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“_ . .the undeniable fact being that any number of sensory sources, falling simultaneously
on a mind WHICH HAS NOT EXPERIENCED THEM SEPARATELY, will fuse
into a single undivided object for that mind. William James, 1890, pg. 488, italics and
capitalization as in the original).

A classic question in philosophy and psychology asks whether the object
or its properties are more fundamental (see, e.g., Carnap, 1967; Locke,
1964; James, 1890; Boring, 1942). Clearly we perceive both—a dog is appre-
hended as an integral whole and as being big and brown and furry. But
which perception is prior? This question is often interpreted in terms of
the logical priority of parts and whole. And the contemporary concensus
is that parts are logically and computationally prior; complex percepts
and concepts are built from simpler primitives. More than 100 years ago,
however, William James concluded that whole objects are experientially
prior, that constituent properties are a secondary product of perceptual
learning. This chapter provides support for James’ conclusion.

Our starting point is the protracted course of children’s acquisition of
dimensional language, a lengthy process that includes the acquisition of
dimensiona) terms and the development of selective attention. We explain
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this developmental course by simulating it in a connectionist network. Our
results suggest that dimensions are created, that they are the product of
learning dimensional language.

1. The Developmental Data

Both Gentner and Rattermann (1991) and Smith (1989, 1993) provi§e
extensive reviews of the development of dimensions. We highlight the main

findings here.

A. DIMENsiONAL TERMS ARE HARD TO LEARN

Young children are rapid word learners, learning as many as nine words,
per day (Carey, 1978). They are not, howevejr, rapid learners of. the V\{ords
that refer to the perceptible properties of objects. Instead, the dimensional
adjectives—words like wet and soft and big and red—are remarkably hard
for young children to learn. o -

One line of evidence for this conclusion is the composition c_)f early
productive vocabularies; in these vocabularies, dimensional adje.ctlves are
rare or nonexistent. For example, in Stern and Stern’s (1924) diary study
of the acquisition of English, 78% of the words produged_at 20'm'onths
were common nouns, the rest were verblike; none were adjectives. Similarly,
in Nelson’s (1973) study of 18 children learning English, fewer than 7% qf
the first 50 words were adjectives (see Bates, Benigni, Bretl?erton, Carr{al-
oni, & Volterra, 1979). Dimensional adjectives are late for chlldr.en learn%ng
other languages as well. In Dromi’s (1987) study .of one child l;arqmg
Hebrew, only 4 of the first 337 words were adjectives. In a longitudinal
study of the acquisition of Spanish by 328 children. J ac]?son-Maldonado,
Thal, Marchman, and Bates (1993) found only one adjective among the 88
most common words. The finding that adjectives are in'frequc?nt in ea}r]y
vocabularies is notable given the frequency of common dimensional adjec-

i i nguage. .
UVZS slf?csgclil 11':11: o%f ev%dence consists of studies that attempt to teach children
new words. Children as young as 18 months are one-trial learners of nougs
(Woodward, Markman, & Fitzsimmons, 19?4) and pf:rhaps also verbs
(Tomasello & Kruger, 1992). In contrast, studies attempting to teac(l)loyognlg
children adjective terms typically fail—even after as many as 2000 trials
(Rxeﬁrllgfg?i)ﬁe of evidence showing the difﬁcu'lty of lea¥ning dime‘nsmn
terms concerns children’s errors. Long after children begin tg use dimen-
sional words, when they are as old as 3, 4, or even 5 years, their interpreta-
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tions of dimensional terms are still errorful. This literature provides many
examples of both within- and between-dimension errors, interpreting “‘big”
to mean “tall” (Keil & Carroll, 1980), “little”” to mean “big” (Donaldson &
Wales, 1970), “‘big” to mean “bright” (Carey, 1982), “dark” to mean “loud”’
(Mark, Hammeal, Bornstein, 1987; Smith & Sera, 1992), and “red”” to mean
“green” (Binet, 1890).

In sum, children learn the names for object properties slowly and error-
fully. We ask: Why is this learning so hard?

B. THE DEVELOPMENT OF SELECTIVE ATTENTION

The slow course of children’s extraction of dimensions is evident in nonlan-
guage tasks as well. The evidence on children’s difficulties are so substantial
that the trend from wholistic to dimensionally differentiated perception
has been offered as a principle of development (Gibson, 1966; Werner,
1957; Wohlwill, 1962). This large and well-documented literature shows
that young children have difficulty in any task that requires them to attend
selectively to one dimension. In these tasks, selective attention is measured
by asking how much judgments along one dimension are disrupted when
additional variation is added on another dimension. For example, a child
is said to fail to attend selectively if when the child is asked to put red
objects in one pile and blue objects in another, she makes more errors (or
performs more slowly) when the red and blue things also vary in size and
shape. Preschool children commonly fail to attend selectively in such tasks;
indeed, they commonly fail to do them at all when irrelevant variation is
added. In total, the evidence from discrimination learning tasks, classifica-
tion tasks, matching-to-sample tasks, and same-different judgment tasks all
show that young children perform poorly whenever they must attend to
only one dimension of variation and ignore others (see Aslin & Smith,
1988; Smith, 1989; Gentner & Rattermann, 1991, for reviews). These results
fit the idea that object properties fuse into an undivided whole in the minds
of young children. Is this, then, why young children have difficulty learning

dimensional terms?
C. LANGUAGE THEN SELECTIVE ATTENTION

Children’s difficulties in attending selectively might seem to suggest an
explanation of children’s difficulties in learning dimension words. If children

- cannot perceptually isolate properties from the object as a whole, then they
, cannot map dimensional adjectives onto object properties. But what drives
4 the development of selective attention to dimension? The evidence suggests
¥ that learning dimensional language plays a key role.
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Learning dimensional words and selective attention to dimensions
are closely related achievements in children (Gentner & Rattermann,
1991; Smith, 1989). But overall, the evidence suggests that learning di-
mension words comes first. Although children learn attribute terms such as
big and wet and red with difficulty, they often do so years before they
can make judgments in nonlanguage tasks about one dimension unaffected
by variation on other dimensions. Indeed, knowing the relevant dimen-
sions words seem a prerequisite for successful selective attention in many
tasks (Kendler, 1979; Ehri, 1976; Smith & Sera, 1992; see also Gentner &
Rattermann, 1991, for a review). Other studies have shown that supplying
children with words to describe properties and dimensions facilitates selec-
tive attention (Kotovsky & Gentner, 1996; Kendler, 1979). In sum, it appears
that children first learn the names for attributes and then they become able
to selectively attend to those properties (Sandhofer & Smith, 1996). In light
of this evidence, Kotovsky and Gentner (1996) and Smith (1993) proposed
that children’s abstraction of perceptual dimensions is a consequence of
Jearning dimension words. This chapter provides a demonstration of how
learning dimensional language might lead to selective attention.

II. Toward a Model

To this end, our specific goal is a network that learns dimension words and
through this learning develops the ability to selectively attend to dimensions.
Three further issues influenced the architecture of the network and the
learning tasks we presented to it.

