior exposure but suffered from learned helplessness
(Maier & Seligman, 1976). Experiment 3 was designed to rule
out this explanation.

Experiment 3

In Block 1 of Experiment 2, half of the word–object mappings
were essentially unlearnable. This could have reduced
motivation to learn in the subsequent block and, thus,
counteracted the benefit of exposure to these repeated words
and objects. If such an effect occurred, however, it was not
localized to the repeated words: Participants learned both re-
peated and newwords equally well in Block 2. Consequently, if
the information structure of Block 1 led to learned helplessness,
it should have done so even if all of the items in Block 2 were
novel. This suggests a natural control condition.

Participants in Experiment 3 were again first exposed to a
block of training in which half of the items were unlearnable;
Block 1 was identical to Block 1 of the Exposure condition
(Experiment 2). Then participants were exposed to a second
block of training containing 18 new words and objects. Thus,
Block 2 was identical to the All New (Experiment 1) condi-
tion. If Block 1 of the Exposure condition induced learned
helplessness, we should see similar helplessness in
Experiment 3. Consequently, if Block 1 induces learned
helplessness, learning in Block 2 of Experiment 3 should
be less effective than in Block 2 of the All New condition.

Method

Participants

Twenty undergraduate students at Indiana University re-
ceived class credit in exchange for volunteering. None had
previously participated in Experiment 1 or 2 or any other
cross-situational learning experiments.

Stimuli, design, and procedure

The Learned Helplessness (LH) Control condition of
Experiment 3 was exactly Block 1 of the Exposure condition
(Experiment 2) followed by Block 2 of the All New
(Experiment 1) condition. Participants received the same
instructions as in Experiments 1 and 2.

Results

As in Experiment 2, only 12 of the 24 items in Block 1 had
correct referents. Of these 12, participants in Experiment 3
learned an average of 4.85 (SD = 2.56). A t-test showed that
this number was not significantly different from the number
learned by participants in the Exposure condition, t(19) =
0.26, n.s. This indicates that the sample of participants in the
LH Control condition was not significantly different from
the sample in the Exposure condition.

But did the information structure of Block 1 produce
learned helplessness? If it did, learning in Block 2 of the
LH Control condition should have been reduced relative to
learning in Block 2 of the All New condition. A t-test
showed that this was not the case: learning rates in Block
2 did not differ significantly across these conditions, t(19) =
0.32, n.s. Figure 4 shows learning scores in Blocks 1 and 2
and the relevant data for comparison from Experiments 1
and 2. Thus, if uninformative mappings for some items in
Block 1 did decrease motivation to learn in Block 2, they
did not do so to an extent sufficient to explain the difference
between the Partial and Exposure conditions.

Discussion

In Experiment 1, we demonstrated that even when partici-
pants do not show knowledge of the correct referent for a
word, they may nonetheless have encoded some information
about it. This information increases the probability of learn-
ing that word’s correct referent from subsequent exposure.
What is the nature of this information?

In Experiments 2 and 3, we ruled out the possibility that
the information is simple familiarity. Participants who re-
ceived equal exposure to the words and objects, but not their
mapping structure, did not show accelerated learning. Thus,
since the benefit depends on experience with the mapping
structure, the useful information must be partial knowledge
of the correct referents of these words. We have thus pro-
vided direct empirical evidence for the accumulation of
partial information in word learning (cf. Medina et al.,
2011; Trueswell et al., 2013).

But more than this, the partial knowledge of some word–
object mappings facilitated the acquisition of other, wholly
novel word–object mappings. This outcome indicates that
cross-situational word learning cannot be a process of mere-
ly tallying co-occurrences (cf. K. Smith et al., 2011; Yu &
Smith, 2012); word–object mappings cannot be learned by
independent accumulators (cf. McMurray, 2007). Instead, it
must involve a kind of leveraged learning (Mitchell &
McMurray, 2009), in which information about the words
and objects encountered in a single instance interacts and
competes (Yurovsky, Yu, & Smith, in press). But by what
mechanism does this interaction occur? To determine how
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partial knowledge of words and referents facilitates
learning new co-occurring words and referents, we
implemented two computational models designed to test com-
peting hypotheses.

Computational models

How do cross-situational learners make use of partial knowl-
edge of word–referent mappings? The experiments above
demonstrate a learning benefit not only for words and objects
for which partial knowledge exists, but also for wholly new
words and objects. In some way, then, partial knowledge
accelerates learning the whole system of word–referent map-
pings. One obvious candidate mechanismwould be some kind
of mutual exclusivity (Golinkoff, Hirsh-Pasek, Bailey, &
Wenger, 1992; Markman & Wachtel, 1988; Merriman &
Bowman, 1989) or highlighting (Kruschke, 2003). That is,
learners who had mapped a word to one object could have
ruled out that object as a candidate referent for other words.
But one can imagine two kinds of mechanisms by which this
could happen.

First, partial knowledge of a word–object mapping could
reduce the time (and information) required to successfully learn
that mapping through exposure to statistics. Then, once that
specific mapping is learned, the correct referent of this word
could be ruled out as a possible referent of other words. We call
this model the Full Knowledge Mutual Exclusivity model,
because the amount of knowledge required to correctly learn
a word–referent mapping is the same as the amount required to
rule its elements out as candidates for other mappings. This is a
model in which the learning of individual word–referent map-
pings is incremental, but only once a mapping is learned (all-or-
none) can it benefit the learning of other words and referents.

