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Abstract

The real-world capabilities of objective speech quality measures
are limited since current measures (1) are developed from sim-
ulated data that does not adequately model real environments;
or they (2) predict objective scores that are not always strongly
correlated with subjective ratings. Additionally, a large dataset
of real-world signals with listener quality ratings does not cur-
rently exist, which would help facilitate real-world assessment.
In this paper, we collect and predict the perceptual quality of
real-world speech signals that are evaluated by human listen-
ers. We first collect a large quality rating dataset by conducting
crowdsourced listening studies on two real-world corpora. We
further develop a novel approach that predicts human quality
ratings using a pyramid bidirectional long short term memory
(pBLSTM) network with an attention mechanism. The results
show that the proposed model achieves statistically lower esti-
mation errors than prior assessment approaches, where the pre-
dicted scores strongly correlate with human judgments.

Index Terms: speech quality assessment, crowdsourcing, sub-
jective evaluation, attention, neural networks

1. Introduction

Subjective listening studies are the most reliable form of speech
quality assessment for many applications, including speech en-
hancement and audio source separation [1, 2]. Listeners often
rate the perceptual quality of testing materials using categor-
ical or multi-stimuli rating protocols [3, 4]. The test materi-
als are often artificially created by additively or convolution-
ally mixing clean speech with noise or reverberation at pre-
scribed levels, to simulate real environments [5, 6]. Unfortu-
nately, the simulated data does not capture all the intricate de-
tails of real environments (e.g., speaker and environmental char-
acteristics), so it is not clear if these assessments are consistent
with assessment results from real-world environments. Many
investigations conclude that more realistic datasets and scenar-
ios are needed to improve real-world speech processing perfor-
mance [7, 8, 9]. However, the cost and time-consuming nature
of subjective studies also hinders progress.

Computational objective measures enable low cost and ef-
ficient speech quality assessment, where many intrusive, non-
intrusive, and data-driven approaches have been developed. In-
trusive measures, such as the perceptual evaluation of speech
quality (PESQ) [10], signal-to-distortion ratio (SDR) [2] and
perceptual objective listening quality analysis (POLQA) [11],
generate quality scores by calculating the dissimilarities be-
tween a clean reference speech signal and its degraded coun-
terpart (e.g., noisy, reverberant, enhanced). These measures,
however, do not always correlate well with subjective quality
results [12, 13].
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Several non-intrusive (or reference-less) objective quality
measures have been developed, including the ITU-T standard
P.563 [14], ANSI standard ANIQUE+ [15], and the speech to
reverberation modulation energy ratio (SRMR) [16]. These ap-
proaches use signal processing concepts to generate quality-
assessment scores. These approaches, however, rely on sig-
nal properties and assumptions that are not always realized
in real-world environments, hence the assessment scores are
not always consistent with human ratings [6, 17]. More re-
cent work uses data-driven methods to estimate speech qual-
ity [21, 17, 22, 18, 19]. The authors in [20] combine hand-
crafted feature extraction with a tree-based regression model
to predict objective PESQ scores. Quality-Net [21] provides
frame-level quality assessment by predicting the utterance-level
PESQ scores that are copied as per-frame labels using a bidi-
rectional long short-term memory (BLSTM) network. Simi-
larly, NISQA [17] estimates the per-frame POLQA scores us-
ing a convolutional neural network (CNN). It subsequently uses
a BLSTM to aggregate frame-level predictions into utterance-
level objective quality scores. These data-driven approaches
perform well and increase the practicality of real-world assess-
ment. However, the usage of objective quality scores as training
targets is a major limitation, since objective measures only ap-
proximate human perception [2, 12]. Alternatively, the model
developed in [22] predicts the mean opinion score (MOS) [23]
of human ratings, but the ratings are collected on simulated
speech data. This approach advances the field, but it is not
enough to ensure good performance in real environments. A
complete approach is needed that predicts human quality rat-
ings of real recordings.