A. DiFFERENT DIMENSIONS AT DIFFERENT LEVELS

Figure 1 presents the classic view of dimensions: Different kinds of physical
energy activate distinct sensory channels. These distinct sensory channels
constitute the dimensions we can selectively attend to, perceive, and talk
about. In brief, in the figure there are the same dimensions all the way
down—from the dimensions we talk about to those we perceive to those
that are given in the sensory system. By this view, the reason we perceive
the dimensions we do is because these are the perceptual primitives our
sensory system gives us.

The assumptions depicted in Fig. 1 are latent in much research in cognitive
psychology: the search for primitive features (Treisman & Gelade, }980),
studies of dimensional crosstalk (Melara & Mounts, 1994), theories of
category learning (Krushke, 1992) and in studies of infant perception and
cognition (Husaim & Cohen, 1981; Coldren & Colombo, 1994).

e
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. 1995; Sanocki, 1991, 1992).

And, finally, is the evidence on the variability of t ’

The wqud’s la.nguages differ dramatically in l);,ow tI;lee)v/v (I)S(Cichlliizggig:;
p_ropertles.. While all languages (apparently) have nouns and verbs as syn{ac-
tic categories, some languages (Mandarin Chinese, Quechua) do not h

a separate syntactic category of adjective. Rather, property words behave
 more like verbs. Thus there seems to be something less fundamental ab?)vi
how languages. organize property terms. Second, languages slice u t}lx1

Sensory space in very different ways. For example, English ““thick” lﬁ'ingz

ttogether viscosity and width: Japanese ‘koi* brings together viscosity and
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concentration {see Schachter, 1985). Differences among languages strongly
suggest that dimensional words are not simple refections of fixed sensory at-
tributes.

In light of this evidence of noncorresponding and changing dimensions
at different levels in the cognitive system, we distinguish three senses of
dimensions: (1) Sensory dimensions that structure the input to the cognitive
system; (2) perceived dimensions that can be perceptually isolated, that
is, attended to selectively; and (3) lexical dimensions that structure the
relationships among words. Critically, our network will make no assumption
that these three levels must correspond. Specifically, sensory dimensions
will be hardwired into the network and linguistic dimensions will be given
to the network in training. In simulations 1 and 2, linguistic and sensory
dimensions will correspond and in simulation 3, they will not. In all cases,
perceived dimensions must be constructed.

1. Three Kinds of Mappings

In learning dimension words, children learn three kinds of mappings. One
mapping is between dimension words and object properties. For example,
in learning the word “red” children associate “red” with red cups, red cars,
red gum, red dresses, and so forth. These mappings are characteristically
what one thinks of when one thinks of learning dimensional terms, and
such mappings could be sufficient for the child to abstract the common
property referred to by a single word. However, these word—property maps
are not the only associations learned in the course of learning dimension
words.

Children also learn word—word maps. The words “What color is it?” are
associated with the words “red,” “blue,” and *‘green” but not “big.” The
word “size” is associated with the words “big” and “little”’; ““wet” is associ-
ated with *‘dry.” There is evidence that children learn these associations
and moreover that they sometimes do so before they learn the specific
properties to which individual words refer (Cruse, 1977; Backsheider &
Shatz, 1993; Clark, 1973; Carey, 1982). For example, Backsheider and Shatz
showed that children who cannot correctly map a single color word to the
right property often know to answer the question ““What color is it?”’ only
with color words.

Finally, in the context of dimension words, children also make property—
property maps (Sandhofer & Smith, 1996). People put pairs and sets of
objects before children and say such things as “These are both red,” “They
are the same color,” and “These are the big ones.” This learning con-
text affords not just the mapping of words to properties but the map-
ping of properties to properties. Such simultaneous presentation of two
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objects with the linguistic specification of how they alike may encourage
their comparison and the discovery of their common property. Gentner &
Rattermann (1991); see also Kotovsky & Gentner, 1996) have suggested
that such explicitly presented comparisons are crucial to the discovery of
relations and kinds of similarity.

Accordingly, our network was designed to simultaneously learn word—
property maps, word-word maps, and (word-)property—property maps. In
simulation 1, we specifically examine the role of word—property maps and
word-word maps in the creation of perceptually isolatable dimensions. In
simulations 2 and 3, we examine the role of explicitly comparing objects
on a linguistically specified dimension, that is the role of property—
property maps.

2. SUPERVISED LEARNING

Children learn dimension words through explicit teaching; adults provide
both positive and negative evidence as to the properties to which dimension
words refer (Callahan, 1990; Mervis, 1987; Snow, 1977; Wood, 1980). Adults
as part of their regular interaction with young children ask such things as
“What color is that?” “Is that big?”” “Is kitty soft?”’. And, adults provide
appropriate feedback. When a child labels a red object as green or a big
one as little, parents tell them what the correct labels are. Thus back-
propagation is a suitable learning algorithm because children’s learning of
dimensional terms is “supervised.”

However, supervision as typically realized in connectionist networks is
not perfectly appropriate as a model of children’s word learning (see also
Gasser & Smith, 1996). In traditional back-propogation, the connection
weights on each learning trial are changed to increase the correct response
and to decrease all other potential responses. This is like the parent say-
ing to the child “This is red, not blue, not big, not wet, not soft, not
bumpy. . . . Parents do not do this but instead explicitly reinforce correct
answers (‘‘yes, that’s a red one””) and provide negative feedback only when
the child explicitly provides the wrong answer (‘‘that’s not red, its blue”).

Traditional back-propagation is also inappropriate in the present case
because the task of learning to label the multiple attributes of individual
objects means that possible responses are not simply right or wrong. There
are kinds and degrees of wrongness. Consider a big, black wet dog and the
question ‘“What color is it?”” The answers big and red are both wrong.
However, it seems unlikely that parents would respond to these errors in
the same way. A toddler who answers the question ‘“What color is it?” by
correctly noting that the dog is big seems likely to hear a parental response
of “yes, its a big dog, a big black dog.”*A toddler who answers the same
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question by saying red is likely to hear, instead, a parental response “‘its
not red, its black.”

Accordingly, we modified the back-propagation algorithm to fit these
assumptions about the kinds of feedback provided by parents. T.he next
section provides a detailed description of the network and the learning rule.

III. Network for Learning Dimensional Language

The architecture for our network instantiates three overlapping sets of
mapping: property—word, word—word, and property—property. Figure 2
shows the network. Following convention each layer of units is represented
as a box and the arrows between each layer represents complete connectiv-
ity between the layers of one unit and the next. There are three pres_ of
layers: (1) Input layers—these correspond to the sensory spemﬁcgtlon
of an object and the linguistic context in which an object is per‘celve-d;
(2) Output layer which corresponds to labels for attributes, words 11}<e big,
red, wet, and soft; and (3) Internal hidden layers. We conceptualize the
activity on these hidden layers as corresponding to representation§ at' the
level of conscious experience. We propose that the patterns of activations
on these internal levels come, with the learning of language, to represent
isolated attributes such that if the network selectively attends to the color

-'Le_x_ical outputs

A

. v,_.vP',erceptual
lyer

Sensory input Linguistic input

Fig. 2. The network trained to label attributes and to make comparisons. The shaded
portion is the portion used to train attribute categories.

i
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of a big black dog, blackness is isolated in the pattern of activity on the
hidden layer.