Alternatively, as was suggested by Siskind (1996), the
competition that gives rise to mutual exclusivity may oper-
ate on partial knowledge (Yurovsky, Yu, & Smith, in press).
That is, partial knowledge of a word–object mapping may
not only decrease the amount of information required to
learn that word, but may also limit that object from being
the referent of other words. On this account, mutual exclusivity
operates at a lower threshold of knowledge than does the
ability to map a word to a referent at test, and thus partial
knowledge of a word–referent pairing is actively involved in
learning even before it is fully known. We will refer to this as
the Partial Knowledge Mutual Exclusivity model.

Both of these accounts can, in principle, predict lever-
aged learning of new words in the Partial condition as
compared with the All New condition. However, they dis-
agree about the detailed mechanistic process through which
this learning benefit occurs (Suanda & Namy, 2012; Yu &
Smith, 2012). In the Full Knowledge ME account, partici-
pants enter Block 2 with partial knowledge of the repeated
word–referent mappings. Over the course of several trials,
they learn about word–object mappings, independently, for
both repeated and new items. Then, at some point, the
repeated mappings become fully learned, and their compo-
nent words and objects can be ruled out as contenders for
mapping to new words and objects. Because, at the begin-
ning of Block 2, the repeated items are already partially
known, the number of trials to reach full knowledge of these
mappings is lower than the number required for new words
and objects. Consequently, learning by exclusion would
happen faster in the Partial than in the All New condition,
and thus the number of both repeated and new items known
at the end of Block 2 should be higher in the Partial than in
the All New condition. The Partial Knowledge ME account
provides a different explanation for the observed data. On
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Fig. 4 Mapping accuracy for Blocks 1 and 2 in the Learned Helplessness
(LH) Control condition, as compared with the relevant conditions from
Experiments 1 and 2. Error bars represent ± SE. a In Block 1, participants
in the LH Control condition learned as many of the learnable mappings as

did participants in the Exposure condition. b In Block 2, participants in
the LH Control condition learned just as many mappings as those in the
All New condition, suggesting that statistical structure in which half of the
distributions are flat does not induce learned helplessness
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this account, from the first trial of Block 2, participants
already know enough about the repeated words to begin
leveraging them to learn by exclusion. Consequently, partic-
ipants in the Partial condition will be learning faster than
participants in the All New condition throughout the entirety
of Block 2 and, thus, will know more of both the repeated
and new mappings by the end.

While these models make the same qualitative predic-
tions, they can be discriminated quantitatively. In particular,
they make different predictions about the rate at which
learning will happen in Block 2 of the Partial condition,
relative to the rate at which learning occurs in Block 1 and
Block 2 of each of the learning conditions. Formalizing
these models allows us to leverage all of the data from each
of the conditions to constrain the predictions of both the Full
Knowledge ME and the Partial Knowledge ME models. In
the section that follows, we formalize both of these models,
as well as a Baseline model without mutual exclusivity. We
show that the Partial Knowledge ME model provides the
best account for the experimental data.

Model framework

In formalizing the models, we make the following explicit
assumptions. First, on the basis of the data in the three
experiments, we assume that learners are tracking and accu-
mulating statistical information across learning trials. We
formalize this representation as a type of associative matrix
in which the value in each cell represents the strength of
association between a word and a corresponding object (see
also Fazly et al., 2010; Frank, Goodman, & Tenenbaum,
2009; Yu, 2008). In particular, A(w, o) maintains the strength
of association between word w and object o.

Second, we assume that a learner does not have direct
access to the cells in this matrix. Rather, the learning system
uses a function, S(w, o), that evaluates the strength of evi-
dence for mapping w to object o. Intuitively, two factors
should contribute to the strength of evidence for such a
mapping: (1) the strength of association between the word
and object [A(w, o)] and (2) the strengths of association
between the word and other candidate referent objects
[A(w, o′)].

Third, when presented with a word at test, learners must
select one of the objects as its correct referent. We propose
that they do so according to a simple rule: If the evidence for
mapping a word to one of the referents is above a threshold,
the learner selects that referent [S(w, o) > K]. If it is not, the
learner selects randomly among the objects.

Finally, we must specify how the associative matrix A
grows over the course of training. We assume that on a
given learning trial, for each word, the learner has a certain
amount of attention and doles it out among the set of
available objects (see also Kachergis et al., 2012;

Kruschke, 2003; Mackintosh, 1975; L. B. Smith, 2000).
The manner in which this attention is distributed is the only
difference among the proposed models. In the Baseline
model, attention is distributed randomly across all possible
objects. The other two models modify this distribution of
attention as a function of the word–object mapping infor-
mation already acquired by the learner. In the Full
Knowledge ME model, upon hearing a word w, if one of
the objects present (e.g., o) has already been learned as a
referent for that word [S(w, o) > K], all attention for the word
is allocated to that object. If no object is already known to be
the correct referent, attention for the word is doled out
randomly among all objects that are not known to be refer-
ents of any other words [S(w′, o′) > K]. Thus, the model
implements a form of mutual exclusivity in which once a
word–referent mapping is known, that referent is not
mapped to other words. The Partial Knowledge ME model
operates identically, except that the threshold for mutual
exclusivity is lower. That is, the strength of evidence for a
word–referent mapping does not need to have crossed the
high threshold (K) to induce the use of mutual exclusivity.
Rather, it must only cross a lower threshold (PK). Thus, the
Partial Knowledge ME model captures the idea that there
may be interactions among partially learned mappings even
at low levels of partial knowledge that are not evident in
explicit tests of word–referent knowledge.

