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Abstract
Hearing loss is prevalent among elderly adults, which leads to speech-understanding difficulties in noisy environ-
ments. Speech enhancement algorithms are thus proposed to alleviate this speech-in-noise problem. However,
most of these algorithms have not been evaluated for hearing-impaired people either with or without the use of
hearing aids. In this study, we evaluated the performance of several speech enhancement algorithms [i.e., non-
negative matrix factorization based, deep-neural-network based and long short-term memory (LSTM) based
algorithms] for hearing-impaired listeners using an objective speech quality metric, namely the Hearing-Aid
Speech Quality Index (HASQI). The HASQI is based on a physiologically inspired model of auditory process-
ing, which also allows the simulation of hearing impairment. The evaluation was repeated separately for the
typical hearing characteristics of different genders in various age groups. For the aided condition, linear ampli-
fication was implemented using the NAL-R prescription formula. The benefits from the speech enhancement
algorithms decrease with increasing degrees of hearing loss. With amplification, the benefit diminishes for
the listener group with the most severe hearing impairment. Among the various algorithms, the LSTM-based
structures exhibit superior performance with and without amplification.
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1 INTRODUCTION
In the United States, about one third of older adults between 65 and 74 years of age live with hearing impair-
ment. Age-related hearing loss makes speech communication challenging, especially in noisy environments. The
traditional approach to address the speech understanding difficulties experienced by older adults is the use of
hearing aids. Hearing aids amplify the acoustic signals received at the ears and send the amplified signals into
the ear canal. Typically, greater amounts of amplification would be prescribed to the frequency regions with
greater degrees of hearing loss to ensure conversational speech is audible to the hearing-aid users. This strategy
is capable to significantly improve speech understanding in quiet, however, when background noises are present
both the speech and noise would be amplified, leading to limited benefits from amplification.
The advancements in speech enhancement techniques have created new opportunities to facilitate speech un-
derstanding among older adults. The goal of many speech enhancement algorithms is to remove background
noise from noise-corrupted speech signals. It is hypothesized that applying amplification to the enhanced speech
signals would improve speech understanding for listeners with age-related hearing loss.
The current study investigates the perceived speech quality following speech enhancement and amplification
from hearing-impaired listeners using an objective speech-quality metric, namely the Hearing-Aid Speech Qual-
ity Index (HASQI) [1]. The HASQI metric is different from many other objective speech-quality metrics, such
as the Perceptual Evaluation of Speech Quality (PESQ) index [2], in that it includes a physiologically inspired
model of auditory processing. The inclusion of the model also allows HASQI to simulate auditory perception
in impaired ears and predict the perceived speech quality by hearing-impaired listeners.
In a recent study, Zhang et al. [3] applied HASQI to compare the improvement in speech quality by a range
of speech enhancement algorithms, including algorithms based on non-negative matrix factorization (NMF)



[4, 5, 6], deep neural networks (DNNs) [7, 8], and recurrent neural networks (RNNs) [9, 10]. The aver-
age hearing profiles for listeners in various age groups were used to configure HASQI to generate predictions
on the perceived speech quality from these listener groups. Results showed that for both normal-hearing and
hearing-impaired listeners the long short-term memory (LSTM) based network achieved the greatest improve-
ment in speech quality over other enhancement techniques. Moreover, as the degree of hearing loss increased,
the HASQI score decreased, indicating poorer speech quality. In this previous study, no compensation for the
loss of audibility was applied for the hearing-impaired groups, therefore, it is possible that the decreased HASQI
scores merely reflected the reduced available speech bandwidth due to hearing loss.
In the current study, the evaluations conducted by Zhang et al. [3] are repeated with and without amplification
applied following speech enhancement. It will be shown that both speech enhancement and amplification im-
prove speech quality; however, the benefits from them may not be additive depending on the degree of hearing
loss and the specific speech enhancement algorithm.
The rest of this paper is organized as follows. Section 2 describes the speech enhancement algorithms that were
investigated in the current study. The experimental setup is described in Section 3. Results are provided in
Section 4. Finally, conclusions are drawn in Section 5.