In this study, we conduct a large-scale listening test on
real-world data and collect 180,000 subjective quality ratings
through Amazon’s Mechanical Turk (MTurk) [24] using two
publically-available speech corpora [25, 26]. This platform pro-
vides a diverse population of participants at a significantly lower
cost to facilitate accurate and rapid testing [27, 28, 29]. These
corpora have a wide range of distortions that occur in every-
day life, which reflect varying levels of noise and reverbera-
tion. Our listening tests follow the MUTItiple Stimuli with Hid-
den Reference and Anchor (MUSHRA) protocol [4]. To the
best of our knowledge, a large publically-available dataset that
contains degraded speech and human quality ratings does not
currently exist. We additionally develop an encoder-decoder
model with attention mechanism [30] to non-intrusively predict
the perceived speech quality of these real-world signals. The
encoder consists of stacked pyramid BLSTMs (pBLSTM) [31]
that convert low-level speech spectra into high-level features.
This encoder-decoder architecture reduces the sequential size of
the latent representation that is provided to an attention model.
The key difference between this proposed approach and related
approaches, is that our approach predicts mean-opinion scores
of real-world signals using a deep-learning framework. The fol-
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lowing sections discuss the details and results of our approach.

2. Methods
2.1. Crowdsourced listening study procedures

We create human intelligence tasks (HIT) on Amazon Mechan-
ical Turk (MTurk) for our crowdsourced subjective listening
test [32], where each HIT is completed by 5 crowdworkers
(i.e., subjective listeners). At the beginning of each HIT, crowd-
workers are presented with instructions that describe the study’s
purpose and procedures. The study has a qualification phase
that collects demographic information (e.g., age group, gender,
etc.). We also collect information about their listening envi-
ronment and devices they are using to hear the signals. The
participants are required to be over 18 years of age, native En-
glish speakers, and have normal hearing. This study has been
approved by Indiana University’s Institutional Review Board
(IRB). A small monetary incentive was provided to all approved
participants.

Each HIT contains 15 trials of evaluations that follow the
recommendation of ITU-R BS.1534 (a.k.a. MUSHRA) [4].
Each trial has multiple stimuli from varying conditions includ-
ing a hidden clean reference, an anchor signal (low-pass filtered
version of the clean reference) and multiple real-world noisy or
reverberant speech signals (i.e., test stimuli). After listening to
each signal, the participants are asked to rate the quality of each
sound on a continuous scale from 0 to 100 using a set of sliders.
We clarify the quality scale, so that sounds with excellent qual-
ity should be rated high (i.e., 81 ~ 100) and bad quality sounds
should be rating low (i.e., 1 ~ 20). The listener is able to play
each stimuli as often as desired. Each HIT typically takes 12
minutes or less to complete.

Overall, we launched 700 HITs. 3,578 crowdworkers par-
ticipated in our listening tests, and 3,500 submissions were ap-
proved for subsequent usage. 2,045 crowdworkers are male and
1,455 are female. Their ages cover a range from 18 to 65. 2,837
of them have prior experience with listening tests.

2.2. Speech material

Previous listening studies use artificially created noisy- or
reverberant-speech stimuli [2, 33, 29, 22]. This enables con-
trol over the training and testing conditions, however, it limits
external validity as the designed distortions differ from those in
real environments. Therefore, we use two speech corpora that
were recorded in a wide range of real environments.

We first use the COnversational Speech In Noisy Environ-
ments (COSINE) corpus [25]. This corpora contains 150 hours
of audio recordings that are captured using 7-channel wearable
microphones, including a close-talking mic (near the mouth),
along with shoulder and chest microphones. It contains multi-
party conversations about everyday topics in a variety of noisy
environments (such as city streets, cafeterias, on a city bus, wind
noise, etc). The audio from the close-talking microphone cap-
tures high quality speech and is used as the clean reference. Au-
dio from the shoulder and chest microphones capture significant
amounts of background noise and speech, hence they serve as
the noisy signals under test. For each close-talking signal, one
noisy signal (from shoulder or chest) is used alongside the refer-
ence and anchor signals, and evaluated by the listeners using the
MUSHRA procedure. The approximated signal-to-noise ratios
(SNRs) of the noisy signals range from -10.1 to 11.4 dB.

We also use the Voices Obscured in Complex Environmen-
tal Settings (VOiICES) corpus [26]. VOiICES was recorded us-
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Figure 1: MOS distributions of COSINE (left) and VOiICES
(right) corpora.

ing twelve microphones placed throughout two rooms of differ-
ent sizes. Different background noise are played separately in
conjunction with foreground clean speech, so the signals con-
tain noise and reverberation. The foreground speech is used
as the reference signal, and the audio captured from two of
the microphones are used as reverberant stimuli. The approx-
imated speech-to-reverberation ratios (SRRs) of these signals
range from -4.9 to 4.3 dB.