The learning model thus steps through training, trial by
trial, just as do human learners. On each trial, updates are
made to stored associations between the words and objects
present on each trial as a function of prior knowledge. Then
the model is tested via alternative forced choice, as were
human learners. The two block designs used in our experi-
mental studies were simulated by first training the model on
the training input from Block 1 and then testing the model for
each of these words. After that, training trials for Block 2 were
constructed on the basis of the model’s responses to these
Block 1 test trials, just as they were for human participants.
Finally, the model was exposed to a second block of training
and tested again on the words from Block 2. Bayesian model
comparison was used to determine which model provided the
best fit to the observed empirical data. In the next section, we
provide a formal specification of the models.

Critically, two assumptions—indirect access to co-
occurrence information and thresholds of knowledge—facilitate
discrimination of the two different ways in which partial knowl-
edge can accelerate the learning of novel words. Thus, we
developed the Full Knowledge ME model to formalize an
indirect role for sub-threshold knowledge. The Partial
Knowledge ME model was intended to be a direct contrast to
this model and a strong test for the direct role of sub-threshold
knowledge. As such, we see the two-threshold model as the
appropriate stand-in for fully probabilistic models (e.g., Fazly et
al., 2010; Frank, Goodman, & Tenenbaum, 2009; McMurray et
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al., 2012; Yu, 2008) and see these models as falling into the
same class as the Partial Knowledge MEmodel; partial knowl-
edge plays a direct role. In brief, the present two models were
developed to discriminate between two kinds of mechanisms
rather than their details. We also note that there are many other
ways of formalizing associative learning, some of which are
significantly more flexible and more powerful (e.g., Kehoe,
1988; Kohonen, 1984; Kruschke, 2008). Because these models
are also in the same general class as the Partial Knowledge ME
model, we use the simpler formulation for clarity and as a more
rigorous and fair test of our particular hypothesis.

Formal model

Each model learner begins training with a matrix in which
each cell A(w, o) corresponds to the strength of association
between word w and object o. All entries were initialized to
zero before the first training trial was encountered. In order
to determine whether the model has learned to map a word
onto an object, the associative matrix is passed through a
function S(w, o) that determines the strength of the evidence
for mapping word w to object o. S(w, o) compares the value
in the associative matrix between w and o with the values for
other candidate objects o′. Formally, S(w, o) returns the
average ratio between A(w, o) and each other nonzero A(w,
o′) divided by the number of nonzero A(w, o′):

Oþ :¼ o′ : A w; o′ð Þ > 0f g

S w; oð Þ ¼

X
o0∈Oþ

A w; oð Þ
A w; o′ð Þ

� �

Oþj j2
: ð1Þ

That is, S(w, o) provides a measure of how much more
evidence one has for mapping w to o than to each other
viable candidate o′. Note that, if we did not divide again by
the number of nonzero candidates, adding a new low-
probability candidate would raise the average ratio and,
thus, increase the evidence. This function assumes that at
some (perhaps implicit) level, humans are sensitive to the
entire distributional structure of a word, and not just the
most commonly co-occurring object. Evidence from other
statistical learning paradigms (e.g., Perruchet & Pacton,
2006; Vouloumanos, 2008) suggests that this is a reasonable
assumption. This is certainly not the only possible function
S(w, o), but it is the one that provides the best fit to the
empirical data. For a discussion of other alternatives (e.g.,
negentropy; Schrödinger, 1944), see the Appendix.

To connect this function to the learner’s behavior at test,
we propose that the learner knows the referent for a
word—and selects it at test—when the value of the function
S rises above a threshold K. Below this threshold, the learner
does not yet know the correct mapping for a word and will
choose randomly among all available objects at test.

Formally, then, when a learner is tested with word w and a
set of candidate objects O,

P o
���w

� �
¼ 1 S w; oð Þ ≥ K

0 otherwise

�
ð2Þ

Finally, the association matrix A grows as the learner
engages in cross-situational learning. The nature of this
growth is the feature on which the three models differ. In
each, the learner doles out a fixed quantity of associative
strength for each word on each learning trial. In the Baseline
model, this associative strength is distributed randomly
among all candidate objects in the trial. Formally, random
distribution among the referents is implemented by selecting a
random value I(w, o) for each word–referent mapping (w, o)
and normalizing for each word. Thus, if trial t contains the
words Wt and objects Ot,

∀w∈Wt;∀o∈Ot I w; oð Þ∼Uniform 0; 1ð Þ
At w; oð Þ ¼ At−1 w; oð Þ þ I w; oð ÞX

o0∈Ot
I w; o0ð Þ

ð3Þ

In the other models, this distribution of attention is mod-
erated by the learner’s knowledge (see also Kachergis et al.,
2012). If the mapping strength between a word w and any of
the objects has passed threshold, that object receives all of
the word’s association for the trial. Furthermore, if the
strength between any other word w′ and any of the objects
has reached threshold, those objects receive none of w’s
association on this trial. The two models differ in the thresh-
old of knowledge necessary for both of these effects. In the
Full Knowledge ME model, the threshold for mutual exclu-
sivity is the same as that for knowing the word: K. In
contrast, in the Partial Knowledge ME model, the threshold
is a different, lower value PK. We describe this rule below
for the Partial Knowledge ME model:

Ou :¼ ∀o∈Ot : ∀w∈Wt; S w; oð Þ < PKf g
o

At w; oð Þ ¼ At−1 w; oð Þ þ
1 S w; oð Þ ≥ PK

I w; oð ÞX
o0∈Ou

I w; o0ð Þ otherwise

8
><

>:

ð4Þ
We address two concerns before presenting the results.