2 SPEECH ENHANCEMENT ALGORITHMS
2.1 Active-set Newton algorithm (ASNA)
Non-negative matrix factorization is an efficient method for extracting target signals from mixtures of signal
and noise, and it is widely used for speech enhancement and applications such as document clustering [11, 12].
The active-set Newton algorithm (ASNA) [5, 6] is an extension of NMF and applies the Newton method to
update the weights. It can be expressed as x̂ = Bw, where x̂ is the target speech signal, B is the trained speech
dictionary and w represents the activation weights. ASNA is more efficient compared to other NMF-based
approaches in terms of processing time, and it has been shown to outperform many of them under various
conditions. We use the same parameters as reported in the original study.

2.2 DNN-based ideal ratio mask estimation (D-IRM)
A DNN-based method that estimates the ideal ratio mask (IRM) in the time-frequency (TF) domain is included
in the current study. Using the ideal ratio mask as the training target in a DNN-based algorithm has been shown
to achieve better results than other training targets [7]. The IRM can be described as:

Mrm
t, f =

|st, f |
(|st, f |+ |nt, f |)

, (1)

where |st, f | represents the magnitude response of the clean reference signal and |nt, f | is the magnitude response
of the noise signal at time-frequency region t, f .
The implementation of this DNN-IRM network consists of three hidden layers with 1024 units each [7]. The
rectified linear (ReLU) [13] activation function is used for all hidden layers, and linear activation function is
used for the output layer. The input to the network is a set of complementary features [7]. When constructing
the spectrogram, the window size is chosen as 40 ms with a step size of 20 ms. Adaptive gradient descent is
used as the optimizer during training, with a mini-batch size of 512, and a maximum epoch number of 80. The
mean squared error is used as the loss function. The network predicts an estimated IRM which is combined
with the phase of the noisy mixture to reconstruct the enhanced speech.

2.3 DNN-based complex ideal ratio mask estimation (D-cIRM)
As mentioned above, the IRM estimated by the DNN-IRM network does not contain any phase information for
the reconstruction of the enhanced speech, despite of the importance of phase for audio quality. An alternative
DNN-based algorithm [8] utilizes the phase information by predicting a complex ideal ratio mask (cIRM) in



the TF domain. Instead of solely relying on magnitude information, this network is able to predict the phase as
well. The cIRM is defined as:

Mcrm
t, f =

∣∣st, f
∣∣∣∣yt, f
∣∣ cos(θt, f )+ j

∣∣st, f
∣∣∣∣yt, f
∣∣ sin(θt, f ), (2)

where |yt, f | represents the magnitude response of the noisy speech, j is the imaginary unit, and θt, f = θ s
t, f −θ

y
t, f

is the phase difference between the speech and noisy speech. This network consists of three hidden layers with
1024 units each. The ReLU activation function is used as activation function for all hidden layers while the
output layer uses a linear activation function. Other settings for this network are identical to the ones for the
DNN-IRM approach.

2.4 LSTM-based ideal ratio mask estimation (L-IRM)
As a variant of RNN, LSTM network solves the problem of exploding and vanishing gradient that traditional
RNNs face [14]. With the help of the recurrent structure, the LSTM networks are suitable for dealing with data
that contain temporal information, such as those in speech translation and speech enhancement.
The structure of the implemented LSTM network is described in [9]. This network consists of two LSTM
layers with 256 nodes in each layer, then connects to another dense layer with sigmodal activation function. It
takes the log magnitude spectrogram as the input and outputs an estimated IRM for the enhanced speech. When
generating the spectrogram, the window size is chosen as 25 ms with a hop size of 10 ms. The log magnitude
spectrogram is then “chopped" into sequences of 100 timesteps. We use mask approximation (MA) [9] as the
loss function which is defined as:

EMA(Mpred) = ∑
t, f

(Mtrue−Mpred)
2, (3)

where Mpred is the predicted IRM and Mtrue is the ground truth. During training, a mini-batch size of 25
sequences with a maximum epoch number of 100 is used. We also apply RMSprop as the optimizer since its
been shown as a good choice when training RNNs [15].