We trained the network in two tasks common in children’s learning of
dimensional terms: (1) learning to label the attribute of a single object and
(2) comparing objects. We describe the network in more detail by describing
the layers and training procedure for each of these tasks separately.

A. LEARNING ATTRIBUTE NAMES: OBIECT-WORD AND
WorD—-WoRD Maprs

The canonical test of a child’s knowledge of dimensions terms—the one
principally used by experimenters, parents, and educators—consists of pres-
enting the child with an object and asking them a question about it: “What
color is that?” “Is it big or little?”” *““What shape is it?”’ The child is thus
presented with a single object along with linguistic input that specifies the
relevant dimension and the child is asked to output the relevant dimensional
term. Learning, to do this require mapping object properties to words, for
example, the redness of the object to the word red. It also requires mapping
dimensions words in the input to dimensions words in the output, for
example, what color to red. One training task which we present to the
network is based on this canonical test of dimension-word knowledge.

Four layers are involved; these are the shaded layers in Fig. 2. The sensory
input and the linguistic-dimension input connect to a hidden layer which
we call the perception layer. The activation of the perception layer in turn
activates the units in the output layer. These output units represent words
that name the properties of single objects along several dimensions. This
portion of the network and its operation is the same as the network used
by Gasser and Smith (1996) to model young children’s faster learning of
concrete nouns than dimensional adjectives.

1. Sensory Input

The object to be labeled is specified on independent sensory dimensions.
In the present simulations, objects are specified on four (or in experiment
3 on five) sensory dimensions. The values of each sensory dimensions are
represented using ‘“thermometer” encoding (Harnad, Hanson, & Lubin,
1991). In this form of representation, units are activated in a series; the
nth unit in the series is not activated until the activation on the n-1 unit is
1. Each dimension consists of 11 units, so two of the values along one 11-
unit dimension are [1,1,1,1,1,1,.8,0,0,] or [1,1,1,.3,0,0,0,0,0,0,0].

2. Linguistic Input

The linguistic input signals the dimension specified in the question asked
of the network. Each possibly relevant dimension is represented by a single
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unit in this layer. Each of these units is thus associated with a class of
possible answers—for example, activation of the linguistic input color is
associated with the outputs red, blue, green; size is associated with the
outputs big, medium, and little. Note, that there is no prior requirement
that these linguistic dimensions match the sensory dimensions. In the first
two simulations, there were three linguistic dimensions and thus three units
in this layer.

Critically, from the perspective of the network, there is no distinction
between the input activation that corresponds to the input object and
that which corresponds to the linguistically specified dimension. From the
network’s point of view, there is just one input vector of 47 numbers jointly
specifying an event in the world. '

3. Perceptual Layer

Activations on the hidden perceptual layer represent the transient contents
of immediate awareness. Thus these patterns of activation should change
systematically with changes in the sensory and linguistic input such that
the pattern of activation when labeling a big red dog as red will differ from
that when labeling the same object as big. The patterns of activation that
emerge on this layer in the context of different questions about different
dimensions will thus constitute our definition of perceived dimensions. Im-
portantly, the perceptual layer compresses the sensory dimensions so that
the sensory dimensions are not directly recoverable in the patterns of
activation on the perceptual layer. Rather, prior to learning, patterns on
the perceptual layer are distributed, wholistic, representations of the input
object. In this way, we embody James’ claim in the opening quote that prior
to learning, separate sensory sources ““fuse into a single undivided object.”

4. The Output Layer

The output layer consists of a single unit for each word, that is, each units
corresponds to a dimensional adjective such as red, green, big, little, rough,
and smooth. A +1 activation on the output unit represents the network’s
labeling of the input object with the corresponding word. A —1 activation
represents the network’s decision that the corresponding word is inappro-
priate for the input object, and a 0 activation represents an intermediate
response, one that might be made if an object is described by a word that
is not an appropriate answer to the question asked. For example, if asked
“what color?” and given a large smooth red object, the output red would
be represent by +1, the output smooth by 0, and the output green by —1.
In this way we model parents likely nonresponse to true but not requested
descriptors of the input object.
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B. MAaKING COMPARISONS: PROPERTY—PROPERTY MAPS

In the course of learning dimension words, children are often presented
with sets of objects and told how objects within the set are alike, for example,
that two objects are ““the same color” or “‘both soft.” The portion of the
network that learns attribute labels cannot learn from this sort of experience
because it has no way of simultaneously representing more than one object
and no way of comparing objects (see Smith, 1993). Our goal was to add
to the network such that it could make internal comparisons of objects,
the internal comparisons that would be triggered by being told that two
objects are alike in some lexically specific way. To do this, we added two
layers to the network used in learning attribute names: a Perceptual buffer
had a “Same” unit (see Fig. 2). This “Same” unit simply turns on the
comparison process which works in three steps:

1. Step 1. An object and a linguistic input specifying the relevant dimen-
sion are input to the network, activation is passed to the perceptual
layer, and then the pattern on this layer is stored in the perceptual
buffer.

. 2. Step 2. A second object is input along with the same linguistic input.

This second object always has the same value as the first object on
the linguistically specified dimension. Thus, at the end of this step,
we have input two objects that are alike in some way and we have
linguistically specified the dimension on which they are alike.

3. Step 3. The two patterns of activation on the perceptual buffer and
the perceptual layer are compared: The pattern on the perceptual
buffer is treated as a target for the pattern on the perceptual layer.
The error is the difference between the two patterns. This error is
back-propagated from the perceptual layer to the sensory and linguis-
tic input layer. In this way the network is trained to make the internal
representations for two objects which are the same on a linguistically
specified dimension to be more similar to each other. In other words,
the network is trained to find out what is alike about two objects
“said” to be alike in some way.

C. Maior THEORETICAL CLAIMS

In summary, the network and training tasks instantiate four theoretical
claims about how children learn to perceptually isolate and represent di-
mensions:

1. Prior to learning, perception is wholistic; separate sources of sensory
information are combined into one unitary pattern.
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2. Sensory, perceptual, and linguistic dimensions are distinct. Sensory
dimensions are given in the biology and linguistic dimensions are in
the language input; they need not correspond.

3. Perceptual dimensions are the product of learning dimensional lan-
guage and thus may be constrained by both the sensory dimensions
and the linguistic dimensions.

4. Two tasks are critical to the development of perceived dimensions:
Learning to label the properties of objects which includes learning
property—word maps and word—word maps and comparing objects on
linguistically specified dimensions which creates property—property
maps.

In the following simulation experiments, we demonstrate the plausibility
of these ideas and show how they account for aspects of the developmental
trend in children, yielding new insights and new predictions about the
development of dimensions and selective attention.

Simulation 1 examines how learning to label attributes on linguistic di-
mensions that conform to sensory dimensions might lead to the perceptual
isolation and representation of individual attributes. Simulation 2 examines
the joint effects of learning to label attributes and of comparing objects on
linguistically specified dimensions that conform to the sensory dimensions.
Simulation 3 examines how this learning might create new perceived dimen-
sions when linguistic dimensions do not conform to sensory dimensions.