First, we present here a set of process models but wish to
establish an in-principle distinction between two-threshold
and one-threshold models. An alternative would be to begin
with a Bayesian ideal observer model. However, since nor-
mative models of cross-situational learning routinely
outperform participants by a large margin (e.g., Frank,
Goodman, & Tenenbaum, 2009) and do not address trial-
by-trial learning, we believe the present process-oriented
approach to be a more direct and more transparent way to
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compare these two different mechanisms for using partial
knowledge. Nonetheless, the conclusions are certainly con-
tingent on the assumptions we have made in formalizing our
models.

Second, all of these models use an associative
representation—essentially, a matrix with words along the
rows and objects along the columns. Each cell represents the
strength of the association between the corresponding word
and object. Use of this matrix need not be taken as a
commitment to an associative account of word learning.
Rather, such a matrix is a useful representational tool, com-
monly employed across both associative (Fazly et al., 2010;
Yu, 2008) and Bayesian hypothesis-testing (Frank,
Goodman, & Tenenbaum, 2009) models of word learning.
For present purposes, the representation is a mathematical
tool rather than a theoretical commitment. We return to this
point in more detail in the General Discussion section.

Model results

Optimal parameters for each model were found by grid
search on the parameter space from 0 to 20 in steps of .1,
under the constraint that, for the Partial Knowledge ME
model, the partial knowledge threshold (PK) was lower than
the full knowledge threshold (K). At each parameter setting,
1,000 simulated participants were averaged together to pro-
duce model predictions and to compute the sum of squared
errors (SSE) between the model predictions and the data.
Optimal parameters were chosen to minimize the SSE across
all blocks in all conditions. The resulting SSEs were used to
approximate the Bayesian information criterion (BIC) for
each model under the assumption of Gaussian errors
(Schwarz, 1978). This criterion trades off fit to the data with
model parsimony, penalizing models both for misprediction
and for number of parameters. Since the Partial Knowledge
ME model has an additional parameter, it must provide a
better fit to the data. The BIC allows one to determine
whether the improvement in fit merits the additional com-
plexity of the second parameter. Table 1 lists optimal pa-
rameter values, SSEs, and BIC values for each of the three
models.

In BIC comparisons, the model with the lower value is
preferred. Furthermore, the size of the difference indicates

the strength of evidence in favor of the better fitting model.
Although this difference can be interpreted directly as a
continuous measure, it is useful, as in null-hypothesis test-
ing, to have a set of discrete values to act as heuristics for
interpretation. Kass and Raftery (1995) provide the most
commonly used standard. On their scale, a difference in
BICs of 0–2 is “not worth more than a bare mention,” a
difference of 2–6 is positive evidence, a difference of 6–10
is strong evidence, and a difference of more than 10 is very
strong evidence. We use this scale in interpreting the com-
parison between the Baseline, Full Knowledge ME, and
Partial Knowledge ME models.

Table 1 shows that the Full Knowledge ME model fit the
data slightly better than the baseline model but that the differ-
ence in BICs was small, “not worth more than a bare mention”
(Kass & Raftery, 1995). However, the Partial Knowledge ME
model fit the data much better than did both of the other
models. Even after controlling for its greater complexity, the
difference in fits provides very strong evidence that it is a
better account for the data than either the Baseline or the Full
Knowledge ME model (Kass & Raftery, 1995).

Thus, the Full Knowledge ME model does not provide a
good account of the way in which partial knowledge is used in
cross-situational learning. At the setting of its parameters that
provides the best fit to the data, it does not perform much better
than the Baseline model—a model in which partial knowledge
does not spread through the system at all. The Partial
Knowledge ME, in contrast, provides a convincing fit to the
data, as can be seen in Fig. 5. Thus, in order for partial
knowledge of one word–object mapping to speed the acquisi-
tion of other mappings, it must play a direct role prior to explicit
knowledge of the mapping. Even when an object has not yet
been fully mapped to a word, its partial mapping to one word
will limit its mapping to another word. In other words, partial
knowledge plays a role in disambiguation and in finding the
latent structure of word–referent pairings in a system of words
and referents (Siskind, 1996; Yurovsky, Yu, & Smith, in press).

Model discussion

The models developed and compared in this section were
designed to discriminate between two broad ways in which
partial knowledge of some words could speed up the acquisi-
tion of others. The Full Knowledge ME model embodied an
indirect route: partial knowledge of a given word might reduce
time to acquire a high-fidelity mapping for that word, and this
strongmapping could subsequently help the acquisition of new
mappings through mutual exclusivity. Alternatively, mutual
exclusivity could operate on partial knowledge, with an object
only weakly associated with a word already being less likely to
be mapped to a different word (Partial Knowledge ME). The
model comparison showed a direct role for partial knowledge
to be much more likely than an indirect role.

Table 1 Parameters and fits for computational models

Model Parameters SSE BIC

Baseline K = 1.4 .152 −49.92

Full Knowledge ME K = 2.6 .149 −50.2

Partial Knowledge ME K = 13.5, PK = 1.0 .032 −66.2

Note. SSE, sum of squared error; BIC, Bayesian information criterion;
ME, mutual exclusivity
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Of course, the Partial Knowledge ME model formalized
only one way of performingmutual exclusivity through partial
knowledge. This particular way makes a distinction between
two thresholds: threshold to give a correct response at test and
threshold to direct attention for exclusion. This distinction
parallels work on low- and high-threshold theories of detec-
tion in visual search (e.g., Palmer, Verghese, & Pavel, 2000).
Alternatively, the whole system could be probabilistic, with
exclusion not operating on a binary threshold but being di-
rectly proportional to the strength of a given word–object
mapping (e.g., Fazly et al., 2010; McMurray et al., 2012;
Yu, 2008). Additionally, the mechanisms underlying mutual
exclusivity are also in debate, ranging from attentional expla-
nations (e.g., Merriman&Bowman, 1989), to constraint-based
explanations (e.g., Markman, 1990), to social and pragmatic
explanations (e.g., Diesendruck & Markson, 2001). We have
formalized these models in attentional language, but other
implementations of the mechanistic basis of competition are
possible (see also McMurray et al., 2012). The critical point
that the models make is that partial knowledge is used directly.
Even when words are not well known, they already directly
impact the learning of other co-occurring words and objects.

