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Abstract

Network analysis has demonstrated that systems ranging from social networks to electric power grids often involve a small
world structure-with local clustering but global ac cess. Critically, small world structure has also been shown to characterize
adult human semantic networks. Moreover, the connectivity pattern of these mature networks is consistent with lexical
growth processes in which children add new words to their vocabulary based on the structure of the language-learning
environment. However, thus far, there is no direct evidence that a child’s individual semantic network structure is associated
with their early language learning. Here we show that, while typically developing children’s early networks show small world
structure as early as 15 months and with as few as 55 words, children with language delay (late talkers) have this structure to
a smaller degree. This implicates a maladaptive bias in word acquisition for late talkers, potentially indicating a preference
for ‘‘oddball’’ words. The findings provide the first evidence of a link between small-world connectivity and lexical
development in individual children.
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Introduction

The study of the dynamics and structure of complex systems has

led to particularly important insights about the relations among

system growth, structure and function. For example, the growth

pattern of connections on the World Wide Web (the product of

links from one page to another) creates hub-like patterns of

connectivity that support the information and social functions of

the web. Growth, structure and function may all be understood in

terms of a set of related mathematical properties within the

framework of network analysis [1]. Network analyses have been

used to understand such wide ranging topics as the attendance of

southern women at social events [2], citation networks of

published scientific articles [3], and neuronal networks within

the human brain [4].

Within psychology and linguistics, network analyses have been

widely applied to human semantic knowledge [5–9]. These

analyses have related structural properties of spoken language,

known to be integral to language production and processing, to the

hypothesized growth processes that create the network [9]

[11][12]. Analyses of the relations among semantic network

growth, structure and function provide a new opportunity for

understanding how typical and atypical growth patterns may

relate to functional language processing. This is the focus of the

present paper.

Our starting point is the finding that mature semantic networks

possess small world properties [6][9][13]. These properties allow

for high amounts of local structure combined with global access.

Within these semantic networks, there is considerable local

structure in the form of clusters of words that are highly

interconnected to each other by semantic relatedness, which

may be related to category representations [14]. However, even

with these dense clusters, some words act as bridges and possibly as

hubs, connecting semantically distant clusters to each other. This

global access is understood as providing easy transitions from one

cluster to another and is believed to support online language

processing and comprehension [6][15].

Although this functional network structure has been hypothe-

sized to be related to the growth of semantic networks [9][11][12],

there is no direct evidence. Nor do we know if efficient structural

properties of connectivity play a role in lexical acquisition in

children. One indicator that there might be a relation between

early lexical acquisition and semantic network structure is that the

age of acquisition of individual words is related to the semantic

structure of child-directed speech as well as the connectivity

pattern of words within mature language [9][11][12].

This prior work on age of acquisition for particular words and

their role in semantic networks has used normative data on the

words children typically know at a given age and have created

networks by connecting words in normative vocabularies accord-

ing to semantic relatedness as indicated in corpora collected from

written or spoken language, free association data, or hand-coded

collections of words [9][11][12]. As such, these analyses of

developmentally early networks reveal at best the structure of

the semantic system for some generic language user, but not for

any individual user. To determine whether structure might be

related to acquisition, the present work examines, for the first time,

the structure of individual children’s semantic networks and the
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relation between individual differences in that structure and

individual differences in rate of lexical development.

The methodological approach we take is to examine the

structure of the semantic networks of children who have typical or

very small vocabularies for their age and gender. We took this

approach because past research shows that vocabulary size at any

point in development is a strong predictor of the future lexical

growth rate even in children with no known developmental

disorders [16][17][18][19]. Indeed, a vocabulary size that is below

the 20th percentile for age and gender is a marker of significant

risk for future difficulties in language learning and processing

[19][20][21][22][23][24]. In the child language literature, these

at-risk children are often called ‘‘late talkers’’, a term that we will

employ here because of its common use, although it is somewhat

of a misnomer. These children often start talking later than the

norm but the key fact is that they show a slower rate of vocabulary

growth and smaller vocabulary sizes for their ages even after

controlling for their initial delay: a difference that often persists

and predicts continued difficulties in language processing tasks at

least into late childhood [19][20][21][22][23][24]. Thus, typical

and late talkers show very different rates of vocabulary growth. Are

these differences in growth rates related to differences in the structure of their

early semantic networks?

Methods

We compared the vocabularies and corresponding semantic

networks for 66 children (aged 15 to 36 months), whose

vocabulary sizes were either typical for their age (n = 39) or whose

vocabulary sizes were small for their age (n = 27).