In the listening tests, we deploy 18,000 COSINE signals
and 18,000 VOIiCES signals. Each stimulus is truncated to be
3 to 6 seconds long. In total 45 hours of speech signals are
generated and 180k subjective human judgments are collected.

2.3. Data cleaning and MOS calculation

A crowdworker’s responses are rejected if the response contains
malicious behavior [34], such as random scoring or the amount
of unanswered responses exceeds 20% of the HIT. Data clean-
ing is then performed to remove rating biases and obvious out-
liers. Some participants tend to rate high, while others tend to
rate low. This potentially presents a challenge when trying to
predict opinion scores [35]. The following steps alleviate this
problem.

The z-score of each stimuli is first calculated across each
condition. Responses with absolute z-scores above 2.5 are iden-
tified as potential outliers [36]. The ratings of all unanswered
trials are removed in this step as well. A rescaling step is then
performed to normalize the rating ranges amongst all crowd-
workers. Specifically, Min-max normalization is performed,
and the new rating scale is from 0 to 10.

A consensus among crowdworkers is expected over the
same evaluated stimulus. If the rating of one crowdworker has
very low agreement with the other crowdworkers, this rating is
considered inaccurate or a random data point. Thus, we ap-
ply two robust non-parametric techniques, density based spatial
clustering of applications with noise (DBSCAN) [37] and iso-
lation forests (IF) [38], to discover outliers that deviate signifi-
cantly from the majority ratings. DBSCAN and IF are used in
an ensemble way, and a conservative decision is made in which
ratings are only discarded when both algorithms identify it as an
outlier. The algorithms were implemented by scikit-learn with
default parameters.

After data cleaning is complete, the scaled ratings for each
stimulus are averaged and this is used as the MOS for the corre-
sponding signal. The full distribution of the scaled MOS of each
speech corpus is shown in Figure 1. As expected, the reference
signals are rated high and the anchor signals have a relatively
narrow range. The test stimuli of COSINE data varies from 2.0
to 6.0 while those from VOiCES are concentrated between 1.5
to 4.0. Major outliers seldomly occur in each condition.



2.4. Data-driven MOS quality prediction

Our proposed attention-based encoder-decoder model for pre-
dicting human quality ratings of real-world signals is shown
in Fig. 2. The approach consists of an encoder that converts
low-level speech signals into higher-level representations, and
a decoder that translates these higher-level latent features into
an utterance-level quality score (e.g., the predicted MOS). The
decoder specifies a probability distribution over sequences of
features using an attention mechanism [30].

The encoder utilizes a stacked pBLSTM [31] network,
which has been successfully used in similar speech tasks
(ASR [31] and voice conversion [39]). Utterance-level predic-
tion is challenging since the signals may be long, which com-
plicates convergence and produces inferior results. The connec-
tions and layers of a pyramidal architecture enable processing
of sequences at multiple time resolutions, which effectively cap-
tures short- and long-term dependencies.

Fig. 2 depicts an unrolled pPBLSTM network. The boxes
correspond to BLSTM nodes. The input to the network, x;, is
one-time frame of the input sequence at the ¢-th time step. In
a pyramid structure, the lower layer outputs from M consecu-
tive time frames are concatenated and used as inputs to the next
pBLSTM layer, along with the recurrent hidden states from the
previous time step. More generally, the pBLSTM model for
calculating the hidden state at layer [ and time step ¢ is

Bt = PBLSTM (hi_1, Concat(Ah;!y_prirs- - hirks))

)]
where M is the reduction factor between successive pBLSTM
layers. In the implementation, we use L = 3 pBLSTM layers
(with 128, 64 and 32 nodes in each direction, respectively) on
the top of a BLSTM layer with 256 nodes that operates on the
input sequence x. The factor M = 2 is adopted here, same as
[31]. This structure reduces the time resolution from the input x
to the final latent representation h™ by a factor of M® = 8. The
encoder output is generated by concatenating the hidden states
of the last pBLSTM layer into vector h™ = {nf h%, ..., h%h 1,
where T}, is the number of final hidden states. Layer normaliza-
tion is adopted for each recurrent layer.