IV. Simulation 1: Learning Property Names

The central question behind this simulation is what one knows about dimen-
sions when one has learned to call red things red, blue things blue, and big
things big. Does labeling an attribute require the conscious isolation of
that attribute from the other aspects of an object? This is an important
developmental question because young children use dimensional terms
before they can make other decisions about one dimension unaffected by
variation on other dimensions, that is, before they can effectively selectively
attend in nonlanguage tasks.

We addressed this question by asking the network to learn to label
attributes on independent sensory dimensions. We then examined the char-
acter of the network’s internal representations via what we call the Selective
Attention Test. In addition, we assessed whether the network formed word—-
word maps on its way to acquiring attribute terms. This simulation involves
only learning to label the properties of objects presented one at a time and
thus only the shaded layers in Fig. 2.

v
i
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A. METHOD
1. Training

The network was taught to answer three questions—each a request for the
name of an attribute on one sensory dimension. In total, the network was
taught nine attribute categories. Each adjective category was organized by
a range of values on one sensory dimension; specifically, each attribute
label referred to .33 of the maximum possible range on one sensory dimen-
sion. Three attribute categories each were defined for three of the four
sensory dimensions. There were no terms that corresponded to values on
the fourth sensory dimension.

Each trial consisted of the presentation of an object on the sensory layer
and a linguistic input. There were three possible linguistic inputs; what
might be characterized as the questions What color is it?, What size is it?,
and What texture is it? The first linguistic input was associated with ranges
of variation on the first sensory dimension, the second with ranges of
variation on the second sensory dimension, and the third with ranges of
variation on the third sensory dimension. For each trial, a linguistic input
was randomly selected and then an object was randomly generated such
that each attribute term was the correct answer equally often. The network
was trained on 15,000 randomly generated inputs and tested every 2500
inputs.

2. Selective Attention Test

We tested the network’s ability to isolate attributes every 2500 trials by
examining the patterns of activation on the perceptual layer for pairs of
objects that were either same or different on the linguistically speicfied
dimension. The idea is this: If the network has abstracted the property red
from all other properties, then the pattern of activation on the perceptual
layer should be the same when the network is asked “What color?”” and
given and a big, red, bumpy, rounded object and when it is asked “What
color?”’ and given a little, red, smooth, angular object.

For the Selective Attention Test, we specifically examined two kinds of
pairs: (1) Same-on-Relevant-Dimension pairs consisted of two inputs that
were the same on the linguistically specified sensory dimension but different
on the other three dimensions; and (2) Different-on-Relevant-Dimension
pairs consisted of two inputs that were different on the linguistically speci-
fied dimension but the same on the other three. On each Selective Attention
Test trial, each member of the pair was input and its resulting pattern of
activation on the perceptual layer was stored. Then the second member of
the pair was input and its resulting pattern of activation on the perceptual
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layer was stored. The dependent measure was the Euclidean distance be-
tween these two patterns of activation.

Prior to learning, the Same-on-Relevant Dimension items should yield
more dissimilar patterns of activation on the hidden layer than the Different-
on-Relevant Dimension items because the Same pairs are alike on one
sensory dimension but different on three and thus are more wholistically
different than are the Different pairs which are different on one sensory
dimension but alike on three. If, however, in learning the attribute terms,
the network learns to perceptually isolate and selectively attend to the
linguistically specified dimension, then the patterns of activation for the
Same-on-Relevant dimension items should become more similar, less dis-
tant, than the Different-on-Relevant dimension items.

This experiment (and the others that follow) was conducted ten times
with the network starting learning each time with different initial and
randomly determined connection weights. Each of the 10 runs also em-
ployed different randomly generated inputs. The results are reported as
means over the 10 runs. We considered two definitions of a correct response:
(1) the network was correct if the most highly activated output was correct
or (2) the network was correct if the activation of the correct output unit
was above a predetermined threshold. Both measures lead to the same
pattern of results and conclusions. We report the results in all of the experi-
ments in terms of the output with the highest activation.

3. Results and Discussion “

Figure 3 shows the network’s proportion correct labeling of attributes on
the linguistically specified dimension as a function of training. By the 5000th
input, the network was nearly always correct; given an object and a linguistic
input that specified the relevant dimension, the network correctly labeled
the appropriate attribute.

Figure 4 shows the results of the Selective Attention Test: The Euclidean
distance between patterns of activation on the perceptual layer as a function
of training for the Same-on-Relevant dimension pairs and the Different-
on-Relevant dimensions pairs. At the beginning of training, the pattern of
activations for the Different pairs were less distant, more similar, than the
Same pairs which is 10 be expected because the Different items shared
values on three sensory dimensions but the Same items shared a value on
on.ly one sensory dimension. With training, the distance between these
Different pairs increases but the distance between the Same pairs does not
decrease. That is, the network did not learn to perceptually isolate a com-
mon sensory property by learning to label it. This failure to isolate proper-
ties stands in marked contast to the high performance of the network in
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Fig. 3. Proportion correct responses in simulation 1 as a function of the number of train-
ing patterns.
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Fig. 4. The Euclidean distance between patterns of activation on the hidden later for two
input objects that are the same on the queried dimension and different on all other dimensions
(solid line) and for two input objects that are different on the queried dimension and the
same on the other three (dashed line) as a function of training patterns.
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learning to label attributes. The network learned to “call” blue objects
blue, red objects red, big objects big, bumpy objects bumpy, and so on with
accuracy but without learning to isolate the common sensory values that
define these attribute categories.

The finding that correctly labeling attributes does not require the percep-
tual isolation of the attributes is not surprising in one sense. To succeed,
the network only needs to find partitions of the hidden-layer activation
space such that all instances of a dimensional term fall on one side of a
boundary. The task does not demand that the network find an identical
pattern of activation, an invariant. for all red things; even though there is
one available in the sensory input. ’

However, the present results are surprising in the context of typical
inferences in developmental psychology which take verbal behavior as
a close indicator of underlying concepts and their constituent structure
(e.g., Gelman & Coley, 1991, Keil, 1989). In this context, labeling red
things red is prima facie evidence for “having the concept red.” However,
the present results show that “having the concept” need not mean having
abstracted a common component. Notice that the behavior of the network
does fit the behavior of children who use many dimensional terms
correctly before they effectively attend selectively to the properties those
terms name. The clear implication is that young children can correctly
use a dimension word before they attend selectively to the property
named by that word.

Although the network did not learn to isolate perceptually the attribute
defining a lexical category, it did learn something about linguistic dimen-
sions, forming robust word-word maps between linguistic inputs and
outputs, and like young children it did so prior to learning to correctly
label properties. Figure 5 shows the proportion of errors that were within-
dimension errors. Given three dimensions each with three attribute catego-
ries, the proportion of within-dimension errors expected by chance is .25.
As is apparent, these errors increase with training and after training occur
more often than expected by chance. Again, this behavior is like that of
young children who know the class of appropriate answers to a question
before they correctly use individual dimensional terms.