Children’s vocabularies were collected via a widely used parent

checklist, the communicative development inventory (infant form),

a reliable and valid measure of lexical development [25][26]. Each

child’s semantic network was derived from the list of words that

parents reported their child to use in everyday speech. To

construct each child’s network, we connected the words in each

child’s vocabulary according to the co-occurrence statistics of the

words in a normative language learning environment. Specifically,

we used the co-occurrence statistics in the CHILDES corpus [27]-

a large database of approximately 2 million words of child-directed

speech targeted at English speaking children ranging in age from

one to four years old, for further details see [12]. Thus, the nodes

in each child’s network were the words known by that child, and

the links between nodes reflected the semantic relations in the

language generally and were not specific to the individual child’s

learning environment. The resulting networks were constrained in

size and content to the words asked about on the questionnaire.

This consisted of 291 total words (after removing routine and

timing words), of which 204 were nouns, 51 were verbs and 36

were other types of speech. We chose co-occurrence statistics as

the index of semantic relatedness because they are an objective

measure that aggregates semantic, conceptual and syntactic

relatedness [28][29]. They have also been shown to predict

language acquisition in previous work [12]. Thus in the networks,

word A was connected to word B if it appeared within the first five

words that followed word B, yielding a directed network in which a

relationship of A to B does not imply B is also connected to A. The

window size of five was based on prior work that investigated

predictive power across multiple window sizes [12].

For each individual child’s network, we computed three

network statistics averaged over all words in the network. These

were in-degree, clustering coefficient, and geodesic distance. In-

degree was computed as the number of unique word types

preceding a given word in the corpus; i.e., the number of edges in

the network that point towards that word. The clustering

coefficient of a node, ci , was calculated by determining how

many connections exist between nearest neighbors of that node

(node i). The number of possible connections that can exist

between neighbors is determined by the node’s degree, ki, as

follows: ti~
k2

i {ki

2
. The clustering coefficient is then the fraction

of observed connections, li, among those possible: ci~
li

ti

. This

value was averaged across all nodes to get a mean clustering

coefficient for the entire network. The clustering coefficient is a

common measure of local structure within the network. Geodesic

distance was computed as the average shortest path length

between any two nodes, and is a measure of the global access of

words in the network. Together these three statistics provide three

different levels of information about network structure. It should

be noted that these statistics were not independent with correlation

coefficients for random acquisition graphs ranging from 0.60 for

in-degree and clustering coefficient to 0.76 for in-degree and

geodesic distance. For a review of network analysis generally and

these statistics in particular see [1][30], and for use in semantic

networks see [5][9][14].

Because the structure in any individual child’s network cannot be

meaningfully interpreted without knowing how much structure is

provided by the language being learned, we first generated, for each

child, a sample of 300 random acquisition networks that contain a

randomly selected set of n words (where n is equal to a given child’s

vocabulary size). The words were randomly selected from the

possible 291 words of the parent checklist and thus the possible

words in any child’s network. The edges between these randomly

selected words were then constructed from the same CHILDES co-

occurrence matrix that was used to provide edges in the network of

an individual child. For each child, the resulting structural statistics

were averaged over the 300 random networks. These random

acquisition networks include the structure in the language-learning

environment but remove the network structure created by the

child’s language sampling process as they learn words.

These random acquisition networks were then compared to 100

Erdős-Rényi random graphs (ER-graphs; [31]) produced for each

individual child’s vocabulary. These ER graphs contained the

same number of vertices as the child’s network and the same

number of edges as the random acquisition network, but removed

both structure inherent in the language learning environment and

structure characteristic of a particular child’s vocabulary. The

random acquisition networks include the structure in the learning

environment but remove any ordered growth patterns. The

comparison of these networks to random graphs of the same size

provides a direct measure of the structure due to the connections

among to-be-learned words in the learning environment that is

independent of the specific words learned by any child, and thus

independent of the growth pattern itself.

Results

What would the semantic structure look like for random
language learners?

Figure 1 shows that the random acquisition graphs have

significantly more local structure than the randomly generated

ER-graphs, as indicated by the higher clustering coefficient. By

design, both the random acquisition graphs and the ER-graphs have

the same number of edges and nodes, but the distribution of the

edges in the random acquisition graphs which is based on randomly

selected words but structured connections favors local clustering in

which words are often connected to their neighbors whereas the ER

graphs, based on random connections among the same number of

Semantic Network Growth
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nodes, do not. This increased local structure does not harm the