2.5 Bidirectional LSTM-based phase-sensitive mask estimation (BL-PSM)
As an extension of LSTM, a bidirectional-LSTM (BLSTM) takes “memory" in both directions into account (i.e.,
past and future series). This BLSTM network structure is described in [10]. It has two BLSTM layers with 256
units each, which is followed by a third fully connected layer. It also takes the log magnitude spectrogram as
the input, but predicts a phase-sensitive mask (PSM). The PSM is defined as:

MPSM
t, f =

|st, f |
|yt, f |

cos(θt, f ). (4)

We truncate the PSM between 0 and 1 and use a phase-sensitive spectrum approximation (PSA) [10] as the
loss function during training. The PSA is defined as:

EPSA(Mpred) = ∑
t, f

(Mtrue|yt, f |−Mpred |yt, f |)2, (5)

where Mtrue stands for the ideal PSM and Mpred is the estimated one. Other settings are the same as those
described for the LSTM-based method.

3 EXPERIMENTAL SETUP
3.1 Speech material
Sentences from three speech corpora were used, including 250 male-speech utterances from the Hearing in
Noise Test (HINT) corpus [16], 1440 IEEE utterances [17] containing both male and female talkers and 2342



Table 1. Hearing thresholds (dB HL) of male and female subjects from various age groups.

Age Group Frequency (Hz)
250 500 1000 2000 4000 6000

50-59 Male 12.3 12.6 16.4 30.4 55.1 57.5
50-59 Female 11.6 10.9 10.4 13.2 21.1 27.4
60-69 Male 14.8 14.8 17.7 29.9 58.3 64.5
60-69 Female 15.1 14.9 14.7 19.5 29.8 40.0
70-79 Male 18.3 19.1 24.7 40.4 66.1 72.1
70-79 Female 20.7 21.3 23.1 30.1 41.5 51.4
80+ Male 28.0 31.2 38.3 49.6 67.5 76.7
80+ Female 29.9 30.9 31.7 42.4 54.3 64.1

male and female utterances from the TIMIT dataset [18]. In total, there are 4032 clean speech utterances.
We split them into three sets: (1) 2822 (70%) utterances in the training set, (2) 605 (15%) utterances for the
development set and (3) 605 (15%) utterances for the test set. By mixing up the clean utterances with four
different types of noise (i.e., airplane, babble, dog, train) at 6 signal-to-noise ratios (SNRs), we obtain 16932
mixtures for each type of noise. Among the four noise types, the ten-talker babble noise are extracted from the
AzBio database [19] and the other noises are obtained from the ESC-50 dataset [20]. The SNRs range from -5
dB to 20 dB with a step size of 5 dB. All signals are resampled to 16 kHz before mixing.

3.2 Listener age groups and linear amplification
The typical audiometric thresholds for male and female listeners at various ages are provided in Table 1. The
data listed in the table are based on 936 females and 756 males, reported in [21]. A higher hearing threshold (in
dB HL) represents a greater degree of hearing loss. For each listener group, the perceived quality of enhanced
speech is separately predicted using HASQI. This results in a HASQI score, ranging between 0 (poorest) to 1
(best). The computational procedure to calculate the HASQI score considers the audiometric thresholds for the
listener group and configures the auditory model within HASQI accordingly to simulate the perceptual conse-
quences according to the severity of the hearing loss. In the model, hearing loss not only reduces sensitivity to
sound but also reduces the compressive nonlinearity associated with the healthy peripheral auditory system and
degrades the resolving power to spectral details [1].
The HASQI metric is based on an intrusive algorithm, which means that it requires both the clean speech signal
as the reference signal and the noisy speech mixture as the test signal at its input [22]. In the current study,
the clean reference signal is amplified according to a standard hearing-aid prescription formula (i.e. NAL-R)
[23]. This formula generates a fixed gain, independent of input level (i.e. linear amplification), for each of the
frequency regions. Therefore, the reference signal used for computing the HASQI score represents speech heard
in quiet through typical linear amplification.
For each combination of speech enhancement algorithm and listener group, speech quality is calculated using
HASQI either before (“Mixture") or after (“Enhanced") speech enhancement is applied, and with (“Eq. On")
or without (“Eq. Off") amplification. The test signal that is used to calculate the HASQI score is different
depending on the condition. Specifically, when no amplification is applied, the noisy speech mixture is used
in the “Mixture Eq. Off" condition, and the enhanced speech is used in the “Enhanced Eq. Off" condition.
When amplification is applied, the test signal is the the noisy speech mixture amplified according to the NAL-R
formula in the “Mixture Eq. On" condition, and it is the enhanced speech amplified according to the NAL-R
formula in the “Enhanced Eq. On" condition.
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Figure 1. HASQI results with NAL-R amplification on and off