In_sum, the network learned to label properties without discovering
the invariant “sensory” properties in the input. The network could
succeed‘ in this way because to be right it only had to find a set of
connection weights that worked well enough. The results suggest that
dimensional adjectives may be initially learned by children as broad

mu - - . - i
Itidimensional categories even when they correspond to “given” and
separate sensory primitives.
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V. Simulation 2: Learning to Selectively Attend

If perceived dimensions are not “givens’ but must be discovered, and if
thc?y are not necessarily discovered by learning to label the attrib’utes of
ob].ects, how are they learned? In this simulation, we ask if comparison of
'ob]ecj[s on a linguistically specified dimension results in the perceptual
}solatlon of individual dimensions. That is, in this simulation, the network
is asked to learn three sets of maps: word—word maps between linguistic
1x‘1puts and outputs, property—word maps between input objects and linguis-
tic outputs, and property—property maps between objects that are specified
to be alike on a particular dimension. Learning this third relational map
§hould teach the network to find common properties and to filter out
{rrelevant information from linguistically unspecified dimensions. The issue
is how this training interacts with the learning of attribute categories.

We examined two training procedures. In the Joint-learning condition
we taught the network to label attributes and we also presented it wit};
pairs of objects to compare on the linguistically specified dimension
Both kinds of training trials alternated from the start of training. In the;
Attributes-then-Comparison condition, we taught the network to label attri-

; putes as in simulation 1 and then after this first task was mastered we
introduced the comparison task.

.
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A. METHOD
1. Stimuli

The stimuli for learning to label attributes were identical to those used in
simulation 1. The stimuli for comparison training were pairs of inputs. The
two input patterns had identical values on the sensory dimension specified
by the linguistic input and differed by at least 30% of the range on each
of the other three dimensions. On each comparison training trial, pairs of
inputs were randomly generated to meet these constraints. The stimuli for
the Selective Attention Test were identical to those used in simulation 1.

2. Procedure

Training to label attributes was conducted as in simulation 1. For each
comparison training trial, a lexical dimension was first picked randomly to
be the dimension specified by the linguistic input. Next, a pair of objects
identical on the linguistically specified sensory dimension and different on
the remaining three was generated. The first item in the pair was presented
on the sensory layer, together with the appropriate linguistic input. The
resulting pattern on the perceptual layer was then saved on the perceptual
buffer. Next, the second object was presented on the sensory layer along
with the appropriate linguistic input. The resulting (second) pattern on the
perceptual layer was then compared to the (first) pattern on the buffer.
The pattern on the buffer served as the target.

In the Joint-learning condition, comparison training was introduced along
with training to label attributes from the start of training. The two tasks
alternated during training.

For the Attributes-then-comparison condition, the network was trained
in the attributes task alone for the first 5000 inputs. At 5000 inputs, compari-
son training was introduced and the two tasks alternated for the remainder
of training.

In both training regimens, training continued until 15,000 patterns (7500
for each task) had been presented. Following every 2500 inputs, the network
was tested in the Selective Attention Test also as in experiment 1.

3. Results and Discussion

Figure 6 shows the network’s performance labeling attributes in the Joint
training condition, when the network learned to do both tasks from the
start of training. As shown in the figure, the network learned the attribute
names in this condition more slowly than in simulation 1 when it was trained
only in the attribute labeling task. Learning to label attributes is clearly
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than had the training in simulation 1. At the start of learning, the distance
(dissimilarity) of patterns of activation on the perceptual layer of Same-on-
Relevant dimension pairs is greater than Different-on-Relevant dimension
pairs. This is to be expected since Same pairs are alike only on the lexically
specified dimension but different on the remaining three, whereas Different
pairs are different on the lexically specified dimension but same on the
other three. However, briefly into Joint training, the pattern reverses so
that the network now internally represents objects that are alike on a
lexically specified dimension as being more alike than objects that differ
on the lexically specified dimension. The network has learned to isolate
the property common to objects labeled by the same term.

Figure 8 shows how well the network learned to label attributes when

it was first trained to name object properties and then given joint training

on both naming attributes and comparing objects. This training regimen is
clearly best for learning to label attributes; learning is rapid and largely
unaffected by the introduction of comparison training. Thus, although com-
gle dimensions slows learning to label attributes when
they are both taught from the beginning, the addition of this task does not
disrupt the labeling of already learned attribute names. This is intriguing
because what the network knows about attributes is different before and

after comparison training.
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of activation on the comparison buffer and perceptual layer thg samc')
drives all patterns of activation on thgse two layers to beicc?meil alike. In a
preliminary simulation in which we trained thp network only 1nht eiacor;}gan-
son of objects, we found that after 2500 input p.atterns, t eh uc11 ean
distance between all inputs (whether the same or different on the rei evant
dimension) was lessn than .03. Thus, training to labfal attributes alone is
insufficient and training in comparison alone is insufficient. Sucgess req_m;:,si
the formation of multiple mappings through the same connection welgerts,
training in word—property maps, word—word maps, and proper;y—;zir\/(;eion};
maps. Apparently, learning attribute' labels keeps tbe pattggs o :\Z fivations
on the perceptual layer sufficiently dlf.fe?ent for leX}cally ('11 eren mbues
and comparison training along lingmstlcallzf specified dimensions

isolate the common property. . _
th?nn:;vrvn(,)rtl}(lgonleiwork learned to attend selegtively to sensory dlmen51t(§1£
by learning about linguistic dimensions; that is, by learning to ;im% : N
butes and by finding what is alike about ob]egts tha.t are sal ko be the
same on a nameable dimension. In the final 51mu‘lat10n., we ask w o
the network can learn to isolate attributes on dimensions that are n

" directly given in the sensory input.

VI. Simulation 3: Creating A New Dimension

In the previous two experiments, the network was aske.d to discover s:.nsog};
dimensions—to abstract what was common in thg input descrzlp1 1onned
individual objects. The network discovered‘sengor.y d1‘mensx.ons ail earnse
to attend selectively to them by learning lmgu1st¥c dimensions. In ads_e n
the network learned to “‘map” linguistic dimensu_m_s onto sensory 1m<tahe
sions. This was accomplished, however, not by gaining direct accesls btot by
sensory dimensions which are compressed at the pe‘rceptl‘lal lcla]ve tl:v -
reconstructing them. Thus the question o_f this expenment. If the ne oy
can reconstruct sensory dimensions, can it also d1scpver anc! percep o
isolate dimensions that are not simple sensory dimensions? Thls is ¥mporT2;1 N
question because people appear to be able to learn new dimensions gions
bault & Schyns, 1995; Goldstone, 1995), and to talk_abouj[ dlmc.;,lnt ons
that do not directly correspond to the features and dimensions tha
independent at early stages of sensory processing.

Agcordingly, in t}lllis ﬁgnal simulation, we taught the _network to la:eci
attributes and make comparisons on a dimension that did not correspo
to any sensory dimension.