global structure relative to the ER graphs: the average geodesic

distance, while significantly larger for the random acquisition graphs

than the ER-graphs, is still similar to the ER-graph, with ER-graphs

having an average shortest path length of 1.61 as opposed to the

average path length of 1.78 for random acquisition networks. The

random acquisition networks also have higher median in-degree,

suggesting that some nodes may be acting as hubs. This indicates

that the random acquisition network (from here on referred to as

just random network) may have a degree distribution trending

toward a scale free network (as compared to the ER network which

results in a Poisson degree distribution) [32]. In brief, the language-

learning environment as revealed by a large corpus of child-directed

speech is so structured that if learning merely consisted of adding

words selected at random, it would yield lexical connectivity with

local structure and global access. This randomly acquired structure,

arising from the natural structure of speech, is sufficiently strong,

such that random sampling of quite small numbers of words from a

corpus of two million words exhibits this small world structure. In

brief, for networks of early-learned words, a small world structure

does not depend on a growth pattern that preferentially acquires

some words before others.

Do typical and late talkers have the same semantic
network structure?

The conservation of this small world structure in the learning

environment is not, however, observed in both typically develop-

ing children (TD) and late talkers (LT). While TD children’s

networks show the same structural properties as the random

networks, the LT children show much less small world structure

than their random acquisition networks. This suggests that LTs are

sampling from the language-learning environment in such a way

as to lose some of the structure inherent in language. Figure 2

shows two child networks, one from a TD child and one from an

LT child, with similar vocabulary sizes. The two networks are very

different in structure: the TD child’s network shows more

connectivity (in-degree), more local structure (clustering coeffi-

cient) and more global access (geodesic distance) than the LT

child’s network. These differences characterize the data from TD

and LT children in general as summarized in Figure 3. Unless

otherwise noted significance was measured based on a paired t-test

in which each individual was compared to the average network

statistics of their size-matched random acquisition graphs. Other

analyses were conducted such as a one-sample t-test for each

individual, with similar results. The paired t-test offered a

statistical method in which individual and cross group compari-

sons could be conducted. Using this analysis, we found that the LT

networks had significantly lower median in-degree (t(df) = 29,

paired, p,0.001) than the corresponding size-matched random

acquisition networks, whereas the TD networks did not differ

significantly from their size-matched random networks (t(df) = 37,

paired, p = 0.097). Likewise, the clustering coefficients for the LT

networks were smaller than those from the corresponding random

networks (t(df) = 29, paired, p,0.001): again the TD networks did

Figure 1. Random acquisition networks acquired from the learning environment show different structure from comparable Erdős
Rényi (ER) random graphs. When semantic relatedness was used to provide connections between words, ER networks showed less clustering and
lower median in-degree than random acquisition networks even when matched for density, indicating that the language environment is more
structured than its random equivalent. To generate samples of random acquisition graphs, we sampled 100 random sets of words equal in number to
each child’s vocabulary size. Edges in the random acquisition networks were based on the same co-occurrence data as was used to build the
networks of individual children. This was then averaged to get a single set of network statistics representing random acquisition for a given child. ER
networks were built to contain the same overall number of edges as the averaged random acquisition graph, with 100 repetitions at the level of the
individual child. All pairs are significantly different (p,.0001) with dark grey representing the ER random graphs and light grey representing the
random acquisition graphs.
doi:10.1371/journal.pone.0019348.g001
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not differ from the random networks (t(df) = 37, paired, p = 0.99).

Further, the LT networks showed significantly lower clustering

than the networks from the TD children with vocabulary size

controlled (linear model, p = 0.003, adjusted R2 = 0.14, f(df) = 65).

In brief, the LT networks are less connected and have less small

world structure than the random networks and the TD networks.

The networks derived from the LT children’s vocabularies also

have less global access than the random networks and the TD

children’s networks. In general, as small world networks grow

larger, more connections are possible and the geodesic distance (i.e

shortest distance between two nodes) trends to smaller values [13].

In the randomly generated language networks and in the

vocabularies from typically developing children, a low geodesic

distance (less than 2) is evident in all vocabularies with at least 75

words. In contrast, even with more than 100 words, some LT

networks have average geodesic distances much greater than 2.

They also show significantly higher geodesic distances than their

random acquisition graphs (t(df) = 29, paired, p = 0.009). The

effect remains when comparing late talkers and typically

developing children in a linear regression controlling for

vocabulary size (linear model, p = 0.007, adjusted R2 = .12,

f(df) = 65) Thus, the path length, a potentially important factor

in language processing, is greater in the vocabularies of LT

children-for any given vocabulary size-than a random sampling of

words would predict or when compared to the vocabularies of

their TD peers. It should also be noted that there is a significant

interaction between word type (nouns, verbs, and other words) and

talker type (p = .04), which is driven by typical talkers having a

lower proportion of other words (non-noun and non-verb words)

than late talkers (M = 0.08 versus 0.11, respectively; post-hoc t-test,

t(67) = 2.62, p = 0.01). However, the results presented in Figure 3

were not statistically different if networks were composed of only

nouns and verbs. Thus, the difference in network structure

between typical and late talkers does not appear to be driven by

differences in the distribution of word types that children know but

instead by underlying structural differences.