General discussion

Two critical assumptions of statistical and distributional ap-
proaches to language acquisition are that information is accu-
mulated over time (Gillette et al., 1999; McMurray, 2007;
Plunkett, 1997; Saffran, 2003) and that learning is principally

about building not only individual mappings, but also coherent
systems of mappings (Frank, Goodman, & Tenenbaum, 2009;
Landauer & Dumais, 1997; Yu, 2008). However, the literature
contains no direct empirical evidence about how such accumu-
lation works or how human language learners bring about these
system effects. Here, we presented evidence on one key issue:
the role of partial knowledge in statistical learning. Using the
cross-situational word-learning paradigm (Yu & Smith, 2007),
the experiments in this article provide clear evidence of an
important role for partial knowledge in accelerating learning.
When words and objects that participants failed to learn in one
block of cross-situational learning were re-encountered in a
second block, word–object mapping accuracy improved dra-
matically. Thus, while learners had not encoded enough about
word–object distributions to select correct mappings at the
initial test, they had nonetheless encoded some partial knowl-
edge of these distributions, and this partial knowledge sped up
their word learning in Block 2. What’s more, word–object
mapping accuracy in Block 2 was improved not only for these
previously seen items, but for wholly novel words and objects
as well. Thus, partial knowledge of one mapping not only sped
up acquisition of that mapping, but also eased the acquisition of
novel mappings through mutual exclusivity (Golinkoff et al.,
1992;Markman&Wachtel, 1988). Two follow-up experiments
ruled out an alternative explanation of these results as arising
from pure familiarity with items from block 1.

This key finding—that partial knowledge of a subset of
the items in Block 2 sped up the acquisition of correct
mappings for new items—was consistent with two mecha-
nistic explanations. First, it was possible that partial
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Fig. 5 Mapping accuracy for
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the corresponding fits produced
by the optimal parameterization
of the Baseline, Full Knowledge
ME, and Partial Knowledge
ME models. Error bars
represent ± SE. Markers
indicate each model’s
performance

14 Psychon Bull Rev (2014) 21:1–22



knowledge played an indirect role. Partial knowledge of a
word–object mapping could have shortened the time to acqui-
sition of complete knowledge of that mapping, and mutual
exclusivity could have supported learning of new mappings
only once this complete knowledge was acquired. Alternatively,
partial knowledge could have played a direct role, with only
partial knowledge of a word–object mapping being necessary for
the word and object to be ruled out as candidates for other
mappings (Siskind, 1996; Yu, 2008; Yurovsky, Yu, & Smith,
in press). We formalized these two explanations as computation-
al models and showed that the second—mutual exclusivity from
partial knowledge—provided a significantly better quantitative
fit to the empirical data. Taken together, the empirical results
and the model comparison provide evidence for a word-
learning process that is not only accumulative, but also self-
bootstrapping (L. B. Smith, 2000). Because language is
learned as a system and not a series of individual components,
gaining even partial knowledge of one part can yield a benefit
for learning another (L. B. Smith & Yu, 2008).

Bootstrapping from partial knowledge

It may at first seem strange that the word-learning system
could know enough about a word–object mapping to limit
consideration of its components as candidates for other map-
pings but, at the same time, not know enough about them to
reliably link them at test. However, this kind of learning
mechanism is in line with the extant evidence about both
adults’ and infants’ language-processing systems. One of the
most robust findings in the memory literature is semantic
priming (McRae & Boisvert, 1998; Neely, 1977). In semantic
priming tasks, two words are presented to the participant in
rapid succession. The first word, the prime, is present for only
a short duration—on the order of 150 ms. The target word is
then presented, and the participant makes a lexical decision
judgment (for instance). Although the prime is not present
long enough to be identified at above-chance levels, it never-
theless improves performance on identification of the target
word. Thus, although the prime is activated to only a low
threshold, it still impacts the processing of a target word. Mani
and Plunkett (2010) have extended this finding, in a modified
paradigm, to 18-month-old infants.

Such processing is also consonant with properties of the
neural system. Although it is common to abstract neural
processing to a series of discrete firings, or action potentials,
and then to model the rate of such firing, neural processing
is known to be significantly more complex. For example,
membrane potentials below threshold can modulate the re-
lease of neurotransmitters—in effect, producing analog rath-
er than digital changes (Alle & Geiger, 2006; Marder, 2006).
The interaction of sub-threshold activations is also a corner-
stone of neurally inspired dynamic field theory models (e.g.,

Erlhagen & Schoner, 2002; Thelen, Schöner, Scheier, &
Smith, 2001). In these models, representations consist of
patterns of activation across a field of neuron-like units.
Critically, items represented in similar parts of the neural field
can interact, such that if both are active at sub-threshold levels,
their overlap can push one over threshold. Spencer and
colleagues have used these representations to explain aspects
of spatial (Schutte, Spencer, & Schöner, 2003) and visual
(Johnson, Spencer, & Schöner, 2008) cognition, as well as
their interaction (Simmering & Spencer, 2008).