The decoder is implemented as an attention layer followed
by a fully-connected (FC) layer. The self-attention mecha-
nism [40] uses the output of encoder at i-th time step, hE, and
each hidden state of the last layer of encoder, hﬁ € h¥, to com-
pute the attention weights: o, = Attention(h’, h%). Then,
a context vector c; is computed as a weighted sum of the en-
coder hidden states: ¢; Z{g 1 ik hE. Note that the pyramid
structure of the encoder results in shorter latent representations
than the original input sequence, and it leads to fewer encoding
states for attention calculation at the decoding stage. Finally,
the context vector of the decoder is passed to a FC layer that
has 32 hidden units, and results in an estimate of the perceptual
quality (i.e., MOS). The model is optimized using the mean-
squared error loss and Adam optimization. It is trained for 100
epochs. The aforementioned parameters were empirically de-
termined based on best performance with the validation set.

3. Experiments and analysis
3.1. Experimental setup

The speech corpora from both datasets consist of 16-bit single
channel files sampled at 16 kHz. For MOS prediction, the input
speech signals are segmented into 40 ms length frames, with 10
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Figure 2: Illustration of the proposed attention-based pyramid
BLSTM model for predicting MOS scores. Only two pBLSTM
layers are displayed.

ms overlap. An FFT length of 512 samples and a Hanning win-
dow are used to compute the spectrogram. Mean and variance
normalization is applied to the input feature vector (i.e., log-
magnitude of spectrogram). Each dataset is divided into train-
ing (70%), validation (10%) and testing (20%) sets, and trained
separately. 5-fold cross-validation is used to assess generalize
performance to unseen data (e.g., speakers and environments).

Four metrics are used to evaluate MOS prediction: the mean
absolute error (MAE); the epsilon insensitive root mean squared
error (RMSE™) [41], which incorporates a 95% confidence in-
terval when calculating prediction errors; Pearson’s correlation
coefficient v (PCC); and Spearman’s rank correlation coeffi-
cient p (SRCC), which assesses monotonicity.

3.2. Prediction of subjective quality

The proposed model is denoted as pPBLSTM+Attn, and we first
compare with three baseline models. The first model replaces
the pBLSTM layers with convential BLSTM layer (denoted as
BLSTM-+Attn), in order to determine the benefit of the pyramid
structure. All other hyper-parameters are kept unchanged. The
second and third baseline models remove the attention mecha-
nism from the proposed model and the BLSTM model, respec-
tively, and are denoted as pBLSTM and BLSTM. These models
assesses how much the attention module contributes to the over-
all performance.

The results for the baseline and proposed models are pre-
sented in Table I. It can be seen that, on average, the proposed
model outperforms all baseline models according to all metrics.
The pyramid architecture (pBLSTM) improves the performance
of the encoder, since it captures global and local dependencies
in the latent representation space. This results in average corre-
lations of p = 0.89 and v = 0.88 with pPBLSTM+Attn, which
are much higher than the p = 0.53 and v = 0.52 with BLSTM,
and p = 0.80 and v = 0.79 with BLSTM+Attn model. The
influence of attention is observed by comparing BLSTM or
pBLSTM performance with their attention counterparts. For
instance, the RMSE* drops from 0.96 for the BLSTM to 0.74
for the BLSTM+Att. pBLSTM+Attn reduces the MAE from
0.79 to 0.51 and increases the PCC from 0.56 to 0.89, due to the
incorporation of an attention layer. These results further con-
firm the effectiveness of the attention module. Statistical tests
indicate these results are statistically significantly different with



Table II: Performance comparison with the state-of-the-art non-intrusive methods on each corpus.

COSINE VOIiCES
MAE RMSE* PCC(y) SRCC(p) MAE RMSE* PCC(y) SRCC (p)
P.563 [14] 0.85 0.94 0.55 0.54 1.09 1.31 -0.06 -0.05
SRMR [16] 1.37 1.81 0.39 0.43 0.76 0.92 0.61 0.62
AutoMOS [42] 0.74 0.83 0.75 0.79 0.75 0.78 0.76 0.75
Quality-Net [21] 0.66 0.70 0.82 0.85 0.70 0.72 0.81 0.82
DNN [22] 0.57 0.65 0.85 0.86 0.73 0.70 0.86 0.86
NISQA [17] 0.53 0.59 0.89 0.88 0.68 0.75 0.84 0.85
pBLSTM + Attn ~ 0.45 0.52 0.91 0.90 0.55 0.61 0.88 0.86
Table I: Performance comparison with baseline models. Results 10 T
on two corpora are reported together. COSINE
8 VOICES
[}
MAE RMSE* PCC(y) SRCC (p) S .
BLSTM 0.85 0.96 0.53 0.52 35
pBLSTM 0.79 0.92 0.56 0.56 I
BLSTM +Attn ~ 0.68  0.74 0.80 0.79 s,
pBLSTM + Attn ~ 0.51 0.57 0.89 0.88
OO 2 4 6 8 10
True MOS

p-value < 0.001.