Discussion

These results show that properties of lexical connectivity that

are believed to facilitate language processing are evident in the

quite small vocabularies of very young children and thus may be

playing a role in word acquisition and language processing at the

start of language learning. The results also show that these

properties characterize individual semantic networks, not just

normative ones [11][12], and that small-world connectivity in

Figure 2. Network graphs for two individual children. The graph on the left is a typically developing (TD) child (17 mo, 40%) and the graph on
the right is of an at-risk, late-talker (LT) (24 mo, 10%). The network of the TD child includes the 60 words in the child’s productive vocabulary and the
network of the at-risk LT child includes the 61 words in the child’s productive vocabulary. The apparent visual differences in the networks are
supported by the differences in the corresponding table, with the typical talker’s network showing higher clustering coefficient and higher median
in-degree, but lower geodesic distance, than the LT. These differences are consistent at both the individual and population level.
doi:10.1371/journal.pone.0019348.g002
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individual children’s semantic networks is related to the child’s rate

of lexical development: Children who are building their vocabu-

laries at the normative pace have vocabularies with small world

properties; whereas late talkers-who are likely to show later

language processing difficulties-show this small world structure to a

much smaller degree.

These results also raise new questions about the nature of the

growth processes that lead to the connectivity patterns in semantic

networks. Based on the observation of small world structure,

Steyvers and Tenenbaum [9] proposed a growth mechanism using

preferential attachment, whereby high-connectivity in the known

network selected the entry of new information from the learning

environment, see [10] for a review. In contrast, the present results

suggest that even random word learning would yield small world

structure. If this is so, then the key open question is why children

who are slow in learning language do not acquire sets of words

that exhibit small world structure, like typically developing

children. There are at least three possibilities. On average,

random selection may yield vocabularies that exhibit small world

structure, but some randomly selected sets of words will not. Thus

it is possible that all children are more or less randomly selecting

words, but, by chance, some children select a poorly structured set

and become late talkers as a consequence. This seems unlikely

given that normative evidence indicates children are not selecting

words at random [11][12]. Moreover, delays in lexical learning

persist and a random selection process would be self-correcting

over time.

A second possibility is that the language learning environments

for late talkers are somehow distorted, exhibiting different

structural properties than the environments of typical talkers. It

is known that parents of children with language delay adjust their

language to fit the developmental level of their child, and language

delay runs in families; however, there is also other evidence to

suggest that parent language per se is not the key cause of language

delay in these children [26][33]. In brief, this is a possibility that

needs to be tested via network analyses of the structure of language

directed to individual children.

The remaining possibility is that children with language delay

sample the language learning environment in a way that limits

acquisition of semantically related words [11][12], e.g., by biased

acquisition for words that are particularly novel (i.e., ‘‘oddballs’’)

relative to words that they already know. Thus, for example, a

child using an ‘oddball’ strategy would be more likely to learn the

word ‘‘telephone’’ than ‘‘dog’’ after learning the word ‘‘cat’’,

because ‘‘telephone’’ is less semantically similar to the word ‘‘cat’’,

which the child already knows. Formally, this would be the exact

opposite of the lure of the associates model [12] to explain typical

development. For this ‘‘oddball’’ model, words would be learned

based on the lack of associative connections to the already known

words as opposed to being primed for learning by associative

connections; a sign change in the sensitivity parameter of the lure

of the associates model would create this difference. Importantly,

the lure of the associates model has been shown to predict early

language acquisition for typical talkers [12]. Future analyses will

need to look at the longitudinal progression of word acquisition in

typical and late talkers to determine whether or not words are

acquired differentially for these populations, depending on what

words are already known.

Figure 3. Ratios of differences relative to the child-matched random acquisition networks for both typical talkers (TD, dark gray)
and late talkers (LT, light grey). TD children show marginally significant (p = 0.0970) effects of greater median in-degree and LT children show
significantly less (p,0.001) median in-degree than the random acquisition networks. While TD children have clustering coefficients indistinguishable
from random acquisition, the late talkers have significantly less (p,0.001) clustering than their paired random acquisition networks. TDs have no
significant difference between their paired random acquisition networks whereas LTs have a significantly higher (p = .0092) geodesic distance. Error
bars indicate standard error.
doi:10.1371/journal.pone.0019348.g003
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