This article extends these ideas beyond processing and
memory and into language acquisition (although see
Samuelson, Schutte, & Horst, 2009). We show that even
sub-threshold knowledge of a word’s referent can change
the acquisition of new words. Although McMurray (2007)
showed that acceleration in rate of vocabulary acquisition
should be predicted even if words are learned independently,
the quantitative pattern may require a mechanism in which
partial knowledge of words interacts. Taking this proposal
seriously suggests that, in fact, learning the whole system of
language may be easier than learning the independent parts.
Recently, computational studies have shown this indeed to
be the case. For instance, Frank, Goodman, and Tenenbaum
(2009) showed that learning the meanings of words is more
successful if learners perform joint inference over both
meaning and intention, rather than just meaning alone.
Feldman, Griffiths, and Morgan (2009) modeled phonetic
category learning and showed the task to be easier if learners
simultaneously try to learn words and phonetic categories.
Johnson, Frank, Demuth, and Jones (2010) similarly
showed that joint inference of words and syllables produces
better speech segmentation than does inference over syllables
alone. Hidaka and Smith (2010) showed that learning the
features relevant for multiple natural language categories al-
lows rapid acquisition of new categories and may help to
explain fast-mapping. Because language contains structure at
multiple levels and regularities are related across levels, learn-
ing something about one level is informative about aspects at
other levels. This idea is also key to both semantic (Pinker,
1994) and syntactic (Gleitman, 1990) bootstrapping.

Children are inundated with language. The average
American child can expect to hear between 10 and 33
million words in the first 3 years of life (Hart & Risley,
1995). This is a tremendous amount of input, and most of it
is likely to occur in noisy, ambiguous learning environ-
ments. Finding the latent structure in such data may depend
on using less than clear-cut information and on representa-
tions that are not strong enough to show up as explicit
knowledge. If language learning is really about recovering
structure from noisy statistics (Kemp, Perfors, &
Tenenbaum, 2007), even the noisiest data may have an
important role to play (Kalish, Rogers, Lang, & Zhu,
2011; Recchia & Jones, 2009).
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Partial knowledge and accumulative learning

While language acquisition is a problem of discovering of
latent structure, it is only one example of a general class of
such problems (Kemp & Tenenbaum, 2008). In any domain
that contains structure, a learning system will benefit prodi-
giously from exploiting such structure. The present experi-
ments demonstrate that human learners can exploit a set of
partially learned word–object mappings to learn other word–
object mappings, but similar effects are seen across a variety of
domains.

In memory, items related by semantic similarity (McRae
& Boisvert, 1998), temporal contiguity (Clayton & Habibi,
1991), and typical location (Estes, Verges, & Barsalou,
2008) facilitate each others’ processing. Also, when an item
cannot be recalled, people can often nonetheless retrieve
partial information about that item (Brown & Kulik, 1977;
Durso & Shore, 1991; Hicks & Marsh, 2002; Koriat, 1993).
Furthermore, when the partially retrieved item is followed
by a related item, complete retrieval is facilitated (Meyer &
Bock, 1992). All of this suggests that memory storage is
highly interconnected and operates in a graded manner.

In categorization, the relationship among features plays a
significant role in the resulting knowledge acquisition. For
instance, irrelevant features encountered during learning in a
categorization task can alter subsequent generalization gra-
dients (Little & Lewandowsky, 2009). This suggests that
even when information does not directly impact learning of
the experienced correlations, it can nonetheless play a role
in organizing future learning. Consistent with this idea, a
number of experimenters have demonstrated significant ef-
fects of prior learning on future category learning. For
instance, Heit (1994) showed that prior knowledge of ex-
emplars from a category in one condition affects the acqui-
sition of information about that category in a new condition.
Billman and Knutson (1996) showed that categories are
easier to learn when the relational structure of their features
follows two principles: value systematicity and value con-
trast. High value systematicity occurs when features that
predict other features are likely to predict still other features.
That is, features that have been predictive in the past are
given high weight when new categories are learned. High
value contrast occurs when, if one value that a feature can
take is predictive, so are the other values. In both of these
cases, acquiring partial information about the feature struc-
ture of categories bootstraps the acquisition of further infor-
mation about related categories. Further studies have
confirmed these findings, showing that correlations are eas-
ier to learn if they are embedded in a rich system of corre-
lations than if they are experienced in isolation (Kersten &
Billman, 1997; Yoshida & Smith, 2005).

The experiments in this article add two novel contribu-
tions to this discussion. First, they provide direct evidence

of states of partial information on the trajectory between no
knowledge and complete knowledge (see also Bion,
Borovsky, & Fernald, 2013). Second, and most importantly,
they provide evidence for a driving role of partial knowl-
edge in a system still in the process of learning. In the
memory literature, information that has previously been
well learned is known to be interconnected with other pre-
viously well-learned information. Similarly, in the categori-
zation literature, well-learned prior knowledge (e.g., Heit,
1994) is known to affect the acquisition of future knowl-
edge, as is the static relational structure of the knowledge to
be acquired. The empirical and computational evidence
presented in this article shows that even if information was
never well learned, it can still play an important role in
organizing future learning.

None of this is intended to deny that significant learning
can happen in a single trial (Brown & Kulik, 1977; Gallistel
et al., 2004; Markson & Bloom, 1997). Rather, the central
claim is that significant partial knowledge from related
learning, accumulated over a series of past experiences,
plays a critical role in creating one-shot learning opportuni-
ties in noisy learning environments. Once a learner has
accumulated information about the structure of the informa-
tion to be learned (Kemp et al., 2007; L. B. Smith et al.,
2002), the acquisition of new knowledge can be quite rapid.
It is the high degree of interactivity in the human word-
learning system, and in the learning system in general, that
may help to explain its remarkable success even when
embedded in the complex environment of the natural world.