Next, we compare our model with six non-intrusive meth-
ods, including two conventional measures that are based on
voice production and perception, and four data-driven ap-
proaches that utilize deep learning. P.563 [14] essentially de-
tects degradations by a vocal tract model and then reconstructs
a clean reference signal. SRMR [16] is an auditory-inspired
model which utilizes the modulation envelopes of the speech
signal to quantify speech quality. Since the output ranges of
P.563 and SRMR are different from our scaled MOS (i.e., 0
to 10), a 3rd order polynomial mapping suggested by ITU
P.1401 [41] is used to compensate the outputs when calculat-
ing MAE and RMSE*. AutoMOS [42] consists of a stack of
two LSTMs and takes a log-Mel spectrogram as input. Quality-
Net [21] uses one BLSTM and two FC layers. NISQA [17] uses
a combination of six CNN and two BLSTM layers. In [22], a
deep neural network (DNN) with four hidden layers is used,
where it generates utterance-level MOS estimates from the
frame-level predictions. Each of these approaches are trained
with the same data split as the proposed model to predict the
MOS scores, using the approach’s default parameters.

As can be seen from the results in Table II, all data-driven
approaches outperform the conventional measures (i.e., P.563
and SRMR) with a good margin. This is due, in great part, by
the fact that conventional measures do rely on the assumptions
that are not always true in real environments, while the data-
driven approaches are able to learn informative features auto-
matically.

When comparing to recent data-driven approaches, the pro-
posed model achieves the highest performance in terms of
both prediction error and the correlations with the ground-truth
MOS, except for SRCC of the DNN model on VOICES data
(v = 0.86). The proposed model, however, achieves higher cor-
relations, p = 0.91 and v = 0.90 than the p = 0.85 and
v = 0.86 of the DNN model on COSINE data. The PCC of the
proposed model also far exceeds the 0.75 of AutoMOS and 0.82
of Quality-Net. Similar trends occur on VOICES data as well.
pBLSTM+Attn improves the PCC to 0.88, compared to Auto-
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Figure 3: Correlation between the true MOS of the test stimuli
and corresponding predicted MOS on COSINE (orange) and
VOIiCES (green) corpora.

MOS with 0.76, Quality-Net with 0.81, and NISQA with 0.84.
Additionally, the proposed pBLSTM+Attn achieves RMSE*
of 0.52 and 0.61 on COSINE and VOICES data, respectively,
which clearly outperforms the 0.83 and 0.78 of AutoMOS, the
0.70 and 0.72 of Quality-Net, and 0.65 and 0.70 of DNN. Our
MAE and RMSE* scores are also lower than NISQA. Our
model shows statistical significance (e.g. p < 0.01) against
all approaches and metrics, except for MAE and RMSE* on
the COSINE data with NISQA where the p-values are 0.047
and 0.078, respectively. These results indicate that the proposed
attention enhanced pyramidal architecture improves prediction
performance, and obtains higher correlations and lower predic-
tion errors to other data-driven approaches.

A visual inspection, Fig. 3, displays the relationship be-
tween the subjective MOS and the estimated MOS of the pro-
posed approach. It can be seen that most predicted values scatter
along the diagonal, which indicates high correlation with human
MOS assessments.

4. Conclusions

In this paper, we present a data-driven approach to evaluate
speech quality, by directly predicting human MOS ratings of
real-world speech signals. A large-scale speech quality study
is conducted using crowdsourcing to ensure that our prediction
model performs accurately and robustly in real-world environ-
ments. An attention-based pyramid recurrent model is trained to
estimate MOS. The experimental results demonstrate the supe-
riority of the proposed model in contrast to the baseline models
and several state-of-the-art methods in terms of speech quality
evaluation. The collected dataset will also be made available to
facilitate future research efforts.
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