4 RESULTS
The calculated HASQI scores are shown in Figure 1 for the five speech enhancement algorithms evaluated in
the current study (in separate panels). In each panel, the HASQI scores are plotted for the four test conditions
as separate curves (with different symbols). Each curve in a panel shows the HASQI score as a function of
pure-tone-average (PTA) threshold, which is the average of the thresholds at 500, 1000, and 2000 Hz. The PTA
is commonly used to summarize the severity of hearing loss because 500, 1000, and 2000 Hz are frequencies
that are important for speech understanding. The four data points along each curve indicate the four listener
groups, the group with a higher age range corresponds to a higher PTA threshold.
As observed from Figure 1, amplification always leads to improvement in speech quality. Without speech
enhancement, the benefit from amplification increases slightly as the degree of hearing loss increases (com-
paring filled and unfilled circles). This effect of hearing loss is less evident when speech enhancement is
applied. Across all five speech enhancement algorithms, speech enhancement improved the predicted speech
quality by HASQI (comparing triangles to circles). However, under the conditions with amplification, the bene-
fit from speech enhancement diminishes as the PTA threshold increases. Comparing among the algorithms, the
deep learning approaches exhibit significant improvements over the traditional NMF-based method (ASNA). The
LSTM- and BLSTM-based structure perform the best among the algorithms both with and without amplification.
To investigate whether the benefits from speech enhancement and amplification are additive, we quantify the
benefit from speech enhancement by the difference between the HASQI scores for the “Mixture Eq. Off" and
“Enhanced Eq. Off" conditions (∆enhance) and the benefit from amplification by the difference between the
HASQI scores for the “Mixture Eq. Off" and “Mixture Eq. On" conditions (∆Eq). Then, the expected HASQI



score for the “Enhanced Eq. On" condition assuming additivity of the benefits (ĤASQIEnhanced Eq. On) would be:

ĤASQIEnhanced Eq. On = HASQIMixture Eq. Off +∆enhance +∆Eq, (6)

where HASQIMixture Eq. Off is the HASQI score for the “Mixture Eq. Off" condition. The actual HASQI score

for the “Enhanced Eq. On" condition (HASQIEnhanced Eq. On) is close to ĤASQIEnhanced Eq. On for listener group
with minimal hearing loss. On the other hand, when it is applied to listeners with higher degrees of hearing
loss, the benefits from speech enhancement and amplification becomes subadditive:

HASQIEnhanced Eq. On < ĤASQIEnhanced Eq. On. (7)

From our simulations, we infer that as the degree of hearing loss increases, there will be fewer benefits from
wearing a digital hearing aid device with built-in speech enhancement. Although speech enhancement algorithm
can bring many benefits in noisy environments when the amplification is not applied, the benefit decreases
dramatically when amplification is applied.

5 CONCLUSIONS
The influence of amplification on speech quality is investigated using an objective metric in this study. Simu-
lated results show that the benefits from speech enhancement are getting smaller as the hearing loss becomes
more severe. The LSTM- and BLSTM-based methods achieve the best speech quality for listeners with vari-
ous degrees of hearing loss. This holds true in both conditions when amplification is turned on and off. Future
studies that include listening tests using hearing-impaired listeners will help to confirm the findings in this study.
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