A. METHOD

o . t for
The network was the same as that used in simulations 1 and 2 e)_(ces and
two changes: (a) objects were specified along five sensory dimensions,
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' (b) the linguistic input specified four linguistic dimensions. Each sensory
dimension was organized as in simulations 1 and 2. The network was taught
12 attribute labels. Three labels referred to values on sensory dimension
1 and were associated with linguistic dimension 1; three attribute labels

- referred to values on sensory dimension 2 and were associated with linguistic
dimension 2, and two attribute labels referred to values on sensory dimen-
sion 3 and were associated with linguistic dimension 3. We call the poten-
tially isolatable dimensions that correspond to the sensory dimensions,
Simple Dimensions. The range of values on each of these sensory dimen-
sions named by each attribute term was 20% of the dimension. Thus, some
portion of possible values on each dimension were not specifically labeled.

Four of the attribute labels, in contrast, were defined in terms of values
on sensory dimensions 4 and 5 and were associated with a single linguistic
dimension, linguistic dimension 5. Each of the attribute terms on this Com-
plex Dimension was defined as a point along and near a linear relation

between sensory dimensions 4 and 5. Specifically, values on the complex
dimension were constrained as follows:

.8 < sensory dimension 4 + sensory dimension 5 < 1.0

and the four attributes were defined as ranges of values within these con-
traints. In the possible space of all visual inputs along the five sensory
dimensions, this inequality defines a complex dimension with a rectangular
shape. Each of the four complex attributes refers to a subregion that is 20%
of the complex dimension. That is, there were boundary regions between
attributes that were not labeled.

The training procedure was identical to that used in the Attributes-then-
Comparison condition of simulation 2.

t 2. Results and Discussion

Figure 10 shows the performance of the network in the task of labeling
attributes: the four dimensions as a function of training trials. The dotted

i vertical line indicates the point at which comparison training was intro-

duced; that is, the point at which the network was asked to discover what

t the same about two objects that were labeled as same on a specific dimen-
} sion. As is apparent, prior to the introduction of the comparison task, the
f network readily learned to label all the attributes—those on the Simple
i and those on the Complex dimension.

As is also apparent in Fig. 10, performance declines somewhat when the

comparison training is introduced as when the network is asked to discover
§ What is the same about two objects that are the same on a dimension, but
£ 2s in Simulation 2, it returns to near perfect performance. Performance on
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Fig. 10. Proportion correct responses in the attribute labeling condition under the Incre-

mental training regimen for the three Simple dimensions that correspond to sensory dimensions
and for the Complex dimension. Comparison training was introduced after the first 5000 trials.

the complex dimension appears no different at this point than performance
on the simple dimensions.

Figure 11 shows performance in the selective attention task for each
dimension. The dependent measure is the distance between patterns of
activation on the perceptual layer for visual inputs that are the same on
the relevant dimension (and different on the others) or are different on
the relevant dimension and the same on all others. Notice first the perfor-
mance prior to the introduction of Comparison training. At this point, the
network accurately labels attributes on all four dimensions. But for pon¢
of them does this correct labeling mean the perceptual isolation of the
labeled attribute. And, for the complex dimension, the correct labeling
occurs without a discretely localized representation of the dimension oF its
attributes anywhere in the network. This clearly shows how the outward
behavior of a system may be a very poor guide to the internal processes
that make that behavior.

However, the network did learn to attend selectively—to isolate what
is common——given comparison training; and it did so for all four dimensions-
Again, performance on the complex dimension is as good as performance
on the best simple dimensions. The patterns of activation at the perceptual
layer for objects that share a value on the relevant dimension are, at fhe
end of training, considerably more similar than the patterns of activation
for inputs that are different on the relevant dimension.
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These results show that the network can learn to name attributes. and
attend selectively to a dimension that does not correspond .to a sin %lc
sensory dimensions as well as it can learn about _seqsory dlmer}s1ons. Isolat-
able dimensions can be created that have no a priori existence in the system.

A final aspect of these results, like those in simulation 2, points again to
how the outward behavior of a comple)f network ge_ed not reﬂect the ksatmhz
underlying processes. Prior to training in the explicit comparison tt:iz ir,lin
network outputs attributes labels accurately and often comparlsoi fraimn :;gr
the network still outputs attribute labels correctly3 but thg networ“ s simi
outward behavior in the two cases is based on radically dlffer_ent represin-
tations.” Moreover, the shift from one form of repr‘esent?tlon to arzott ;;
is only discernible in what are quite_small apd transient dlsruitllons 12d e
labeling of attributes. Further, in this expe.nmen.t, the- networ eslrn 0
label attributes on simple and complex'dlr.nenswns in compara etw yS
with nothing in its patterns of outputs to indicate that some attrlbutf err::n
label values on the sensory “primitives,” whereas others label values

complex learned dimensions.

VII. Developmental Implications

This chapter began with the developme%nta‘I evid('encc‘e on chl'ldren’s stl%\z
acquisition of dimensional terms and their dlfﬁcul'tles in selgctlve gtten i
tasks. Our model provides new insights by shown}g how dlmensmn? m_a3f
exist at multiple noncorresponding level§, by showing how langulage egu ;1
ing involves learning a system of mappings between these leve s,1 Zn en}j
showing how jointly learning these mappings may create perceptual dim
sions.

A. THE STARTING PoinT Is WHOLISTIC PERCEPTION

The starting point for our developmental account is the wholistic com]fre;;

gsion of the sensory dimensions by the hidden laye‘r, thﬁ: layer we take

~ corresponding to subjective experience. The theore.tlcal idea is that learm.ng
dimensional adjectives is hard because the system is structured to ’percenée
objects as unitary wholes. This aspect of our model fits Markman s (119£i§n2
proposal about a “whole-object” bias in early vyord lea¥nm’g. Sl}e expla "
children’s special difficulties in learning dimenswr.lal adjectives m'term; N
constraints on their initial hypotheses about possible word meanings. "
proposed that young children first learning words assume that those wotr.es
refer to individual whole objects rather than to the component proper 1of
of objects. This is a learning principle 'that promotes the anmSltl'on']ar
nouns because objects in the same nominal category are typically simi
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across many interrelated and correlated properties (e.g., Markman, 1989;
Rosch & Mervis, 1975). Our network with its compression of sensory dimen-
sions provides a mechanistic implementation of the whole-object assump-
tion. In other works, we have shown that this network, like young children,
is biased to learn noun meanings and that it learns nominal categories
organized across many dimensions more rapidly than it learns dimensional-
adjective categories (Gasser & Smith, in press).

What the present model adds to Markman'’s original idea is the further
proposal that children must actually construct perceptual dimensions and
that they do so through learning language. The developmental evidence has
suggested this possibility to others (Bruner, 1957; Kendler, 1979; Gentner &
Rattermann, 1991; Kotovsky & Gentner, 1996: Smith & Kemler, 1978;
Smith, 1984; Smith, 1989). The present results demonstrate that such learn-
ing could occur.