Scaling up: word learning in the world

Although we can ask many questions about word learning
via laboratory experiments, the laboratory is not the world.
With any such endeavor, there is always a translational
question: Will this behavior scale? Previous demonstrations
suggest that it may. For instance, laboratory experiments
investigating the operations of memory processes typically
ask participants to remember just a few or a few dozen
objects. However, Brady, Konkle, Alvarez, and Oliva
(2008) showed that humans can rapidly learn to remember
thousands of objects. Similarly, short learning experiences
in the laboratory can have striking consequences for real-
world learning. L. B. Smith et al. (2002) showed that 17-
month-old infants who were taught to categorize objects by
shape in the lab subsequently showed a prodigious acceler-
ation in vocabulary development, learning many more
words than infants who did not receive such training.

In the present study, the input for word learning was
simplified in a number of ways. Words were presented in
isolation rather than in sentential contexts, words referred to
individual objects rather than types, and potential referents
were clearly individuated and available on-screen. Clearly,
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this is a different problem from that faced in “the wild”
(Medina et al., 2011; Quine, 1960). Nonetheless, the core
hypothesis in this article—that words are learned through
accumulation of partial knowledge, and that partial knowl-
edge of some words can accelerate the acquisition of other
words—is likely to scale. This is because while the real
world is more complex than the lab, it is not uniformly
and arbitrarily complex. In some cases, this additional var-
iability can be good for learning (Apfelbaum & McMurray,
2011; Hills, Maouene, Riordan, & Smith, 2010; Perry,
Samuelson, Malloy, & Schiffer, 2010; Rost & McMurray,
2010).

For instance, while words are often embedded in senten-
tial contexts, a significant proportion of speech to infants
consists of isolated words (Brent & Siskind, 2001), and
these isolated words measurably improve statistical speech
segmentation in 8- to 10-month-old infants (Lew-Williams,
Pelucchi, & Saffran, 2011). Furthermore, even when impor-
tant words are not produced in isolation, they are placed in
sentence-final position and preceded by determiners, mak-
ing them more salient and easing their segmentation (Aslin,
Woodward, LaMendola, & Bever, 1996). Recent work
shows that this structure also facilitates cross-situational
word learning (Monaghan & Mattock, 2012; Yurovsky et
al., 2012).

Similarly, although objects that receive a given label are
not identical, they typically vary along predictable dimen-
sions (Hidaka & Smith, 2010). Thus, even though L. B.
Smith et al. (2002) exposed children to mappings in which
shape was identical across instances, the acceleration in
these children’s real-world word learning was for categories
whose exemplars were not identical in shape. Furthermore,
increasing the dissimilarity of the laboratory training objects
on other dimensions actually improves real-world word
learning (Perry et al., 2010).

Understanding how learning words across ambiguous
situations scales, thus, is surely more than a matter of
presenting learners with more and more words and objects
per trial (cf. K. Smith et al., 2011). Making progress will
involve documenting the statistical properties of auditory
and visual input to children and understanding how these
interact with statistical word learning (Blythe, Smith, &
Smith, 2010; Vogt, 2012). It will also require caution:
assumptions may creep in that re-introduce arbitrary, rather
than natural, complexity. For example, although Medina et al.
(2011) showed that cross-situational word learning fails to
cope with the ambiguity of natural naming events,
Yurovsky, Yu, and Smith (in press) showed that this conclu-
sion resulted from an incorrect assumption. When identical
natural naming events were observed from a child’s first-
person perspective, cross-situational learning succeeded.
Thus, experiments designed to isolate a particular learning
problem may sometimes remove exactly the information that

real children use in real learning (see, e.g., Bergelson &
Swingley, 2012; Frank, Slemmer, Marcus, & Johnson, 2009;
Shukla, White, & Aslin, 2011; Thiessen & Saffran, 2009).

By extension, we argue that even partial knowledge of
sounds, words, objects, and mappings may be critical for
bootstrapping language acquisition. For instance, Bortfeld,
Morgan, Golinkoff, and Rathbun (2005) showed that 6-
month-old infants could use words with which they were
familiar but for which they had, at best, partial knowledge of
meaning as a wedge into speech segmentation. In the other
direction, Hochmann, Endress, and Mehler (2010)
pre-exposed 17-month-old infants to natural French speech
and subsequently presented these infants with a word–object
mapping task in which words from the speech stream served
as labels. Infants associated objects more strongly with the
nouns in this language than the determiners. Why? The
hypothesis is that even though these infants had not yet
learned much about syntax, they had already learned that
very high frequency words do not have referents. Thus,
although our findings are in a setting very different from
that in which children and adults learn language, they may
be at the core of understanding these mechanisms.