Our network with its wholistic compression of sensory dimensions con-
trasts with a well-known model of dimensional learning in the adult litera-
ture—Kruschke’s (1992) ALCOVE model. ALCOVE retains the separate-
ness of distinct sensory dimensions across layers in the network by utilizing
dimensionally distinct learning weights. ALCOVE thus instantiates the
ideas depicted in Fig. 1: the same dimensions from the bottom of the system
to the top. ALCOVE has not been applied to developmental phenomena
but learning by this network fits well the pattern of adult learning in many
simple categorization tasks (e.g., learning to classify a small set of instances
into two mutually exclusive groups). In these tasks, ALCOVE, like adults,
rapidly learns categories organized by one dimension, In brief, ALCOVE
models well the end-state structure, how category learning works after
separate dimensions are formed.

The question is whether ALCOVE can be made to fit the developmental
data? One possible way is make changes in dimension weights as a function
of training more sluggish such that the network continues to distribute
attention across all dimensions longer through the learning process. Without
actual simulations, it is difficult to know how much of the developmental
evidence could be adequately captured by this approach. However, even
if such an approach did work, ALCOVE would still offer no explanation
of the noncorrespondence of the dimensions we talk about and those de-
fined by sensory psychologists, no explanation of perceptual learning that
creates new dimensions and properties, and no explanation of the variability
in dimensional terms across languages.

B. SEPARABLE DIMENSIONS AND SELECTIVE ATTENTION

The classic definition of a psychological dimension is context independency:
judgments of one dimension should be independent of values on other
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dimension (e.g., Boring, 1933). Thus, Garner (1974) defined experientially
separable dimensions as those that afforded (near) perfect selective atten-
tion to one dimension at time. This is the same benchmark we required of
our network. This benchmark was achieved late in learning by the network
and required more by way of training than merely learning categories
well organized by one dimension. Dimensional separability by Garner’s
definitions also develops quite late in children (e.g., Smith & Kemler, 1978).
Thus, again, the course of developments by the model mimics that observed
in children. :

One could argue, however, that the benchmark of perfect selective atten-
tion is too high. By this view, the network and children could be said to
attend selectively to and ““have” dimensions earlier; the only problem is that
they selectively attend imperfectly. In order to label attribute categories, the
network must have learned something about the attributes. It must have
formed a partition of patterns of activation such that patterns turning on
different outputs were on different sides of the partition. The problem is
what evidence should count as indicating psychological dimensions. If the
criteria for defining a dimension is independence from other dimensions,
then imperfect selective attention would seem the product of partially
created dimensions.

C. DIFFERENT DIMENSIONS AT DIFFERENT LEVELS

A central claim of in our account is that dimensions exist at multiple levels:
there are, initially, sensory dimensions that code the physical input and
linguistic dimensions that organize dimensional adjectives. Perceptual di-
mensions are constructed, we propose, by learning multiple mappings be-
tween and within these levels. This idea of different dimensions at different
levels helps explain some peculiarities in the developmental literature. The
most important is the evidence purporting to show that infants can do what
young children cannot: selectively attend to dimensions.

The evidence for selective attention to dimensions in infants derives from
habituation studies (e.g., Cohen & Oakes, 1993; Fantz, 1963; Bornstein,
1985; Coldren & Colombo, 1994). In these studies, infants are shown re-
peated examples of objects that are alike on some dimension but vary on
a second dimension. For example, as illustrated in Fig. 12, infants might
be repgatedly shown red squares, red circles, and red triangles until looking
at thesé objects declines. After habituation, the infant is presented with
test trials. For example, infants might be shown an object that differed on
the previously constant (relevant) dimension but which matches one of the
exemplars on another (irrelevant) dimension: €.g., 3 green square. Or infants
might be shown at this point an object that matches the exemplers on the
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Fig. 12. (A) A series of possible stimuli in ituati
. / a habituation study. (B) Il i i
stimulus set in Kotovsky and Gentner’s experiment. ¥ (B Mlustration ofa possivle

relevant di'mension but differs from them on another dimension, €.g., a red
cross. An increase in looking time to a test object suggests disc’rir.ni.;lation
Qf that object from the habituation exemplers. The standard result is that
Lpfants look longer at test objects that differ on the relevant dimension
(1..e., the': green square in the example) than ones that differ on an irrelevant
ggnertl-sxon (i.e., the red cross in the example). These results suggest selective
- ((:,11)161r(t)ir‘13 St'o the relevant dimension (color) and the ignoring of irrelevant
_ Two kinds of accounts have been offered of young children’s difficultie
in the face of infants successful selective attention. Several investi atorZ
(Smith, 1989; Aslin & Smith, 1988; Coldren & Colombo 1994) takge the
data_ at fa(?e value and conclude that because infants can a’ttend selectivel
to dimensions, then there must be a fixed and universal set of dimension);
that structure perceptual experience. In this view, preschool children fail
to attend selectively for other reasons. Noting the close relationship between
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the acquisition of dimensional language and succes;ful selectlllve lattg.r;g;m.
far as to suggest that preschool children
Coldren and Colombo went so preschool ehildre
ir abili tively because they are initially : y
lose their ability to attend selec . i onfused by
i i i the various other explanations o
dimensional language. This and ' :
failure to attend selectively in terms of a failure to selectively attend are
11 unsatisfying in their circularity. .
) Kemler (yl98gZ), in contrast, argued that the infant data‘ d;) ntoz1 sltlov;/l (\;v:z:
tly pointed out that the infant data )
they seem to show. She correc . : " fata do not
i ¢t selective attention to dunensions,
conclusively demonstrate perfec e atte onsions, Which
i i i bility in adults and the ben
is the benchmark of dimensional separa nehmark
i i t. Kemler argued that the same p
that young children fail to mee : : .
habit};atiogn-dishabituation could emerge given psylch(?[!oglc?ll})lfasirtbul;?;z
i i ions. Her point is that selective dis :
(that is made-up) dimensions. : dishabituation
isti lly represented dimensions.
es not guarantee preexisting interna ‘ ( '
idsosupporgted by our findings that the selective naming of red th%ngs red
does not guarantee the abstraction of redness from (c)ither p}rlopclert}lliels(iren’S
i t. Infants and preschool ¢
Our model also suggests a third accoun . : :
“dimensional” judgments may not conform because they do tap into g%m:l]
sions at the same level. Habituation studies may measure Sensory 1mure
sions, whereas speeded classification and comparison tasfksd .mzyrfl Srircl)e;lasthat
, j i be no single sense of dim
erceptual dimensions. There may 1e .
E}}pliei in all tasks and from the bottom to the top gf the cognitive Sf/stsr\rlle
Clearly, what is needed is a unified mechanistic acc.:ount .of sle ec ld ‘
habituation to dimensions in infancy, the learning of dlmensxoga w,ﬁ; ke,
and the development of selective attention. These present simulations

a start in this direction.

D. DIMENSIONS ARE MADE THROUGH MULTIPLE MAPPINGS

The network learned mappings between questions asked about ObJZCtSb E'i:cdt
classes of possible answers, it learned mappings be‘tween words arém(;tijons
properties, and it learned mappings betv.vegn the mtc?rnal repdres e
of pairs of objects and a linguistic description of. their relate nesls.dimen_
these mappings appear essential to the construction of Perceptua e
sions, but none are sufficient. The task is not solvable without wor T
maps from inputs to outputs. Without suf:h.maps, the networé( cam;rcl)omh Or,
given a big red smooth thing, whether it is to attend to red or ]i'ect-word
big. Isolated perceptual dimensions cannpt be formed frocrln 0 1J'Ci1 .
maps. Rather, perceptual dimensions require cqmpar‘lson allll exp 1r o
ing of property—property maps. Percgptual dlmen51oqs, owev: t;e -
be formed by comparison _alone. Ga1.ns from comparlson mus

strapped on the prior learning of attributes categories.
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This bootstrapping relation between comparison and category learning
is reminiscent of Karmiloff-Smith’s (1986) ideas about “re-representation.”
She proposed that earlier representations, often with the help of langauge,
are compared to one another and re-represented in more abstract and
context-free form. Our network offers one instantiation of how this might
happen: The explicit comparison of two objects both called red encourages
the re-presentation of redness as a discrete entity divorced from size or
texture or other aspects of the whole object.

The importance of the comparison process has also been argued
by Gentner and colleagues (Gentner & Rattermann, 1991; Kotovsky &
Gentner, 1996). They also report relevant evidence. In one study, Kotovsky
and Gentner examined children’s ability to match patterns such as those
shown in Fig. 12. Given the standard shown at the top, the child’s task was
to choose which of the bottom two patterns “‘was like” the top ones. This
is a very hard task for preschool children. Kotovsky and Gentner found
that children’s performances were helped by teaching them labels for the
relations. For example, the experimenter pointed to the matching endpoints
and told the children that the exemplar won because it was “even.” Children
were trained on a set in which only the size varied and then successfully
transfered to sets that demanded more difficult pattcrn matches. Kotovsky
and Gentner concluded that repeated comparisons of objects said to be
“even,” enabled children to abstract the relevant relation.

E. LANGUAGE HELPS MAKE DIMENSIONS

In the simulations presented here, langauge is a strong force shaping percep-
tual dimensions. Is the implication, then, that language is necessary for the
perceptual isolation of dimensions? Language is not logically necessary;
the simulations show that. A learning task in which the inputs and outputs
were not words but other contexts and other responses could accomplish
the same set of mappings.

Experiments with nonhuman animals also suggest that the key is the

 system of mappings and not language per se. Many experiments in this

literature demonstrate the acquisition and generalization of attribute cate-
gories—categories demanding the same response to objects alike in a partic-
ular way (e.g., Rescorla & Wagner, 1972; Maclntosh, 1965). There are
fewer experiments that clearly demonstrate comparison training (see Pre-
mack, 1976, for a discussion). One comparison task, however, that has been
widely used is matching-to-sample. In this task, the animal is presented
with three objects and must find the two objects in a set of three that are
the same. Experimentally, this task is accomplished by training the animal

jto select the two objects that are the same (or, alternatively, the one that
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is odd). The empirical question is }Vhether the animal can leirn tto mafki
the appropriate response over a diverse set gf ol?]ects andlt en ran; :n
that response to new instances. Such trangfer 1r_nphcates the earning o
abstract relation independent of the specific stlmulus prppertles. -
This task is like our explicit comparison task‘m that it a§k§ the gmme;
to find out what is the same about pairs of ot?Jects. And, it is a dlfﬁth
one for many species, requiring many, many trials and even then traps hetr
to new instances is not certain {e.g., Premack, 1978; Sangago & Wn% t
1984). The very difficulty of this task supports our con_cluswnlthat exp nlt(:_
judgments of sameness require much more by way of mt.ern'a relpjlrese
tions than does mere categorization and response gen_erahzaﬂpn. owe\_/elx;a,
the fact that organismsxwithout language can learn this matchmg-’;q-sz;:tli) ©
task suggests that language may not bf.: necessary for th_e perc(e)pc';ua 1;(;] ation
and representation of abstract relations (see, especially, Oden, P
ack, 1988). o

SOIsli[iﬁl’ li)trf;rzliy be that) for children, language .is the natural driving force
behind the development of perceptual dimensions.

VIII. The Nontransparency of Mechanism

Itis commonplace in psychological theor_izing to %mpute to 1nternal9;vor¥;lngss
a “copy” of externally observed behavior (Smith & Thelen, 19 { :ljte,
sucking in infants is commonly explained by a sucking reﬂex, 'the altern i
pattern of walking by a central pattern generator, categorization by repren
sented categories, and syntax by an innate grammar: In each case‘, ad
abstract and sometimes truly elegant icon of the behavior _to be exp]afnle
is proposed to be the mechanism that produces the. behav1oF. In ?ognlg;/]e
psychology, this is particularly true when the beha'v1'0r explained is ver eci
Indeed, people’s statements about their own cognitions haye been argu o
to be the best windows on underlying category representation (Gelmacrll
Coley, 1991; Keil, 1989). Moreover, one palzadl-gm that .has been use t(f
study the relevant features for object categorization consists Qf askzng 1\]/){6;1
ple what the features are (e.g., Tversky, 1989; Rosch & Mervis, 1975,' ’[;‘lh ,
1994; Rips, 1989). This, of course, is a far from foolpr(?of method: The
properties and features that people talk about co.uld, in fact, havg no
localized internal representation as components. This point has also eer;
empirically demonstrated by Schyns (1993). They §howed that two gro.ug_
of subjects could learn the very same three c.ategones and pfarform equl\;a_
lently in categorization tasks but have very d1ff.erent un‘derlymg rep_resente_
tions. More specifically, the feature vocab_ulangs defining cont.rasnn(gi ga i
gories varied qualitatively with the order in which the categories had bee
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learned. Learning the same three categories in different order created
qualitatively distinct feature vocabularies that affected subsequent learning
and judgments. In brief, categorizations by the subjects in this experiment
were misleading indicators of the perceptual representations. The structure
of outwardly observable behavior does not map in simple ways to the
structure of the underlying mechanisms that make that behavior.

The nontransparency of mechanism is also demonstrated in the present
work by the emergent and distributed nature of dimensional knowledge.
Consider what the network knew about dimensions at the end of simulations
2 and 3. It knew, for example, what is the same about all red things. It
knew that red and blue are attributes of the same kind, a kind different
from that of big. It knew that red and blue are both possible answers to
the question What color is that? and that big is not. All this knowledge was
manifest in the collective behavior of the network. However, none of these
bits of knowledge are located in any one place in the network. Rather, the
system of dimensional knowledge displayed by the network is the emergent
result of multiple mappings that overlap and constrain each other.

IX. Conclusion

The idea of perceptual dimensions as the primitive atoms of experience
has figured prominently in the study of cognition (Berlin & Kay, 1969;
Heider & Oliver, 1972; Lakoff, 1987; Miller & Johnson-Laird, 1976). The
reason is clear. If perceptual dimensions are fixed and universal, then
perception is a bedrock on which language, knowledge, and truth can be
built. If, in contrast, what is perceived and therefore what is knowable from
one’s own interactions with the world and, from the language one learns,
then there is no single truth. What is knowable is relative. This is a conclu-
sion we may have to accept. The dimensions that structure our conscious
experience of the world are themselves the product of experience.
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