Finally, the move to understand word learning at scale will
require a serious investigation of the role of time in encoding,
remembering, and forgetting the meanings of words
(Kachergis et al., 2012; McMurray et al., 2012; Medina et
al., 2011; Spencer, Perone, Smith, & Samuelson, 2011; Vlach,
Sandhofer, & Kornell, 2008).For instance, although children
sometimes fast-map words to objects after a single exposure,
memory for these mappings can be quite short-lived (Bion et
al., 2013; Horst & Samuelson, 2008; Munro, Baker,
McGreggor, Docking, & Arciuli, 2012). Similarly, inferences
that learners make about the objects to which a word refers can
be different when these objects are presented sequentially
versus simultaneously (Spencer et al., 2011). Thus, although
one of the recent debates in the word-learning literature has
been whether the extant data is best explained by hypothesis
testing or associative learning (e.g., Colunga & Smith, 2005;
Kemp et al., 2007; Medina et al., 2011; Sloutsky, 2009;
Waxman & Gelman, 2009; Yu & Smith, 2007), we join Yu
and Smith (2012) in advocating that it has not been produc-
tive. As models in both classes become more complex, the
differences between them become semantic rather than mate-
rial. Since hypothesized hypothesis-testers are allowed to
entertain multiple, probabilistic hypotheses (Frank,
Goodman, & Tenenbaum, 2009; Xu & Tenenbaum,
2007) and associative models incorporate competition,
nonmonotonic learning rules, and complex measures of
association and uncertainty (Kachergis et al., 2012;
McMurray et al., 2012; Regier, 2005; Yu, 2008; Yu &
Smith, 2011; Yurovsky, Yu, & Smith, in press), these
classes of models become difficult (or impossible) to
discriminate (see also Shi, Griffiths, Feldman, &
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Sanborn, 2010; Townsend, 1990; Townsend & Wenger,
2004). A more productive modeling endeavor might be
to work on understanding how statistical word learning
unfolds across multiple scales—from how information is
selected in a single trial (Fitneva & Christiansen, 2011; L.
B. Smith & Yu, 2013; Yu & Smith, 2011; Yu et al.,
2012), to how information is accumulated across multiple
trials (as in this article) (K. Smith et al., 2011; Trueswell
et al., 2013; Yurovsky, Yu, & Smith, in press), how
information is stored and forgotten across days (Medina et
al., 2011; Vlach & Sandhoffer, in press), and how learning
trajectories for large-scale lexicons ultimately unfold across
months and years (Frank, Tenenbaum, & Gibson, 2013).
It may be that once models of both classes have grap-
pled with constraints from all of these levels, we will be
able to tell them apart. Or it may be that we decide they are
truly indistinguishable. In either case, we will have made
progress in understanding how statistical word learning might
scale. The experiments and models in this article provide one
such set of constraints.

Conclusion

Learning a language requires learning a massive set of
word–object mappings. While some words could be learned
pedagogically, perhaps even from a single instance, this may
leave many words unlearned. Statistical and associative
approaches suggest that children and adults may solve this
problem by tracking word–object co-occurrences across
time, gradually learning the meanings of many words over
repeated exposures. The present article provides support for
these kinds of theories, demonstrating empirical evidence of
partial knowledge in ambiguous word-learning situations:
words that are not yet learned to criterion, but for which
learners have nonetheless acquired some knowledge.
Furthermore, the experiments and models in this article
show that partial knowledge plays a direct role in
bootstrapping future learning, accelerating the acquisition
of novel words and objects. This article thus makes three
main contributions. First, it provides direct evidence of
sub-threshold knowledge in statistical word learning, an
assumption made by many theories, but not demonstrated
directly (Medina et al., 2011; K. Smith et al., 2009). Second,
it shows that this partial knowledge plays an interactive,
system-level role: partial knowledge of some words accel-
erates the acquisition of other, co-occurring words. Third,
the modeling results indicate that partial knowledge plays
this role quite early, with very little exposure needed to
potential mappings before they begin to bias the learning
system. In addition, this article also explores several possi-
ble representations of this partial knowledge (see the
Appendix). Together, these new results point to a framework

that clarifies the origins of such bootstrapping and the rela-
tionship between partial knowledge and vocabulary
development.
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Appendix

In developing any computational model, one must make a
decision about how to move from the conceptual model to
its implementation. In these models, we made just such a
decision about how the strength of evidence for a word–
object mapping [S(w, o)] is derived from the cells in the
associative matrix (A). There were, however, a number of
alternative possibilities that we also considered but rejected
due to poorer fits to the empirical data. Here, we present
those alternatives and their goodness of fit for the Baseline,
Full Knowledge ME, and Partial Knowledge ME models.

The most straightforward metric is to use pure frequency;
once the cell in the associative matrix [A(w, o)] crosses a
threshold, the word is known. This takes into account what
is known about the co-occurrence of word w and object o
but ignores information about w’s co-occurrence with other
objects. One way of using the distributional information is
to measure the proportion of associative strength for w and
all objects accounted for by a particular object o—that is, to
normalize each cell by the sum of its row (Luce, 1959).

Third, because psychological distance is known to be an
exponential function of true distance (Shepard, 1987), it is
reasonable to take an exponential transform of the propor-
tion of association computed in the previous metric.
Exponentiated proportion is different from proportion in
two basic ways. First, the same amount of difference be-
tween two proportions is treated as more significant in
higher parts of the space (e.g., .9 vs. 8) than in lower parts

Table 2 Model BICs for alternative strength metrics

Metric Baseline Full
Knowledge ME

Partial
Knowledge ME

Frequency −38.24 −38.07 −35.43

Proportion −34.44 −34.9 −38.53

Exp. proportion −34.49 −34.7 −39.03

Negentropy −34.49 −34.04 −38.67

Average ratio −49.92 −50.2 −66.2

Note. BIC, Bayesian information criterion; ME, mutual exclusivity;
Exp., exponentiated
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of the space (e.g., .4 vs. .3). Second, it assigns nonzero
weight to zero-strength associations. This encodes the idea
that since there are more candidate referents, there is less
certainty in any individual referent.

Finally, a natural candidate for the strength function is the
reciprocal of the entropy (Shannon, 1948) of the proportion
space, or negentropy (Schrödinger, 1944). Entropy is a
measure of the uncertainty of a distribution; in this case,
setting a threshold on negentropy requires there be a lower
bound on uncertainty before a mapping is known. Table 2
below presents BIC values for these metrics, as well as for
the metric used in body of the article: Average ratio. Since
average ratio significantly outperforms several other plausi-
ble candidate metrics, it was used in the models presented in
the main text.
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